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Rust is a modern systems programming language whose ownership-based type system statically guarantees
memory safety, making it particularly well-suited to the domain of safety-critical systems. In recent years, a
wellspring of automated deductive verification tools have emerged for establishing functional correctness of
Rust code. However, none of the previous tools produce foundational proofs (machine-checkable in a general-
purpose proof assistant), and all of them are restricted to the safe fragment of Rust. This is a problem because
the vast majority of Rust programs make use of unsafe code at critical points, such as in the implementation
of widely-used APIs. We propose RefinedRust, a refinement type system—proven sound in the Coq proof
assistant—with the goal of establishing foundational semi-automated functional correctness verification of
both safe and unsafe Rust code. We have developed a prototype verification tool implementing RefinedRust.
Our tool translates Rust code (with user annotations) into a model of Rust embedded in Coq, and then checks
its adherence to the RefinedRust type system using separation logic automation in Coq. All proofs generated
by RefinedRust are checked by the Coq proof assistant, so the automation and type system do not have to be
trusted. We evaluate the effectiveness of RefinedRust by verifying a variant of Rust’s Vec implementation that
involves intricate reasoning about unsafe pointer-manipulating code.
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1 INTRODUCTION

Rust [47] is a modern systems programming language that is seeing increasingly widespread
adoption in industry as an essential tool for building more trustworthy systems code [2, 45]. One
of Rust’s key selling points is that its core type system guarantees memory safety, thus ruling out
common errors made by programmers in legacy systems programming languages like C and C++,
without compromising on performance. Indeed, Rust’s memory safety guarantees are a primary
factor driving its adoption in safety-critical systems like the Linux kernel [50].
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Of course, for safety-critical programs, it is not ultimately sufficient that they are memory-safe—
we also want to establish that they do what they are supposed to do, i.e., that they satisfy functional
correctness properties. Toward that end, there has emerged a wellspring of exciting research in
recent years, leading to a range of new verification tools, such as Prusti [3], Creusot [9], Flux [28],
and Aeneas [12]. These tools have made impressive strides forward, particularly in leveraging the
expressive power of the Rust type system to simplify the task of verifying Rust programs.
However, all the aforementioned verification tools share two key limitations. One is that, like

most practical verification tools, they are standalone software artifacts, the implementations of
which are increasingly complex and thus add significantly to the trusted computing base (TCB)
of any verification conducted with them. The other limitation pertains to the handling of unsafe
code. Although Rust is renowned for its safety guarantees, its type system is sometimes overly
restrictive: there are certain systems programming idioms which cannot be implemented in safe
Rust. As a result, many observably safe Rust APIs are implemented internally with sparing use of
unsafe features of the language (such as raw pointer manipulations or unchecked type casts, which
may result in undefined behavior). Yet none of the previous verification tools for Rust (see §7 for a
comparison to GillianRust [55], which was developed concurrently with RefinedRust) support the
verification of Rust APIs implemented with unsafe code.

Ideally, we would like to develop technology for verifying Rust programs that avoids both of
these limitations—i.e., that handles unsafe code, and that lowers the TCB by producing foundational
proofs in a proof assistant such as Coq—while retaining support for automated verification.
To that end, we present RefinedRust, a new approach to the foundational verification of

Rust programs, based on refined ownership types [41]. RefinedRust is the first approach to Rust
verification that simultaneously (1) handles real (surface) Rust code, (2) provides support for proof
automation, both for safe and unsafe Rust code, and (3) outputs machine-checkable proofs for all
verified code. We have implemented a prototype of RefinedRust in Coq. Its automation support is
fairly basic compared to that of previous non-foundational Rust verification tools, but no previous
tool (foundational or otherwise) supports any automation for verifying unsafe Rust code, and thus
RefinedRust makes an important first step.
As the name suggests, the starting point for RefinedRust is Sammler et al.’s earlier work on

RefinedC [41], a system for verifying functional correctness of C programs that is both foundational
and semi-automated. RefinedC achieves this goal by developing an extension of C’s type system
with refinement and ownership types, which enable it to express rich functional specifications on
the behavior of C code. RefinedC defines a semantic model of its refinement types in the separation
logic Iris [21, 19, 25, 20, 26, 44], so that the soundness of RefinedC type checking is established
foundationally in Coq. Moreover, RefinedC’s typing rules are expressed in a fragment of Iris called
Lithium [40], which is carefully designed to admit efficient proof search without backtracking; as a
result, RefinedC type checking can be performed with a (relatively) high degree of automation.

At a high level, the idea behind RefinedRust is to take RefinedC’s approach of refined ownership
types and figure out how to make it work for Rust. The most obvious challenge in doing so is
developing useful refinement types (and typing rules) to automate reasoning about Rust’s most
distinctive feature: its reference types, along with their attendant notions of lifetimes and borrowing.
Towards that end, we take inspiration from RustBelt [18], leveraging its lifetime logic.

But of course the devil is in the details. In developing RefinedRust, we had to overcome a number
of technical challenges, related to: (1) bridging the gap between Rust and the RustBelt model, and
(2) adapting RefinedC’s refinement type system to handle Rust types.

Challenge #1: Bridging the gap betweenRust andRustBelt. As explained above, RefinedRust
achieves foundational verification by giving a semantic model of Rust types as predicates in the
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Iris separation logic [48]. This semantic model is inspired closely by that of RustBelt, but RustBelt
employs an idealized formalization of Rust called _Rust. In order to account for real Rust code, we
had to overcome two key gaps between RustBelt/_Rust and Rust.

First of all, RustBelt makes no attempt to capture the notion of “places” in the Rust language (also
known as “lvalues” in C). Places occur on the left-hand side of assignments and as the operands of
the “address of” operator &; for instance, in &x.f, the expression x.f denotes the place in memory
where the f field of variable x is stored. In RustBelt, to port a Rust program to _Rust, one must
replace uses of general places by a few simple cases that the RustBelt type system can handle. This
requires manual effort and fails to properly reflect the structure of the Rust source code.

Secondly, _Rust does not accurately reflect all aspects of Rust code. For instance, integers in _Rust
are unbounded (as opposed to Rust’s real semantics with integer overflows), and _Rust does not
accurately reflect how data is represented in memory, especially for compound types like structs.
RefinedRust lifts both of these limitations. As a more realistic operational semantics suitable

for functional verification of unsafe code, RefinedRust introduces Radium (based on RefinedC’s
Caesium model for C [41]). Hence, programs verified in RefinedRust are proven to correctly deal
with intricacies such as integer overflows. To ensure correctness independent of the concrete data
layout, RefinedRust parameterizes its verification by an arbitrary “layout algorithm” (§4). And to
properly account for the role places play in Rust, RefinedRust’s type system introduces place types.
This aligns RefinedRust sufficiently well with the Rust type checker that we can automatically
translate Rust code into Radium and type check the result with RefinedRust.

Challenge #2: Extending RefinedC with refinement types for Rust’s mutable references.

The basic structure of RefinedRust is modeled after that of RefinedC: it layers a refinement type
system on top of Rust’s type system, and then expresses its refinement type checking rules in the
Lithium fragment of Iris to make it amenable to proof automation. However, Rust is a very different
language from C, so “porting RefinedC to Rust” is far from straightforward. In particular, C only
has a weak type system that describes the layout of values in memory, but does not give strong
guarantees or provide many mechanisms for abstraction. RefinedC therefore introduces its own
type system with a Rust-inspired notion of exclusive ownership. However, the Rust type system
goes well beyond exclusive ownership, using borrowing to grant temporary access to data without
full ownership transfer. Borrowing in Rust is expressed via reference types: shared references &T for
immutable borrowing, and mutable references &mut T for mutable borrowing.

Extending the RefinedC type system to handle Rust’s shared references is fairly straightforward,
but mutable references constitute a major challenge. To explain why, we have to briefly consider
how RefinedC represents a variable with a known value: 42@ inti32 is the (singleton) type of an
integer with value 42. Similarly, &own(42@ inti32) is the type of an exclusively owned pointer that
points to an integer with value 42. Note how the owned pointer type entirely wraps the integer type,
including its value. If the program changes the value stored behind that pointer to 57, RefinedC uses
a “strong update” (i.e., type-changing update) to enable the pointer type to be changed accordingly
to &own(57@ inti32). Such a strong update is sound precisely because the pointer is exclusively
owned: there is no risk that any other part of the program could have a different view on this data
that would be in conflict with a strong update.
In contrast, a mutable reference in Rust is not exclusively owned—rather, it is borrowed from

somewhere, and once the borrow expires, the original owner will want to use that data again at its
original type. This problem is an instance of the common pattern that when a reference type allows
for shared state (in this case, state that is shared between the borrower and the original owner), the
type must be invariant. As a result, Rust’s mutable references do not allow strong updates, and the
RefinedC strategy for precisely tracking the values stored in them no longer works.
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In RefinedRust, we therefore keep the value “outside” of the mutable reference: a mutable
reference that points to an integer with value 42 would, roughly, have type 42@&mutinti32. This
lets us change the value without performing a strong update on themutable reference type. However,
this does not solve the issue that eventually, the lifetime of the reference will expire, and then the
information about the new value stored behind that reference has to be propagated back to its
original owner. To this end, RefinedRust introduces borrow names, which are inspired by RustHorn’s
prophecy variables [32]: the full type of a mutable reference takes the shape (42, W)@&mutinti32
where 42 is the current value, and W is a borrow name that lets the original owner incorporate
changes to that value into their own proof (§2.2). This change represents a fundamental departure
from RefinedC in terms of how type constructors interact with refinements, requiring a redesign of
large parts of the type system and a non-trivial extension to RustBelt’s lifetime logic.

Contributions. We presentRefinedRust, a new foundational approach for verifying functional
correctness of safe and unsafe Rust programs. We make the following conceptual contributions:

• We show how to handle Rust’s mutable references in a refinement type system, using the
novel mechanism of borrow names to link the value of a mutable reference with the value of
the borrowed place (§2.2, §2.3).
• To support the borrowing patterns that appear when verifying actual Rust code, we build a
place type system for RefinedRust including novel types that enable Rust-specific reasoning
about borrowed places and types with invariants (§3.2, §5.2, §5.3). For our soundness proof
of the type system, we have extended RustBelt’s lifetime logic with a new kind of borrows
(described in the supplementary material [11]).
• To verify Rust’s polymorphic functions and to support layout-generic verification, we develop
a semantics which parameterizes the code with type parameters and a layout algorithm. The
verification then happens generically in the layout algorithm and type parameters (§4.1).

Additionally, we provide an implementation of RefinedRust with the following components:

• The RefinedRust type system, a type system for Rust that combines refined ownership types
with a semantic model of Rust types inspired by RustBelt (§5).
• Radium, a formalization of Rust, based on RefinedC’s Caesium operational semantics (§4).
• A type checker for RefinedRust based on RefinedC’s Lithium proof engine in Coq, and a
frontend that translates Rust code to Radium in Coq by leveraging the Rust compiler (§6).
• We evaluate RefinedRust on a version of the Rust standard library’s Vec vector implementation
(§3, §6). The code has been simplified for engineering reasons, but it still captures many of
the intricate challenges of working with pointer-manipulating unsafe Rust code.

The RefinedRust type system and the RefinedRust type checker are mechanized in Coq using
Iris. §5.4 describes the high-level soundness result—the technical details, including RefinedRust’s
extensions to RustBelt’s lifetime logic, can be found in the supplementary material [11].

Non-goals and limitations. The RefinedRust prototype produces proofs directly in Coq, which
means that its implementation does not need to be trusted. This also limits the approaches that we
can use for automation (e.g., SMT solvers as trusted oracles) compared to other verification tools
for Rust, such as Creusot [9] and Prusti [3]. While RefinedRust closes some gaps between RustBelt
and real Rust, there are still aspects of the Rust semantics that we do not yet account for, such as
some details of Rust’s layouting of structs and enums (e.g., the niche optimizations [4]), some of
Rust’s validity invariants (e.g., that booleans values are always 0 or 1), pointer-integer casts, and the
aliasing model [17] (which remains a topic of active research). A complete and precise specification
of the operational semantics of Rust does not exist yet. RefinedRust does not support some more
advanced features of Rust such as concurrency, recursive types, traits, closures, and unsized types.
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1 #[rr::params("x" : "Z")]

2 #[rr::args("#x")]

3 #[rr::requires("x + 42 ∈ i32")]

4 #[rr::returns("#(x + 42)")]

5 fn box_add_42(mut r: Box<i32>) -> Box<i32>

6 { *r += 42; r }

Fig. 1. Function that adds 42 to an integer stored
in a box.

1 #[rr::params("x" : "Z", "W" : "gname")]

2 #[rr::args("(#x, W)")]

3 #[rr::requires("x + 42 ∈ i32")]

4 #[rr::ensures(#iris "Res W (x + 42)")]

5 fn mut_ref_add_42(r: &mut i32)

6 { *r += 42 }

Fig. 2. Function that adds 42 to an integer stored
in a mutable reference.

2 AN INTRODUCTION TO REFINEDRUST

We outline the basic principles of RefinedRust using our prototype implementation (described in
§6). Then we introduce our notion of refined ownership types (§2.1), and their combination with
Rust’s mutable references (§2.2 and §2.3). Finally, we show our handling of unsafe functions (§2.4).

2.1 Refinement Types

Inspired by RefinedC, RefinedRust enables functional correctness verification through refinement
types. Let us explain refinement types in RefinedRust by considering the function box_add_42, shown
in Figure 1. It takes an argument r of type Box<i32>, where Box<T> is Rust’s type for an owned pointer
to a value of type T. The function adds 42 to the value stored in r, and then returns r to the caller.
The type Box<T> has full ownership of the memory the pointer refers to, which means there cannot
be other pointers to the memory. It is thus necessary that r is returned to give ownership of the
memory back to the caller, otherwise Rust would drop the box and free the memory.

In RefinedRust’s type system, all types come with a notion of mathematical values that they are
refined by. Consider the specification for box_add_42 in Figure 1. Here, refinement type information
is given via Rust attributes #[rr::...]. First, the params attribute introduces a specification variable x

of the mathematical (unbounded) integer type Z. The args attribute then links this variable to the
function argument r of Rust type Box<i32>, by stating that r is refined by the mathematical integer x.
(The injection # is discussed in §2.3.) The requires attribute on line 3 specifies the precondition
that x + 42—the result of the addition performed by the function—must be in the value range
representable by the type i32. The precondition ensures that the addition does not overflow,
which would trigger a panic and abort program execution. The precondition is necessary because
RefinedRust also verifies that no panics occur, similar to other Rust verification tools [3, 9]. Finally,
the returns attribute specifies the mathematical value x + 42 of the box returned by box_add_42.

2.2 Mutable References

The function mut_ref_add_42 in Figure 2 is a more idiomatic version of the previous example. It uses
Rust’s mutable reference type &mut T instead of a Box<T> to avoid returning the box. Like Box<T>, a
mutable reference &mut T asserts exclusive ownership of its memory, and thus allows mutating it
(e.g., by adding 42). However, this exclusive ownership is limited in time: a mutable reference has a
lifetime, and only borrows the referenced memory for this lifetime. Once the function returns, the
lifetime is over and the caller regains ownership of the memory. To illustrate this point, consider:

let mut z = 1; mut_ref_add_42(&mut z); assert!(z == 43);

The use of z in the assert! implicitly ends the lifetime of the reference passed to mut_ref_add_42.
Proving that the assert! succeeds requires knowing that z is indeed incremented by 42. However,
there is no explicit flow of values from mut_ref_add_42 to the assert! since mut_ref_add_42 returns a
unit value. Unlike the previous example, we thus cannot use the returns attribute to specify the
increment of z, and need another way to specify the side-effect of incrementing z.
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To reason about mutable references, RefinedRust uses the notion of borrow names (inspired by
RustHorn’s prophecy variables [32]). The mathematical value of a mutable reference &mut T is a
pair (x,W) , where x is the current mathematical value of type T and the borrow name W is used to
communicate the final value of the reference. In our example, &mut z will create a reference with
mathematical value (1,W) for some fresh W , and the value of z changes from 1 to ∗W . In other words,
the value “moves” from z to the new reference, and W ties the reference to its referent. This reference
is then passed to mut_ref_add_42 (instantiating x with 1). The ensures clause (i.e., postcondition) of
that function is a resolution Res W (x + 42), which states that the final value of the reference with
borrow name W is x + 42 (the #iris annotation specifies that the postcondition is a separation logic
assertion). This resolution lets RefinedRust automatically resolve the mathematical value of z from
∗W to 43. Thus, it can prove that the assert! succeeds.

2.3 Reborrows

Now that we have seen the basics of refinement types and borrows in RefinedRust, let us turn
to a more advanced use case of mutable references: the method get_mut for creating a mutable
reference to an element of a Rust vector. In this section, we use get_mut to explain the concept
of reborrowing. In §2.4, we will verify the implementation of get_mut based on the unsafe helper
function get_unchecked_mut, which we in turn verify in §3. The signature of get_mut is:

fn Vec::get_mut<'a>(&'a mut self, idx: usize) -> Option<&'a mut T>

It takes a mutable reference to the vector self as well as an index idx. It checks if idx is within
bounds of the vector, and if so, returns a reference to that element of the vector (else it returns None).
The returned reference can be used by the caller to modify this element of the vector, and Rust’s
borrow checker makes sure that the vector is inaccessible as long as the reference is in use. This is
especially clear when considering the lifetimes of the references in the type signature: the vector
gets a reference of lifetime 'a, and the returned reference to the element has the same lifetime 'a.
This means that, as long as the returned reference is in use, the reference passed as argument is also
in use. As such, get_mut is an example of a reborrow function common in Rust, taking a reference as
an argument and then providing a “view” into that reference in the return value.
Figure 3 shows a simple client of get_mut. It creates a vector x containing 100, 200, and 300, and

uses x.get_mut(1) to get a mutable reference xr to the element at index 1. The function unwrap takes
an Option<T> and returns t if the input is Some(t), and panics if it is None. Since 1 is within range of
the vector x, such a panic cannot happen. The first assert! checks that xr indeed refers to 200. After
updating the value of xr to 42, the second assert! checks that the write to rx updated the vector x as
expected. Importantly, in the second assert!, the vector is accessed through x again, which means
that the lifetime 'a of the reference returned by get_mut ends and rx cannot be used anymore.

Let us look at the specification for get_mut in Figure 3 to see how it enables the verification of the
assertions in get_mut_client. The first argument self has the Rust type &mut Vec<T>, so it is refined by
a list xs of (borrowable) mathematical values for T,1 together with a borrow name W for the mutable
reference. The second argument idx is refined by a mathematical integer i : Z. The remaining
clauses specify the postcondition: exists declares a mathematical variable that is returned by the
function (akin to an existential quantifier in the postcondition). The returns clause specifies the
real return value: if the index i is within bounds of the vector, get_mut returns Some containing a
reference to the i-th element of xs with the fresh borrow name Wi, otherwise it returns None. Here,
the syntax xs !!! i indicates list indexing.
The most interesting part of this specification is the ensures clause: if i is out of bounds, the

caller receives Res W xs, stating that the vector is unchanged. (Recall that W is the borrow name for

1{math_type T} denotes the type of mathematical values for T. We come back to the bor wrapper shortly.
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1 fn get_mut_client() {

2 let mut x = vec![100, 200, 300];

3 let xr: &/* 'a */mut i32 = x.get_mut(1).unwrap();

4 assert!(*xr == 200);

5 *xr = 42;

6 assert!(*x.get_mut(1).unwrap() == 42);

7 }

8 #[rr::params("xs" : "list (bor {math_type T})", "W" : "gname", "i" : "Z")]

9 #[rr::args("(#xs, W)", "i"] #[rr::exists("Wi")]

10 #[rr::returns("if i < length xs then Some (xs !!! i, Wi) else None")]

11 #[rr::ensures(#iris "if i < length xs then Res W (<[i:=*Wi]>xs) else Res W xs")]

12 fn Vec::get_mut<'a>(&'a mut self, idx: usize) -> Option<&'a mut T> {

13 if idx < self.len() { unsafe { Some (self.get_unchecked_mut(idx)) } }

14 else { None }

15 }

16 #[rr::params("xs" : "list (bor {math_type T})", "W" : "gname", "i" : "Z")]

17 #[rr::args("(#xs, W)", "i"]

18 #[rr::requires("i < length xs")]

19 #[rr::exists("Wi")]

20 #[rr::returns("(xs !!! i, Wi)")]

21 #[rr::ensures(#iris "Res W (<[i:=*Wi]> xs)")]

22 unsafe fn Vec::get_unchecked_mut<'a>(&'a mut self, idx: usize) -> &'a mut T;

Lifetime 'a alive, xr usable, x unusable

Fig. 3. Implementation, specification, and client of the function Vec::get_mut. The implementation of the
unsafe function Vec::get_unchecked_mut can be found in Figure 5.

the self argument, i.e., the vector.) However, if the index i is within bounds, we do not know yet
what the value of the vector will be once the lifetime 'a ends, as its i-th element can be modified
through the returned references—and we do not know yet how this reference will be used. We
express this in the specification by updating the i-th element of xs to *Wi (via the list update syntax
<[i:=*Wi]>xs), representing a placeholder for the final value of the reference with borrow name
Wi. This placeholder will be resolved once the returned reference goes out of scope. Thus, our
specification essentially describes the value of the vector relative to any modifications through the
returned reference. To make this work, the element type of xs is enriched via bor, where:

bor g ∋ 6 ::= #G | ∗W (G ∈ g)

Intuitively, bor g represents a potentially borrowed value of mathematical type g , where #G means
that the value G is known, and ∗W that the value is borrowed by a reference with borrow name W .
Going back to the example in Figure 3, calling get_mut on line 3 first implicitly creates a new

mutable reference to x, updating the mathematical value of x to ∗W . The reference is then passed
to the function. After the call, we obtain Res W [#100; *Wi; #300] from the postcondition. Once the
lifetime 'a of xr ends (line line 5), we further obtain Res Wi 42. RefinedRust combines these facts to
update the mathematical value of x to [#100; #42; #300], allowing it to prove the assertion (line 6).

2.4 Unsafe Functions

So far, we only considered verifying safe code. This changes when we zoom in to the verification
of the implementation of get_mut, which uses the low-level function get_unchecked_mut (Figure 3).
As the name suggests, get_unchecked_mut does not check for out-of-bounds accesses. It could thus
exhibit undefined behavior and is marked as unsafe. To call get_unchecked_mut one needs to meet
the precondition i < length xs. At the call site in get_mut, the unsafe block indicates that the Rust
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compiler cannot check this precondition; this becomes the programmer’s responsibility. Such
unsafe functions with extra preconditions are fully supported by RefinedRust: the specification
uses a requires clause to express when the function is safe to call. At the call site, checking this
precondition becomes the responsibility of RefinedRust, which invokes its theory solver.

3 UNSAFE APIS

In the previous section we showed that RefinedRust can reason about unsafe functions through
additional preconditions. The more challenging part is to verify APIs that internally use unsafe

C-style raw pointers. An example of such an API that we consider is Vec, but the use of raw pointers
is widespread in the lower levels of the Rust ecosystem—it is used for data structures (e.g., HashMap,
LinkedList), smart pointers (e.g., Cell, RefCell, Rc), concurrency primitives (e.g., Mutex), and more.
C-style raw pointers provide additional flexibility, but do not obey to Rust’s ownership discipline, so
Rust cannot determine their use to be safe (i.e., to not have undefined behavior). In RefinedRust we
can verify safety and functional correctness of APIs that use raw pointers. We do this by equipping
the API with a representation invariant that specifies the internal (pointer) structure in mathematics,
and proving that each function that is part of the API interface preserves the invariant.

Existing Rust verification tools, such as Creusot and Prusti, have to assert specifications for such
functions implemented with unsafe as axioms (and justify them with external manual proofs, such
as RustHornBelt), and thus are necessarily leaving gaps in the chain of trust. A key distinction of
RefinedRust is that it allows us to specify and check such functions in the same framework.

In this sectionwe discuss the vector representation invariant (§3.1) and then verify the functions of
the vector API (§3.2). Our code is based on the implementation of Vec in the Rustonomicon [5],which
is simplified compared to the version in the Rust standard library. The memory representation is
the same between both versions, so our verification captures the core challenges.

3.1 The Vector Representation Invariant

Figure 4 shows the definition of the Vec type, with annotations that we will explain below. We focus
on the case that the type T is not zero-sized (we have slightly simplified the invariants accordingly),
but our actual verification of Vec handles the zero-sized case. Internally, Vec is implemented using a
private data structure RawVec that manages the vector’s buffer and takes care of memory allocation.
The core operation of RawVec is grow, which increases the capacity of the buffer. Vec is implemented
as a layer on top of RawVec; its main job is to track which part of the buffer is initialized.
Representation invariant of RawVec. To define a type’s invariant we first specify its math-

ematical type using the refined_by attribute. Our RawVec exposes a very low-level interface: the
mathematical type of RawVec (line 1) consists of the memory location b and the currently allocated
capacity c. The field attribute specifies the mathematical value of each field. The mathematical
value of cap is the mathematical integer c:Z. The mathematical value of the raw pointer ptr is b:loc

that denotes the memory location storing the vector’s buffer. Following Rust, RefinedRust’s raw
pointer type does not assert ownership of the memory location (i.e., the pointer may be aliased).
The main work is done by the invariant clauses, specifying separation logic propositions that

need to hold when owning a value of the type. For RawVec, we first specify conditions on the
capacity (line 2): the maximum offset must not exceed the maximum value representable by an
isize (a restriction of Rust’s underlying LLVM backend). The second invariant attribute (line 3)
specifies additional ownership owned by RawVec, namely the permission to free the buffer. (The
#own describes how the ownership of this assertion behaves when creating a shared reference to a
RawVec—in this case, it becomes inaccessible.) Maybe surprisingly, the invariant of RawVec does not
contain ownership of the buffer itself. Instead, ownership of the buffer is managed by the user of
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1 #[rr::refined_by("(b, c)" : "(loc * Z)")]

2 #[rr::invariant("{size_of T} * c ≤ max_int isize")]

3 #[rr::invariant(#own "freeable b (c * {size_of T})")]

4 struct RawVec<T> {

5 #[rr::field("b")] ptr: *mut T,

6 #[rr::field("c")] cap: usize }

7

8 #[rr::refined_by("xs" : "list (bor {math_type T})")]

9 #[rr::exists("c" : "Z", "b" : "loc", "els" : "list (bor (option (bor {math_type T})))")]

10 #[rr::invariant(#type "b" : "els" @ "array_t (maybe_init {T}) c")]

11 #[rr::invariant("∀ i, 0 ≤ i < length xs → els !!! i = #(Some (xs !!! i))")]

12 #[rr::invariant("∀ i, length xs ≤ i < c → els !!! i = #None")]

13 #[rr::invariant("length xs ≤ c")]

14 pub struct Vec<T> {

15 #[rr::field("(b, c)")] buf: RawVec<T>,

16 #[rr::field("length xs")] len: usize }

Fig. 4. The Vec data structures and representation invariants (simplified).

RawVec (e.g., Vec) and linked to the ptr field of RawVec via b. This simplifies the verification of Vec as
the Vec operations typically directly access the buffer for reads and writes.

Representation invariant of Vec. As shown in §2.3, the mathematical type for Vec<T> is a list of
mathematical values for type T, decorated with bor to account for the elements that are borrowed.
The exists clause (line 9) specifies existentially quantified variables, internal to the invariant: the
capacity c of the buffer, the concrete location b of the buffer storing the elements, and the elements
els of the buffer. The vector owns the RawVec managing its buffer, as well as a len field specifying the
current length of the vector. The main action happens on lines 10-12. We first assert ownership of
the buffer (line 10); #type lets us express this by assigning a type to location b: b points to an array
(represented by RefinedRust’s array_t type) with the mathematical value els. The array has length
c and stores values of RefinedRust type maybe_init T, expressing that elements may be potentially
uninitialized. Specifically, the mathematical value els of the array is a list of option values. (Note
that the type of els contains bor twice because for each element, either T or maybe_init T can be
borrowed.) The first length xs elements contain the values from xs (line 11), while the remaining
elements until the end of the capacity c are uninitialized (line 12), represented by None.

3.2 Verification of Vector Operations

We turn to the verification of get_unchecked_mut (Figure 5). Recall from §2.4 that get_unchecked_mut
takes a mutable reference self to a vector as well as an index idx, and returns a mutable reference
to the element at idx. While the implementation comprises just a few lines of code, the reasoning of
why this operation is safe (assuming the index is within bounds) is intricate. The function reborrows
a part of the vector by returning a mutable reference to an element, essentially providing a view
into the vector. Crucially, the implementation needs to ensure that, no matter how the returned
reference is used, the vector’s invariant is upheld. In this, Vec is exemplary for the reasoning required
for a whole class of reborrowing functions often provided by Rust APIs with non-trivial invariants.
To understand what makes this challenging, let us consider the terms and conditions that

surround mutable references. The contents of a mutable reference &'a mut T are borrowed from a
lender. For the duration of the loan, the borrower has exclusive access to T. However, this loan is
limited in time: references have a lifetime 'a, and once that lifetime ends, the lender expects to get
back the full contents T of the borrow. Concretely, when verifying get_unchecked_mut, our return type

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 192. Publication date: June 2024.



192:10 Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer

1 #[rr::params("xs" : "list (bor {math_type T})", "W" : "gname", "i" : "Z")]

2 #[rr::args("(#xs, W)", "i")]

3 #[rr::requires("i < length xs")]

4 #[rr::exists("Wi")]

5 #[rr::returns("(xs !!! i, Wi)")]

6 #[rr::ensures(#iris "Res W (<[i:=*Wi]>xs)")]

7 unsafe fn Vec::get_unchecked_mut<'a>(&'a mut self, idx: usize) -> &'a mut T {

8 // (initial state) {self� #(#GB,W ) @&'a
mutVec<T> ∗ idx� #8 @ intusize}

9 // (unfolded) {b� #els@ arrayc (maybe_init T) ∗ (∀0 ≤ 8 < |xs | . els !!! 8 = . . .) ∗

10 // self� #( [#(b, c) ; #(length GB ) ], W ) @&'a
mutyoinked(Vec<T>; struct [RawVec<T>; intusize ] ) ∗ . . .}

11 unsafe {

12 let p = self.buf.ptr().add(idx);

13 // (get shifted ptr) {p� b +; 8 ∗ size_of T@ raw_ptr ∗ . . .}

14 let ret = &'b mut *p;

15 // (obtain borrow) {b� #(els[8 := #(Some(∗W8 ) ) ] ) @ blocked'b (arrayc (maybe_init T) ) ∗

16 // ret� #(GB !!! 8,W8 ) @&'b
mutT ∗ 'b ⊑ 'a ∗ . . .}

17 ret

18 // {'a ≡ 'b ∗ self� #(#(GB [8 := ∗W8 ] ), W ) @&'a
mut (blocked

'a (Vec<T>) ) ∗ . . .}

19 // (lifetime has been extended, resolve W) {Res W (GB [8 := ∗W8 ] ) ∗ . . .}

20 }

21 }

Fig. 5. Intermediate type system states of RefinedRust when checking get_unchecked_mut. The comments

are included for presentation purposes, but are not required by RefinedRust. Type assignments are denoted by
; � G @ T , stating that the memory location ; contains a value of type T with mathematical value G .

&'a mut T mandates that we provide (borrowed) ownership of a single vector element. Furthermore,
we have to respect the terms attached to the self argument (of type &'a mut Vec<T>) and give back
all ownership of the entire vector and satisfy its invariant when 'a ends. To achieve that, we are
allowed to rely on the receiver of our return value (of type &'a mut T) to in turn respect its part of
the bargain, and thus return ownership of that vector element back to us when 'a ends.
Thus, the core challenge in verifying get_unchecked_mut is the interaction of this back-and-forth

borrowing, combined with the low-level reasoning about pointer arithmetic.
Unfolding type invariants. Figure 5 shows the implementation augmented with annotations

showing RefinedRust’s type system state. In the initial state, the variables self and i have type
assignments according to the function’s signature (line 8), conjoined with separation logic’s separat-
ing conjunction ∗. In the first step, the RefinedRust type system unfolds the Vec type of self to gain
the required information for accessing its internal fields later on. In particular, this allows the type
system to gain knowledge about the existentially quantified c, b, and els. Unfolding the Vec invariant
is not as easy as one might expect. Since the Vec is only owned below a mutable reference, we need
to first extract the ownership from underneath that reference, effectively altering our perspective
on self. However, remember that when lifetime 'a ends, all that ownership will be taken away and
given back to the lender. Thus, to be allowed to extract ownership from underneath a mutable
reference, we have to ensure that its lifetime does not end until ownership is re-established.

The yoinked type. In RefinedRust, extracting the ownership Vec from underneath the mutable
reference is captured by the yoinked type. Specifically, &'a

mut (yoinked(+ ;) )) denotes that (some
of) the reference’s contents have been extracted. Here, + records the original type stored in the
reference, which has to be put back before its lifetime ends. ) specifies which ownership remains
in the mutable reference; this allows “partial extraction” of the reference’s contents. In the case
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MByte ∋ V ::= I | (;, =) | h with 0 ≤ I < 256 Val ∋ v ::= V x ∈ VarName

Layout ∋ ] ::= (size : nat, align : nat) L� ∋ ^ Mut ∋< ::= Mut | Shr

PExpr ∋ ? ::= x | ; | load] (?) | ?.i | ? +
p 4 VExpr ∋ 4 ::= x | v | 41 ·> 42 | use] (?) | &

^
<? | call 4 (4)

Stmt ∋ B ::= goto b | return 4 | if 4 then B1 else B2 | store] (?, 4); B | startlft(^); B | endlft(^); B

Fig. 6. Syntax of Radium (excerpted and simplified).

of the vector type, RefinedRust will yoink the representation invariant of the vector from the
reference, leaving just the plain struct type (without the invariant) as ) . The yoinked ownership of
the invariant then gets added to the proof context—in particular, the type assignment for b (line 9).
Borrowing a component. After this unfolding, the actual verification starts. In the first step,

the ptr field is offset to the i-th component, using the add function (line 12). Doing so requires
proving that the access is within bounds of the vector’s allocated memory, and as a result will also
not overflow. For this, the type system interacts with the pure invariants we have specified, as well
as the function’s precondition that the access is within bounds of the initialized part of the vector.
After add returns, the local variable p has a corresponding raw_ptr type (line 13).

The key operation of get_unchecked_mut is the borrow of the element referenced by the produced
pointer p (line 14). The aliased pointer is accessed, and the type system finds the actual ownership
for the object in the context. Since the pointer is within bounds, the element of type T can be
accessed and borrowed, producing a new reference stored in ret. The new reference’s lifetime is a
new symbolic lifetime 'b, which must live at most as long as 'a, the lifetime of the full vector.

However, creating this reference does come at a cost: we have temporarily borrowed ownership
of a part of the array, and it will only become accessible again once the lifetime 'b has ended. This
is expressed by the blocked'b U type. The key feature of this type is that it can be turned into U

after 'b has ended, while not allowing any operations before that.
Finally, the newly-created reference is returned. Here, the type system extends the lifetime 'b to

'a, making them essentially equal. This is necessary to match the desired return type &'a mut T.
RefinedRust also needs to show that when 'a ends, all the ownership extracted from self can be

put back where it belongs. Concretely, this requires turning yoinked(Vec<T>;U ) back into Vec<T>
by combining U with additional ownership from the context to re-establish the invariant of Vec.
The difficulty is that we are returning part of that ownership, so it is not possible to perform this
step right now. Luckily, we only need to perform this step after 'a has ended, at which point the
borrow we returned has expired. This means we can re-assemble the invariant of Vec using parts
that are still behind blocked'a (line 18).
In the final step in the proof, the mutable reference self goes out of scope. This generates a

resolution: when a mutable reference with mathematical value (G,W) goes out of scope, Res W G is
created. In our case this generates Res W (GB [8 := ∗W8 ]), which is exactly what is needed to satisfy
the ensures clause and finish the proof.

4 RADIUM

Before diving into the details of the RefinedRust type system (§5), we describe Radium: our formal-
ized operational semantics of a subset of Rust’s MIR (Mid-level Intermediate Representation), which
is based on RefinedC’s Caesium semantics for C. By leveraging MIR, we follow a similar approach
as existing Rust verification tools (e.g., Prusti) and do not base our verification on surface-level Rust.
MIR is attractive for verification as it is a simple CFG-based representation where many complicated
features of surface-level Rust such as loops and match statements have been desugared.
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Figure 6 provides an overview of the syntax of Radium. Radium is a CFG-based language (like
MIR) where basic blocks contain statements B . Expressions are split into place-expressions ? for
computations that result in a location ; , and value-expressions 4 for computations that result in
a value v. Similar to CompCert [29] and Caesium, values v in Radium are represented as a list of
memory bytes V , where each memory byte can either be a normal byte (i.e., an integer between 0 and
255), a location fragment (consisting of the location ; and the index = of the fragment), or poisonh
(e.g., for uninitialized memory). For example, a 32-bit integer is represented as four normal bytes,
while the location a pointer points to is represented by eight location fragments with indices 0
to 7. (RefinedRust assumes 64-bit pointers.) The Radium heap is a map from locations to memory
bytes. This value and heap representation allows Radium to model the semantics of Rust in detail.
In particular, integers are bounded and one can reason about the byte representation of values
stored in memory. The operational semantics of Radium is based on Caesium’s semantics for C,
but adapted to Rust. Specifically, loads and stores are parameterized by a layout ] that specifies the
size and alignment of the access; pointer offset operations check that the offset stays in bounds of
the allocations; and binary operations on integers check for overflows. (The lifetime annotations
startlft(^) and endlft(^) are automatically inserted by the frontend and described in §5.3.)

4.1 Layout-Parametric Verification

One key challenge of giving a detailed semantics of Rust is that the layout of types in memory
might not be known. This happens for two reasons: First, Rust does not specify how the fields of
structures are laid out in memory. Second, Rust features polymorphic functions, so there can be
structures with an entirely unknown field type. (None of these cases affect C/Caesium, as Caesium
lays out structures according to the System-V ABI and C does not support polymorphic functions).
To tackle this challenge, verification in RefinedRust is parametric over the data layouts used

in the program. Since adding this parameterization directly to the operational semantics would
significantly complicate an already complex semantics, we instead encode it using meta-level
(i.e., Coq) quantification. This allows us to keep the definition of the operational semantics itself
monomorphic. When verifying a concrete closed program, we can instantiate the verification result
with concrete layouts to obtain safety of the closed program (Theorem 5.1 in §5.4).

Specifically, we introduce a notion of syntactic types SynType that abstractly describes the data
layout (see Figure 7). For instance, IntSt describes the layout of integers by their signedness and their
bitwidth. More interestingly, StructSt describes a struct using a struct description sd, containing
its name and a list of fields which each have a name and a SynType. The frontend automatically
generates such a syntactic type for every Rust type.
The concrete operational semantics does not work on abstract syntactic types but rather on

concrete layouts Layout, consisting of a size and alignment. For struct accesses, a StructLayout
describes the location of each field in the struct. Compared to StructDesc, the order of fields in
StructLayout is relevant, and explicit unnamed fields for padding are included.
Conceptually, each abstract syntactic type has a set of concrete realizations as a layout (e.g.,

for structs, they differ in the amount of padding and the order of the fields). To model this, we
define a parameterized layout algorithm LayoutAlg that computes a concrete layout for a given
syntactic type. The layout algorithm is a partial function, e.g., it will fail if the type is too big to fit
into isize::MAX. For structs, enums, and unions, it is parameterized by a subroutine that takes the
type’s name and fields and returns an arbitrary (but valid) layout.
All our verification results are proven for an arbitrary instance of this layout algorithm. We

just have to assume that it computes some valid layout (made explicit in our soundness theorem,
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StructDesc ∋ sd ::= (name : str, fields : list(str × SynType)) IntType ∋ it ::= (sign : bool, bits : nat)

SynType ∋ st ::= IntSt(it) | StructSt(sd) | PtrSt | . . .

Layout ∋ ] ::= (size : nat, align : nat) StructLayout ∋ sl ::= fields_padded : list(option(str) × Layout)

LayoutAlg(st : SynType) : option(Layout) ≜ . . .

Fig. 7. Core definitions for RefinedRust’s layout parameterization.

see Theorem 5.1). This also allows us to handle verification of generic functions with type parame-
ters: we parameterize the code we verify over the generic type’s syntactic type, and assume that
LayoutAlg is defined for all composite types in which the type parameters appear.

4.2 Comparison of Radium and _Rust

We describe how Radium compares to the main previous model of Rust used in foundational
verification: the _Rust model used by RustBelt and RustHornBelt. For primitive types, _Rust uses
a high-level representation with unbounded integers that fit into a single memory location. In
contrast, Radium models primitive types in more detail, with bounded integers that are spread
across multiple bytes. For instance, an i32 integer only spans one memory location in _Rust, but
four in Radium. Structs in _Rust have fixed layout, and the memory model disregards alignment
so there is no need for structs to have padding between their fields. Radium uses a more detailed
memory model that reflects alignment constraints and is able to represent padding, and structs
are properly modeled with arbitrary but fixed layout (see §4.1). As a consequence, Radium can
more accurately model the conditions that unsafe code has to satisfy, e.g., that all accesses are
well-aligned or that pointer offset operations via ptr::offset are using correctly-computed field
offsets. Additionally, memory accesses in Radium are typed and check more of Rust’s validity
constraints than _Rust (e.g., reading padding bytes as an integer is undefined behavior in Radium).
_Rust does not support integer-pointer conversion, while Radium allows round-trip casts in some
cases and correctly models Rust’s NonNull::dangling semantics, which is used to deal with zero-sized
types (e.g., for handling zero-sized elements of Vec).

5 TYPE SYSTEM

This section describes how the RefinedRust type system extends the Rust type system to enable the
verification of safe and unsafe Rust code. We describe RefinedRust’s value types that correspond
to Rust’s types extended with mathematical refinements (§5.1) and place types for representing
partially borrowed values (including blocked and yoinked from §3) (§5.2). We then show the type
system in action on a simple example (§5.3), and conclude with its soundness theorem (§5.4).

5.1 Value Types

RefinedRust’s value types match Rust’s notion of types: they assign types to program values. Value
types are used to describe the types of argument and return values at function call boundaries.
Figure 8 shows an excerpt of RefinedRust’s value types. Each value type has an associated “math-
ematical” type that gives the mathematical representation of its values, powering RefinedRust’s
functional correctness reasoning (as seen in §2.1).
Value types include the basic boolean and integer types. Integer types intit are parameterized

over their bit-width and signedness via it and are used to represent, for instance, i32. They are
refined by mathematical integers Z, while booleans are refined by mathematical booleans B.
As already seen in §2.2, mutable references in RefinedRust are refined by a pair of the current

value G and the borrow name W used for its resolution. Shared references are just refined by the
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Rust type RefinedRust type math. type intuitive semantics

i*/u* intit = : Z integers of type it with math. value =

bool bool 1 : B booleans with mathematical value 1

&'a mut T &'a
mut T (G,W) : (bor g) × gname mut. ref. with value G and borrow name W

&'a T &'a
shrT G : bor g shared ref. with current value G

Box<T> box T G : bor g owned pointer with current value G

*mut T raw_ptr ; : loc a raw pointer to ; without ownership

structs/tuples structsd ®T ®G : hlist(bor ®g) structs/tuples with field values ®G

[T; n] array= T ®G : list(bor g) arrays of T with length =

/ uninitst () : () uninitialized memory with syntype st

/ maybe_init T G? : option(bor g) maybe initialized instance of T

/ abstractE T G : -E abstraction over T given by E

Fig. 8. Excerpt of RefinedRust’s value types, where g is the mathematical type of T .

value G of their contents, while raw pointers are refined by the memory location that the pointer
points to (they do not contain ownership). As described in §2.3, mathematical values for nested
types (like the values of references and structs) are wrapped by bor.
Our structsd ®T type is parameterized by (1) the struct description sd explained in §4.1 (we omit

sd when it is clear from the context), and (2) a list of types ®T of the fields. The mathematical type is
a heterogeneous list hlist(bor ®g) of the mathematical types of its fields (with each element wrapped
by bor). Our array= T type models homogeneous sequences of values of type T with length =. It is
refined by the list of mathematical values for the array’s elements (again wrapped in bor).

Additionally, RefinedRust features the uninitst type for representing uninitialized (i.e., arbitrary)
memory described by the syntactic type st. This type has no direct correspondence in Rust, but is
used to reason about uninitialized local variables and unsafe code (e.g., it describes the ownership
returned by Rust’s unsafe allocator APIs).

Let us consider how we can define the type of RawVec as presented in §3. Recall that RawVec has two
fields: the raw pointer ptr to the buffer (of type *mut T) and the capacity cap (of type usize). Thus,
RefinedRust defines RawVec’s basic type as RawVecStruct ≜ structsdRawVec [raw_ptr; intusize], where
sdRawVec ≜ [(“ptr”, PtrSt); (“cap”, IntSt(usize))] specifies the struct’s fields and their syntactic types.
RawVecStruct corresponds to the Rust RawVec struct, however it does not include the representation
invariant given by the annotations in Figure 4. To add this invariant to RawVecStruct and thus
obtain RefinedRust’s RawVec type, we leverage the abstractET type that abstracts the type T (e.g., by
adding invariants) as described by E. Concretely, E contains (1) -E, the new mathematical type of
abstractET (given by refined_by, e.g., loc × Z for RawVec), and (2) an invariant specifying additional
ownership and linking everything together (given by invariant and field). If an exists annotation
is present, these variables are existentially quantified in the invariant (e.g., b and c for Vec). For
example, the annotations on RawVec in Figure 4 define the following invariant:

invRawVec (b, c) G ≜G = [#b; #c] ∗ size(T ) · c ≤ max_int (isize) ∗ freeable b (c · size(T ))

5.2 Place Types

The attentive reader may wonder where blocked and yoinked (from §3) come in. Recall that
blocked is used to mark memory locations that have been borrowed—so the blocked type only
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RefinedRust type math. type intuitive semantics

G @ place T bor g place containing T

(G,W)@&'a
mut d bor (g × gname) mutable ref. with current value G and borrow name W

G @&'a
shr

d bor g shared ref. with current value G

G @ box d bor g owned pointer with current value G

®G @ structsd ®d hlist(bor ®g) structs/tuples with field values ®G

®G @ array= T list(bor g) arrays of length = of type place T

G @ blocked'a T bor g blocked place containing T after 'a ends

G @ yoinked(dfull; dcur) gcur yoinked type

Fig. 9. Excerpt of RefinedRust’s place types, where g is the mathematical type of d or T , respectively.

makes sense when assigned to a location, not to a value. For this reason, blocked is not a value
type but a place type that is assigned to a place (i.e., a memory location, or “lvalue”), not a value.

Intuitively, place types describe what happens when we read from, write to, or borrow (i.e., create
a reference to) a place in memory. Place types are not part of Rust’s syntax of types, but rather
are RefinedRust’s way to track intermediate states of Rust’s type system. As a consequence, place
types only appear during RefinedRust’s type checking process, but not in top-level specifications.

Place types in RefinedRust. Figure 9 shows an excerpt of RefinedRust’s place types (meta-
variable d), along with their mathematical type. Like value types, the mathematical types of the
place types use bor to denote where borrows can happen.
The place type place T transforms the value type T into a place type, stating that memory

contains a value of type T . The place type blocked'a T states that the place is blocked for lifetime
'a (since it has been borrowed) and will have type place T after 'a ends. We also have already
seen the place type yoinked(dfull; dcur) which states that the place originally had the place type
dfull, but currently has the place type dcur because ownership has been yoinked.
The primitive reference and struct types appear not only as value types, but also have a corre-

sponding place type. This is because their corresponding Rust types support place accesses below
them. There is a clear correspondence between these value types and their place types:

place(&^
mutT ) ≡ &^

mut (place T ) place(structsd ®T ) ≡ structsd (
−−−−−−→
place T )

The first equivalence states that a place containing a value of the mutable reference type &'a
mutT is

equivalent to a mutable reference place&'a
mut (place T ) with the referenced place containing a value

at type T . Similar “unfolding equations” hold for shared references, arrays, and other types. The
expressiveness of these “simple” place types becomes clear when combining them with blocked^ T :
They allow creating types like struct [blocked'a (inti32);place(inti32)], representing a structure
where the first field has been borrowed. In §5.3 we explain this interplay using an example.

Place types d are assigned to memory locations ; via the place type assignment ; � G @ d , where
G is the mathematical value stored in the place. We already saw place types in action in §3.2.

5.3 RefinedRust’s Type System in Action

Let us now explain some of RefinedRust’s typing rules by following the RefinedRust type checker
through the verification of the Radium code in Figure 10.2 First, we go over the code, ignoring
the comments that show the state of the type system. The code snippet creates a tuple z of two

2For space reasons, there are some technical details that we are omitting here: place type assignments have an additional
parameter that is needed in some corner cases, and we need some extra machinery to deal with “later” modalities [44].
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1 // {I � place(uninit(i32,i32) ) ∗ IA � place(uninitPtrSt ) }

2 let mut z = (0, 1);

3 // {I � #[#0; #1]@ place(struct [inti32; inti32 ] ) ∗ IA � place(uninitPtrSt ) }

4 startlft 'a;

5 // {'a alive ∗ I � #[#0; #1]@ place(struct [inti32; inti32 ] ) ∗ IA � place(uninitPtrSt )

6 let zr = &'a mut z.0;

7 // {'a alive ∗ I � #[∗W ; #1]@ struct [blocked'a (inti32 ) ;place(inti32 ) ] ∗ IA � #(#0, W ) @ place(&'a
mut (inti32 ) ) }

8 *zr = 42;

9 // {'a alive ∗ I � #[∗W ; #1]@ struct [blocked'a (inti32 ) ;place(inti32 ) ] ∗ IA � #(#42, W ) @ place(&'a
mut (inti32 ) ) }

10 endlft 'a;

11 // {'a dead ∗ I � #[∗W ; #1]@ struct [blocked'a (inti32 ) ;place(inti32 ) ] ∗ IA � place(uninitPtrSt ) ∗ Res W 42}

12 assert!(z.0 == 42 && z.1 == 1));

13 // {'a dead ∗ I � #[#42; #1]@ struct [place(inti32 ) ;place(inti32 ) ] ) ∗ IA � place(uninitPtrSt ) }

Fig. 10. A simple type checking example involving a mutable borrow from a pair.

integers, and then mutably borrows its first component as zr. Here, the lifetime 'a of the reference
is created explicitly using the startlft 'a annotation: the RefinedRust type system relies on lifetime
annotations for references as hints. (These annotations are inserted by the frontend translating
Rust into Radium.) The reference zr is then used to write a new value, 42, into the first component.
After that, the lifetime 'a is ended with an annotation by the frontend. In the last step, the code
asserts that the write through the reference updated the tuple as expected.
Now we consider what happens to the types. In the beginning, both z and zr are uninitialized.

Then, line 2 initializes z with (0, 1) which updates the type of z to [#0; #1]@ struct [inti32; inti32]
(converted to a place type using place T ). Next, RefinedRust processes the startlft annotation on
line 4, and allocates a new symbolic lifetime for 'a. The fact that the lifetime 'a is alive is tracked
by the 'a alive assertion in line 5.
Checking mutable borrows. Now, let us consider the creation of the mutable borrow of the

first field of z (line 6) in detail. RefinedRust’s general procedure chk-mut-bor for type checking a
mutable borrow of expression 4 at lifetime 'a is provided in Figure 11. In the case of our example,
this procedure is called with z.0 for 4 . chk-mut-bor first decomposes this expression into a
base location ;> , in this case I, and a sequence of place accesses P to it, in this case [Field(“0”)].
We then find the type assignment for ;> in the context (line 3)—here the place type d> of I is
place(struct [inti32; inti32]) with the mathematical value G> = #[#0; #1].

Then, chk-place-access (explained below) is called (line 4) to check that the sequence of place
accesses P is valid for the given type of ;> . chk-place-access also determines the resulting memory
location ;8 and type assignment ;8 � G8 @ d8 for ;8 . Furthermore, :min describes the minimum
ownership along the path, i.e., whether the place is fully owned (Owned), or we passed below a
shared (Shared^ ) or mutable (Uniq^ ) reference, as this determines what operations we can perform
on the resulting place. Finally, d [·] will be explained below. In this case, the single place access
Field(“0”) needs to be made to I, and we obtain ;8 = I AtField(i32,i32) “0” with the type assignment
;8 � #0 @ place(inti32) (i.e., G8 = #0 and d8 = place(inti32)). The AtField computes the offset of
field “0” in the tuple. Since the access does not go below a reference, :min is Owned. In the next
step, the procedure stratify is used to bring the type into the shape #G8 @ place T8 . This is already
the case in the example, and we have T8 = inti32 and G8 = 0. We discuss the stratify procedure in
more detail below.
Now that we have obtained the place that is borrowed, we are ready to create the reference.

First of all, we have to check that the minimum ownership mode :min along the accessed path
allows mutable borrows—here, this is the case, since :min = Owned (line 7). Next, we create a
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1: procedure chk-mut-bor(4 , 'a)
2: (P, ;> ) ← decompose-expression(4)

3: (G> , d> ) ← find-assignment-for(;> ) find type assignment ;> � G> @ d>
4: (;8 , G8 , d8 , :min, d [·]) ← chk-place-access(;> , G> , d> ,P)

5: apply place accesses P to ;> , resulting in ;8 � G8 @ d8
6: (G8 , T8 ) ← stratify(;8 , G8 , d8 , :min) stratify to ;8 � #G8 @ place T8
7: assert(:<8= allows mutable borrow at 'a)
8: W ← create-borrow-name(G8 )

9: (G ′> , d
′
> ) ← fill-pctx(d [·], ∗W, blocked'a T8 ) new type for ;> : ;> � G ′> @ d′>

10: add-to-context(;> � G ′> @ d′> ) release updated ownership
11: return((#G8 , W)@&'a

mut T8 ) return type of expression

12: procedure chk-place-access(;> , G> , d> , P)
13: (:min, ;8 , G8 , d8 , d [·]) ← (Owned, ;> , G> , d> , ·)
14: while (0 :: P) ← P do

15: G8 ← use-borrow-resolution(d8 , G8 ) Use resolutions at the head
16: d8 ← place-unfold-head(d8 ) Unfold placeT at the head, if necessary
17: match 0, d8 with

18: case Field(5 ), structsd ®d :
19: assert(field 5 is a field of sd)
20: (d 5 , G 5 ) ← ( ®d!!5 , G8 !!5 ) look up the type G 5 @ d 5 of the field
21: d [·] ← . . .

22: (:min, ;8 , G8 , d8 ) ← (:min, ;8 AtFieldsd 5 , G 5 , d 5 )

23: case Deref, &^
mutd : . . .

24: return(;8 , G8 , d8 , :min, d [·])

Fig. 11. Procedure for type checking mutable borrows and place accesses.

new borrow name W (line 8). This allows us to create the mutable reference, in this case of type
(#0, W)@&'a

mut (inti32), which is returned in line 11.
Before we finish up creating the mutable reference, there is however another question that

needs to be answered: what is the new type of ;>? Intuitively, we need to block the place we
borrow until lifetime 'a ends—i.e., ;8 should have type ∗W @ blocked'a T8 . Now we just need
to translate this type for ;8 to a type for ;> . This is the purpose of d [·]: d [·] is a place type
context that describes the type of ;> with a hole for the new type of ;8 . Concretely, we have
d [·] = #[·; #1] @ struct [·;place(inti32)] . fill-pctx on line 9 fills d [·] with the new type for ;8 ,
obtaining the new place type d ′> = struct [blocked'a (inti32);place(inti32)] with mathematical
value G ′> = #[∗W ; #1] for ;> . This type assignment for ;> is then added back to the context in line 10.

Checking place accesses. Now, let us consider chk-place-access in Figure 11 that is called on
line 4 of chk-mut-bor. In our example, it is called with ;> = I, G> = #[#0; #1], P = [Field(“0”)],
and d> = place(struct [inti32; inti32]). chk-place-access applies the sequence of accesses P to the
place type, while keeping track of the minimum permission :min along the way. For each access,
it first uses resolutions at the head (line 15) to ensure that the current type assignment is of the
form ;8 � #G8 @ d8 . Then, for d8 = place T8 , it unfolds the place type at the head using the already-
discussed equivalences (line 16). In our example, it unfolds d8 to struct [place(inti32);place(inti32)].
Then, chk-place-access matches on the next place operation and current place type. In the case of
a field access to field 5 of a struct type, we first check that 5 is a valid field for the struct (line 19).
Then, we look up the type d 5 and mathematical value G 5 (line 20) for 5 , and update d [·] (omitted)
and the iteration variables. Finally, after having processed all place accesses, the current iteration
variables are returned.
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Ending lifetimes. Let us continue with the example in Figure 10. The write to the mutable
reference zr on line 8 updates the current value of the mutable reference to 42, importantly using
the fact that 'a is alive to justify the write. The endlft instruction on line 10 ends the lifetime 'a,
replacing the 'a alive assertion in the context with the 'a dead assertion. In addition, we deinitialize
all mutable references that are now inaccessible and extract resolutions about their final value. In
our example, we get the resolution Res W 42 about zr’s final value. Note that we do not yet unblock
the inaccessible component z.0: this is done lazily on the next access.

Reading and stratification. Finally, line 12 reads from the two components of z to assert their
final values. The reads happen in a way that is conceptually similar to the mutable borrow before
(Figure 11), as both are place accesses — only instead of creating a new mutable borrow in the end,
we create a copy of the integers in the two components. However, the stratification step is more
interesting here: since the current place type of z.0 is blocked'a (inti32), stratify will unblock the
place by using the fact that 'a is dead and then use the resolution Res W 42 to update the ∗W to #42.

5.4 Soundness

We define the RefinedRust type system by building a semantic model in the Iris separation logic
framework [48, 18]. This means that all RefinedRust types and typing judgments are defined
as predicates in separation logic, and each typing rule is phrased as a separation logic lemma
and proven sound against these predicates. An important aspect of the RefinedRust semantic
model is the use of RustBelt’s lifetime logic [18, 15], which extends separation logic with a notion
of “borrowing”, where ownership of an arbitrary separation logic proposition can be split into
ownership during a lifetime, and ownership after the end of that lifetime. This feature is at the
core of RustBelt’s model of references to split the ownership of the borrowed value between the
borrower and the lender. RefinedRust extends the lifetime logic to model place types. Concretely,
to enable introducing the blocked type below mutable references (as e.g., in get_unchecked_mut in
§3), we introduce a notion of pinned borrows that allows temporarily weakening the type under a
mutable reference. Details can be found in the supplementary material [11]. Our formalization of
the type system consists of around 21k lines of specification and 14k lines of proof. Using Iris’s
soundness theorem, we obtain a top-level soundness theorem for RefinedRust.

Theorem 5.1 (Adeqacy). Let F be a “main” function for which the RefinedRust type system
(instantiated with a layout algorithm that can layout all types used by the program) has verified a type
corresponding to the Rust type () -> () . Then F executes safely, i.e., it will neither cause undefined
behavior nor cause a panic.

RefinedRust’s adequacy statement follows the standard structure of adequacy statements for
Iris-based type systems like RustBelt, RustHornBelt, and RefinedC: It states that a well-typed (i.e.,
verified) closed program has no undefined behavior and no panics. To understand the guarantees
provided by this theorem, one has to consider that RefinedRust is compositional: for instance, if a
function promises in its postcondition that it returns an even integer, then compositionality ensures
that we can form a larger closed program that checks whether the integer is actually even, and
panics otherwise. Adequacy on that larger program then says that the panic can never happen,
therefore implying that the postcondition is correct.

6 USING REFINEDRUST FOR VERIFICATION

To demonstrate that it is feasible to use the RefinedRust type system for verifying real Rust code,
we have implemented a type checker for RefinedRust in the Coq proof assistant. The RefinedRust
implementation uses the Lithium separation logic engine [40, 41] to automatically apply RefinedRust
typing rules, and tries to solve as many pure side conditions posed by the typing rules as possible.
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Frontend. The RefinedRust frontend translates Rust’s MIR code into Radium. The frontend is
implemented as a plugin to the rustc compiler that runs after the MIR code has been generated
and after Rust’s borrow checker has run successfully. For the most part, the frontend directly maps
MIR to Radium. However, in addition it generates hints for the RefinedRust type system relating to
lifetimes of references, extracted from the experimental Polonius borrow checker [36] (slated to
eventually replace the current stable borrow checker). A non-trivial aspect of this translation is to
align Polonius’ notion of loans with the concept of lifetimes used in RustBelt and inherited by the
RefinedRust type system. We reuse a few utility functions from the Prusti implementation [3], in
particular to extract information about lifetimes and references from Polonius. In addition to the
code, the RefinedRust frontend translates the RefinedRust annotations into types and specifications
and generates lemmas stating that the code of a function satisfies its specification. The proofs of
these lemmas invoke the RefinedRust type checker implemented using Coq proof automation.

Trusted Computing Base. As RefinedRust directly applies the RefinedRust typing rules proved
sound in Coq and the resulting proofs are checked by Coq, all proofs done with RefinedRust are
fully foundational. RefinedRust’s trusted computing base consists of Radium, which we assume to
provide a reasonably accurate model of the Rust operational semantics, as well as the frontend,
which needs to correctly translate definitions to Radium, and the top-level safety statement (in
addition to the kernel of the Coq proof assistant and its infrastructure). The additional lifetime
annotations generated by the frontend need not be trusted—our verification merely uses them
as hints. One also does not need to trust the RefinedRust type system, the lifetime logic, or its
implementation in Iris, because one can use Theorem 5.1 to obtain a correctness statement that
just refers to the operational semantics of Radium (without referring to the type system or Iris).
Evaluation. Next to the small example functions given in this paper, we have evaluated

RefinedRust’s ability to verify unsafe code by verifying core parts of the Vec API as presented
in the Rustonomicon [5]. Specifically, we have verified the following parts of the Vec API: new, push,
pop, get_unchecked, get, get_mut_unchecked, get_mut, and len (in addition to internal accessor functions).
We also verified RawVec with its new and grow functions as it is used internally by Vec (see §3.1), and
shims for pointer manipulation and allocation (e.g., alloc::{alloc, dealloc, realloc}).
The Vec code in the Rustonomicon is simplified compared to the standard library version in a

few places. First of all, it is not parameterized over the allocator that is used for memory alloca-
tion (instead using Rust’s global allocator). Secondly, get and get_mut on the standard library Vec

implementation work by converting a vector to a slice and then using the get/get_mut methods on
slices, while in the Rustonomicon implementation they are directly implemented on Vec. Addition-
ally, we have modified the Rustonomicon version by writing wrappers for the low-level memory
allocation APIs that the code uses. The Rust standard library memory allocation functions are very
platform-specific and use features that RefinedRust currently does not support.

The functions we have verified for the Vec and RawVecAPIs range between 3 and 20 lines of code. In
total, these APIs are implemented with 120 lines of code (measured with tokei). Our annotations for
representation invariants and function specifications add an additional 76 lines of code. The Radium
code for Vec comprises roughly 1200 lines of (automatically generated) Coq code. A large part of
this blow-up comes from the lowering of (surface) Rust to MIR by the Rust compiler, which induces
a significant overhead by desugaring operations and introducing temporary variables: the MIR code
that the RefinedRust frontend takes as input comprises 900 lines of code. The additional Radium
lines come from annotations for lifetimes and typing hints, as well as for local variable declarations.
The code size blow-up, the complexities of RefinedRust’s type system for handling reference types,
and the generation (and checking) of the foundational proof in Coq make verification performance
intensive. In total, the verification of the whole Vec API takes about 6 minutes wall time (and 22
minutes CPU time) on a recent Apple M1 Max processor. In addition to specifications for individual
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Table 1. Comparison of related work (func. correct. = proving functional correctness; foundational = foun-
dational proofs in a proof assistant; unsafe: supports verifying unsafe code; mem. = has a detailed memory
model that captures UB when working with (raw) pointers (e.g., alignment, out-of-bound offsets, zero-sized
types); automated = provides automated verification and takes real Rust programs as input).

func. correct. foundational unsafe mem. automated

RustBelt [18] #   # #

RustHornBelt [31]    # #

Creusot [9]  # # #  

GillianRust [55]  #    

Flux [28]  # # #  

Verus [27]  # G# #  

Prusti [3]  # # #  

Aeneas [12]  G# # # G#

RefinedRust     G#

functions, the verification uses around 80 lines of manually-proved Coq theory for reasoning about
Vec’s representation invariant. For example, for Vec::pop, the type system makes roughly 3.000
automatic steps for ownership reasoning, and generates 100 pure Coq side conditions. Of these
side conditions, all but five are solved automatically. Solving the remaining side conditions for pop
requires about 20 lines of manual Coq proofs.

7 RELATED WORK

There is a long line of work on verifying low-level pointer manipulating code, especially in the
context of C [8, 24, 13, 1, 10, 41, 37, 35], and on the theory of ownership/region-based type systems
similar to/or preceding Rust [7, 51, 49, 14, 6]. We now zoom in on tools for verifying Rust programs.

Table 1 compares recent approaches for verifying Rust programs based on the aspects focussed
on by this work. As Table 1 shows, RefinedRust is the first tool that supports automated and
foundational functional correctness proofs for unsafe Rust code against a detailed memory model.
In particular, most existing automated verification tools do not support reasoning about unsafe
code and do not provide foundational proofs. On the other hand, RustBelt and RustHornBelt rely on
manual verification and translation of Rust code while also using a significantly simpler operational
model than RefinedRust (see §4.2). Let us now compare with the different approaches in detail.

RustHorn, Creusot, RustHornBelt, and GillianRust. RustHorn [32] is an approach to func-
tionally verifying safe Rust programs by generating an encoding of them in terms of Horn clauses,
building on the key insight that purely safe Rust programs are essentially functional. RustHorn
uses this insight to encode mutable references as a pair of the current value and a prophecy variable
for the final value (which also inspired RefinedRust’s encoding).
This approach has been implemented in a practical tool, Creusot [9]. Creusot supports a wide

range of Rust language features (e.g., traits and closures) and has been used to verify intricate case
studies, such as the verification of an optimized SAT solver [43].

However, RustHorn’s approach inherently cannot be used to reason about pointer-manipulating
unsafe code. The best that can be done is reason about safe code calling such unsafe code, and even
that only works if the unsafe code has a purely functional specification. That specification is then
assumed as an axiom by RustHorn/Creusot.
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RustHornBelt [31] can be used to formally verify those axioms in Coq, and shows that the
core verification technique of these tools is sound. However, RustHornBelt is closely based on
RustBelt, so proofs in RustHornBelt share some of the same limitations: compared to RefinedRust,
significantly more manual work is required, both in translating the original Rust code into a
model suitable for formal verification, and in actually carrying out the proof. Furthermore, the
connection between RustHorn/Creusot and RustHornBelt has not been made formal even on paper.
In contrast, RefinedRust demonstrates a methodology for verifying safe and unsafe code in a unified
semi-automated framework.
Another approach to verifying Creusot specifications of unsafe code is explored by Gillian-

Rust [55] (developed concurrently with RefinedRust). GillianRust is a non-foundational Rust verifier
built on the Gillian verification framework [42, 30]. GillianRust enables reasoning about unsafe Rust
code using an axiomatization of RustBelt’s lifetime logic and achieves a high degree of automation
thanks to its SMT-based verification (e.g., demonstrated on the verification of a doubly-linked list).
Flux. Flux [28] extends Rust’s type system with refinement types for functional verification,

inspired by the “liquid types” approach [38]. To handle writes to mutable references, Flux introduces
a notion of “strong references” that permit the reference’s type to change (i.e., allow strong updates)
by tracking the exact location that is borrowed, reminiscent of RefinedC’s &own type described in
§1. Flux leverages these strong borrows to build a lightweight and highly automated verification
tool that can automatically synthesize refinements and loop invariants. In contrast, RefinedRust
requires significantly more annotations and proof guidance, and handles a smaller subset of Rust.
However, Flux is limited in expressivity: it targets the verification of safe code, while RefinedRust
can also verify unsafe code. In particular, Flux cannot reason about low-level pointer manipulation,
so none of the methods of Vec we verified could be verified in Flux (already the safety invariant on
the Vec structure in Figure 4 is inexpressible in Flux, as it requires specifying custom ownership
over memory). Instead, Vec is axiomatized in Flux with a weaker interface that tracks only the
length of the vector instead of its contents (and so, the Flux specification of get_mut (Figure 3 in
§2.3) also does not link the returned reference to the contents of the vector).
Verus. Verus [27] is a Rust verifier that leverages Rust itself as the specification and proof

language. As proofs are checked by an SMT solver and rely on Rust’s type checker (including the
borrow checker) for soundness, proofs in Verus are not foundational. Verus is more mature and
supports a larger subset of safe Rust than RefinedRust, and even supports some patterns that would
traditionally require unsafe code. Verus’s support for unsafe code works by providing abstractions
over raw pointers that are safe in conjunction with side conditions checked by the SMT solver,
essentially delegating ownership reasoning to Rust’s ownership type system. This is powerful, but
any ownership reasoning requires using dedicated Rust types that encode this ownership. Thus,
Verus cannot verify the Vec implementation that is written with raw pointers directly. Moreover,
any of these abstractions (as well as the Rust type checker) have to be trusted. Moreover, Verus
currently cannot verify reborrowing functions that return a mutable reference like the function
Vec::get_unchecked_mut we verify in §3.

Prusti. Prusti [3] is a Rust verification tool based on the Viper [34] verification infrastructure.
Prusti uses Rust type signatures to infer the requisite ownership in pre- and postconditions (which
has served as inspiration of RefinedRust’s handling of safe code). Thanks to Viper’s SMT-based
solver, Prusti provides a high degree of automation. To model Rust’s mutable reference types, Prusti
has a notion of pledges, describing assertions that hold once the lifetime of a reference ends. Pledges
are similar in flavor to RefinedRust’s borrow names, but less flexible. For instance, Prusti cannot
state the Vec::get_mut specification shown in §2.2 since it does not support mutable references inside
of Option. Prusti does have a model of mutable state (albeit a more high-level one than RefinedRust),
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so it would in principle support reasoning about raw pointers. However, it has not been used yet
for unsafe verification. In particular, specifications for Rust’s vectors are asserted as axioms.

Aeneas. Aeneas [12] is a verification toolchain for safe Rust based on a translation to a borrow
calculus with a pure, functional semantics. Programs in this calculus can be translated into multiple
provers, e.g., F∗ or Coq, which are then used to reason about the generated code. The assurances
and automation depend on the chosen backend.
Other tools for increasing Rust assurances. Apart from deductive verification, other tools

have been proposed for finding bugs or verifying Rust programs. Most of these tools have a lower
barrier to entry for programmers than the deductive verification tools, but are more restricted in
terms of expressivity or the provided assurances.

KRust [52] and RustSEM [22] formalize Rust’s semantics in the K framework [39]. KRust formal-
izes core parts of safe Rust (including some parts not handled by RefinedRust like closures), but
does not formalize unsafe Rust. RustSEM formalizes more extensive parts both of safe and unsafe
Rust, but at a comparatively high-level (e.g., the memory model does not reflect the byte-level repre-
sentation of values). The authors of RustSEM use the K framework’s ability to derive a verification
tool from the semantics and use it to verify some unsafe code, including four functions of Rust’s
VecDeque API. However, they only verify that the head, tail, and capacity of the VecDeque are staying
consistent with each other; they do not verify a full functional correctness specification like our
Vec case study. Furthermore, their framework does not support unbounded heap fragments, so the
verification is limited to VecDeque’s of length 16, making it more akin to bounded model checking.

Miri [33] is an interpreter for Rust’s MIR intermediate representation that can check for many
forms of undefined behavior in unsafe Rust code. Thanks to its ease of use, Miri has become the
de-facto tool for programmers of unsafe Rust to check their code for compliance with Rust’s rules,
and it has been successful in uncovering bugs in Rust’s standard library. Due to Miri’s focus on
checking individual executions, it is limited to bug-finding as opposed to verification.

Kani [23] is a bounded model checker for Rust, which can reason about all program executions
(if a computable bound on the execution length can be found). Kani supports raw pointers with
a low-level memory model, and has thus turned into a valuable tool for programmers of unsafe
Rust to gain basic assurances. Kani has some limitations inherent to bounded model checking: its
expressiveness around loops is limited, requiring easily computable loop bounds, and it cannot
express modular Hoare-style specifications (with preconditions and postconditions).

8 FUTURE WORK

The RefinedRust type system represents a crucial first step towards high-assurance verification
of Rust programs with both safe and unsafe code. Our prototype implementation of RefinedRust
in Coq enables the first foundational functional correctness proofs of real Rust code with respect
to a realistic operational semantics. In future work, we would like to improve the user friendli-
ness, verification times, and handling of pure side conditions. These aspects are orthogonal to the
foundations of the type system. For example, we plan to explore if a recently developed solver
for arrays in Coq [53] could be integrated to discharge the side conditions in our Vec case study.
RefinedRust might also provide a basis for standalone verification tools, similar to the way founda-
tional logics for weak-memory verification have been axiomatized in the Viper framework [46]
(that also underlies Prusti). Another avenue for future work is to expand RefinedRust’s support
for advanced features of Rust, such as closures, e.g., by taking inspiration from Wolff et al. [54].
Finally, while Radium, our formal model of Rust, is strictly more accurate than the models used by
prior deductive verification tools, there are aspects of Rust we do not model; most of them do not
even have an official specification yet. The ongoing development of a normative specification for
Rust [16] could provide essential guidelines to improve Radium.
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ARTIFACT AVAILABILITY

The supplementary material, including our implementation of RefinedRust and the formalization
of RefinedRust’s type system, is available online [11].
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