Non-Work-Conserving Scheduling of Non-Preemptive Hard Real-Time Tasks Based on Fixed Priorities

Mitra Nasri Gerhard Fohler

Chair of Real-Time Systems
Technische Universität Kaiserslautern
Germany

Nov. 2015
Why Non-preemptive Scheduling?

It is inevitable in many systems
- Because of design or architecture
- CAN networks
- GPU

Preemption is expensive
- Context switch overheads
- Destructing cache affinity
- Shared resources (need mutual exclusion)

More timing predictability
- Better estimation of the worst-case execution time (WCET)
- More predictability in cache behavior

Application’s Desire
- Control applications are affected by I/O delay (preemption length)
Why Non-preemptive Scheduling is Hard?

- Schedulable by npEDF
- Not schedulable by npEDF
- Schedulable by a non-work conserving scheduling algorithm
Why Non-preemptive Scheduling is Hard? (cont.)

Without considering idle times in the schedule, we cannot find a solution.

- No known optimal scheduling policy
- No known strategy for idle time insertion

Needs an exhaustive search over all jobs and all possible values/locations of idle times

Preemptive, D=T

Preemptive, D<T

Non-Preemptive
State of the Art

Non-Preemptive Scheduling

Schedulability Test (npEDF, npRM, FP)

Non-Work Conserving Algorithms (for Harmonic Tasks)

Heuristic Algorithms (gEDF, cEDF)
- Ekelin 2006, Li 2007

Non-Work Conserving Algorithms

Deogun 1986
- No deadline miss if Constant integer period ratio $K \geq 3$

Cai 1996
- No deadline miss if tasks have
 - Integer period ratio $K_i \geq 3$
 - Constant period ratio $K = 2$

Nasri 2014
- Precautious-RM
 - No deadline miss if tasks have
 - Integer period ratio $K_i \geq 3$
 - Constant period ratio $K = 2$
 - Integer period ratio $k_i \geq 1$ and enough vacant intervals

Period Ratio

$$k_i = \frac{T_i}{T_i - 1}$$

Exponential complexity
A Closer Look at the Idea of Precautious-RM
Precautious-RM Idea: An Efficient Decision

Feasible by a non-work conserving scheduling algorithm

\[c_i \leq 2(T_1 - c_1) \]

Necessary Condition
Precautious-RM Idea: An Efficient Decision

Feasible by a non-work conserving scheduling algorithm

τ_3

τ_2

τ_1

idle

$t=4$

$t=5$

τ_3

τ_2

τ_1

1

1

1

1

1

1

2

3

8

3

$c_i \leq 2(T_1 - c_1)$

Necessary Condition
How Precautious-RM Works

- **Rule 1**: Use RM priorities (shorter periods have higher priority)
- **Rule 2**: Schedule a task only if it will not cause a deadline miss for the next instance of τ_1, otherwise, insert an idle interval until the next release of τ_1

![Diagram showing how Precautious-RM Works](image)

- Online algorithm (online decisions)
- $O(1)$ computational complexity
- **Limitations of the existing schedulability test**
 - It is only for harmonic tasks
 - It is pessimistic
 - it assumes each task has $c_i = 2(T_1 - c_1)$
Simple Idea, Interesting Results

- How good is this idea?

\[K = \max\{k_i\}, \text{ where } k_i \text{ is the individual period ratio in the task set} \]
Simple Idea, Interesting Results

- How good is this idea?

It is a big progress!
Contributions of This Work

• Extending the schedulability of Precautious-RM to Loose Harmonic tasks
 • Loose harmonic tasks:

\[\frac{T_i}{T_1} \in \mathbb{N} \]

- \(\tau_4 \)
- \(\tau_3 \)
- \(\tau_2 \)
- \(\tau_1 \)

- 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

• Improving the schedulability by priority grouping
 • Tasks are assigned to priority groups and they are only allowed to be scheduled if the head of the group is scheduled

• Presenting a priority grouping algorithm which theoretically dominates schedulability test for Precautious-RM
 • The wise fit!
The Precautious-RM Schedulability Test’s Idea

Calculating the vacant intervals

$$v_i = \begin{cases}
[k_i]v_{i-1} - 0.5, & c_i \leq T_1 - c_1 \text{ and } 1 < i \leq n \\
[k_i]v_{i-1} - 1, & c_i > T_1 - c_1 \text{ and } 1 < i \leq n
\end{cases}$$

$$v_1 = 0.5$$

The schedulability test

$$v_i \geq 0.5 \quad \forall i, 1 < i < n$$

$$v_n \geq 0$$

Vacant interval

$$v_1 = 0.5$$

$$v_2 = 3 \times 0.5 - 1 = 0.5$$

$$v_3 = 2 \times 0.5 - 1 = 0$$
Next Improvement: Priority Grouping

- **Priority grouping**
 - It helps to improve the schedulability by wasting less vacant intervals

- **The restriction**

The solution

Force tail tasks to execute only if the head task is scheduled.
Schedulability of the Priority Groups

- Each group has $C_i \leq 2(T_1-c_1)$, thus we can use Precautious-RM schedulability.
 - We need $V_i \geq 0.5$

Easy proof for head tasks

How can we guarantee schedulability of the tail tasks?
How to guarantee the schedulability of the tail tasks?

WCRT analysis?

Maximum release offset

\[R_{i,j}^i + WCRT_1^i + \sum_{x=2}^{X_i} c_x^i \leq T_j^i \]

Period of each tail \(\geq 2 \times T_{\text{head}} \)
The Wise-Fit Approach

- Wise-Fit
 - Picks the first ungrouped task
 - Finds the first group with enough capacity (based on the execution times)
 - Verifies the schedulability of the existing groups if this task is added to the group
 - If there is no such group, it creates a new group

\[\tau_i \]

\[T_i = 5 \]
\[T_1 - c_1 = 10 \]
\[T = 5 \]

\[T = 30 \]
\[T_i = 185 \]
\[c_i = 4 \]

A full group is the one with \(C_i > (T_1 - c_1) \)

\[v_i = \begin{cases} \lfloor k_i \rfloor v_{i-1} - 0.5, & c_i \leq T_1 - c_1 \text{ and } 1 < i \leq n \\ \lfloor k_i \rfloor v_{i-1} - 1, & c_i > T_1 - c_1 \text{ and } 1 < i \leq n \end{cases} \]
\[v_1 = 0.5 \]

Sometimes it is better to leave a group half-empty instead of making it totally full.
Evaluations
The Effect of Period Ratio

Schedulability Ratio

- \(K = \max\{k_i\} \), where \(k_i \) is the individual period ratio in the task set
- Tasks with random execution time smaller than \(2(T_1 - c_1) \)
- Not necessarily feasible task sets
- 7 tasks

Job Miss Ratio
The Effect of Other Parameters

- k_i is selected randomly from \{1, 2, 3, 4\}
- $c_i \leq \sigma \times 2(T_1 - c_1)$
- Not necessarily feasible task sets
- 10 tasks

- k_i is selected randomly from \{1, 2, 3, 4\}
- $c_i \leq 2(T_1 - c_1)$
- Not necessarily feasible task sets
Conclusions

Non-Preemptive Scheduling
- The only applicable solution in many systems
- Reduced overheads by avoiding preemptions
- More timing predictability for the tasks
- Necessary for many applications

A Non-Work Conserving Solution (based on Precautious-RM)
- $O(1)$ online complexity
- $O(n)$ schedulability test
- High schedulability ratio

New Schedulability Test for Non-Harmonic Tasks

Improving the Schedulability by Priority Grouping

Future Work

Extending it to multiprocessor systems
- Both partitioning and global approaches

Applying Precautious-RM in Different Systems
- In CAN networks
- In real-time GPU applications

Schedulability Analysis in General Case
- $D < T$
- Periodic tasks with no condition on periods
We broke an old wall

Thank you
An Example

• First-Fit

\[\tau_1 = (3, 10) \]
\[\tau_2 = (2, 20) \]
\[\tau_3 = (1, 40) \]
\[\tau_4 = (5, 70) \]
\[\tau_5 = (12, 130) \]
\[\tau_6 = (7, 330) \]

\[T = 10 \]
\[\quad T_1 - c_1 = 7 \]
\[T = 20 \]
\[\quad \text{Used} = 3 \]
\[T = 70 \]
\[\quad \text{Used} = 5 \]
\[T = 130 \]
\[\quad \text{Used} = 12 \]
\[T = 330 \]
\[\quad \text{Used} = 7 \]

Rejected by the schedulability test

• Wise-Fit

\[T = 10 \]
\[\quad T_1 - c_1 = 7 \]
\[T = 20 \]
\[\quad \text{Used} = 7 \]
\[T = 40 \]
\[\quad \text{Used} = 1 \]
\[T = 130 \]
\[\quad \text{Used} = 12 \]
\[T = 330 \]
\[\quad \text{Used} = 7 \]

Accepted by the test: Schedulable