
AUTOMATED REASON ING
UNDER WEAK MEMORY

CONS I ST ENCY

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree

Doctor of Natural Sciences (Dr. rer. nat.)

to

MICHAIL KOKOLOGIANNAKIS

Date of Defense: 14.12.2023

Dean: Prof. Dr. Christoph Garth
Reviewer: Dr. Viktor Vafeiadis
Reviewer: Prof. Dr. Constantin Enea
Reviewer: Prof. Dr. Mohamed Faouzi Atig

DE-386

Στην οικογένειά μου, Γιάννη, Ελένη και Αλέξη

To my family, Yannis, Eleni and Alexis

ABSTRACT

Weak memory consistency models capture the outcomes of concur-
rent programs that appear in practice and yet cannot be explained by
thread interleavings. Such outcomes pose two major challenges to for-
mal methods. First, establishing that a memory model satisfies its in-
tended properties (e.g., supports a certain compilation scheme) is ex-
tremely error-prone: most proposed language models were initially
broken and requiredmultiple iterations to achieve soundness. Second,
weakmemorymodelsmake verification of concurrent programsmuch
harder, as a result ofwhich there are no scalable verification techniques
beyond a few that target very simple models.

This thesis presents solutions to both of these problems. First, it
shows that the relevant metatheory of weakmemory models can be ef-
fectively decided (sparing years of manual proof efforts), and presents
Kater, a tool that can answer metatheoretic queries in a matter of sec-
onds. Second, it presents GenMC, the first (and only) scalable stateless
model checker that is parametric in the choice of the memory model,
often improving the prior state of the art by orders of magnitude.

v

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Viktor Vafeiadis,
who influencedmy thinking in more ways than I could imagine. Guid-
ance and technical skills aside, he taught me that what lies at the heart
of high-quality research is the combination of abstraction, mathemati-
cal rigor, and the elegance of simplicity. A prime example of academic
leadership, Viktor was always there, as a mentor and a friend. Thank
you, Viktor, from the bottom of my heart.

ThroughoutmyPhD, Iwas also very fortunate to be unofficiallymen-
tored byRupakMajumdar. Rupakwas an endless source ofmotivation
through stimulating scientific discussions, continuous feedback onmy
research, but also encouraging words and witty remarks.

Thework presented in this thesis would not have been possible with-
out a number of wonderful collaborators: Constantin Enea, Dimitra
Giannakopoulou, Vladimir Gladstein, Ilya Kaysin, Ori Lahav, Rupak
Majumdar, Iason Marmanis, Evgenii Moiseenko, Azalea Raad, Xiowei
Ren, and Kostis Sagonas. Most of the papers in this thesis were writ-
ten in close collaboration with Iason Marmanis, Azalea Raad and Ori
Lahav, with whom I immensely enjoyed working together.

I am thankful to Constantin Enea and Mohamed Faouzi Atig for re-
viewing the thesis; to Dimitra Giannakopoulou for hosting me in AWS
andmaking San Francisco sound like “Agios Fragkiskos”; and toKostis
Sagonas for introducing me to the world of verification.

I am also indebted to the past and current members of the Software
Analysis and Verification group for fostering a friendly and welcom-
ing environment: Soham Chakraborty, Marko Doko, Aristotelis Kout-
souridis, Iason Marmanis, Anton Podkopaev, Lovro Rožič, and par-
ticularly to Azalea Raad and Léo Stefanesco, with whom I shared an
office for the first and second half of my PhD, respectively.

DuringmyPhD journey, Iwas also very fortunate to be accompanied
by a number of friends, old and new, in Germany and abroad. In lieu
of a dedicated page in the thesis containing their names, I extend to
each and every one of them a heartfelt “thank you”. Special thanks to
Amir Bahador, James, Ivan, Kaushik, Manuel, Maria, Nastaran, Rosa,
Andriana, Vasilis and Zannis for their help in different times.

I thankmyfiancée, Kyriaki, for her love, support andpatience during
the past few years.

Finally, I would like to thank my parents, Yannis and Eleni, and my
brother, Alexis, for all the sacrifices they made so that I can pursue my
studies. This thesis is dedicated to them, as a token of an otherwise
ineffable gratitude.

vii

CONTENTS

1 Introduction 1
1.1 Challenges of Weak Memory Consistency 1
1.2 Contributions . 2
1.3 Structure . 3
1.4 Publications and Impact 5

2 Background 7
2.1 Programming Language 7
2.2 Execution Graphs . 9
2.3 Weak Memory Consistency Models 11
2.4 From Programs to Execution Graphs 12

2.4.1 Dependency-Tracking Models 14

I Metatheory
3 KATER: Automating Weak Memory Model Metatheory 19

3.1 Regular Languages and Finite State Automata 20
3.2 Kleene Algebra with Tests (KAT) 21
3.3 Memory Models as KAT Constraints 22
3.4 Adding Domain-specific Assumptions 23

3.4.1 Extended Coherence Order 23
3.4.2 Release-Acquire Consistency 26

3.5 Irreflexivity Implications 27
3.6 Proving Memory-Model Equivalence 29

3.6.1 Coherence . 30
3.6.2 Total Store Ordering (TSO) 31

3.7 C11 Compilation Results 32
3.8 Other Metatheoretic Properties 35

4 Checking Execution Graph Consistency 37
4.1 Optimized Consistency Checks for SC 38
4.2 Arbitrary Acyclicity Checks with KATER 38

4.2.1 Checking Consistency in Linear Time 40
4.2.2 Checking Consistency Incrementally 41

4.3 Approximating Coherence with Writes-Before 42

II Verification
5 GENMC: Model Checking under Weak Memory Consistency 49

5.1 Requirement #1: No “Out of Thin Air” 50
5.2 Requirement #2: Prefix-closedness 51
5.3 A First Example . 52
5.4 Requirement #3: Extensibility 54

5.4.1 Defining the Extensibility Oracle fext 56
5.5 Read-Modify-Write Operations 57
5.6 Shasha-Snir and Reads-From Equivalence 60

ix

x CONTENT S

5.7 Dependency-Tracking Models 61
5.8 Algorithm . 62

5.8.1 Overview . 62
5.8.2 Adaptation for a Reads-From Equivalence 66

6 TRUST: Polynomial Memory Requirements for GENMC 67
6.1 Maximal Extensions . 68
6.2 Examples . 69
6.3 Algorithm . 71

6.3.1 Overview . 71
6.3.2 Memory Requirements 72
6.3.3 Parallelization . 73

6.4 Linear Memory Requirements 73
6.5 Correctness Proofs . 75

6.5.1 Termination . 76
6.5.2 Soundness . 76
6.5.3 Completeness . 76
6.5.4 Optimality . 77

7 Optimizing GENMC for Programming Patterns 79
7.1 BAM: DPOR for Synchronization Barriers 79

7.1.1 Barriers and DPOR 80
7.1.2 Keeping Barriers Unordered 82
7.1.3 Algorithm . 85

7.2 SAVER: DPOR for Spinloops 86
7.2.1 Spinloops and DPOR 87
7.2.2 Control Flow Graphs 88
7.2.3 Effect-Free Spinloops 89
7.2.4 Transforming Loops into Effect-Free Spinloops . 91
7.2.5 Potentially Effect-Free Spinloops 92
7.2.6 Zero-Net-Effect Spinloops 94
7.2.7 Algorithm . 96

7.3 Preventing Blocking in DPOR 98
7.3.1 Assume Annotations 98
7.3.2 Futile Explorations 101
7.3.3 Algorithm . 102

8 PERSEVERE: Model Checking for Persistency 105
8.1 Persistency Semantics . 106
8.2 A Naive Approach . 107
8.3 Recovery Observer . 108
8.4 Example . 110

III Tools & Evaluation
9 Tools 115

9.1 KATER . 115
9.2 GENMC . 115

9.2.1 Compilation and Supported Libraries 117
9.2.2 Static Transformations 118

CONTENT S xi

9.2.3 Verification Infrastructure 121
9.3 The Interaction Between KATER and GENMC 126

9.3.1 Integrating KATER with GENMC 126
9.3.2 Optimizing Consistency Checking for GENMC . 127
9.3.3 Checking GENMC’sMemory-Model Requirements129

10 Evaluation 131
10.1 KATER . 131

10.1.1 Metatheoretic Properties 132
10.2 GENMC . 132

10.2.1 DPOR vs Other Approaches 135
10.2.2 Optimality and Memory Consumption 141
10.2.3 Synchronization Barriers Optimization 144
10.2.4 Spinloop Optimization 146
10.2.5 Blocking Prevention 149
10.2.6 Tracking Dependencies 151
10.2.7 Parallelization . 151

10.3 The Interaction Between KATER and GENMC 153
10.3.1 Default Checks vs KATER-generated 153
10.3.2 Consistency Checking under Different Models . 155

IV Conclusion
11 Related Work 159

11.1 Metatheory . 159
11.2 Verification . 159

11.2.1 Enumerative Approaches 160
11.2.2 SMT-Based Approaches 164
11.2.3 Hybrid Approaches 164
11.2.4 The Bounded Verification Landscape 165

12 Summary 169
12.1 Future Work . 169

Bibliography 171
Curriculum Vitae 183

L I ST OF F IGURE S

1.1 The part- and chapter dependencies of the thesis. . . 4
2.1 MP: three consistent execution graphs under SC. . . . 12
3.1 A counterexample produced by KATER 35
4.1 Consistency checks with KATER 1 39
4.2 An inconsistent execution under SC 39
4.3 Writes-before relation: Two cases of induced edges . 42
5.1 W+W+R: interleavings and equivalences classes . . . 50
5.2 The graphs of W+W+R subsume its equivalence classes 50
5.3 LB+DEP: 𝑥 = 𝑦 = 𝑣 . 50
5.4 Execution graphs of W+RW+W under SC 52
5.5 GENMC: Enumerating the execution graphs ofW+RW+W 53
5.6 A prefix-closed execution of LB-EXT under POWER . . 56
5.7 A prefix-closed execution of MP-EXT under POWER . 56
5.8 The executions of the FAI/2 program. 57
5.9 GENMC: Enumerating the execution graphs of FAI/2 . 58
5.10 Execution graphs of W+RW+W under SC (with co) . . 59
5.11 GENMC: Enumerating co-tracking graphs of W+W . . 60
5.12 Execution graphs of LB 61
5.13 GENMC: Enumerating the execution graphs of LB . . 61
6.1 TRUST: Enumerating the execution graphs of RR+W+W 69
6.2 TRUST: Enumerating the execution graphs of R+W+W 70
6.3 Revisiting a read multiple times is often necessary . 71
7.1 A toy implementation of synchronization barriers . . 81
7.2 Execution graphs of BARRIER-𝑁 for 𝑁 = 2. 82
7.3 Unordered barriers: a single graph for BARRIER-𝑁 . . 83
7.4 An invalid graph for BARRIER-𝑁-SYNC 84
7.5 BAM: Execution graph of BARRIER-𝑁-SYNC for 𝑁 = 2. 84
7.6 An invalid sbr relation for BARRIER2-𝑁 84
7.7 CFGs for the two threads of LOOP-PEEL. 89
7.8 Simplified dequeu from ms-queue and its CFG1 . . . 90
7.9 Example where static purity inference is impossible . 93
7.10 Simplified push from treiber-stack and its CFG1 . 93
7.11 Graph encountered during the exploration of ZNE-OBS. 96
7.12 Freezing writes example 102
8.1 An instrumented execution precluded by REC 109
8.2 PERSEVERE: Enumerating post-crash states of REC-WW+RR 111
9.1 GENMC’s overall architecture 117
9.2 The “SSA-CFG” of thread II of LOOP-PEEL 120
9.3 Merging bisimilar nodes in SSA 120
9.4 GENMC’s verification components 122
9.5 A liveness violation for W+R-LOOP 125

xii

9.6 GENMC error report after removing irrelevant lines . 126
9.7 KATER-generated code for SC-consistency checking . 127
9.8 NFA𝑇𝑆𝑂 before and after merging predicate transitions 128
9.9 The psc acyclicity axiom of RC11 in kat 129
10.1 Overhead of dependency tracking 151
10.2 GENMC scalability on 16 physical (32 logical) cores . 152
10.3 Default vs kater-generated consistency checks 154
11.1 A partial order of proposed equivalence partitionings 162

L I ST OF TABLE S

10.1 Proving correctness of queries with KATER 132
10.2 Synthetic benchmarks with only loads and stores . . 136
10.3 Synthetic benchmarks taken from SV-COMP [SV-19] 137
10.4 Synthetic benchmarks with RMW instructions 138
10.5 Benchmarks adapted from Pulte et al. [Pul+19] . . . 139
10.6 Benchmarks adapted from Norris and Demsky [ND13]140
10.7 Synthetic benchmarks (24h timeout) 142
10.8 Weak memory benchmarks (24h timeout) 143
10.9 Synthetic benchmarks with only barrier operations . 145
10.10 Benchmarks with realistic barrier use cases 146
10.11 Real-world benchmarks 147
10.12 Benefits of bisimilarity 149
10.13 Benefits of blocking prevention 150
10.14 SC benchmarks . 155
11.1 An overview of the bounded verification landscape . 167

L I ST OF ALGOR I THMS

2.1 Check that 𝐺 is an execution of program 𝑃 13
2.2 Check that 𝐺 is an execution of program 𝑃 16
4.1 KATER: Checking consistency in linear time 44
4.2 Fixpoint for approximating co in a model M 45
5.1 Generating events incrementally 63
5.2 Choosing non-blocked threads 63
5.3 GENMC: Generic Model Checking 65
6.1 TRUST: Backward-revisiting condition 72

xiii

6.2 TRUST: Iterative version with linear memory 73
6.3 TRUST: Iterative version (backtracking) 75
6.4 PREV: Backward step from 𝐺 to 𝐺𝑝 76
7.1 Adaptation of NEXTEVENT for BAM 85
7.2 Adaptation of algorithm 5.3 for BAM 86
7.3 ZNE Spinloop Validity Check 96
7.4 Adaptation of NEXTEVENT for SAVER 97
7.5 Calculate the blocking condition at a given node . . . 100
7.6 Preventing blocking in DPOR 103

ACRONYMS

CAS : Compare-and-Swap
CFG : Control-Flow Graph
DFS : Depth-first Search
DPOR : Dynamic Partial Order Reduction
FAI : Fetch-and-Increment
RA : Release-Acquire
SC : Sequential Consistency
SCC : Strongly Connected Component
SMC : Stateless Model Checking
SSA : Static Single Assignment
TSO : Total Store Ordering

xiv

1

1 “How to Make a
Multiprocessor
Computer that
Correctly Executes
Multiprocess
Programs” [Lam79]

2 “Herding cats:
Modelling,
simulation, testing,
and data mining for
weak memory”
[AMT14]

3 “Mathematizing
C++ concurrency”
[Bat+11]; “The Java
memory model”
[MPA05]

I N TRODUCT ION

In the modern age of computing, the world is concurrent: from mul-
ticore CPUs all the way up to the network stack and the users them-
selves, operations take place concurrently. In turn, reasoning about
concurrency is of utmost importance.

This thesis focuses on automated reasoning of concurrent programs.
Traditionally, automated reasoning techniques assume sequential con-

sistency (SC)1, i.e., that all the behaviors of a concurrent program can
be generated by some arbitrary interleaving of its threads. This as-
sumption, however, is wrong. Due to compiler and/or hardware op-
timizations, concurrent programs can exhibit a number of additional
behaviors, which are referred to as “weak” behaviors.

As an example, consider the MP program below, where 𝑑𝑎𝑡𝑎 and 𝑓 𝑙𝑎𝑔
are shared variables (initially 0), and || separates different threads:

𝑑𝑎𝑡𝑎 ∶= 42
𝑓 𝑙𝑎𝑔 ∶= 1

if (𝑓 𝑙𝑎𝑔 = 1)
assert(𝑑𝑎𝑡𝑎 = 42)

(MP)

Under SC, this program is safe: if thread II reads 𝑓 𝑙𝑎𝑔 = 1, the write to
𝑑𝑎𝑡𝑎will already have happened, and the assertion will not be violated.
In architectures like ARMv8 or POWER2, however, the CPU is within
its rights to reorder the instructions of thread I, thereby leading to a
weak behavior where thread II reads 𝑓 𝑙𝑎𝑔 = 1 and 𝑑𝑎𝑡𝑎 = 0.

Reasoning about concurrency in the presence of such behaviors re-
quires precise models. The formal models describing the exact behav-
iors that concurrent programs can exhibit are called (weak) memory
models, while the field that studies such models is called weak memory
consistency (or simply weak memory).

In the past few years, a plethora of memory models has emerged.
Thesemodels do not solely concern hardware architectures likeARMv8
and POWER, but also extend to languages like C/C++ and Java3. In-
deed, the purpose of such language models is not merely to define the
behaviors of the CPU, but rather to define the concurrency semantics
at the level of the programming language, and provide guarantees that
carry over all the way down to the produced binary.

1.1 CHALL ENGE S O F WEAK MEMORY CONS I S T ENCY

Alongwith the emergence of weakmemorymodels, new challenges to
automated reasoning emerged. This thesis addresses two major chal-
lenges.

1

2 INTRODUCT ION

4 “Automatic
verification of

finite-state
concurrent systems

Using temporal
logics specification:

A practical
approach” [CES83]

5 “Dynamic
partial-order

reduction for model
checking software”

[FG05]

First, how do we establish that a given memory model M satisfies
its intended metatheoretic properties? A concrete example of such a
property would be the correctness of a local program transformation
in M (e.g., reordering of independent memory accesses). For such a
transformation to be sound in M, it must not introduce any new behav-
iors.

Unfortunately, even though there is a long line of work trying to es-
tablish such properties for various memory models, these topics used
to require lengthyhuman investigation, andwere extremely error prone:
most proposed language models were initially broken (e.g., C/C++,
Java) and required multiple iterations to achieve soundness.

Second, how do we verify programs under weak memory consis-
tency? As we are interested in automated verification, model checking4
seems like the obvious solution. In a nutshell, model checking verifies
a program (expressed as a finite-state machine) by exploring all its
reachable states, and checking that none of them violates a provided
specification.

Despite its success in the context of sequential programs,model check-
ing is inadequate when it comes to concurrency. A first major dis-
advantage is the increased memory consumption caused by the state-
explosion problem. Indeed, as the state space of a concurrent program
grows larger, so does thememory required to keep track of all explored
states, rendering verification intractable. A second (and perhaps more
relevant) limitation is that model checking does not gracefully extend
toweakmemorymodels. Even though the effects of certainweakmem-
ory models can be simulated by encoding instruction reorderings as
non-deterministic choice, such an encoding further blows up the state
space, leavingmuch to be desired for concurrent programverification.

1.2 CONTR I BUT IONS

This thesis presents scalable and practical solutions to both challenges
arising from weak memory models.

First, it presents KATER, a sound, complete, and automated way to
provemetatheoretic properties of weakmemorymodels. More specifi-
cally, the thesis shows thatmostmetatheoretic queries can be solved by
answering amore fundamental question: “Given twomemorymodels,
is one weaker than the other?” For a wide class of weak memory mod-
els, this basic question can be reduced to a language inclusion prob-
lem between regular languages, which is decidable. KATER can answer
metatheoretic queries in a matter of seconds, effectively sparing years
of manual proof efforts.

Second, it presents GENMC, amodel-checking algorithm that is para-
metric in the choice of the memory model, and has linear memory con-
sumption in the size of the program under test. GENMC is a based on a
technique called dynamic partial order reduction (DPOR)5, which, under

1.3 ST RUCTURE 3

6 “Herding cats:
Modelling,
simulation, testing,
and data mining for
weak memory”
[AMT14]

7 “Kleene Algebra
with Tests” [Koz97]

SC, verifies a concurrent program by partitioning its interleavings into
equivalence classes, and then striving to explore one interleaving per
equivalence class.

Crucially, GENMC reconciles two notions that were incompatible in
past DPOR approaches: linear memory consumption and optimality
(i.e., exploring one interleavingper equivalence class). Prior techniques
would either require memory exponential in the size of the program
under verification, or explore (exponentially) many unnecessary in-
terleavings. By contrast, GENMC is the first DPOR framework that is
a) optimal, b) has linear memory consumption, and c) is memory--
model-parametric.

Finally, in addition to a number of optimizations that enhance its per-
formance for various programming patterns such as synchronization
barriers, locks and spinloops, GENMC extends DPOR for persistency
models as well. Similarly to howweak memory models describe the be-
haviors that concurrent programs can exhibit (i.e., the values that their
loads can read), persistency models describe the behaviors that persis-
tent storage (e.g., hard drive, non-volatile memory) can exhibit in the
presence of crashes. GENMC is the first DPOR algorithm that can verify
persistency properties of both sequential and concurrent programs.

A key ingredient of both solutions above was a shift in representa-
tion. Rather than following existing work and representing program
executions as traces, this thesis employs declarative semantics6 and rep-
resents executions as partially-ordered structures known as execution
graphs. Execution graphs are used in theweakmemory literature to for-
malize the concurrency semantics of modern hardware architectures.

Using declarative semantics is crucial for both contributions. For
KATER, declarative semantics is key in observing that most weak mem-
ory models can be expressed using Kleene Algebra with Tests (KAT)7,
an observation that largely explains why metatheoretic queries can be
automated. In the case of GENMC, execution graphs not only subsume
the equivalence classes that are used by traditional DPOR approaches,
but also enable support for weak memory consistency. In other words,
execution graphs form a new foundation for DPOR, suitable for model
checking under weak memory.

1.3 ST RUCTURE

The thesis is structured in four parts.
PART I deals with weak memory metatheory. First, it describes how

KATER automates weak memory metatheory (§3), and then how con-
sistency is checked in execution graphs, and how KATER can be used to
synthesize code that checks whether a given graph is consistent (§4).

PART II describes GENMC. After a brief introduction to DPOR, it de-
scribes the basic algorithm of GENMC and the requirements it sets on
the underlyingweakmemorymodel (§5), and then how the algorithm

4 INTRODUCT ION

Introduction (§1)

Background (§2)

KATER (§3)

Consistency (§4)

PART I

GENMC (§5)

TRUST (§6) PERSEVERE (§8) Opts (§7)

PART II

Implementation
(§9)

Evaluation
(§10)

PART III
Related
Work
(§11)

Summary
(§12)

PART IV

Figure 1.1: The part- and chapter dependencies of the thesis.

is modified in order to achieve linear memory consumption (§6). Sub-
sequently, we explain how GENMC can be extended to handle persis-
tency models (§8), and the optimizations that enhance its scalability
in the presence of various programming patterns (§7).

PART III describes the implementation of KATER andGENMC(§9), and
evaluates the tools on various benchmarks (§10).

PART IV concludes with a description of related work (§11), a sum-
mary of the contributions, and some future directions (§12).

These four parts are split in three layers (see Fig. 1.1). Each layer
assumes knowledge of the layer above it, but not of the parts on the
same layer or the layers below. Analogously, a chapter in a given part
only depends on the chapters above it. Each chapter begins with a
high-level description of the problem being solved, the key idea un-
derpinning the solution, and a chapter outline.

Throughout the thesis, non-colored hyperlinks are used to connect
definitions to their usages. Such hyperlinks are used for the employed
notation (e.g., sbr), terms (e.g., maximal extension), as well as for cer-
tain exploration examples (e.g., 2). In certain viewers (e.g., skim in
MacOS, evince in GNU/Linux), hovering over such hyperlinks offers
a preview of the target.

1.4 PUBL I CAT IONS AND IMPACT 5

8 “VSync:
Push-Button
Verification and
Optimization for
Synchronization
Primitives on Weak
Memory Models”
[Obe+21b]
9 “Verifying and
Optimizing the
HMCS Lock for Arm
Servers” [Obe+21a]
10 Play nice with
thread sanitizer
#130 [mar]; fix
memory order for
weak CAS [daa]
11 “PerSeVerE:
Persistency
semantics for
verification under
ext4” [Kok+21]

1.4 PUBL I CAT IONS AND IMPACT

PUBL I CAT IONS Theworkmaking up this thesis has been published
in the following papers (in reverse chronological order):

POP L 2023 KATER: Automating Weak Memory Metatheory and Con-
sistency Checking
Michalis Kokologiannakis, Ori Lahav, Viktor Vafeiadis [KLV23b]

POPL 2022 Truly Stateless, Optimal Dynamic Partial Order Reduc-
tion
MichalisKokologiannakis, IasonMarmanis, VladimirGladstein, ViktorVafeiadis [Kok+22a]

FMCAD 2021 Dynamic Partial Order Reductions for Spinloops
Michalis Kokologiannakis, Xiaowei Ren, Viktor Vafeiadis [KRV21]

CAV 2021 GENMC: A Model Checker for Weak Memory Models
Michalis Kokologiannakis, Viktor Vafeiadis [KV21b]

NETYS 2021 BAM: Efficient Model Checking for Barriers
Michalis Kokologiannakis, Viktor Vafeiadis [KV21a]

POPL 2021 PerSeVerE: Persistency Semantics for Verification under
Ext4
Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, Viktor Vafeiadis [Kok+21]

ASP LO S 2020 HMC:Model Checking forHardwareMemoryModels
Michalis Kokologiannakis, Viktor Vafeiadis [KV20]

P LD I 20 19 Model Checking for Weakly Consistent Libraries
Michalis Kokologiannakis, Azalea Raad, Viktor Vafeiadis [KRV19]

TOOL S GENMC and KATER are provided as open-source tools. The
following repositories contain instructions on how to build and use the
tools:

• KATER:
https://github.com/MPI-SWS/kater

• GENMC:
https://github.com/MPI-SWS/genmc

Among the two tools, GENMC has been more successful (perhaps
due to it being more mature) and has attracted some industrial users.
As an example, Huawei researchers have used it to verify and optimize
the placement of fences in their synchronization library 8, while other
works have found bugs in published algorithms 9 and in Microsoft’s
mimalloc allocator 10.

Whileworking on extendingGENMC for persistencymodels, we also
used GENMC to reproduce a bug in the nano text editor, and formally
verify our fix11.

https://github.com/MPI-SWS/kater
https://github.com/MPI-SWS/genmc

6 INTRODUCT ION

SUP P L EMENTARY MATER IA L All papers and supplementary mate-
rial making up this thesis (including proofs and Coq development,
where available) can be found at the following pages:

• KATER:
https://plv.mpi-sws.org/kater

• GENMC:
https://plv.mpi-sws.org/genmc

• GENMC for persistency models:
https://plv.mpi-sws.org/persevere

• Benchmarks and tools (§10):
doi.org/10.5281/zenodo.10575926

https://plv.mpi-sws.org/kater
https://plv.mpi-sws.org/genmc
https://plv.mpi-sws.org/persevere
doi.org/10.5281/zenodo.10575926

2
12 “Herding cats:
Modelling,
simulation, testing,
and data mining for
weak memory”
[AMT14]

BACKGROUND

Following the standarddeclarative (a.k.a. axiomatic) approach ofweak
memory models, the semantics of a given program is given as a set of
allowed outcomes. These outcomes are expressed as execution graphs12.

In this chapter, we present how programs are mapped to execution
graphs. First, we define a toy programming language (§2.1), then, we
define execution graphs (§2.2) and demonstrate how they are used
in declarative semantics (§2.3), and finally, we show how execution
graphs are constructed from programs (§2.4).

R E LAT IONAL NOTAT ION Wewrite∅, univ, and id for the empty, the
full, and the identity relation, respectively. Given a relation r, we write
r−1 for its inverse (i.e., {⟨𝑎, 𝑏⟩ ∣ ⟨𝑏, 𝑎⟩ ∈ r}), and r?, r+ and r∗ for its reflex-
ive, transitive and reflexive-transitive closures, respectively. We write
dom(r) and rng(r) for the domain and range of r, respectively, and r|imm
for the immediate edges in r, i.e., r\(r ; r). Given a set 𝑆, we write r|𝑆 for
the restriction of r on 𝑆. Given two relations r1 and r2, we write r1 ; r2
for their relational composition, i.e., {⟨𝑎, 𝑏⟩ ∣ ∃𝑐. ⟨𝑎, 𝑐⟩ ∈ r1 ∧ ⟨𝑐, 𝑏⟩ ∈ r2}.
Given a set𝐴, wewrite [𝐴] for the identity relation on𝐴: {⟨𝑎, 𝑎⟩ ∣ 𝑎 ∈ 𝐴}.

We say that a relation r is irreflexive if ∄𝑎. ⟨𝑎, 𝑎⟩ ∈ r and acyclic if r+
is irreflexive. A relation is a strict partial order if it is irreflexive and
transitive. A relation r is total on a set 𝐴 if ⟨𝑎, 𝑏⟩ ∈ r ∪ r−1 ∪ [𝐴] for all
𝑎, 𝑏 ∈ 𝐴. A relation is a strict total order on a set 𝐴 if it is a strict partial
order that is total on 𝐴.

Given a total order r on a set 𝐴 and an element 𝑎 ∈ 𝐴, we write
succr(𝑎)/predr(𝑎) for the immediate successor/predecessor of 𝑎 in r.
Given a set 𝑆 ⊆ 𝐴, wewritemaxr(𝑆)/minr(𝑆) for the r-maximal/minimal
element in 𝑆.

2.1 P ROGRAMM ING LANGUAGE

We start by defining a simple untyped assembly language. Instructions
in our language, i ∈ Inst, are given by the following grammar:

i ∶∶= 𝑟 ∶= 𝑒 ∣ 𝑟 ∶= [𝑒]𝑎R ∣ [𝑒1]𝑎W ∶= 𝑒2 ∣ fenceaF ∣ if 𝑒 goto 𝑛

where r ∈ Reg ranges over registers, 𝑛 ∈ ℕ over integers, and e ∈ Exp
over simple expressions built from integers, registers, and arithmetic
operators:

𝑒 ∶∶= 𝑛 ∣ 𝑟 ∣ 𝑒1 + 𝑒2 ∣ 𝑒1 − 𝑒2 ∣ …

7

8 BACKGROUND

13 The precise
definition of access

modes is not
important for this
thesis and depends

on the memory
model. For example,
C11 [Bat+11] has

non-atomic, relaxed,
acquire, release,

acquire-release, and
SC accesses.

In the instructions above, 𝑎R ⊆ Rattr, 𝑎W ⊆ Wattr, and aF ⊆ Fattr range
over read, write, and fence attributes, respectively, many of which are
going to be introduced in subsequent chapters. Attributes include the
mode of amemory access13, which can be used to enforce synchroniza-
tion, as well as the exclusivity flag, excl, denoting whether a memory
access is part of an atomic read-modify-write (RMW) instruction (see
below).

Returning to the instructions, 𝑟 ∶= 𝑒 assigns the value of 𝑒 to regis-
ter 𝑟 (without any effect on memory); 𝑟 ∶= [𝑒] reads the value in the
address pointed by 𝑒 and stores it in register 𝑟; [𝑒1] ∶= 𝑒2 stores the
value contained in 𝑒2 in the address contained in 𝑒1; fenceaF is used to
place global barriers; and if 𝑒 goto 𝑛 jumps to 𝑛 if 𝑒 has a non-zero
value. We assume that the special addresses block and error denote
program blocking and error, respectively.

Notice that our languagedoes not contains atomic read-modify-write
(RMW) operations or functions like assert and assume, as these can
be defined as syntactic sugar over a sequence of instructions:

𝑟 ∶= CAS(𝑒1, 𝑒2, 𝑒3) △= 𝑟 ∶= [𝑒1]excl

if 𝑟 ≠ 𝑒2 goto 𝑝𝑐 + 2
[𝑒1]excl ∶= 𝑒3

𝑟 ∶= fetch_add(𝑒1, 𝑒2) △= 𝑟 ∶= [𝑒1]excl

[𝑒1]excl ∶= 𝑒2 + 𝑟
assert(𝑒) △= if ¬𝑒 goto error

assume(𝑒) △= if ¬𝑒 goto block

where 𝑝𝑐 ∈ Reg is the program counter.
Finally, a sequential program, S, is simply a collection of instructions

(defined as a finite map from ℕ to instructions), while a concurrent
program, P, is a parallel composition of sequential programs (defined
as a finite map from thread identifiers to sequential programs).

In all examples, we use vertical alignment to denote sequences of
instructions and || for the parallel composition of threads. We use 𝑥, 𝑦, 𝑧
for global (shared) variables and 𝑎, 𝑏, 𝑐,… for registers. We also omit
the square brackets for global variables, as their address is known and
does not need to be computed (as in e.g., the MP example of §1).

Remark 1. The actual implementation of GENMC does not operate on
the toy language defined above. It operates on the level of LLVM-IR,
and can handle the full complexity of languages like C and C++ (in-
cluding dynamic thread creation, parts of the standard library, etc). As
such features are orthogonal to the weak memory semantics, we omit
them here. See §9.2 for more details.

2.2 EX ECUT ION GRAPHS 9

2.2 EX ECUT ION GRAPHS

An execution graph 𝐺 models a distinct behavior of a given program.
It comprises (a) a set of events (nodes), modeling instructions of the
program, and (b) some relations on these events (edges), modeling
the various interactions between the instructions. The two kinds of
relations present in all memory models are the program order (po), or-
dering events in a given thread, and the reads-from relation (rf), which
relates each read event 𝑟 in 𝐺 to a write event 𝑤 in 𝐺, from which 𝑟
obtains its value.

Let us begin by defining execution graph events.

Definition 2.2.1. An event, e ∈ Event, is either the initialization event
init, or a thread event ⟨t,n, lab⟩ where t ∈ Tid is a thread identifier,
n ∈ Idx △= ℕ is a serial number inside each thread, and lab ∈ Lab is a
label that takes one of the following forms:

• Read label: RaR(l) where 𝑎R ⊆ Rattr denotes any attributes the
read might have, and l ∈ Loc is the location accessed.

• Write label: WaW(l, v) where 𝑎W ⊆ Wattr denotes any attributes the
write might have, l ∈ Loc is the location accessed, and v ∈ Val
the value written.

• Fence label: FaF where aF ⊆ Fattr denotes any attributes the fence
might have.

• Block label: B denotes the blockage of a thread (due to reaching
the block address).

• Error label: Error denotes a thread error (due to reaching the
error address).

Given an event 𝑒, we use 𝑒.tid, 𝑒.idx and 𝑒.lab to project to its compo-
nents. We omit the∅ for read/write labels with no attributes. The func-
tions tid, idx, and loc, respectively return the thread identifier, serial
number, and location of an event, when applicable. We use R, W, B, and
error to denote the set of all read, write, block, and error events, respec-
tively, and assume that init ∈ W. We use superscript and subscripts
to further restrict those sets (e.g., Wl △= {init} ∪ {𝑤 ∈ W | loc(𝑤) = l}).

Observe that event labels correspond to instructions with memory
side-effects. Assignments (𝑟 ∶= 𝑒) and conditionals (if 𝑒 goto 𝑛) do
not generate any events.

Now, we can formally define execution graphs as follows.

Definition 2.2.2. An execution graph 𝐺 ∈ Exec consists of:

1. a sequence 𝐺.E of distinct events, and

2. the reads-from relation𝐺.rf ⊆ W×R, that relates each write event
to the same-location reads that read from it.

10 BACKGROUND

14 For executions
coming from

programs (see §2.4),
for every

⟨𝑟,𝑤⟩ ∈ 𝐺.rmw, it
always is

loc(𝑟) = loc(𝑤).

We often use 𝐺.E to denote the set of graph events (implicit conver-
sion). Wewrite𝐺.R for the set𝐺.E∩R and similarly for other sets. Given
two events 𝑒1, 𝑒2 ∈ 𝐺.E, we write 𝑒1 <𝐺 𝑒2 if 𝑒1 precedes 𝑒2 in 𝐺.E, and
𝑒1 ≤𝐺 𝑒2 if 𝑒1 <𝐺 𝑒2 or 𝑒1 = 𝑒2. We write 𝐺|𝐸 for the restriction of an
execution graph𝐺 to a set of events 𝐸, and𝐺\𝐸 for the graph obtained
by removing a set of events 𝐸. Finally, we write 𝐺1 ≈ 𝐺2 if the 𝐺1.E is
a permutation of 𝐺2.E, and 𝐺1 and 𝐺2 agree on all other components.

Observe that the definition of graphs does not contain a program or-
der (po) as an explicit component, since 𝐺.po can be recovered from
the representation of events: it relates the initialization event before all
other events, and events in the same thread according to their n com-
ponent.

𝐺.po △={⟨init, 𝑒⟩ ∣ 𝑒 ∈ 𝐺.E \ {init}}∪
{⟨𝑒, 𝑒′⟩ ∈ 𝐺.E × 𝐺.E ∣ tid(𝑒) = tid(𝑒′) ∧ idx(𝑒) < idx(𝑒′)}

We write 𝐺.rmw = [𝐺.Rexcl]; 𝐺.po|imm; [𝐺.Wexcl] for the restriction of po
to (immediate) pairs forming RMW instructions14.

As far as the rf relation is concerned, we ensure that it only relates
same-location events by requiring that 𝐺 be well-formed:

Definition 2.2.3 (Well-formedness). Anexecution graph𝐺 iswell-formed
if the following hold for 𝐺.rf:

1. 𝐺.rf only relates writes and reads with matching locations, i.e.,
for every ⟨𝑤, 𝑟⟩ ∈ 𝐺.rf it is 𝑤 ∈ 𝐺.W, 𝑟 ∈ 𝐺.R, loc(𝑤) = loc(𝑟),

2. 𝐺.rf is functional on its range, i.e., if ⟨𝑤1, 𝑟⟩, ⟨𝑤2, 𝑟⟩ ∈ 𝐺.rf it is
𝑤1 = 𝑤2, and

3. each read reads a value, i.e., ∀𝑟 ∈ 𝐺.R.∃𝑤. ⟨𝑤, 𝑟⟩ ∈ 𝐺.rf.

As rf is functional on its range, we sometimes write 𝐺.rf(𝑟), to refer
to the unique write𝑤 ∈ 𝐺.W such that ⟨𝑤, 𝑟⟩ ∈ 𝐺.rf, andwrite𝐺.val(𝑒)
for the value read/written by a read/write.

We write 𝐺.porf for (𝐺.po∪ 𝐺.rf)+, and also define the causal order
of a graph, and the causal prefix of an event 𝑒 as follows:

𝐺.corder △= 𝐺.porf
𝐺.cprefix(𝑒) △= {𝑒′ ∈ 𝐺.E ∣ ⟨𝑒′, 𝑒⟩ ∈ 𝐺.corder}

Intuitively, the causal prefix of an event 𝑒 represents the minimal set of
events that need to be executed before executing 𝑒.

The same-location relation, sameloc, relates pairs of events that have
the same location: sameloc △= {⟨𝑒1, 𝑒2⟩ ∈ Event × Event ∣ loc(𝑒1) = loc(𝑒2)}.
Using sameloc, we define a per-location version of po as poloc △= po∩
sameloc.
Finally, most memory models also make use of the coherence order re-

lation, co, which totally orders the writes in each memory location. As
such, we define the following augmented version of execution graphs.

2.3 WEAK MEMORY CONS I S T ENCY MODEL S 11

15 “How to Make a
Multiprocessor
Computer that
Correctly Executes
Multiprocess
Programs” [Lam79]

17 We generally do
not depict co and rb
edges to avoid
cluttering the
presentation
18 “Repairing
sequential
consistency in
C/C++11”
[Lah+17]

Definition 2.2.4. A coherence-tracking execution graph 𝐺 is an execution
graph with the following extra relation:

1. the coherence order, 𝐺.co ⊆ ⋃l∈Loc 𝐺.Wl × 𝐺.Wl, a strict partial order
which is total on 𝐺.Wl for every location l ∈ Loc.

In what follows, we write execution graph, graph, or execution to
denote either a plain or a coherence-tracking execution graph. We ex-
plicitly disambiguate when necessary.

2.3 WEAK MEMORY CONS I S T ENCY MODEL S

In declarative semantics, a memory model M is expressed using a con-
sistency predicate, consistentM(⋅), denoting what kind of behaviors are
allowed under M. In turn, the semantics of a program P under M is
given by the set of (well-formed) execution graphs corresponding to
the program that satisfy the consistency predicate of M (see §2.4).

Consistency predicates generally constrain the possible choices of
co and rf, which indirectly constrain the possible final values of mem-
ory locations and the values that reads can return. A non-coherence-
tracking execution graph is consistent if there exists some co such that
the resulting coherence-tracking execution graph is consistent.

For instance, SC15 can be defined by making use of two auxiliary
definitions.

First, we define the reads-before (a.k.a. from-read) relation to relate
a read 𝑟 and a write 𝑤 if 𝑟 reads from a co-earlier write than 𝑤: rb △=
𝐺.rf−1; co.

Then, we defineRMW-atomicity to disallow twoRMWs to read from
the same write:

Definition 2.3.1 (RMW-atomicity). An execution graph 𝐺 is RMW-
atomic iff there are no twodistinct exclusive reads that have correspond-
ing exclusive writes (i.e., 𝑟𝑖 ∈ dom(𝐺.rmw) for 𝑖 ∈ {1, 2}) and read from
the same write 𝑤 (i.e., ⟨𝑤, 𝑟𝑖⟩ ∈ 𝐺.rf for 𝑖 ∈ {1, 2}).

Definition 2.3.2 (SC). An execution graph 𝐺 is sequentially consistent,
written consistentSC(𝐺), iff𝐺 is RMW-atomic and (𝐺.porf∪𝐺.co∪rb)+
is irreflexive.

As a concrete example of how consistency predicates rule out incon-
sistent executions, consider the MP program from §1 and its three con-
sistent executions16

16 Throughout this
thesis, we use green-
circled numbers for
consistent execu-
tions, and red-circled
numbers for incon-
sistent ones.

under SC in Fig. 2.1. Intuitively, the MP program
has three consistent executions under SC, because SC forbids the load
of 𝑑𝑎𝑡𝑎 to read from the initial state as the load is already aware of the
𝑓 𝑙𝑎𝑔 ∶= 1 store. Formally, reading 𝑓 𝑙𝑎𝑔 = 1 and 𝑑𝑎𝑡𝑎 = 0 creates an SC-
cycle due to the rb edge from R(𝑑𝑎𝑡𝑎) to W(𝑑𝑎𝑡𝑎, 42)17. Other models
such as the “relaxed” fragment of RC1118 allow this behavior.

12 BACKGROUND

1 init

W(𝑑𝑎𝑡𝑎, 42)

W(𝑓 𝑙𝑎𝑔, 1)

R(𝑓 𝑙𝑎𝑔)

R(𝑑𝑎𝑡𝑎)

po
rf

2 init

W(𝑑𝑎𝑡𝑎, 42)

W(𝑓 𝑙𝑎𝑔, 1)

R(𝑓 𝑙𝑎𝑔)

R(𝑑𝑎𝑡𝑎)

3 init

W(𝑑𝑎𝑡𝑎, 42)

W(𝑓 𝑙𝑎𝑔, 1)

R(𝑓 𝑙𝑎𝑔)

R(𝑑𝑎𝑡𝑎)

4 init

W(𝑑𝑎𝑡𝑎, 42)

W(𝑓 𝑙𝑎𝑔, 1)

R(𝑓 𝑙𝑎𝑔)

R(𝑑𝑎𝑡𝑎)

Error

Figure 2.1: MP: three consistent execution graphs under SC.

19 For SC, hb can be
defined as hb △=

(porf∪ co∪ rb)+,
as all instructions

imply
synchronization.

Certain models enforce synchronization via a happens-before relation,
hb ⊇ po, prescribing the order induced by synchronization mecha-
nisms, e.g., locks19. Even though we do not restrict our framework
to an explicit memory model, some of the algorithms presented later
on (e.g., §7.1), do rely on the existence of hb. For these algorithms, we
assume that hb is a parameter of the memory model, with the proviso
that for all executions 𝐺 ∈ Exec, if consistentM(𝐺) holds, then hb is a
strict partial order.

Finally, models often define certain graphs as erroneous (e.g., due
to data races). To account for this, we also assume an error predi-
cate, ISERRONEOUSM(⋅), denoting whether a given (consistent) graph
is erroneous, and require it to be monotone: for all 𝐺 and 𝐸 ⊆ 𝐺.E, if
dom(𝐺.corder; [𝐸]) ⊆ 𝐸 and ISERRONEOUSM(𝐺|𝐸), then ISERRONEOUSM(𝐺).
We call a graph 𝐺 M-erroneous if ISERRONEOUSM(𝐺) holds.

2.4 FROM PROGRAMS TO EXECUT ION GRAPHS

Now that we have defined execution graphs and consistency under
weak memory, let us see how programs are mapped to sets of consis-
tent execution graphs. We do so by defining the EXECPROGRAM(𝑃, 𝐺)
procedure (algorithm 2.1), which checks that the execution 𝐺 corre-
sponds to some run of the program 𝑃. Later, in §5.8, we extend this
procedure to also generate the execution incrementally.

EXECPROGRAM interprets the program 𝑃 and checks that the memory
accesses generated match those recorded in 𝐺. After all threads have
been interpreted, EXECPROGRAM ensures that𝐺 does not contain events
from threads not originating from 𝑃 (line 4).

The interpretation of each thread is performed by EXECTHREAD. For
each thread 𝑡 of the program (line 2), EXECTHREAD constructs a config-
uration of the form ⟨t,n, Φ⟩, where n is the index in t that was consid-
ered, and Φ ∶ Reg → Val is the register file that maps registers to values.
Initially, n is set to 0 signaling that no events have yet been checked for
t, and every register has the value 0 (line 6).

The register set includes a special register, the program counter (𝑝𝑐),
that points to the next instruction to be executed. The program counter
is incremented by every instruction (line 8), except for conditional

2.4 FROM PROGRAMS TO EXECUT ION GRAPHS 13

Algorithm 2.1 Check that 𝐺 is an execution of program 𝑃
1: procedure EXECPROGRAM(𝑃,𝐺)
2: for ⟨t, 𝑠𝑝𝑟𝑜𝑔⟩ ∈ 𝑃 do
3: EXECTHREAD(t, 𝑠𝑝𝑟𝑜𝑔, 𝐺)
4: assert(∀𝑒 ∈ 𝐺.E.𝑃(tid(𝑒)) ≠ ⊥)

5: procedure EXECTHREAD(t, 𝑠𝑝𝑟𝑜𝑔, 𝐺)
6: ⟨t,n, Φ⟩ ← ⟨t, 0, 𝜆𝑟. 0⟩
7: while i ← 𝑠𝑝𝑟𝑜𝑔(Φ(𝑝𝑐)) do
8: Φ(𝑝𝑐) ← Φ(𝑝𝑐) + 1
9: EXECINSTRUCTION(𝐺,Φ, t,n, i)

10: assert(n = |{𝑒 ∈ 𝐺.E ∣ tid(𝑒) = t}|)

11: procedure EXECINSTRUCTION(𝐺,Φ, t,n, i)
12: switch i do
13: case i ≡ 𝑟 ∶= 𝑒
14: Φ(𝑟) ← Φ(𝑒)
15: case i ≡ 𝑟 ∶= [𝑒]aR
16: Φ(𝑟) ← 𝐺.val(GEN(𝐺, ⟨t,n+ 1, RaR(Φ(𝑒))⟩))
17: case i ≡ [𝑒1]aW ∶= 𝑒2
18: GEN(𝐺, ⟨t,n+ 1, WaF(Φ(𝑒1),Φ(𝑒2))⟩)
19: case i ≡ fenceaF

20: GEN(𝐺, ⟨t,n+ 1, FaF⟩)
21: case i ≡ if 𝑒 goto 𝑙
22: if Φ(𝑒) ≠ 0 then
23: Φ(𝑝𝑐) ← 𝑙
24: if 𝑙 = error then GEN(𝐺, ⟨t,n+ 1, Error⟩)
25: if 𝑙 = block then GEN(𝐺, ⟨t,n+ 1, B⟩)

26: procedure GEN(𝐺, 𝑎)
27: assert(𝑎 ∈ 𝐺.E)
28: return 𝑎

20 Technically, this
renders
algorithm 2.1 a
semi-algorithm.

branches where it is set to a specified value when the condition holds.
We assume that the two special program counter values error and
block do not point to valid instructions.

The interpretation of a thread proceeds in a loop as long as the pro-
gram counter points to a valid instruction (line 7). In each loop it-
eration, EXECINSTRUCTION is called to interpret the current instruction
(line 9). Under the usual assumption that programs are loop-free (or
equivalently, that its loops are unrolled to some specified depth), the
while loop is guaranteed to terminate20. Finally, when the loop fin-
ishes, EXECPROGRAM checks that all events of 𝐺 pertaining to thread t
have been generated (line 10).

EXECINSTRUCTION does a case analysis over the type of the instruc-
tion, updatingΦ as appropriate. For memory accesses, it calls the GEN

14 BACKGROUND

helper function, which checks that the next event of the given thread
recorded in 𝐺 is the expected one. Whenever a read event 𝑎 is gener-
ated, GEN returns the value read by looking up the value written by
the write from which 𝑎 reads (line 28). Whenever a branching instruc-
tion that jumps to the special error or block address is encountered,
EXECINSTRUCTION ensures that the graph contains an Error or a B label,
respectively.

We define the executions of a program 𝑃 under a model M as the set
of allM-consistent executions𝐺generated by𝑃; i.e., EXECPROGRAM(𝑃, 𝐺)
terminates without assertion violations and consistentM(𝐺) holds. For
example, notice how EXECPROGRAMwould terminate without assertion
violations for MP and the rightmost graph of Fig. 2.1, denoting that this
graph is indeed an execution graph of MP. That execution graph, how-
ever, is inconsistent under e.g., SC, since it contains a porf ∪ co ∪ rb
cycle.

Definition 2.4.1 (Program correctness). A program is deemed erro-
neous under a memory model M if its executions under M contain an
M-erroneous graph. A program is correct if it is not erroneous.

2.4.1 Dependency-Tracking Models

The consistency predicates of certain hardware memory models like
ARMv8 or POWER require some additional components in their ex-
ecution graphs. Indeed, in such architectures, we have to be able to
express various instruction dependencies in order to reason about con-
sistency.

To account for such models, we define dependency-tracking execu-
tion graphs.

Definition 2.4.2. A dependency-tracking execution graph, 𝐺, is an execu-
tion graph with the following extra relations (all functional on their
range):

• the address-dependency relation, 𝐺.addr ⊆ 𝒫(𝐺.R) × (𝐺.R ∪ 𝐺.W),
that records the address dependencies of memory accesses.

• the data-dependency relation, 𝐺.data ⊆ 𝒫(𝐺.R)×𝐺.W, that records
the data dependencies of writes.

• the control-dependency relation,𝐺.ctrl ⊆ 𝒫(𝐺.R)×𝐺.E, that records
the control dependencies of events.

We write deps △= addr ∪ data ∪ ctrl, assume that all dependency
edges are included in po, i.e., 𝐺.x ⊆ po for x ∈ {addr, data, ctrl}, and
also assume that the memory model defines a causal order such that

(𝐺.rf∪𝐺.deps)+ ⊆ 𝐺.corder ⊆ 𝐺.porf

2.4 FROM PROGRAMS TO EXECUT ION GRAPHS 15

We also modify the EXECPROGRAM by adding a dependency set, Δ ∶
Reg → 𝒫(Event), which maps each register to the set of events used to
calculate its value (see algorithm 2.2). Dependencies are recorded in
Δ by EXECPROGRAM in a straightforward manner.

Remark 2. Onemaywonder why the calculation of dependencies hap-
pens dynamically via algorithm 2.2 instead of statically. The reason for
this is to avoid an over-approximation of dependencies: in the case of
a static calculation, and especially in programs with more complicated
control flow (e.g., loops, goto statements, etc), a static calculation often
results in over-approximating the dependencies of instructions.

To see this, consider the following program:

𝑎 ∶= 𝑥
𝑏 ∶= 𝑦
if 𝑎 = 42 goto calcZ
𝑎 ∶= 𝑏

calcZ ∶
𝑧 ∶= 𝑎 + 1

In the program above (ignoring control dependencies), the 𝑧 ∶= 𝑎+1
instruction data-depends on either 𝑥 or 𝑦, as 𝑎 will take its value from
one of the two respective read statements. Knowing from which one,
however, is impossible to determine statically. Since 𝑎 ∶= 𝑥 is an in-
struction reading from shared memory, statically predicting the value
of 𝑥 (which will in turn determine whether 𝑎 ∶= 𝑏 is going to be exe-
cuted) is impossible. Thus, while a static calculation of dependencies
would over-approximate by making 𝑧 ∶= 𝑎 + 1 depend on both reads,
a dynamic calculation has precise knowledge of the write’s dependen-
cies.

16 BACKGROUND

Algorithm 2.2 Check that 𝐺 is an execution of program 𝑃
1: procedure EXECPROGRAM(𝑃,𝐺)
2: for ⟨t, 𝑠𝑝𝑟𝑜𝑔⟩ ∈ 𝑃 do
3: EXECTHREAD(t, 𝑠𝑝𝑟𝑜𝑔, 𝐺)
4: assert(∀𝑒 ∈ 𝐺.E.𝑃(tid(𝑒)) ≠ ⊥)

5: procedure EXECTHREAD(t, 𝑠𝑝𝑟𝑜𝑔, 𝐺)
6: ⟨t,n, Φ, Δ⟩ ← ⟨t, 0, 𝜆𝑟. 0, 𝜆𝑟. ∅⟩
7: while i ← 𝑠𝑝𝑟𝑜𝑔(Φ(𝑝𝑐)) do
8: Φ(𝑝𝑐) ← Φ(𝑝𝑐) + 1
9: EXECINSTRUCTION(𝐺,Φ, Δ, t,n, i)

10: assert(n = |{𝑒 ∈ 𝐺.E ∣ tid(𝑒) = t}|)

11: procedure EXECINSTRUCTION(𝐺,Φ, Δ, t,n, i)
12: switch i do
13: case i ≡ 𝑟 ∶= 𝑒
14: Φ(𝑟) ← Φ(𝑒) ; Δ(𝑟) ← Δ(𝑒)
15: case i ≡ 𝑟 ∶= [𝑒]aR
16: Φ(𝑟) ← 𝐺.val(GEN(𝐺, ⟨t,n+ 1, RaR(Φ(𝑟′))⟩, Δ(𝑟′), ∅, Δ(𝑝𝑐)))
17: Δ(𝑟) ← {𝑎}
18: case i ≡ [𝑒1]aW ∶= 𝑒2
19: GEN(𝐺, ⟨t,n+ 1, WoW(Φ(𝑒1),Φ(𝑒2))⟩, Δ(𝑒1), Δ(𝑒2), Δ(𝑝𝑐))
20: case i ≡ fenceaF

21: GEN(𝐺, ⟨t,n+ 1, FaF , ∅, ∅, Δ(𝑝𝑐)⟩)
22: case i ≡ if 𝑟 goto 𝑙
23: if Φ(𝑟) ≠ 0 then
24: Φ(𝑝𝑐) ← 𝑙
25: if 𝑙 = error then GEN(𝐺, ⟨t,n+1, Error, ∅, ∅, Δ(𝑝𝑐)⟩)
26: if 𝑙 = block then GEN(𝐺, ⟨t,n+1, B, ∅, ∅, Δ(𝑝𝑐)⟩)
27: Δ(𝑝𝑐) ← Δ(𝑝𝑐) ∪ Δ(𝑟)

28: procedure GEN(𝐺, 𝑎, addr, data, ctrl)
29: assert(𝑎 ∈ 𝐺.E)
30: for x ∈ {lab, addr, data, ctrl} do
31: assert(𝐺.x(𝑎) = x)
32: return 𝑎

Part I

METATHEORY

3

21 “Kleene Algebra
with Tests” [Koz97]

22 Properties like
lack of OOTA,
prefix-closedness and
extensibility are
useful for model
checking and are
explained in detail in
§5.

KATER : AUTOMAT ING WEAK MEMORY MODEL
METATHEORY

In this chapter, we present howKATER automates weakmemorymodel
metatheory. Before doing so, however, let us briefly discuss the kind
of metatheoretic properties KATER automates.

In the past few years, there has been a large body of work on formal
definitions of memory models. Along such definitions, there has also
been a long line of work trying to establish basic metatheoretic proper-
ties of these definitions, answering questions such as:

• Is a given memory model monotone with respect to various nat-
ural strengthenings, such as inserting a memory fence, merging
two threads into a single thread, or, if applicable, strengthening
the mode of a memory access (e.g., from release to sequentially
consistent)?

• Does a given model admit local program transformations, such as
reordering of independent memory accesses?

• Given two memory models 𝐴 and 𝐵, is 𝐴 weaker than 𝐵? More
generally, is a given compilation scheme from 𝐴 to 𝐵 (e.g., by in-
serting certain fences) sound?

• Does a givenmodel rule out “out-of-thin-air” (OOTA)outcomes?
That is, does it rule out dependency cycles?

Using KATER, we can automate the questions above for declarative
models that are expressed as emptiness, acyclicity, and irreflexivity
constraints over relational algebra terms.

The key observation that allows us to do so is that the fragment of
relational algebra used inmost definitions ofmemorymodels (e.g., SC,
TSO, PSO, POWER,ARMv8, RC11, IMM) corresponds closely toKleene
Algebra with Tests (KAT)21, an extension of regular expressions with a
Boolean algebra over a collection of predicates describing a state.

Leveraging this insight, these questions can be automated as fol-
lows. First, we show that checking whether one model is weaker than
another can naturally be expressed as a language inclusion problem
that can be decided using finite-state automata (§3.3). While the con-
straints themselves are not directly encodable in vanilla KAT, mem-
ory model inclusion can be reduced to proving entailments between
KAT formulae, which is decidable for simple classes of entailments.
Then, using this result, we also show how to check monotonicity, cor-
rectness of program transformations, correctness of compilation map-
pings, lack of OOTA behaviors, prefix-closedness, and extensibility22

19

20 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

(Section 3.4 to 3.8).
Before explaining howKATERworks, we start with some background

on regular languages and KAT (Section 3.1 and 3.2). Readers familiar
with these concepts may skip these sections.

3.1 R EGULAR LANGUAGE S AND F IN I T E STAT E AUTOMATA

We fix an alphabet (i.e., a finite non-empty set) Σ. A language 𝐿 is a set
of words in Σ∗. We use 𝑎, 𝑏,… to range over Σ, and 𝑢, 𝑣, 𝑤,… to range
over Σ∗.

A non-deterministic finite automaton (NFA) overΣ is a tuple ⟨𝑄, 𝛿, 𝑆, 𝐹⟩
where𝑄 is a finite set of states, 𝑆 ⊆ 𝑄 is a set of initial states, 𝐹 ⊆ 𝑄 is a
set of final states, and 𝛿 ∶ 𝑄×Σ → 𝒫(𝑄) is the transition functionwhich,
given a state 𝑞 ∈ 𝑄 and a letter 𝑎 ∈ Σ, returns the set of possible next
states 𝛿(𝑞, 𝑎). By abuse of notation, we extend the domain of the transi-
tion function to take as parameters a set of states and aword as follows:
𝛿(𝑆, 𝑎) △= ⋃𝑞∈𝑆 𝛿(𝑞, 𝑎), 𝛿(𝑆, 𝜖) △= 𝑆, and 𝛿(𝑆, 𝑎𝑤) △= 𝛿(𝛿(𝑆, 𝑎), 𝑤).

The language accepted by anNFA contains all words for which there is
a path from an initial state of the NFA to a final state: L(⟨𝑄, 𝛿, 𝑆, 𝐹⟩) △=
{𝑤 ∈ Σ∗ 𝛿(𝑆, 𝑤) ∩ 𝐹 ≠ ∅}. Two NFAs are language-equivalent iff they
accept the same language.

A deterministic finite automaton (DFA) is an NFA that has exactly one
initial state and where for every 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ, the set 𝛿(𝑞, 𝑎) con-
tains atmost one element. The powerset construction transforms anNFA
⟨𝑄, 𝛿, 𝑆, 𝐹⟩ over Σ into a language-equivalent DFA ⟨𝒫(𝑄), 𝛿𝑝, {𝑠0}, 𝐹′⟩
where 𝑠0 △= 𝑆, 𝐹′ △= {𝑠 ⊆ 𝑄 𝑠 ∩ 𝐹 ≠ ∅}, and 𝛿𝑝(𝑠, 𝑎) △= {𝛿(𝑠, 𝑎)}.

A regular language is one described by a regular expression or equiv-
alently one accepted by an NFA. There are standard conversions from
regular expressions to NFAs and vice versa. Regular languages are
closed under:

• union (𝐿1 ∪ 𝐿2);

• concatenation (𝐿1 ; 𝐿2);

• repetition (𝐿∗);

• intersection (𝐿1 ∩ 𝐿2), by the product construction on NFAs:
⟨𝑄1 × 𝑄2, 𝛿𝑃, 𝑆1 × 𝑆2, 𝐹1 × 𝐹2⟩where 𝛿𝑃(⟨𝑞1, 𝑞2⟩) △= 𝛿1(𝑞1)×𝛿2(𝑞2);

• complementation (𝐿), by conversion to DFA and complementing
the set of final states;

• reversal (𝐿−1), by swapping initial and final states in NFA, and
reversing the transitions;

• substitution (𝐿[𝐿1/𝑎1,… , 𝐿𝑛/𝑎𝑛]), by replacing all 𝑎𝑖 transitions of
an NFA with automata accepting 𝐿𝑖;

3.2 KL E ENE ALGEBRA W I TH TE ST S (KAT) 21

23 Is the power of a
regular language
regular? Is the root
of a regular
language regular?
[Fil]
24 “Checking NFA
equivalence with
bisimulations up to
congruence” [BP13]

25 “Kleene Algebra
with Tests” [Koz97]

• rotational closure (ROT(𝐿) △= {𝑢𝑣 ∣ 𝑣𝑢 ∈ 𝐿}), which can be com-
puted on an NFA 𝑁 as ⋃𝑞∈𝑁.𝑄 After𝑞 ;Before𝑞 where After𝑞 is the
NFA obtained from 𝑁 by making 𝑞 be its only initial state and
Before𝑞 is the NFA obtained from𝑁 bymaking 𝑞 be the only final
state; and

• deduplication closure (DEDUP(𝐿) △= {𝑤 ∈ Σ∗ ∣ ∃𝑛.𝑤𝑛 ∈ 𝐿}), which
can be computed on an NFA23.

Finally, inclusion and equivalence of regular languages are decid-
able (PSPACE-complete) by noting that 𝐿1 ⊆ 𝐿2 ⇔ 𝐿1∩𝐿2 = ∅. Given
that the expensive part of this inclusion checking is theDFA conversion
as part of the complementation of 𝐿2, there are algorithms24 that avoid
performing the DFA conversion upfront and perform it “on demand”
while traversing the NFA of 𝐿1.

3.2 KL E ENE ALGEBRA W I TH TE ST S (KAT)

Kleene algebra with tests25 (KAT) extends regular languages with a set
of tests, over which there is a Boolean algebra.

LetPredicate be a finite set of primitive predicate symbols andRelation
be a finite set of primitive relation symbols. KAT tests (𝑡) and expres-
sions (𝑒) are given by the following grammar:

𝑡 ∶∶= 𝑝 ∣ true ∣ false ∣ 𝑡1 ∪ 𝑡2 ∣ 𝑡1 ∩ 𝑡2 ∣ 𝑡
𝑒 ∶∶= [𝑡] ∣ 𝑟 ∣ 𝑒1 ∪ 𝑒2 ∣ 𝑒1 ; 𝑒2 ∣ 𝑒∗

where 𝑝 ∈ Predicate ranges over primitive predicates and 𝑟 ∈ Relation
over primitive relations. KAT tests contain the usual Boolean operators,
while KAT expressions contain tests, relations, union, sequencing, and
iteration. Tests allow us to express the empty relation ∅ △= [false] and
the identity relation id △= [true]. Moreover, as usual, reflexive closure
is expressed as 𝑒? △= 𝑒 ∪ id and transitive closure as 𝑒+ △= 𝑒 ; 𝑒∗.

KAT expressions are standardly interpreted as languages of guarded
words, that is, alternating sequences of satisfiable tests and relations
starting and ending with a test, 𝑡1𝑟1𝑡2𝑟2 …𝑡𝑛𝑟𝑛𝑡𝑛+1 for some 𝑛 ≥ 0. We
write L(𝑒) for the language induced by a KAT expression 𝑒.

KAT expressions can equivalently be interpreted as binary relations
over a certain universe. In our context, we use execution graphs as
models. Recall from §2.2 that each execution graph 𝐺 consists of a
set 𝐺.E of nodes, called events, and interpretations of primitive tests
as subsets of events and of primitive relations as binary relations on
events:

J.K𝐺 ∶ Predicate → 𝒫(𝐺.E) J.K𝐺 ∶ Relation → 𝒫(𝐺.E × 𝐺.E)

22 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

26 “Kleene Algebra
with Tests:

Completeness and
Decidability”

[KS96]

This interpretations are extended to KAT tests and expressions in the
obvious way:

JtrueK𝐺 △= 𝐺.E JfalseK𝐺 △= ∅ J𝑡K𝐺 △= 𝐺.E \ J𝑡K𝐺J𝑡1 ∪ 𝑡2K𝐺 △= J𝑡1K𝐺 ∪ J𝑡2K𝐺 J𝑡1 ∩ 𝑡2K𝐺 △= J𝑡1K𝐺 ∩ J𝑡2K𝐺 J[𝑡]K𝐺 △= [J𝑡K𝐺]J𝑒1 ∪ 𝑒2K𝐺 △= J𝑒1K𝐺 ∪ J𝑒2K𝐺 J𝑒1 ; 𝑒2K𝐺 △= J𝑒1K𝐺 ; J𝑒2K𝐺 J𝑒∗K𝐺 △= J𝑒K∗𝐺
On top of KAT expressions, KAT formulas are defined by the follow-

ing grammar:

𝜙 ∶∶= 𝑒1 ⊆ 𝑒2 ∣ ¬𝜙 ∣ 𝜙1 ∧ 𝜙2 ∣ 𝜙1 ∨ 𝜙2 ∣ 𝜙1 ⇒ 𝜙2 ∣ 𝜙1 ⇔ 𝜙2

KAT formulas are interpreted as sets of execution graphs in the stan-
dardway: for example, J𝑒1 ⊆ 𝑒2K △= {𝐺 ∣ J𝑒1K𝐺 ⊆ J𝑒2K𝐺} and J𝜙1 ⇒ 𝜙2K △=
{𝐺 ∣ 𝐺 ∈ J𝜙1K ⇒ 𝐺 ∈ J𝜙2K}. The interpretation is extended to sets of
KAT formulas in the obvious way: JΦK △= ⋂𝜙∈ΦJ𝜙K. We say that a
KAT formula 𝜙 holds, denoted by ⊢ 𝜙, if J𝜙K is equal to the set of all
graphs. We write Φ ⊢ 𝜙 if JΦK ⊆ J𝜙K.

Inclusion between KAT expressions (i.e., ⊢ 𝑒1 ⊆ 𝑒2) is PSPACE-
complete, and remains so even under basic assumptions like empti-
ness of a KAT expression (𝑒 = ∅) or transitivity of a primitive rela-
tion (𝑟 ; 𝑟 ⊆ 𝑟)26. Inclusion and equivalence can be decided either by
algebraic techniques or by reduction to finite state automata. In the
latter case, it is convenient to first convert the automata into a normal
form that accepts only guarded words, and then apply standard ways
of checking language inclusion/equivalence between automata.

Conversion into the normal form has to ensure: (1) that each au-
tomaton state has incoming edges being predicates and outgoing edges
being relations (or the other way round), (2) that all outgoing edges
from initial states are predicate edges, and (3) that all incoming edges
to accepting states are predicate edges. To do so, any states with both
kinds of incoming and outgoing transitions have to be duplicated and
suitably restricted: adjacent predicate transitions of the form [𝑝1] ; [𝑝2]
are replaced with single composite transitions of the form [𝑝1 ∩ 𝑝2],
while adjacent transitions with relations are moved apart by adding a
dummy [true] transition between them. Similarly, outgoing relation
edges from initial states have to be prefixed with a dummy [true] tran-
sition, and conversely incoming relation edges to accepting states have
to be postfixed with a [true] transition.

3.3 MEMORY MODEL S A S KAT CONSTRA INT S

Axiomatic memory models can be formulated as a single emptiness
constraint and a single irreflexivity constraint over KAT. For this pur-
pose, we extend KAT formulas with a new construct irreflexive(𝑒) with
semantics Jirreflexive(𝑒)K △= {𝐺 ∣ ∄𝑎. ⟨𝑎, 𝑎⟩ ∈ J𝑒K𝐺}. Models with mul-

3.4 ADD ING DOMA IN - S P EC I F I C A S SUMPT IONS 23

27 “Repairing
sequential
consistency in
C/C++11”
[Lah+17]

28 This a
pretty-printed
version of the actual
input syntax, which
uses ASCII (e.g., |
for union and <= for
inclusion).

tiple such constraints can be encoded because of the following basic
relational algebra properties:

𝑒1 = ∅ ∧ 𝑒2 = ∅ ⇔ 𝑒1 ∪ 𝑒2 = ∅
irreflexive(𝑒1) ∧ irreflexive(𝑒2) ⇔ irreflexive(𝑒1 ∪ 𝑒2)

Similarly, acyclicity constraints can be encoded as acyclic(𝑒) △= irreflexive(𝑒+).
Formally, a memory model 𝑀 is a pair of KAT expressions ⟨𝑒∅, 𝑒irr⟩,

interpreted as a collection of execution graphs

J⟨𝑒∅, 𝑒irr⟩K △= J𝑒∅ = ∅ ∧ irreflexive(𝑒irr)K
We say that a memory model 𝑀1 is stronger than another model 𝑀2

(and𝑀2 isweaker than𝑀1) if J𝑀1K ⊆ J𝑀2K. Twomodels are equivalent
if they are both stronger and weaker than each other.

3.4 ADD ING DOMA IN - S P EC I F I C A S SUMPT IONS

To be able to prove interesting metatheoretic properties, we need to
equipKATERwith somedomain-specific assumptions. Wego over these
assumptions using some rather simple examples.

3.4.1 Extended Coherence Order

We begin with a rather simple example. In addition to the two basic
relations of §2.2, Lahav et al.27 define the extended coherence order as the
transitive closure of rf, co and rb: eco △= (rf ∪ co ∪ rb)+. Observe
that eco can equivalently be expressed without the transitive closure
as rf∪ (co∪ rb) ; rf?.

Suppose that we want to automatically verify the latter claim. The
idea is to think of the two different formulations of eco as regular ex-
pressions over the alphabet {rf, rf−1, co}, and then check for equiva-
lence between them. In KATER, we would write the following28:� �
declare rf rf−1 co
let fr = rf−1;co
let eco1 = (rf ∪ co ∪ fr)+

let eco2 = rf ∪ (co ∪ fr);rf?

assert eco1 = eco2� �
With this input, KATER immediately returns a counterexample saying
that eco1 accepts the string rf ; rf but eco2 does not.

We clearly want to dismiss this counterexample because rf takes us
from a write to a read, and we know that an event cannot be both a
read and a write. One way to do so is to tell KATER that the rf does not
compose with itself:

24 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

� �
assume rf;rf = 0� �

Adding assumptions makes the language inclusion/equivalence prob-
lem more challenging. For some very simple kinds of assumptions,
such as ones of the form 𝑒 = ∅ (where 𝑒 is a KAT expression), lan-
guage inclusion remains decidable.

Proposition 1 ([KS96, Theorems 6 and 9]). Let 𝑒, 𝑒1, and 𝑒2 be KAT
expressions. Then, 𝑒 = ∅ ⊢ 𝑒1 ⊆ 𝑒2 if and only if ⊢ 𝑒1 ⊆ 𝑒2 ∪ Relation∗ ;
𝑒 ; Relation∗.

This time KATER returns rf ; co as a counterexample, which we dis-
miss for the same reason. And since we are at it, let’s also state that
co ; rf−1 = ∅.� �
assume rf;co = 0
assume co;rf−1 = 0� �

Next comes amore interesting counterexample: co;co. Here, the equiv-
alence proof relies upon co being transitive, but KATER has not way of
knowing that. So, let’s add the assumption:� �
assume co;co ⊆ co� �
Such transitivity assumptions can also be eliminated completely: to

check that Φ ⊢ 𝜙 under the additional assumption that a primitive
relation 𝑟 is transitive, we can replace all uses of 𝑟 in Φ and 𝜙 with 𝑟+.

Proposition 2. Let 𝜙 be a KAT formula, Φ be a set of KAT formulas,
and 𝑟 be a primitive relation symbol. Then, Φ, 𝑟 ; 𝑟 ⊆ 𝑟 ⊢ 𝜙 if and only
if Φ[𝑟+/𝑟] ⊢ 𝜙[𝑟+/𝑟].

Running KATER now reveals another interesting counterexample: rf;
rf−1 ; co. What is missing is the knowledge that rf−1 is functional: ev-
ery read reads from exactly onewrite. Adding themissing assumption� �
assume rf;rf−1 ⊆ id� �

allows KATER to complete the equivalence proof and report success.
Assumptions of the form 𝑒 ⊆ id for an inclusion query 𝑒1 ⊆ 𝑒2 can

be eliminated by saturating the right-hand-side. In terms of KAT ex-
pressions, we let satid(𝑒, 𝑒2) △= 𝑒∗ ; 𝑒′2, where 𝑒′2 is obtained from 𝑒2 by
replacing every 𝑟 ∈ Relation with 𝑟 ; 𝑒∗. This transformation can also
be defined in terms of NFAs. For each state of the automaton, we can
add a self loop accepting the language described by 𝑒. If 𝑒 is a primitive
relation 𝑟′, then this construction immediately reaches a fixpoint: run-
ning the construction on a saturated automaton will not introduce any

3.4 ADD ING DOMA IN - S P EC I F I C A S SUMPT IONS 25

new edges. If 𝑒 is a composite expression, however, the construction
does not reach a fixpoint. Since it introduces new states in the automa-
ton, for completeness, the construction needs to be repeated again (and
again). In principle, this repetition can be stopped after exceeding the
number of states of 𝑒1, but we stop it after a single iteration.

Proposition 3. LetΦ be a set of KAT formulas, and 𝑒, 𝑒1 and 𝑒2 be KAT
expressions. If Φ ⊢ 𝑒1 ⊆ satid(𝑒, 𝑒2), then Φ, 𝑒 ⊆ id ⊢ 𝑒1 ⊆ 𝑒2.

We note that instead of assuming that rf ; rf−1 ⊆ id, the proof can
also be completed with the assumption rf ; rb ⊆ co. This assumption
can be used by saturating the right-hand-side of the inclusion query
in a similar way: wherever there is a co transition from state 𝑎 to 𝑏 in
its NFA, construct new states 𝑚 and 𝑛, and add an rf transition from
𝑎 to 𝑚, an rf−1 transition from 𝑚 to 𝑛, and a co transition from 𝑛 to 𝑏.
Although this construction addsmore new states for each substitution,
it has the benefit that it applies only to states with co transitions as
opposed to all states of the NFA of the right-hand-side.

Proposition 4. Let Φ be a set of KAT formulas, 𝜙 be a KAT formula, 𝑒
be a KAT expression, and 𝑟 be a primitive relation. If Φ[(𝑟 ∪ 𝑒)/𝑟] ⊢
𝜙[(𝑟 ∪ 𝑒)/𝑟], then Φ, 𝑒 ⊆ 𝑟 ⊢ 𝜙. Furthermore, in the case that ⊢ 𝑒[(𝑟 ∪
𝑒)/𝑟] ⊆ 𝑟 ∪ 𝑒, the converse holds as well.

To avoidusers having to explicitly define assumptions as those above,
we equip KATER with built-in theory Φbase with primitive relations rf,
co, and rb and predicates R and W. It consists of the following assump-
tions encoding the basic properties:

• Disjoint tests: R∩ W = ∅.

• Domain and range restrictions: rf = [W];rf ;[R], co = [W];co ;[W],
and rb = [R] ; rb ; [W].

• Transitivity: co ; co ⊆ co.

• From-read properties: rf ; rb ⊆ co and rb ; co+ ⊆ rb.

The disjointness assumption is used to remove edges from the (normal-
form) NFAs corresponding to KAT expressions: KATER removes any
transitions labeledwith tests containing (i.e., stronger than) R∩W. More
generally, disjointness assumptions can be eliminated using the follow-
ing claim.

Proposition 5. Let Φ be a set of KAT formulas, 𝜙 be a KAT formula, 𝑝
be a primitive predicate, and 𝑡 be a test. Then, Φ[𝑝∩ 𝑡/𝑝] ⊢ 𝜙[𝑝 ∩ 𝑡/𝑝]
if and only if Φ, 𝑝 ∩ 𝑡 = ∅ ⊢ 𝜙.

In turn, the domain and range restrictions can easily be eliminated
by replacing the left-hand-sides of the inclusionswith their right-hand-
sides throughout. This transformation is formally justified by the fol-
lowing proposition.

26 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

29 “Taming
Release-acquire
Consistency”

[LGV16]

Proposition 6. Let Φ be a set of KAT formulas, 𝜙 be a KAT formula, 𝑒
be a KAT expression, and 𝑟 be a primitive relation. If Φ[𝑒/𝑟] ⊢ 𝜙[𝑒/𝑟],
then Φ, 𝑟 = 𝑒 ⊢ 𝜙. Furthermore, in the case that ⊢ 𝑒[𝑒/𝑟] = 𝑒, the
converse holds as well.

Finally, the transitivity assumption is eliminated using Prop. 2, and
the from-read properties are eliminated using Prop. 4.

Using the converse directions of the propositions above, we also ob-
tain completeness of this process, which entails decidability aswe state
next.

Proposition 7. The question whether Φbase ⊢ 𝑒1 ⊆ 𝑒2 given two KAT
expressions 𝑒1 and 𝑒2 is decidable.

Proof (sketch). First, the assumption rb ; co+ ⊆ rb can be eliminated
using Prop. 4, and completeness follows since ⊢ (rb ; co+)[(rb ∪ rb ;
co+)/rb] ⊆ rb ∪ rb ; co+. After applying this elimination, we ob-
tain a theory that can be shown to be equivalent to Φ1 that consists
of the disjointness assumption, the domain range restrictions, and the
assumption (rf ; rb ∪ co)+ ⊆ co. Then, again, (rf ; rb ∪ co)+ ⊆ co
can be eliminated using Prop. 4, and completeness follows since ⊢
(rf ; rb ∪ co)+[(co ∪ (rf ; rb ∪ co)+)/co] ⊆ co ∪ (rf ; rb ∪ co)+. Fi-
nally the domain assumptions can be eliminated using Prop. 6 and the
disjointness assumption is eliminated using Prop. 5. All in all, we ob-
tained a sequence of substitutions 𝑆 to be performed on 𝑒1 ⊆ 𝑒2, such
thatΦbase ⊢ 𝑒1 ⊆ 𝑒2 iff⊢ 𝑒1[𝑆] ⊆ 𝑒2[𝑆]. Decidability then follows from
decidability of inclusion in KAT (without assumptions).

3.4.2 Release-Acquire Consistency

In our next example, we will show equivalence between two different
definitions of the release/acquire consistency model29. This example
is, in fact, motivated by wanting to show the correctness of a program
optimization, namely store-load de-ordering (e.g., 𝑥 ∶= 1 ; 𝑎 ∶= 𝑦 ⇝
𝑥 ∶= 1 ∥ 𝑎 ∶= 𝑦 under any program context). The effect of this transfor-
mation on execution graphs is to remove certain po edges from write
events to read events. A simple way to show that a memory model
allows this transformation is if its consistency condition does not de-
pend at all on [W] ; po ; [R] edges. In other words, the model should not
be affected if we substitute all instances of po by po \ [W] ; po ; [R] in its
definition.

The first model is the usual definition of release-acquire consistency.
An execution graph is RA-consistent if hb ; (co ∪ rb)? is irreflexive,
where hb is the happens-before order, that relates two events 𝑎 and 𝑏 if
there is a path composed of po and rf edges from 𝑎 to 𝑏. In terms of
relational algebra: hb △= (po∪ rf)+.

3.5 I R R E F L EX I V I T Y IMPL I CAT IONS 27

According to the second definition, an execution is release/acquire-
consistent if hb2 ; (co∪ rb)? is irreflexive and rb does not contradict po
(i.e., po ; rb is irreflexive). In this definition,

hb2 is a subset of happens-before which avoids using any [W] ;po ; [R]
edges in its definition: hb2 △= ([R] ; po ∪ po ; [W] ∪ rfe)+, where rfe
denotes all external rf edges (where the write and the read are not
po-related).

So, now let’s try to prove equivalence between the twoversions. First,
we need to equip KATER with some additional built-in knowledge: (1)
that rf-edges are either internal (inside po) or external; (2) that in-
ternal rf-edges are included in the program order; and (3) that the
program order is transitive.

rf = rfi∪ rfe rfi ⊆ po po ; po ⊆ po (po-properties)

Elimination of these assumptions can be done using Propositions 2,
4 and 6.

Then, we can simply formulate the following KATER query:� �
let hb = ([R ∪ W];po;[R ∪ W] ∪ rf)+

let ra = hb;(co ∪ fr)?

let hb2 = ([R ∪ W];po;[W] ∪ [R];po;[W ∪ R] ∪ rfe)+

let ra2 = hb2;(co ∪ fr)? ∪ po;fr
assert ra = ra2� �

Running KATER yields the counterexample [W] ; po ; [R]. The point
is that while ra = ra2 is a sufficient condition for irreflexive(ra) ⇔
irreflexive(ra2), it is not a necessary one. (For example,⊢ irreflexive(𝑟1 ; 𝑟2) ⇔
irreflexive(𝑟2 ; 𝑟1) but⊬ 𝑟1 ; 𝑟2 = 𝑟2 ; 𝑟1.) Here, as a standard assumption,
we know that the program order is always irreflexive. So, to check for
equivalence between the two models, it suffices to check the following
equality:� �
assert (ra ∪ po) = (ra2 ∪ po)� �

which KATER can easily prove.

3.5 I R R E F L EX I V I T Y IMPL I CAT IONS

There is, in fact, another way to prove the equivalence between the two
release-acquire models without assuming that po is irreflexive. Under
our assumption that writes and reads are disjoint, there can never be a
cycle of form [W] ; … ; [R].

In reality, what we want to show is that ra ∩ id = ra2 ∩ id but this
falls outside of the known decidable fragments. (Although regular
languages are closed under intersection, they do not support a concept
like the identity relation. We cannot simply treat id as anuninterpreted

28 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

symbol because we need it to denote the identity relation.) We can,
however, express a somewhat weaker constraint in KAT, which KATER
can easily prove.� �
assert sameEnds(ra) = sameEnds(ra2)� �

where sameEnds(𝑒) restricts 𝑒 to enforce that its endpoints are compati-
ble. In the fragmentwe have seen so far, thatwould be that sameEnds(𝑒)
returns [R] ; 𝑒 ; [R] ∪ [W] ; 𝑒 ; [W] ∪ [F] ; 𝑒 ; [F]. Soundness easily follows
from the following proposition.

Proposition 8 (Same-Ends Closure). For every KAT expression 𝑒,
⊢ irreflexive(𝑒) ⇔ irreflexive(sameEnds(𝑒)).

Consider now a third version of release-acquire consistency defined
as irreflexive(ra3) where ra3

△= (co ∪ rb)? ; hb, which we would like
to show equivalent to the first version. If we just ask KATER to show
ra = ra3, we will get counterexamples such as po ; co and co ; po. The
issue is that ra3 is not equal to ra, but to a rotation of it.

Therefore, to prove the equivalence between the twomodels, we em-
ploy the rotational closure operator ROT(𝐿) △= {𝑢𝑣 𝑣𝑢 ∈ 𝐿}. Recall
from §3.1 that regular languages are closed under rotational closure.
By extension, KAT expressions are closed under rotational closure as
well (so we can freely use ROT(𝑒) for a KAT expression 𝑒). We now
show that employing rotational closure is sound for proving implica-
tions between irreflexivity constraints.

Proposition 9 (Rotational Closure). For every KAT expression 𝑒,
⊢ irreflexive(𝑒) ⇔ irreflexive(ROT(𝑒)).

Proof. For the right-to-left direction, it suffices to note that J𝑒K𝐺 ⊆ JROT(𝑒)K𝐺.
For the converse, consider a loop in JROT(𝑒)K𝐺, i.e., there exists 𝑎 such
that ⟨𝑎, 𝑎⟩ ∈ JROT(𝑒)K𝐺. From the definition of ROT(.), we get ⟨𝑎, 𝑎⟩ ∈J𝑢𝑣K𝐺 for some 𝑣𝑢 ∈ L(𝑒). The definition of J.K𝐺 ensures that there
exists 𝑏 such that ⟨𝑎, 𝑏⟩ ∈ J𝑢K𝐺 and ⟨𝑏, 𝑎⟩ ∈ J𝑣K𝐺, from which we can
obtain that ⟨𝑏, 𝑏⟩ ∈ J𝑒K𝐺, which means that J𝑒K𝐺 is not irreflexive.

Putting the two together, to prove an implication irreflexive(𝑒1) ⇒
irreflexive(𝑒2), we ask KATER to prove sameEnds(𝑒2) ⊆ ROT(𝑒1).

While this method is sound, it is not complete. Indeed, we have
irreflexive(𝑟 ; 𝑟) ⇒ irreflexive(𝑟), but sameEnds(𝑟) ⊈ ROT(𝑟 ; 𝑟). To re-
cover completeness, weneed the deduplication closure operatorDEDUP(𝐿) △=
{𝑤 ∣ ∃𝑛.𝑤𝑛 ∈ 𝐿}. Recall from §3.1 that regular languages are closed un-
der deduplication closure, and by extension, so are KAT expressions.

Proposition 10. For every KAT expression 𝑒,
⊢ irreflexive(𝑒) ⇔ irreflexive(DEDUP(𝑒)).

3.6 PROV ING MEMORY-MODEL EQU IVALENCE 29

Proof. For the right-to-left direction, it is sufficient to note that J𝑒K𝐺 ⊆JDEDUP(𝑒)K𝐺. For the converse, consider a loop in JDEDUP(𝑒)K𝐺, i.e.,
there exists 𝑎 such that ⟨𝑎, 𝑎⟩ ∈ JDEDUP(𝑒)K𝐺. From the definition of
DEDUP(.), there is some 𝑛 and𝑤 such that ⟨𝑎, 𝑎⟩ ∈ J𝑤K𝐺 and𝑤𝑛 ∈ L(𝑒).
Since ⟨𝑎, 𝑎⟩ ∈ J𝑤K𝐺, we also have ⟨𝑎, 𝑎⟩ ∈ J𝑤𝑛K𝐺, and so ⟨𝑎, 𝑎⟩ ∈ J𝑒K𝐺,
which means that J𝑒K𝐺 is not irreflexive.

With same-ends, rotation, anddeduplication together, we can rephrase
irreflexivity entailment queries as inclusion queries in a sound and
complete way:

Proposition 11 (Soundness and Completeness). For every two KAT
expressions 𝑒1 and 𝑒2,⊢ sameEnds(𝑒1) ⊆ DEDUP(ROT(𝑒2)) if and only
if ⊢ irreflexive(𝑒2) ⇒ irreflexive(𝑒1).

Proof. For the left-to-right direction, suppose that ⊢ sameEnds(𝑒1) ⊆
DEDUP(ROT(𝑒2)). It follows that ⊢ irreflexive(DEDUP(ROT(𝑒2))) ⇒
irreflexive(sameEnds(𝑒1)). By Propositions 9 and 10, we know that ⊢
irreflexive(𝑒2) ⇔ irreflexive(DEDUP(ROT(𝑒2))). By Prop. 8, we have ⊢
irreflexive(𝑒1) ⇔ sameEnds(𝑒1). Hence, it follows that⊢ irreflexive(𝑒2) ⊆
irreflexive(𝑒1).

For the converse, suppose that ⊢ irreflexive(𝑒2) ⇒ irreflexive(𝑒1). We
show that L(sameEnds(𝑒1)) ⊆ L(DEDUP(ROT(𝑒2))). Let us assume
that 𝑡1𝑟1𝑡2𝑟2 …𝑡𝑛𝑟𝑛𝑡𝑛+1 ∈ L(sameEnds(𝑒1)). Let𝐺 be an execution graph
with: 1. 𝑛 events, 𝑎1,… ,𝑎𝑛, such that 𝑎𝑖 satisfies 𝑡𝑖 for every 1 ≤ 𝑖 ≤ 𝑛
and 𝑎𝑛 satisfies 𝑡1 (this is possible due to sameEnds(.) closure); 2. the re-
lations of𝐺 are constructed such that ⟨𝑎𝑖, 𝑎𝑖+1⟩ ∈ 𝑟𝑖 for every 1 ≤ 𝑖 ≤ 𝑛−1
and ⟨𝑎𝑛, 𝑎1⟩ ∈ 𝑟𝑛. This construction ensures that ⟨𝑎1, 𝑎1⟩ ∈ J𝑒1K𝐺.
Then, the assumption that ⊢ irreflexive(𝑒2) ⇒ irreflexive(𝑒1) entails that
⟨𝑎𝑖, 𝑎𝑖⟩ ∈ J𝑒2K𝐺 for some 1 ≤ 𝑖 ≤ 𝑛. By the construction of 𝐺, there
exists 𝑚 ≥ 0 such that 𝑡𝑖𝑟𝑖 …𝑟𝑛𝑡𝑛+1(𝑡1𝑟1 …𝑟𝑛𝑡𝑛+1)𝑚𝑡1𝑟1 …𝑡𝑖−1𝑟𝑖−1 ∈
L(𝑒2). Hence, (𝑡1𝑟1 …𝑟𝑛𝑡𝑛+1)𝑚+1 ∈ L(ROT(𝑒2)), which means that
𝑡1𝑟1 …𝑟𝑛𝑡𝑛+1 ∈ L(DEDUP(ROT(𝑒2))).

This leads to a decision procedure for queries of the form Φbase ⊢
irreflexive(𝑒1) ⇒ irreflexive(𝑒2) (Φbase can be extended with the addi-
tional po-properties assumptions mentioned in § 3.4.2). Indeed, one
can apply the elimination of assumptions as in the proof of Prop. 7,
and finally apply Prop. 11.

3.6 PROV ING MEMORY-MODEL EQU IVALENCE

Although Prop. 11 provides a sound and complete way to check equiv-
alence between models without emptiness constraints, certain equiva-
lences only hold under additional assumptions. In what follows, we
demonstrate how KATER can deal with such assumptions in a heuristic
fashion.

30 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

3.6.1 Coherence

Memorymodels often contain the following axiom, which is known as
“Coherence” or “SC-per-location”.

poloc∪ rf∪ co∪ rb is acyclic, where poloc △= po∩ sameloc

We would like to show that this axiom is equivalent to po ; eco being
irreflexive.

A first obvious problem is that KATER cannot support the term “po∩
sameloc” for the same reason it could not support the term “ra∩ id”.
We can work around this problem by making KATER treat poloc as an
uninterpreted relation, and adding twobasic assumptions about poloc:
that it is transitive and that it is included in po.

Simply doing so, however, is not sufficient. KATER will return us a
counterexample: po ;rf is included in po ;eco but not in any rotation of
(poloc∪ rf∪ co∪ rb)+. The problem lies in the initial po edge. KATER
should not really be considering arbitrary paths of po ; eco, but only
ones that start and end with the same event. Following this principle,
we have so far ruled out paths starting with a read event and ending
with a write event. Now, we additionally want to rule out paths that
start and end with events of different locations. Specifically, we can
extend KATER’s built-in knowledge with the sameloc relation and its
basic properties:

rf∪ co∪ rb∪ id∪ (sameloc ; sameloc) ⊆ sameloc

Thus, as part of sameEnds(𝑒), we will intersect 𝑒 with sameloc and try
to distribute the intersection to the primitive relations with rules such
as (𝑟1 ; 𝑟2) ∩ sameloc = (𝑟1 ∩ sameloc) ; 𝑟2 provided 𝑟2 ⊆ sameloc.
While this procedure is generally incomplete (it will not always suc-
ceed in pushing the _∩ sameloc to primitive relations), when applied
to po ; eco, it will yield the term poloc ; eco, and so will rule out the
counterexample.

Still, however, this is not enough. KATER will now return us another
counterexample: [W] ;poloc ; [W] ;co ; [W] ;poloc ; [W] ;co, which is clearly
not included in any rotation of poloc ; eco.

The problem is that KATER does not (yet) know that co is total over all
writes to the same location. From totality and poloc ; co irreflexivity, it
follows that [W] ;poloc ; [W] ⊆ co?. Adding this inclusion as an assump-
tion, lets KATER proceed further and generate another counterexample,
which can be resolved by adding the assumption [W] ; poloc ; rb ; [W] ⊆
co?. This assumption, however, is still not enough. With a few more
iterations, we can arrive at the constraint: [W];rf? ;poloc;rb? ;[W] ⊆ co?,
which lets KATER complete the proof.

3.6 PROV ING MEMORY-MODEL EQU IVALENCE 31

30 The SPARC
architecture
manual (version 9)
[SPA94]; “A better
x86 memory model:
x86-TSO” [OSS09]

31 “Explaining
Relaxed Memory
Models with
Program
Transformations”
[LV16]

The question is how can we arrive at such constraints without the
manual trial-and-error loop. The solution is again by a saturation pro-
cedure on the right-hand-side of an inclusion query.

TOT(𝑟, 𝐿) △= 𝐿 ∪ (𝑟 ∪ {𝑤 ∣ 𝑟𝑤 ∈ 𝐿,𝑤 ≠ 𝜖})+

Proposition 12. Let Φ be a set of KAT formulas, 𝑒1 and 𝑒2 be KAT
expressions, and 𝑟 be a primitive relation. IfΦ ⊢ 𝑒1 ⊆ TOT(𝑟, 𝑒2), then
Φ, 𝑟 is a strict total order, irreflexive(𝑒2) ⊢ irreflexive(𝑒1).

Proof. Let 𝑒′ △= {𝑤 ∣ 𝑟𝑤 ∈ L(𝑒2), 𝑤 ≠ 𝜖}. Bymeans of contradiction, con-
sider an execution graph 𝐺 ∈ JΦ, 𝑟 is a strict total order, irreflexive(𝑒2)K
and a loop in J𝑒1K𝐺, i.e., 𝑎 such that ⟨𝑎, 𝑎⟩ ∈ J𝑒1K𝐺. From our assump-
tions, we have ⟨𝑎, 𝑎⟩ ∈ JTOT(𝑟, 𝑒2)K𝐺. From the definition of TOT(.),
we either get a loop in J𝑒2K𝐺, which contradicts our hypothesis, or a
cyclic path ⟨𝑎, 𝑎⟩ ∈ J𝑟 ∪ 𝑒′K+𝐺. Let 𝑛 ≥ 1 and 𝑎1,… ,𝑎𝑛 such that ⟨𝑎𝑖, 𝑎𝑖+1⟩ ∈J𝑟 ∪ 𝑒′K𝐺 for every 1 ≤ 𝑖 ≤ 𝑛 (to simplify the notation here we work
modulo 𝑛, so 𝑛 + 1 = 1). We claim that for every 1 ≤ 𝑖 ≤ 𝑛, we
must have ⟨𝑎𝑖, 𝑎𝑖+1⟩ ∈ J𝑟K𝐺. From this claim we obtain ⟨𝑎1, 𝑎1⟩ ∈ J𝑟+K𝐺,
which contradicts our hypothesis that J𝑟K𝐺 is a strict order. To prove
this claim, let 1 ≤ 𝑖 ≤ 𝑛. The totality of J𝑟K𝐺 ensures that either
⟨𝑎𝑖, 𝑎𝑖+1⟩ ∈ J𝑟K𝐺 or ⟨𝑎𝑖+1, 𝑎𝑖⟩ ∈ J𝑟K𝐺. By means of contradiction, sup-
pose that ⟨𝑎𝑖+1, 𝑎𝑖⟩ ∈ J𝑟K𝐺. Since ⟨𝑎𝑖, 𝑎𝑖+1⟩ ∈ J𝑟 ∪ 𝑒′K𝐺 and 𝑟 is a strict
order, we must have ⟨𝑎𝑖, 𝑎𝑖+1⟩ ∈ J𝑒′K𝐺, and so we have ⟨𝑎𝑖, 𝑎𝑖+1⟩ ∈J𝑤K𝐺 for some 𝑤 such that 𝑟𝑤 ∈ L(𝑒2). Then, we obtain ⟨𝑎𝑖+1, 𝑎𝑖+1⟩ ∈J𝑟 ; 𝑤K𝐺 ⊆ J𝑒2K𝐺, which is a loop in J𝑒2K𝐺, and contradicts our hypoth-
esis.

3.6.2 Total Store Ordering (TSO)

Our next example concerns the SPARC/x86 TSOmemory model30. As
with the previous example, the goal is to prove equivalence between
two different definitions of TSO.

The first model is the standard one. It defines the preserved program
order, ppo △= [R ∪ F] ; po ∪ po ; [W ∪ F], to include all program order
edges except for edges from writes to reads, and requires that tso △=
ppo∪ rfe∪ co∪ rb be acyclic and the coherence property hold.

The secondmodel, due to Lahav andVafeiadis31, requires that hb;rb?
be irreflexive and that there be a strict total order 𝑚𝑜 over allwrite and
fence events such that 𝑚𝑜; tso2 is irreflexive where

hb △= (po∪rf)+ and tso2
△= (co∪[F∪W];hb;[F∪W]∪([F]∪rfe);po;rb) .

First, note that irreflexivity of tso2 holds from irreflexivity of hb ; rb?
and co.� �
assert sameEnds(tso2) ⊆ hb;fr? ∪ co� �

32 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

32 “Repairing
sequential

consistency in
C/C++11”
[Lah+17]

Then, we can prove the following lemma:
Lemma 1. A relation 𝑅 is acyclic if and only if 𝑅 is irreflexive and there
exists a strict total order 𝑇 on dom(𝑅)∪ rng(𝑅) such that 𝑇 ;𝑅 is irreflex-
ive.
Proof. In the forward direction, take 𝑇 to be any total order extending
𝑅+. In the backward direction, by means of contradiction, consider
a cycle in 𝑅. Since 𝑅 is irreflexive, the cycle will contain at least two
distinct nodes. Because 𝑇 is total, all pairs of adjacent nodes will be
ordered by 𝑇 ∪ 𝑇−1 ∪ id. However, it cannot be the case that all pairs
of adjacent nodes will be ordered by 𝑇 ∪ id, or else we would get a
cycle in 𝑇. So, there has to be a pair of 𝑅-adjacent nodes ordered by
𝑇−1, contradicting the assumption that 𝑇 ; 𝑅 is irreflexive.

Finally, by applying Lemma 1, the two models are equivalent pro-
vided that tso+ ∪ po; eco is irreflexive iff hb ; rb? ∪ tso+2 is irreflexive,
which KATER proves with the following queries:� �
assert sameEnds(tso2

+ ∪ hb;fr?) ⊆ rot (tso+)
assert sameEnds(tso+) ⊆ rot (tso2

+ ∪ hb;fr?)� �
3.7 C 1 1 COMP I LAT ION RE SULT S

Let us now see how KATER can establish some more substantial results
about the revised C11 memory model ofLahav et al.32 without their
(po∪ rf)-acyclicity constraint.

First, correctness of local transformations can be achieved in a sim-
ilar way as in § 3.4.2 concerning the release/acquire memory model.
The idea is to prove equivalence with respect to a variant of the C11
definition obtained by replacing all instances of po with the following
subset of po

ppo𝐶11
△= [ACQ] ; po∪ po ; [REL] ∪ [SC] ; po ; [SC]

that is guaranteed to be preserved by the transformations, and adding
the usual coherence axiom asserting acyclicity of (poloc∪eco). KATER
easily proves the equivalence.

Next, we examine the correctness of C11’s default compilation map-
pings to the various hardware architecture models.

C 1 1 TO ARMV8 We start with compilation to the ARMv8model. Al-
though the ARMv model is more complicated than some other hard-
ware memory models, compilation from C11 to ARMv8 is actually eas-
ier to establish than to some other memory models because the com-
pilation mapping is the identity. That is, every primitive C11 access or
fence maps to exactly one access or fence at the architecture level.

Therefore, to prove compilation correctness, we have to show that
C11 is weaker than ARMv8. C11 consistency checks three properties:

3.7 C 1 1 COMP I LAT ION RE SULT S 33

• Coherencewith respect to happens-before (i.e., irreflexive(hb ; eco));

• RMW-atomicity; and

• psc acyclicity.

ARMv8 consistency has three other properties:

• Coherence with respect to the program order (i.e., acyclicity of
poloc ∪ rf ∪ co ∪ rb, which, as we have seen, is equivalent to
irreflexive(po ; eco));

• RMW atomicity; and

• Acyclicity of its ob relation.

Therefore, to prove correctness of compilation, it suffices to call KATER
with the following input:� �
include "C11.kat"
include "Arm8.kat"
assert C11∶∶hb;eco ⊆ po;eco ∪ Arm8∶∶ob+
assert C11∶∶psc ⊆ Arm8∶∶ob+� �

This code snippet demonstrates two small features of KATER: (1) it al-
lows one to include files containing additional definitions, and (2) it
provides a simple name resolution mechanism to refer to definitions
from other files. KATER easily proves these assertions.

C 1 1 TO X86 -T SO Our next compilation result concerns themapping
from C11 to the x86 model. There are actually two mappings of in-
terest: one which inserts TSO fences right after SC-atomic stores, and
one which inserts TSO fences right before SC-atomic loads, In both
cases, all remaining accesses are mapped to plain TSO accesses, C11’s
SC fences are mapped to TSO fences and all remaining fences to NOPs.

Our general approach for handling such mappings is to define the
architecturemodel in terms of the C11 accessmodes (e.g., only treat F∩
sc as a TSO fence) and add additional assertions about the presence of
additional fences induced by the mapping. In particular, we let KATER
prove the following:� �
assume [W;SC];po;[R;SC] ⊆ po;[F;SC];po
assert C11∶∶hb;eco ⊆ po;eco ∪ TSO∶∶tso+
assert C11∶∶psc+ ⊆ TSO∶∶tso+� �

The assumption states that themapping always introduces an SC fence
between an SC write and a subsequent SC read from the same thread,
and allows KATER to complete the proof, establishing the correctness of
both mappings at once.

34 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

33 “Herding cats:
Modelling,

simulation, testing,
and data mining for

weak memory”
[AMT14]

KATER uses such assumptions in a heuristic fashion whenever it is
asked to prove an inclusion assertion. Given an assumption 𝐴 ⊆ 𝐵,
it searches for pairs of states ⟨𝑥, 𝑦⟩ in the NFA representing the right-
hand-side of the inclusion such that there is a 𝐵 path from 𝑥 to 𝑦. When-
ever this is the case, it adds an𝐴 path from 𝑥 to 𝑦, whichmay introduce
further states if 𝐴 is a composite expression.

C 1 1 TO POWER Next, we consider the compilation to POWER,which
is substantiallymore complex than the compilations to TSOandARMv8,
and has led to incorrect claims about the compilation of the original
C11 model to it. Here, we will follow the axiomatic POWER model
ofAlglave, Maranget, and Tautschnig33, which consists of the follow-
ing axioms:

• Coherence: (poloc∪ rf∪ co∪ rb) is acyclic.

• No-thin-air: A certain hb relation containing preserved program
order edges (due to dependencies or fences) and rfe edges is
acyclic.

• Propagation: co ∪ prop is acyclic, where prop is POWER’s prop-
agation order.

• Observation: obs △= rb ; prop ; hb∗ is irreflexive.

There existmultiple correct compilationmapping schemes fromRC11
to POWER. For concreteness, we will present the “leading-sync with
lwsyncs” scheme. This schememapsC11’s SC fences to POWER’s global
synchronization fence (sync), C11’s other fences to POWER’s lightweight
synchronization fence (lwsync), introduces an lwsync fence before ev-
ery release write and after every acquire read, and a sync fence before
every SC access (read or write). We therefore model POWER’s sync as
C11’s SC-fence, lwsync as any C11’s fence, and formulate the following
assumptions about the presence of additional fences.� �
assume [R;ACQ];po ∪ po;[W;REL] ⊆ po;[F];po
assume po;[R;SC] ∪ po;[W;SC] ⊆ po;[F;SC];po� �

To establish the correctness of C11’s coherence axiom, we ask KATER the
following:� �
let r = eco;po?;eco* ∪ Pow∶∶hb+ ∪ (co ∪ prop)+ ∪ obs
assert sameEnds(eco;C11∶∶hb) ⊆ r� �

which it proves in less than a minute. Note that to assist KATER’s inclu-
sion check, we have incorporated a small ‘optimization’ in this query.
We have used a reformulation of the coherence axiom that is equivalent
to POWER’s acyclic(poloc∪ rf∪ co∪ rb) axiom, as already shown in
§3.4.1, and already incorporates a rotation.

3.8 OTHER METATHEORE T I C PROPERT I E S 35

Rsc(𝑥)

Wrel(𝑦)

Rsc(𝑦) Wsc(𝑦)

Rsc(𝑥)

Wsc(𝑥)
po

rfe

rb

po
rb

rfe 𝑎 ∶= 𝑥sc

𝑦rel ∶= 1
𝑥sc ∶= 1 𝑏 ∶= 𝑦sc

𝑦sc ∶= 2
𝑐 ∶= 𝑥sc

Outcome: 𝑥 = 𝑎 = 𝑏 = 1 ∧ 𝑦 = 2 ∧ 𝑐 = 0

Figure 3.1: A counterexample produced by KATER

Next, to show that C11’s psc relation is acyclic, ideally onewould ask
KATER the following query.� �
assert sameEnds(C11∶∶psc+) ⊆ rot(r)� �

While KATER can in principle prove this inclusion, in practice it takes
forever for KATER to return. The issue is that applying the rotational
closure and the implication assumptions to r generates a huge automa-
ton, and so the various simplification passes and the inclusion checking
takes too long.

Byperforming these transformationsmanually to the POWERmodel,
KATER is able to establish the inclusion (without the rotation). Specifi-
cally, to avoid the explicit assumptions, we adapt the definition of the
POWER relations to include two additional disjuncts, which are shown
in comments below.� �
let sync = po;[F;SC];po //∪ po;[R;SC] ∪ po;[W;SC]
let lwsync = po;[F];po //∪ [R;ACQ];po ∪ po;[W;REL]� �
Let us now consider a simplified version of the original C11 model,

whose compilation to POWER turned out to be incorrect. The goal is
to (dis)prove the following inclusion:� �
assert sameEnds(([SC];(hb ∪ co ∪ fr);[SC])+) ⊆ rot(r)� �

Again, rewriting the POWER model to avoid the scalability issues, we
get the counterexample:

[Rsc]; po; [Wrel]; rfe; [Rsc]; rb; [Wsc]; po; [Rsc]; rb; [Wsc]; rfe

which is allowed by POWER but not by C11. We depict it also as an
execution graph and a litmus test in Fig. 3.1.

3.8 OTHER METATHEORE T I C PROPERT I E S

In addition to comparing memory models, as we discussed so far, we
can use KAT queries to check for prefix-closedness, extensibility, and
monotonicity. Key to establishing these properties is the observation
that all primitive relations are used only positively in KAT expressions,
while KAT expressions are used negatively in the model definitions
(since 𝑥 = ∅ ⇔ 𝑥 ⊆ ∅).

36 KATER : AUTOMAT ING WEAK MEMORY MODEL METATHEORY

• Prefix-closedness (§5.2) holds by construction for every express-
ible memory model: removing edges from an execution graph
cannot create any additional paths that cannot exist or cannot be
cyclic.

• Extensibility (§5.4) holds as long as the model is defined purely
in terms of the built-in relations (po, rf, rfe, rfi, co, and rb)
and does not contain emptiness checks. Adding an event 𝑒 maxi-
mally to a consistent execution graph does not create any outgo-
ing edges from 𝑒, and so it cannot create any new cycles.

• For monotonicity with respect to the merging of the threads, it
suffices for the memory model to be defined purely in terms of
the relations like po, rf, co, and rb and not in terms of relations
like rfi and rfe (internal and external reads-from, respectively),
whichdistinguish between events originating from the same thread
or not. This holds, for example, for the SC and RC11 models, but
not for TSO and Arm8.

• Formonotonicitywith respect to access mode strengthenings, e.g.,
from acquire to SC, it suffices for the “acquire” predicate of the
memory model to also include SC accesses (JSCK𝐺 ⊆ JACQK𝐺 for
all𝐺), and to never use predicates in a negative context, i.e., never
take the complement of a predicate or the set difference between
two predicates.

Moreover, given away to prove that amodel isweaker than another, we
can leverage it to answer the remaining twometa-theoretical questions
from the introduction.

• For local program transformations, it suffices to prove equivalence
with a model where the correctness of the transformation is evi-
dent (see example in §3.4.2).

• For the absence of out-of-thin-air behaviors (§5.1), it suffices to show
that the model is stronger than ⟨∅, (deps∪ rf)+⟩, where deps
represents the set of program-induced dependencies between po-
ordered events, i.e., the union of the address, data, and control
dependencies (see §2.4.1).

4

34 For SC, one could
of course use
Floyd–Warshall or
DFS to calculate the
transitive closure,
but the fixpoint
construction is more
general.

35 “Testing shared
memories” [GK97]

CHECK ING EXECUT ION GRAPH CONS I ST ENCY

In the previous chapter we saw how KATER can prove implications be-
tween memory-model consistency predicates. In this chapter, we dis-
cuss how such predicates can be calculated in a given execution graph.

But how dowe check consistency of a graph given an arbitrarymem-
ory model M to begin with? Since M is expressed as emptiness and
irreflexivity constraints over some relations, a simple solution is to cal-
culate all relations of M in a fixpoint, and then check for emptiness/ir-
reflexivity.

This solution, however, is computationally expensive. Consider a
coherence-tracking graph 𝐺 and suppose we want to check its consis-
tency under SC. Following the outlined approach, we have to calculate
the transitive closure of porf ∪ mo ∪ rb in a fixpoint, which, assuming
that po, rf, mo and rb are represented as 𝑛 × 𝑛 matrices (where 𝑛 is
the number of graph nodes), is at least as hard as matrix multiplica-
tion34. Adding insult to the injury, if 𝐺 does not track coherence, then
we have to enumerate all possible co choices, leading to exponential
complexity.

Fortunately, we can deal with this complexity issue by making two
key observations. First, if we are interested in acyclicity constraints,
then we simply have to find cycles in the execution graph that corre-
spond to violations according to M. Finding such cycles can be done
using a depth-first-search (DFS), which yields an𝒪(𝑛) complexity (as-
suming a sparse graph). In fact, as we show in §4.2, the generation
of such consistency checking code can be automated by using KATER:
treating the graph as another automaton, finding violating cycles boils
down to findingwords that the intersection of M and the graph accepts.

Second, as far as checking consistency in non-coherence-tracking graphs
is concerned, even though finding an appropriate comight have an ex-
ponential complexity under certain models35, in many cases we can
adequately approximate it. The key idea is to only consider co edges
that are forced in a particular way by the memory model’s irreflexivity
constraints. We present such an approximation that only partially or-
ders stores at each memory location (instead of totally ordering them).

In what follows, we first provide some intuition on how the naive
solution can be improved assuming SC (§4.1). Then, we show how
KATER can synthesize code that checks consistency of a given graph
under arbitrary models (§4.2). We end the chapter by presenting how
co can be approximated, and the repercussions this approximation has
in consistency checking (§4.3).

37

38 CHECK ING EXECUT ION GRAPH CONS I S T ENCY

36 Introduction to
Algorithms, 3rd

Edition [Cor+09]

37 Recall from §3
that this is a single
NFA corresponding
to the union of the

constraints.

4.1 OP T IM I Z ED CONS I S T ENCY CHECK S FOR SC

Let us begin by showing how consistency checking under SC can be
optimized. Recall that an execution graph is 𝑆𝐶-consistent if sc △=
porf∪ co∪ rb is acyclic.

To check whether a graph is cyclic, one can simply perform a plain
depth-first search through the graph, recording at each node whether
it has been visited and whether the recursive visits of its children have
been completed36. The depth-first search has complexity 𝒪(𝑛 + 𝑚)
where 𝑛 is the number of graph nodes and 𝑚 the number of sc edges.
Since a graph with 𝑛 nodes can have 𝒪(𝑛2) sc edges, the overall com-
plexity is quadratic.

We can, however, do even better and bring down theDFS complexity
to 𝒪(𝑛) by making the graph sparse. The idea is to observe that:

acyclic(sc) ⇔ acyclic(po|imm ∪ rf∪ co|imm ∪ rf−1; co|imm)

and to use the immediate counterparts of po, co, and rb to make the
graph sparse, thus bringing down the DFS complexity to 𝒪(𝑛).

4.2 ARB I T RARY ACYCL I C I T Y CHECK S W I TH KATER

The fact that SC admits such fast consistency checks begs the question
of whether such efficient consistency checks can be generalized for an
arbitrary memory model. At a first glance, this does not seem obvi-
ous. Even though SC is expressed as a single transitive closure of some
primitive relations, this is not the case formemorymodels in general: a
model may require the acyclicity of relations defined in terms of other
(potentially complex) relations, and thus merely performing a depth-
first search is insufficient.

Fortunately, we can utilize KATER and automata intersection to pro-
duce efficient consistency checking routines for any model expressed
using acyclicity constraints, in the following way.

First, given a model M, observe that we can build an automaton
NFAM corresponding to the acyclicity constraints of M37. In addition,
we can enforce that NFAM has a single initial/final state merely by tak-
ing its reflexive-transitive closure: as long as we only consider non-
empty words, the two automata accept the same set of words. By ex-
pressing M’s acyclicity constraints as an NFA, we also get to express
its acyclicity constraints in terms of primitive relations (i.e., po|imm,
co|imm, rf|imm and rb|imm), which are already calculated in an execu-
tion graph.

Similarly, observe that a (transitively reduced) execution graph 𝐺
can also be considered as an automaton NFA𝐺 with states correspond-
ing to the graph nodes and transitions corresponding to the graph
edges. As a NFA𝐺 does not have any obvious initial states, a given
graph𝐺 actually corresponds to𝑁 automata NFA𝐺1

,… ,NFA𝐺𝑁
(where

4.2 ARB I T RARY ACYCL I C I T Y CHECK S W I TH KATER 39

𝑞0 𝑞1

rf, co, po

rf−1

co

𝑞0𝑥
𝑞0𝑦

𝑞𝑤𝑥

𝑞𝑟𝑦

𝑞𝑤𝑦

𝑞𝑟𝑥

po, co

po

po, co

po

po po

rf rf
rf−1

rf−1

Figure 4.1: Consistency checks with KATER 38

init

W(𝑥, 1)

R(𝑦)

W(𝑦, 1)

R(𝑥)

Figure 4.2: An
inconsistent execu-
tion under SC

𝑁 is the number of 𝐺’s nodes), each of which has a distinct node as
an initial/final state. By expressing 𝐺 as a collection of automata, we
get the benefit of also expressing all possible graph cycles via these au-
tomata (as the set of non-empty words accepted by the NFAs), which
are also expressed in terms of primitive relations.

Now, we can check for acyclicity violations simply by taking the in-
tersection of the NFAM with each of the graph automata. Concretely,
utilizing the product construction between NFAM and NFA𝐺𝑖

(for 1 ≤
𝑖 ≤ 𝑁), and “running” the two automata in parallel, we can detect
whether any (non-empty) cycle in 𝐺 violates M’s acyclicity constraint.
These intersections yield all the graph cycles that satisfy M’s acyclicity
constraints.

38 Non-immediate
relations are drawn
to not clutter the
presentation

For illustration purposes, consider the SC model again where rb is
decomposed into its constituent parts rb △= rf−1; co|imm

+ so thatNFA𝑆𝐶
is not completely trivial. An example of how this procedure rules out
the inconsistent behavior of Fig. 4.2 can be seen in Fig. 4.1. There are
two things to notice in Fig. 4.1. First, NFA𝐺 has two states correspond-
ing to the graph’s initial node. That is because the initial node corre-
sponds to the initializing writes to all memory locations and therefore
needs to be decomposed. (Besides, it would be wrong to add a co tran-
sition from the same state to both states 𝑞𝑤𝑥

and 𝑞𝑤𝑦
.) Second, we have

picked 𝑞𝑟𝑦 as the initial state for NFA𝐺, although KATER will examine all
graph states as initial.

Let us now see howwe detect the violation of Fig. 4.2. Starting from
NFA𝐺’s initial state 𝑞𝑟𝑦 , perform a depth-first search on NFA𝐺 while at
the same time maintaining NFA𝑆𝐶’s state. Whenever a cycle on NFA𝐺
is detected, check whether NFAM is in a final state. If so, a violation
is detected; otherwise, the exploration proceeds normally. In the case
of Fig. 4.1, we explore the following pairs of states before detecting a
violation (we use overline notation to denote the product’s final state):

⟨𝑞0, 𝑞𝑟𝑦⟩
rf−1
−−−→ ⟨𝑞1, 𝑞0𝑦

⟩ co−→ ⟨𝑞0, 𝑞𝑤𝑦
⟩ po−→ ⟨𝑞0, 𝑞𝑟𝑥⟩

rf−1
−−−→ ⟨𝑞1, 𝑞0𝑥

⟩ co−→ ⟨𝑞0, 𝑞𝑤𝑥
⟩ po−→ ⟨𝑞0, 𝑞𝑟𝑦⟩

40 CHECK ING EXECUT ION GRAPH CONS I S T ENCY

39 Recall that NFAM
has a single initial

state that is also final.

40 Introduction to
Algorithms, 3rd

Edition [Cor+09]

On the other hand, when we take 𝑞0𝑦
as the initial state of NFA𝐺, the

violation is not detected. One cycle starting and ending at 𝑞0𝑦
is the

following.

⟨𝑞0, 𝑞0𝑦⟩
po−→ ⟨𝑞0, 𝑞𝑤𝑦

⟩ po−→ ⟨𝑞0, 𝑞𝑟𝑥⟩
rf−1
−−−→ ⟨𝑞1, 𝑞0𝑥

⟩ co−→ ⟨𝑞0, 𝑞𝑤𝑥
⟩ po−→ ⟨𝑞0, 𝑞𝑟𝑦⟩

rf−1
−−−→ ⟨𝑞1, 𝑞0𝑦

⟩

In this case, even though a cycle from/to 𝑞0𝑦
was detected in NFA𝐺, no

violation is reported as NFA𝑆𝐶 is not in a final state at that point. In fact,
this is the case for all cycles starting and ending at 𝑞0𝑦

: since they will
have to end with an rf−1 edge (the only incoming edge to 𝑞0𝑦

), NFA𝑆𝐶
will be in a non-final state. This also explains why one has to try all
states of NFA𝐺 as its initial states: we have to find a proper starting
point in a cycle of 𝐺 so that it also becomes a word accepted by NFA𝑆𝐶.

4.2.1 Checking Consistency in Linear Time

The consistency checking procedure above works reasonably well, but
has a complexity of 𝒪(𝑛2𝑚) (where 𝑛, 𝑚 are the number of states of
NFA𝐺 and NFAM, respectively), since each DFS on a given intersection
requires 𝒪(𝑛𝑚) time. This begs the question whether we can come up
with a more efficient procedure to check consistency of a given graph.

It turns out we can in fact bring the total complexity of consistency
checking graph down to 𝒪(𝑛𝑚) by making the following two observa-
tions. First, the final states of NFA𝐺 are irrelevant when calculating the
intersection of NFA𝐺 and NFAM. Indeed, since NFA𝐺 does not contain
any self-loops, any cycle found in a given intersection should be ac-
cepted if NFAM accepts the corresponding word. Second, we can avoid
repeating work by finding cycles in a single intersection of NFA𝐺 and
NFAM where all the states of NFA𝐺 are deemed as initial.

More precisely, what we are interested in is finding strongly connected
components (SCCs) in the intersection of NFA𝐺 and NFAM that also con-
tain the final state of NFAM

39. Such SCCs are by construction guar-
anteed to contain cycles in 𝐺 that are forbidden under M, and they
are non-singletons (as 𝐺’s relations do not contain any self-loops, and
NFAM’s transitions are based on said relations).

In fact, we can calculate all SCCs in the intersection of NFA𝐺 and
NFAM without explicitly computing it. An algorithm for doing so can
be seen in algorithm 4.1. Similarly to Tarjan’s SCC algorithm40, the
algorithm maintains nextIndex representing the current “timestamp”;
Worklist, a stack maintaining the node exploration order; status, a map
that tracks whether a given node is unexplored/currently being ex-
plored/ fully explored; index, amap that tracks the timestamp atwhich
a given node was discovered; and sccIndex, a map that tracks the times-
tamp of the SCC’s root a given node belongs in. Observe that all these
variables operate on pairs of the form ⟨𝑒, 𝑠⟩, where 𝑒 is an event of 𝐺,
and 𝑠 a state in NFAM; we use 𝑞0 for the initial state of NFAM. Also

4.2 ARB I T RARY ACYCL I C I T Y CHECK S W I TH KATER 41

41 If NFAM cannot
take the same step,
such a pair is not
returned.

42 DPOR
incrementally
constructs execution
graphs by taking
consistent steps; see
§5 for more details.

observe that these variables are all declared as global in the consistent
procedure, so that they are not always passed around as arguments.

consistent visits every node of the intersection by iterating over each
graph event 𝑒, and callingHASACCEPTINGSCC on the pair ⟨𝑒, 𝑞0⟩ (line 8).
If any of the HASACCEPTINGSCC calls returns true (denoting that an
SCC containing an accepting state ofMhas been found), then consistent
returns false.

HASACCEPTINGSCC recursively visits a given node and its descen-
dants, and then checks whether the node is the root of an SCC that
representing an acyclicity violation. Its structure closely follows Tar-
jan’s algorithm, so we will not discuss it in detail here. Instead, let us
only focus on two key components: getting the descendants of a given
node, and finding accepting SCCs.

Descendants of a given node ⟨𝑒, 𝑠⟩ are obtained via GETSUCCESSORS.
Given a graph event 𝑒, GETSUCCESSORS will return all pairs ⟨𝑒′, 𝑠′⟩where
𝑒′ can be reached from 𝑒 in𝐺 using some primitive relation (i.e., po|imm,
co|imm, rf|imm and rb|imm), and 𝑠′ can be reached from 𝑠 in NFAM if the
respective transition is taken41. Notice that the implicit intersection
construction (courtesy of GETSUCCESSORS) is rendered possible because
both 𝐺 and NFAM are expressed using only primitive relations.

Finally, accepting SCCs are detected using the acceptingSCC, which
is set if the SCC being examined contains the single initial/final state
of NFAM line 29.

Since NFAM is typically small and (in contrast to NFA𝐺) does not de-
pend on the size of the input program, consistent is much more effi-
cient than the previous one: its time complexity is 𝒪(𝑛𝑚), and, since
the size NFAM does not change when verifying a given program P, de-
ciding consistency is effectively linear on the size of P.

4.2.2 Checking Consistency Incrementally

A possible use of algorithm 4.1 is to automate consistency checking in
the context of model checking and DPOR (see Chapter 5 and 9). How-
ever, when it comes to that specific setting, we can adjust the consis-
tency checking routine and obtain an even more optimized algorithm.

The key observation that allows us to do so is that that DPOR does
not check for consistency of an arbitrary graph. Rather, given an ex-
ecution graph 𝐺 and an event 𝑒 for which consistentM(𝐺 \ 𝑒) holds, it
incrementally checks whether consistentM(𝐺) holds42.

Exploiting this very fact, we can make our consistency checking al-
gorithm more efficient with a simple trick. The key insight here is that
instead having all of NFA𝐺’s states as initial, we now know which state
of NFA𝐺 we should use as the initial one: the state 𝑞𝑒, where 𝑒 is a newly
added event. Since 𝐺 is consistent, any cycle that exists in add(𝐺, 𝑒)
must involve 𝑒. Therefore, we do not have to iterate over events other
than 𝑒 in line 6 of algorithm 4.1 (as the cycles detected in these explo-

42 CHECK ING EXECUT ION GRAPH CONS I S T ENCY

init

W(𝑥, 2) W(𝑥, 1)

R(𝑥)rf

wb

wb wb
init

W(𝑥, 1) W(𝑥, 2) W(𝑥, 3)

wb
wb

wb

Figure 4.3: Writes-before relation: Two cases of induced edges

43 Recall that
po ⊆ hb. Intuitively,
if wb was the other

way, the read should
have read 1.

rations will not involve 𝑒), and only calling HASACCEPTINGSCC(⟨𝑒, 𝑞0⟩)
suffices: because NFAM has a single initial/final state, any accepting
SCCdetected is an actual violation, and some rotation of its constituent
primitive relations is accepted by NFAM.

4.3 APPROX IMAT ING COHERENCE W I TH WR I T E S - B E FORE

Suppose we are given a non-coherence-tracking execution graph 𝐺,
and we want to check whether 𝐺 is consistent under a model M that
involves co. How can we check consistency of 𝐺 besides naively enu-
merating all of its co possibilities?

The idea is to compute the writes-before (wb) relation, which records
the set of co-edges whose direction is forced by the memory model
irreflexivity axioms. Computing wb for an arbitrary model M can be
done with the fixpoint construction presented in algorithm 4.2. For
each axiom of M implying that co; r be irreflexive, we simply make wb
“agree” with r.

To see what this means, let us see an example. Consider a model M
that enforces coherence, i.e., that hb; eco be irreflexive, or, equivalently,
that hb; (rf ∪ (co ∪ rb) ; rf?) be irreflexive. As the definition implies
that co; rf?; hb; rf−1 should be irreflexive, algorithm 4.2 will consider
r = rf?; hb; rf−1.

Fig. 4.3 shows two example graphs where wb edges are induced un-
der such a model. In both execution graphs, init is wb-before the
writes of both threads, as po; co needs to be irreflexive. In the left ex-
ecution graph, W(𝑥, 1) is wb-before W(𝑥, 2), since po; rb = po; rf−1; co
should be irreflexive43. By contrast, in the right execution graph, the
writes of the three threads are not wb-ordered, as there is no kind of
ordering (e.g., po, rf) among them.

Calculating wb with the construction of algorithm 4.2 always yields
wb ⊆ co (i.e., it is sound, but incomplete). Specifically, bymonotonicity
of KAT, if there is a consistency violation that uses wb instead of co, then
the corresponding graph is indeed inconsistent. If, however, there is no
violation with wb, it is still possible that the graph is inconsistent for all
possible co ⊇ wb.

As such, when checking for consistency, in principle one has to con-
sider all co ⊇ wb. In practice, however, a given graph is almost al-
ways consistent for all co-extensions of wb, and there are many efficient

4.3 APPROX IMAT ING COHERENCE W I TH WR I T E S - B E FORE 43

44 “Optimal stateless
model checking for
reads-from
equivalence under
sequential
consistency”
[Abd+19]; “On the
Complexity of
Checking
Transactional
Consistency”
[BE19]; “The
Reads-from
Equivalence for the
TSO and PSO
Memory Models”
[Bui+21]
45 The same wb
definition carries
over to RC11.

(model-specific) ways for checking the consistency of a given (non-
coherence-tracking) graph44.

D E F IN ING WR I T E S - B E FORE FOR RA As a further example, let us
give a formal definition of wb for RA45. RA provides an hb definition
and requires that hb; eco be irreflexive (see §3.4.2). In turn, wb can be
defined as follows:

wb △=(rmw−1; rf−1)∗;
[𝐺.W]; rf?; hbloc; (rf−1)?; [𝐺.W]; (rf; rmw)∗ \ (rmw−1; rf−1)∗

where hbloc △= hb∩ sameloc

Let us now go over the above wb definition. First, ignoring all rmw
parts, wb orders a write 𝑤1 before a write 𝑤2 (a) if 𝑤1 (or some of
its readers) happens-before 𝑤2 (i.e., ⟨𝑤1, 𝑤2⟩ ∈ rf?; hbloc), or (b) if
𝑤1 (or some of its readers) happens-before some reader of 𝑤2 (i.e.,
⟨𝑤1, 𝑤2⟩ ∈ rf?; hbloc; rf−1).

Second, given two same-locationwrites𝑤1 and𝑤2 s.t. ⟨𝑤1, 𝑤2⟩ ∈ wb,
the rmw parts ensure that (a) if 𝑤1 is part of an RMW chain, then all
writes before it in the chain are wb-before𝑤2 ((rmw−1; rf−1)∗ part), and
(b) if 𝑤2 is part of an RMW chain, then 𝑤1 is wb-before all writes after
𝑤2 in the chain ((rf; rmw)∗ part). The definition also ensures that wb
will not relate writes in the same RMW chain in the opposite direction
of the chain (set difference part).

44 CHECK ING EXECUT ION GRAPH CONS I S T ENCY

Algorithm 4.1 KATER: Checking consistency in linear time
1: procedure consistentM(𝐺)
2: global nextIndex ← 0
3: globalWorklist ← ∅
4: global 𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝜆⟨𝑒, 𝑞⟩. unseen
5: global index ← sccIndex ← 𝜆⟨𝑒, 𝑞⟩. 0
6: for 𝑒 ∈ 𝐺.E do
7: if 𝑠𝑡𝑎𝑡𝑢𝑠[⟨𝑒, 𝑞0⟩] = unseen then
8: if HASACCEPTINGSCCM(𝐺, ⟨𝑒, 𝑞0⟩) then return false
9: return true

10: procedure HASACCEPTINGSCCM(𝐺, ⟨𝑒, 𝑞⟩)
11: index[⟨𝑒, 𝑞⟩] ← sccIndex[⟨𝑒, 𝑞⟩] ← nextIndex
12: nextIndex ← nextIndex+ 1
13: PUSH(Worklist, ⟨𝑒, 𝑞⟩)
14: 𝑠𝑡𝑎𝑡𝑢𝑠[⟨𝑒, 𝑞⟩] ← onstack
15: for ⟨𝑒′, 𝑞′⟩ ← GETSUCCESSORSM(𝐺, ⟨𝑒, 𝑞⟩) do
16: if status[⟨𝑒′, 𝑞′⟩] = unseen then
17: if HASACCEPTINGSCCM(𝐺, ⟨𝑒′, 𝑞′⟩) then
18: return false
19: sccIndex[⟨𝑒, 𝑞⟩] ← min(sccIndex[⟨𝑒, 𝑞⟩], sccIndex[⟨𝑒′, 𝑞′⟩])
20: else if status[⟨𝑒′, 𝑞′⟩] = onstack then
21: sccIndex[⟨𝑒, 𝑞⟩] ← min(sccIndex[⟨𝑒, 𝑞⟩], index[⟨𝑒′, 𝑞′⟩])
22: if index[⟨𝑒, 𝑞⟩] = sccIndex[⟨𝑒, 𝑞⟩] then
23: scc ← ∅
24: acceptingSCC ← false
25: do
26: ⟨𝑒′, 𝑞′⟩ ← POP(Worklist)
27: status[𝑒′, 𝑞′] ← left
28: scc ← scc∪ {⟨𝑒′, 𝑞′⟩}
29: if 𝑞′ = 𝑞0 then acceptingSCC ← true
30: while ⟨𝑒′, 𝑞′⟩ ≠ ⟨𝑒, 𝑞⟩
31: if acceptingSCC∧ |scc| > 1 then
32: print “Cycle detected: ” scc
33: return false
34: return true

4.3 APPROX IMAT ING COHERENCE W I TH WR I T E S - B E FORE 45

Algorithm 4.2 Fixpoint for approximating co in a model M
1: procedure CALCULATEWB(M)
2: wb ← ∅
3: do
4: new ← ∅
5: for each r such that irreflexive(co ; r) ∈ M do
6: new ← new ∪ [W]; (r ∩ sameloc); [W]
7: new ← new \ wb
8: wb ← wb∪ new ∪ (new; wb) ∪ (wb; new)
9: while new ≠ ∅

Part II

V ER I F I CAT ION

5

46 “Software Model
Checking: The
VeriSoft Approach”
[God05]

47 “Dynamic
partial-order
reduction for model
checking software”
[FG05]

GENMC : MODEL CHECK ING UNDER WEAK
MEMORY CONS I ST ENCY

In this chapter, we describe GENMC, a model-checking algorithm that
is parametric in the choice of the (weak) memory model and has lin-
ear memory requirements. Before diving into the details of GENMC,
however, let us briefly dive into the challenges that concurrency poses
for verification.

Traditionally,model checkers explore all program states that are reach-
able from an initial configuration, and ensure that none of them vio-
lates a given specification. To avoid exploring the same state over and
over, model checkerswould simply record the set of visited states, lead-
ing to exponential memory consumption.

This led to statelessmodel checking (SMC)46, that aims to visit all reach-
able program stateswithout actually recording them. Specifically, SMC
verifies a concurrent program merely by enumerating all of its thread
interleavings. In turn, because the number of thread interleavings grows
exponentially with the program size, other techniques were developed
to tackle this problem.

Arguably, the most prominent among these techniques is dynamic
partial order reduction (DPOR)47. Instead of exploring all program in-
terleavings, DPORpartitions the interleavings into equivalence classes,
and then strives to explore one interleaving per equivalence class.

To make this idea concrete, let us consider the following example.

𝑦 ∶= 1 𝑥 ∶= 1 𝑎 ∶= 𝑥 (W+W+R)

The W+W+R program has 3! interleavings. As can be seen in Fig. 5.1,
however, these interleavings can be partitioned into 2 equivalence classes,
as the only thing that matters in this program is whether 𝑎 ∶= 𝑥 is exe-
cuted before 𝑥 ∶= 1 (or vice versa).

As such, a DPOR algorithm verifies the program by exploring one
interleaving from each equivalence class, effectively observing that the
order in which 𝑦 ∶= 1 is executed w.r.t. to the other instructions is
irrelevant.

Unfortunately, previous DPOR approaches have two major limita-
tions: (1) they typically assume SC, and (2) they suffer from a memo-
ry/optimality trade-off — they either require memory exponential in
the size of the program under verification, or can explore many unnec-
essary program executions.

GENMC solves both these two challenges in a unified framework,
and the key idea that allows it to do so is the usage of declarative seman-
tics. Rather than following existing work and representing program

49

50 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

a = 1

𝑥 ∶= 1

𝑎 ∶= 𝑥

𝑦 ∶= 1

𝑥 ∶= 1

𝑦 ∶= 1

𝑎 ∶= 𝑥

𝑦 ∶= 1

𝑥 ∶= 1

𝑎 ∶= 𝑥

a = 0
𝑦 ∶= 1

𝑎 ∶= 𝑥

𝑥 ∶= 1

𝑎 ∶= 𝑥

𝑦 ∶= 1

𝑥 ∶= 1

𝑎 ∶= 𝑥

𝑥 ∶= 1

𝑦 ∶= 1

Figure 5.1: W+W+R: interleavings and equivalences classes

1 init

W(𝑦, 1) W(𝑥, 1) R(𝑥)
rf

2 init

W(𝑦, 1) W(𝑥, 1) R(𝑥)rf

Figure 5.2: The graphs of W+W+R subsume its equivalence classes

48 “Herding cats:
Modelling,

simulation, testing,
and data mining for

weak memory”
[AMT14]

49 “Mathematizing
C++ concurrency”

[Bat+11]

init

R(𝑦)

W(𝑥, 𝑣)

R(𝑥)

W(𝑦, 𝑣)
rf

Figure 5.3: LB+DEP:
𝑥 = 𝑦 = 𝑣
50 “The Java memory

model” [MPA05];
“Outlawing ghosts:

Avoiding
out-of-thin-air

results” [BD14]

executions as traces, GENMC represents them as execution graphs (cf.
Fig. 5.2). In turn, instead of verifying programs by enumerating inter-
leavings from equivalence classes, GENMC simply verifies a program
by enumerating its execution graphs. As we are going to shortly see,
it is this change of representation that enables exploration algorithms
that are parametric in the choice of the memory model.

In the rest of this chapter, we present an intuitive account of GENMC
and the requirements it sets the underlying memory model. In subse-
quent chapters we show how it obtains linear memory consumption
(§6), how it can be extended for persistency models (§8), and how it
can be improved for various programming patterns (§7).

5.1 R EQU I R EMENT #1 : NO “OUT OF TH IN A I R”

Given a program like W+W+R and its execution graphs under a model
M, our goal is to enumerate such executions systematically. A simple
approach taken, e.g., by HERD48 and CPPMEM49, is to enumerate all pos-
sible executions and filter them according to the consistency predicate
of the memory model.

Unfortunately, however, even such a simple approach is not possible
for an arbitrary model M. To see why, consider the following example
under the (arguably useless) memory model that deems every execu-
tion graph consistent:

𝑎 ∶= 𝑦
𝑥 ∶= 𝑎

𝑏 ∶= 𝑥
𝑦 ∶= 𝑏

(LB+DEP)

Under such a model, the program can return 𝑥 = 𝑦 = 𝑣, for any
value 𝑣, by having both threads read 𝑣 and write 𝑣 in a circular fashion
as shown in Fig. 5.3.

In theweakmemory literature, such executions are considered prob-
lematic because they generate values “out of thin air” (OOTA)50 and
inhibit compositional reasoning.

5.2 R EQU I R EMENT #2 : P R E F I X- C LO S EDNE S S 51

51 “A promising
semantics for
relaxed-memory
concurrency”
[Kan+17]
52 “Grounding
thin-air reads with
event structures”
[CV19]
53 Moiseenko,
Kokologiannakis,
and Vafeiadis
[MKV22] have
devised a DPOR
algorithm that can
operate under certain
models similar to
Promis-
ing/WeakestMO.
54 Examples include
CDSCHECKER
[ND13], NIDHUGG
[Abd+15; Abd+14],
TRACER [Abd+18],
and RCMC
[Kok+17].

To preclude OOTA values and thereby enable the enumeration of
the program execution graphs, we require that the underlyingmemory
model be well-formed.

Definition 5.1.1 (Well-formedness). AmemorymodelM iswell-formed
iff for all 𝐺, if consistentM(𝐺), then consistentM(𝐺′) for all 𝐺′ ≈ 𝐺, and
𝐺.corder is irreflexive.

This requirement is satisfied by several models (e.g., SC, TSO, PSO,
and RC11, among others), and ensures that loop-free programs have
finitely many executions. In what follows, we mostly use examples
from non-dependency-tracking models to simplify the presentation.
We provide run of GENMC under a dependency-tracking model in
§5.7.

Remark 3. While restricting OOTA behaviors, well-formedness also
forbids the outcome 𝑎 = 𝑏 = 1 for the following litmus test:

𝑎 ∶= 𝑦;
𝑥 ∶= 1 + 𝑎 − 𝑎

𝑏 ∶= 𝑥;
𝑦 ∶= 1 + 𝑏 − 𝑏

(LB+FAKEDEP)

This outcome is not an OOTA one since, even though there are syntac-
tic dependencies in both threads, a compiler is within its right to trans-
form this program to one where both threads simply write the value 1
(in which case a syntactic dependency does not exist anymore).

As such, certain models like Promising51 and WeakestMO52 try to
distinguish between LB+DEP and LB+FAKEDEP. However, these models
are not even defined in terms of execution graphs, and are thus beyond
the scope of this thesis53.

5.2 R EQU I R EMENT #2 : P R E F I X- C LO S EDNE S S

Even without OOTA executions, generating all executions and then
checking consistency does not scale (see §10.2.1), as there is an expo-
nential number of rf/co options that have to be examined to check
whether a given execution is consistent.

A much better approach, followed by most tools54, is to construct
executions incrementally by adding events one at a time and checking
for consistency at each step, thereby avoiding the exploration of incon-
sistent graphs.

For this approach to work, the underlying memory model must sat-
isfy the following condition:

Every non-empty consistent graph has a causally maximal event
that, if removed, yields a consistent graph.

This condition ensures that each execution can be generated by adding
its events in some total extension of the corder order, and checking for

52 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

1 init

W(𝑥, 1) R(𝑥) W(𝑥, 2)

W(𝑦, 1)

rf 2 init

W(𝑥, 1) R(𝑥) W(𝑥, 2)rf

3 init

W(𝑥, 1) R(𝑥) W(𝑥, 2)rf

Figure 5.4: Execution graphs of W+RW+W under SC

55 Observe that these
graphs are not

coherence-
tracking.We come
back to this in §5.6.

consistency after each step. For instance, execution 2 in Fig. 5.2 can
be generated by adding its events in the following order: init, W(𝑥, 1),
W(𝑦, 1), and R(𝑥).

The problem with such a condition is that, in order to generate all
executions of a program, one must in principle consider all possible
extensions of corder. This, however, very often leads to duplicate ex-
plorations.

Therefore, we would like to generate all executions without consid-
ering all possible extensions of corder, regardless of thememorymodel.
In fact, we can do this for all well-known memory models. In particu-
lar, models such as SC, TSO, PSO, and RC11 all satisfy an even stronger
guarantee, namely prefix-closedness:

Definition 5.2.1 (Prefix-closedness). AmemorymodelM is prefix-closed
iff for all 𝐺 and 𝐸 ⊆ 𝐺.E, if dom(𝐺.corder; [𝐸]) ⊆ 𝐸 and consistentM(𝐺),
then consistentM(𝐺|𝐸).

Prefix-closedness ensures that to generate a particular execution, it
is sufficient to consider any total extension of corder, and construct the
execution by adding its events following that total order.

As we demonstrate in the next section, we can leverage this fact and
fix an order in which we add execution events one at a time, thus gen-
erating all executions of a program systematically.

5.3 A F I R ST EXAMPLE

Let us now explain how GENMC can generate the execution graphs of
the W+RW+Wprogram (shown below) by adding its events in a fixed or-
der given by thread identifiers: first the events of (the leftmost) thread
I, then the events of thread II, and so forth. The execution graphs of
W+RW+W under SC are depicted in Fig. 5.455.

𝑥 ∶= 1
𝑎 ∶= 𝑥;
if 𝑎 = 0 then 𝑦 ∶= 1

𝑥 ∶= 2 (W+RW+W)

As depicted in Fig. 5.4, the read in thread IImay read either 0 (from the
initialization write), 1 (from the write in thread I), or 2 (from thread
III).

5.3 A F I R ST EXAMPLE 53

1 init

W(𝑥, 1)

3 init

W(𝑥, 1) R(𝑥)

2 init

W(𝑥, 1) R(𝑥) W(𝑥, 2)

2 init

W(𝑥, 1) R(𝑥)

W(𝑦, 1) 3 init

W(𝑥, 1) R(𝑥) W(𝑥, 2)

1 init

W(𝑥, 1) R(𝑥)

W(𝑦, 1)

W(𝑥, 2)

Figure 5.5: GENMC: Enumerating the execution graphs of W+RW+W

56 Recall from §2,
that we use
green-circled
numbers to denote
complete, consistent
executions and
red-circled numbers
to denote
inconsistent
executions. We also
use blue-circled
numbers to denote
incomplete
(consistent) graphs
during some
exploration.
57 Note that
recording both
graphs is
unnecessary: in the
general case, we need
to record one graph
for each of the
reads-from options of
each read. The two
graphs are identical
up to the read, which
is the point of
divergence.

GENMCenumerates these graphs in a depth-firstmanner (cf. Fig. 5.5).
We startwith an initial graph𝐺∅ containing only the initializationwrite.First,
we add the W(𝑥, 1) write of thread I to 𝐺∅, simultaneously adding the
appropriate po edge between the events, leading to graph 1 56.

Continuing in thread order, we next add the R(𝑥) read of thread II,
which may read from either of the writes in the graph, yielding the
distinct graphs 2 and 3 (one for each case)57. As such, each time we
add a read that can read from more than one place, we examine all
options recursively (denoted by).

We refer to such alternative exploration options such as W(𝑥, 1) as
forward revisits since they are already in the graphwhen the read (R(𝑥))
is added to the graph.

Let us suppose that GENMC continues with the subexploration of
graph 2 . Since the value read is 0, we next add the W(𝑦, 1) write of
thread II, and finally the W(𝑥, 2) of thread III, which yields graph 1 .
This first subexploration is now completed.

Notice, however, that if GENMC takes no actionwhen W(𝑥, 2) is added,
then graph 3 where R(𝑥) reads 2 will not be explored. Indeed, as
W(𝑥, 2) was not present when R(𝑥) was added, it was not considered as
a possible rf-option at that point.

Thus, to guarantee completeness (i.e., that all execution graphs of
a given program are explored), whenever a write 𝑤 is added to the
graph, GENMC checks whether it is consistent for any existing read 𝑟
to add from the newly-added write. If so, it initiates another subex-
ploration where 𝑟 reads from 𝑤. In our example, it is consistent for
R(𝑥) to read 2 from the newly-added W(𝑥, 2), and we therefore initiate
a recursive subexploration where R(𝑥) reads 2 (graph 2).

We refer to such alternative exploration options such as W(𝑥, 2) as
backward revisits since they are added to the graph after the correspond-
ing read (R(𝑥)).

54 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

58 Another way to
think of the restricted
graph 𝐺 obtained by
the backward revisit
of 𝑟 from 𝑤 is that 𝐺
emulates the scenario

where 𝑤 (and the
events it depends on)
were present when 𝑟

was added.

59 One does not
actually have to store
the entirety of these

graphs. Given a read
𝑟 it suffices to store
all prefixes of the
writes that have

backward-revisited it,
for as long as 𝑟
remains in the

exploration. See
[KRV19] for a full

treatment.

Let us now continue with the backward revisit of R(𝑥). Observe that
graph 3 (where R(𝑥) is backward-revisited by W(𝑥, 2)), is restricted
so that it contains the events added prior to the read. Restricting the
graph is important because events added after the read may depend
on its value. For instance, it is crucial to remove W(𝑦, 1) as it is only
present when 0 is read from 𝑥.

In a similar manner, graph 3 also contains the events that W(𝑥, 2) de-
pends on (its causal prefix). Keeping these events is important as they
are necessary to “trigger” W(𝑥, 2). For instance, if 𝑥 ∶= 2 in W+RW+W
is wrapped in the conditional if 𝑦 = 1 then, the presence of the W(𝑥, 2)
event in the graph depends on the value read for 𝑦, i.e., the events be-
fore W(𝑥, 2) in causal order58.

Since graph 3 is complete (there are no more events to add), let
us now proceed with the last remaining subexploration, namely the
forward-revisit of R(𝑥) (graph 3). Continuing from graph 3 , we add
the W(𝑥, 2) and obtain the last (complete) execution graph of W+RW+W
(graph 2).

At this point, however, we have to be careful and not revisit R(𝑥)
again. Indeed, if we do this, we will end up initiating the same subex-
ploration twice (denoted by). A simple way to avoid exploring du-
plicate executions is to store the graphs that have occurred as a result of
a backward revisit59. Finally, as all the execution graphs of W+RW+W
have been explored, the algorithm terminates.

In §6, we show that storing the graphs that have occurred as a result
of a backward revisit is unnecessary, and present a new core algorithm
for GENMC that has linear memory consumption.

5.4 R EQU I R EMENT #3 : E X T ENS I B I L I T Y

Asdescribed in §5.3, GENMCgenerated all execution graphs ofW+RW+W,
even though it did not add events according to corder. The reason it
managed to do this is because of backward revisiting: in cases where
a read is added before the write it should read from (e.g., reading
from W(𝑥, 2) in 3), it is then later backward-revisited when the write
is added.

This then leads to the question: could events added after a read 𝑟
affect the consistency of the execution in a way that the write from
which 𝑟 should read from is never added?

Perhaps surprisingly, the answer is yes. For example, consider the
following program under a (contrived) memory model that dictates
“if a read of 𝑦 reads 0, then there cannot be a read of 𝑥 that also reads
0”:

𝑎 ∶= 𝑥 𝑏 ∶= 𝑦 𝑥 ∶= 42 (R+R+W)

In this case, adding the events in thread order results in a graph
where both 𝑥 and 𝑦 read 0, which is then dropped as inconsistent, and

5.4 R EQU I R EMENT #3 : E X T ENS I B I L I T Y 55

thus we cannot generate the execution where thread I reads 42. This
brings us to our third requirement on memory models, extensibility.

Intuitively, a memory model M is extensible if, given a consistent
execution graph 𝐺 and a new event to be added to 𝐺, there is some
way to add 𝑒 to 𝐺 such that the resulting graph is also consistent.

Before formally defining extensibility, let us present a couple of use-
ful helper definition. First, given a graph 𝐺, we define SetRF(𝐺, 𝑟, 𝑤),
which returns a graph 𝐺′ that is identical to 𝐺 except for its rf compo-
nent, which has 𝑟 reading from 𝑤:

𝐺′.rf = 𝐺.rf \ (𝐺.E × {𝑟}) ∪ {⟨𝑤, 𝑟⟩}

We also define SetCO(𝐺,𝑤,𝑤𝑝) that returns a graph𝐺′ that is identical
to 𝐺 except for its co component, which has 𝑤 after 𝑤𝑝 in co:

𝐺′.co =𝐺.co \ (𝐺.E × {𝑤}) ∪ {⟨𝑤𝑝, 𝑤⟩}∪

{⟨𝑤′, 𝑤⟩ ⟨𝑤′, 𝑤𝑝⟩ ∈ 𝐺.co} ∪ {⟨𝑤,𝑤′⟩ ⟨𝑤𝑝, 𝑤′⟩ ∈ 𝐺.co}

(For non-coherence-tracking graphs, SetCO(𝐺, _, _) = 𝐺.)
Now, we can define extensibility as follows:

Definition 5.4.1 (Extensibility). A memory model M is extensible if
there is a function fext ∶ Exec×(R∪W\Wexcl) → Event such that, for all𝐺 ∈
Exec and 𝑒 ∈ 𝐺.E such that 𝑒 is causallymaximal and consistentM(𝐺 \ {𝑒}),
exactly one of the following holds:

• if 𝑒 ∈ 𝐺.R, then consistentM(SetRF(𝐺, 𝑒, fext(𝐺, 𝑒)))

• if 𝑒 ∈ 𝐺.W \ Wexcl, then consistentM(SetCO(𝐺, fext(𝐺, 𝑒), 𝑒))

• if 𝑒 ∈ 𝐺.Wexcl and ⟨fext(𝐺 \ 𝑒, 𝑒𝑝), 𝑒𝑝⟩ ∈ 𝐺.rf, then consistentM(SetCO(𝐺, fext(𝐺 \ 𝑒, 𝑒𝑝), 𝑒)),
where 𝑒𝑝 = pred𝐺.po(𝑒)

• if 𝑒 ∉ 𝐺.R∪ 𝐺.W, then consistentM(𝐺)

In essence, fext is an oracle prescribing how a particular event 𝑒 can
be added to rf or co to preserve consistency. In case 𝑒 is a read, fext
returns an rf-option for it that preserves consistency, while if 𝑒 is a
write, it returns its (immediate) co-predecessor. Observe that fext only
provides a co-predecessor for an exclusive write, if its corresponding
exclusive read is reading from the place fext is prescribing. We get back
to the extensibility of exclusive writes in §5.5.

Extensibility holds for allwell-knownmemorymodels, and excludes
“nonsensical” memory models such as that above. In particular, the
model above is not extensible, as the consistent execution of R+R+W
comprising the initialization events and R(𝑥) of thread I reading 0 can-
not be extended by adding R(𝑦) for any choice of rf.

56 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

60 POWER dictates
that if a read in a
given thread reads

from a certain write,
po-earlier reads

cannot read from
more recent writes.

init

R(𝑦)

W(𝑥, 1) R(𝑥)

W(𝑦, 1)

Figure 5.6: A
prefix-closed ex-
ecution of LB-EXT
under POWER

init

R(𝑥)

F

W(𝑥, 1)

Figure 5.7: A
prefix-closed ex-
ecution of MP-EXT
under POWER

61 Even though the
precise definition of
wb is not important
for this discussion,

interested readers are
encouraged to read

§4.3.

5.4.1 Defining the Extensibility Oracle fext

Given that extensibility holds for all well-known models, it is natural
to wonder how fextcan be defined.

Fortunately, doing so for all well-known non-dependency tracking
models is trivial: fext can simply bedefined as fext(𝐺, 𝑒) △= max𝐺.co𝐺.Wloc(𝑒),
i.e., to always return the co-latest write.

For dependency-tracking models, on the other hand, defining fext is
not so straightforward, as demonstrated by the LB-EXT program below.

𝑎 ∶= 𝑥
𝑦 ∶= 1

𝑏 ∶= 𝑦
𝑐 ∶= 𝑦
𝑥 ∶= 𝑐

(LB-EXT)

Assuming POWER, one possible partial (consistent) graph of LB-EXT
can be seen in Fig. 5.6. Observe that the causal prefixes of all events
are present in the graph, even though the first read of thread II is miss-
ing. In this case, if we define fext as above then we cannot add the
missing read reading 1 (the co-maximal write), as that would violate
consistency60.

One way of defining fext(𝐺, 𝑒) that would avoid the above issue in
cases where 𝑒 is a non-po-maximal read, is as follows:

fext(𝐺, 𝑒) △=
⎧{
⎨{⎩

max𝐺.co𝐺.Wloc(𝑒) 𝑒 = maxpoloctid(𝑒)(𝐺.E)

𝐺.rf(succpoloctid(𝑒)(𝑒)) otherwise

Note that while such a definition might guarantee extensibility for a
given formulation of e.g., the POWER model, it might not work for a
different formulation, or a different model. For instance, consider the
MP-EXT programbelow, assuming a formulation of POWER that defines
ppo △= (𝐺.rf∪𝐺.deps)+, but also requires that ppo∪po; [F]∪[F]; po∪rb
be acyclic (in a separate axiom).

𝑎 ∶= 𝑥
fence

𝑏 ∶= 𝑦

𝑦 ∶= 1
fence

𝑥 ∶= 1
(MP-EXT)

For such a formulation, given the partial graph of Fig. 5.7, even though
the read of 𝑦 in thread I can be added reading 0, after doing so, there is
no way to add the events of thread II so that consistency is maintained:
there will be a cycle caused by rb edge of the read of 𝑦 in thread I.

All in all, for dependency-tracking models, fextneeds to be defined
on a per-case basis, and with (𝐺.rf∪𝐺.deps)+ ⊂ ppo.

Now what about non-coherence-tracking graphs, where co is not
explicitly tracked? In such cases, one typically approximates co with
some other relation. Indeed, in §4.3, we define wb, an approximation

5.5 R EAD -MOD I F Y-WR I T E OP ERAT IONS 57

1 init

Rexcl(𝑥)

Wexcl(𝑥, 1)

Rexcl(𝑥)

Wexcl(𝑥, 2)

rf

rf

2 init

Rexcl(𝑥)

Wexcl(𝑥, 2)

Rexcl(𝑥)

Wexcl(𝑥, 1)

rf

rf

Figure 5.8: The executions of the FAI/2 program.

of co that partially orders writes in each memory location, instead of
totally ordering them61.

That said, we cannot define fext simply by replacing cowith wb in the
definition of maximally added events, because there may be multiple
wb-maximal writes in a consistent execution graph.

Tomaintain optimality, weneed a tiebraker between these wb-maximal
events. A simple solution is to pick an arbitrary tiebraker (e.g., the
write that was inserted last to the graph, i.e., the <𝐺-maximal event
among the wb-maximal ones). This solution works but it requires a
stronger extensibility property of the underlying memory model: ex-
tending a consistent execution graphwith a read event that reads from
any wb-maximal event should result in a consistent graph. While this
property holds of certain simple models, such as release-acquire con-
sistency, it does not hold of other models, including SC. The problem
is that while a consistent graph must have its co be some location-total
order extending wb, it is not the case that all location-total orders ex-
tending wb satisfy the consistency predicate of the model.

A better solution is to only assume that there is away (given by an or-
acle function GetConsCO), to calculate a co relation according to which
a graph is consistent. A naive implementation of this function is to
enumerate all location-total orders extending wb in a systematic fash-
ion, and return the first one that satisfies the consistency predicate of
the model. Better implementations can be derived from the more effi-
cient ways of checking consistency of an execution graph that does not
contain a co component62

62 “Optimal state-
less model check-
ing for reads-from
equivalence under
sequential consis-
tency” [Abd+19];
“On the Complexity
of Checking Transac-
tional Consistency”
[BE19]; “The Reads-
from Equivalence for
the TSO and PSO
Memory Models”
[Bui+21]

.
In any case, however, given such an oracle, the definition of fext can

remain the same as in the coherence-tracking case.

5.5 R EAD -MOD I F Y-WR I T E OP ERAT IONS

Let us now get back to the extensibility of exclusive writes. Indeed,
manymemorymodels prescribe rf-functionality constraints requiring
that certain writes be read by at most one read. For instance, in case of
the RMW (read-modify-write) instructions, e.g., CAS (compare-and-
swap) or FAI (fetch-and-increment), to ensure their atomicity, two
RMW events may not read from the same write63

63 These constraints
are not exclusive
to RMWs. For in-
stance, as discussed
in [KRV19], a lock
library may require
rf-functionality
to ensure mutual
exclusion.

.

58 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

1 init

Rexcl(𝑥)

Wexcl(𝑥, 1)
2 init

Rexcl(𝑥)

Wexcl(𝑥, 1)

Rexcl(𝑥)

1 init

Rexcl(𝑥)

Wexcl(𝑥, 1)

Rexcl(𝑥)

Wexcl(𝑥, 2)

3 init

Rexcl(𝑥)

Wexcl(𝑥, 1)

Rexcl(𝑥)

4 init

Rexcl(𝑥) Rexcl(𝑥)

Wexcl(𝑥, 1)

2 init

Rexcl(𝑥)

Wexcl(𝑥, 2)

Rexcl(𝑥)

Wexcl(𝑥, 1)

0 init

Rexcl(𝑥)

Wexcl(𝑥, 1)

Rexcl(𝑥)

Wexcl(𝑥, 1)

Figure 5.9: GENMC: Enumerating the execution graphs of FAI/2

64 RMW-atomicity
does not rule out the

execution graph
until the write of 𝑏 is

added as well.

Handling such constraints requires additional care. Consider the
program below and its SC-executions depicted in Fig. 5.8.

𝑎 ∶ fetch_add(𝑥) 𝑏 ∶ fetch_add(𝑥) (FAI/2)

Execution 1 captures the case where thread I increments 𝑥 first, while
2 captures the case where thread II increments 𝑥 first.
Let us run GENMC on this example (cf. Fig. 5.9). We proceed by

adding the RMW instruction of thread I (𝑎) which reads from the ini-
tialization write (graph 1). We then add the read of the RMW instruc-
tion of thread II (𝑏), for which it is consistent64 to read both 0 and 1.

The exploration where 𝑏 reads 1 (graph 2) is straightforward, and
leads to the full execution graph 1 . Observe, however, that when
the write of 𝑏 is added, it cannot backward-revisit the read of 𝑎, as
that would lead to a causal cycle, thereby violating well-formedness
(Def. 5.1.1).

In the explorationwhere both 𝑎 and 𝑏 read 0 (graph 3), if we simply
try to add the write of 𝑏, then the graph becomes inconsistent (graph
0). On the other hand, if we immediately discard the graph, we will
fail to generate execution graph 2 .

To remedy this, we allow for single-step, temporary inconsistency
in the graph for RMW writes. More specifically, when the write of 𝑏 is
added, we do not immediately discard the execution graph, but rather
we first backward-revisit existing reads, and then discard the execution
graph.

Using the above procedure, not only do we manage to reverse the
order between conflicting RMWs, but we also do not embark into fruit-

5.6 SHASHA- SN I R AND READS - F ROM EQU IVALENCE 59

1a init

W(𝑥, 1) R(𝑥) W(𝑥, 2)

W(𝑦, 1)

rf 2a init

W(𝑥, 1) R(𝑥) W(𝑥, 2)rf

3a init

W(𝑥, 1) R(𝑥) W(𝑥, 2)rf

1b init

W(𝑥, 1) R(𝑥) W(𝑥, 2)

W(𝑦, 1)

rf 2b init

W(𝑥, 1) R(𝑥) W(𝑥, 2)rf

3b init

W(𝑥, 1) R(𝑥) W(𝑥, 2)rf

Figure 5.10: Execution graphs of W+RW+W under SC (with co)

less explorations (whichwould be the case ifwewere to keep exploring
inconsistent executions).

Observe, however, that extensibility could not guarantee that the
write of the RMW of thread II could be added in 3 , as the read of
thread II was not reading from the write prescribed by fext.

As such, one may wonder: “For an arbitrary program with events
in-between the RMWs, what if it were inconsistent for the exclusive
read of the second RMW to read from the same place as the first?” At
a first glance, in such cases the algorithm seems unable to produce the
execution where the second RMW is executed before the first.

Fortunately, however, GENMC will always explore some execution
where it is indeed consistent for the read of the second RMW to have
the same rf as the read of the first: the execution where all the events
added between the RMWs were added in the way prescribed by fext.

To see why such an execution is consistent, let us assume that fext
△=

max𝐺.co𝐺.Wloc(𝑒). Further, let us consider a run of the algorithm where
the read of the first RMW is added first, then the read of the second
RMW, and then the write of the first (and possibly all other events
between the RMWs). If all the events are added in the prescribed by
fext, then the resulting graph is consistent.

Formally, we straightforwardly get the following corollary from the
extensibility definition:

Corollary 1. Given an extensible model M, for all 𝐺, 𝑟1, 𝑟2, if 𝑟1, 𝑟2 ∈
𝐺.Rexcl, 𝑟1 ∈ dom(𝐺.rmw), 𝑟2 is causally maximal, consistentM(𝐺 \ {𝑟2}),
and all 𝑟1 <𝐺 𝑒 <𝐺 𝑟2 were added in the way prescribed by fext, then
consistentM(SetRF(𝐺, 𝑟2, 𝐺.rf(𝑟1))).

From this corollary, it is also easy to see that such single-step incon-
sistencies always lead to a consistent execution (where the order be-
tween two RMWs is reversed).

60 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

1 init

W(𝑥, 1) 2 init

W(𝑥, 1) W(𝑥, 2)

1 init

W(𝑥, 1) W(𝑥, 2)

Figure 5.11: GENMC: Enumerating co-tracking graphs of W+W

65 “Efficient and
correct execution of
parallel programs

that share memory”
[SS88]

66 “Trace Theory”
[Maz87]

67 “Data-centric
dynamic partial
order reduction”

[Cha+17]
68 Always verifying
under reads-from

might seem tempting.
However, apart from
the potentially more

expensive
consistency checks,

real-world
benchmarks typically

have the same
number of

executions under
both partitionings.

5.6 SHASHA- SN I R AND READS - F ROM EQU IVALENCE

So far we have used GENMC to generate all three SC-consistent ex-
ecution graphs of W+RW+W (shown in Fig. 5.4). These executions,
however, do not exactly correspond to the actual execution graphs of
W+RW+W under SC. As discussed in §2.3, SC also requires us to record
the coherence order co, which totally orders all writes to a given mem-
ory location.

As such, the three (non-coherence-tracking) execution graphs in Fig. 5.4
correspond to the six (coherence-tracking) execution graphs depicted
in Fig. 5.10. In this program, each behavior corresponds to two exe-
cution graphs representing the two ways W(𝑥, 1) and W(𝑥, 2) could be
ordered by co.

In fact, the graphs in Fig. 5.4 and Fig. 5.10 represent the executions
of W+RW+W under different equivalence partitionings. The graphs of
Fig. 5.10 represent the executions of the program under the standard
Shasha-Snir equivalence65 (orMazurkiewicz equivalence66, in the con-
text of SC), while the graphs of Fig. 5.4 represent the executions of
W+RW+W under the coarser reads-from equivalence67.

In terms of verification, it would be certainly desirable to be able
to verify a program under either partitioning68. In what follows, we
show how GENMC can be adapted to operate under the Shasha-Snir
partitioning.

The key idea is to treat alternative co-placings similar to forward
revisits. As an example, consider the W+W program below and the
exploration shown in Fig. 5.11.

𝑥 ∶= 1 𝑥 ∶= 2 (W+W)

GENMC first adds W(𝑥, 1) (graph 1), and then recursively explores
both co-placings for W(𝑥, 2) (graphs 1 and 2).

As far as backward revisiting and co-placings are concerned, GENMC
first backward-revisits a given read, and then tries all possible co-placings
of the revisiting write in the resulting graph. A full description is pro-
vided in §5.8.

5.7 DEP ENDENCY-T RACK ING MODEL S 61

1 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

W(𝑥, 1)

2 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

W(𝑥, 1)

3 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

W(𝑥, 1)

4 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

W(𝑥, 1)

Figure 5.12: Execution graphs of LB

5.7 DEP ENDENCY-T RACK ING MODEL S

Finally, let us now examine how GENMC can be extended to handle
dependency-tracking models like POWER and ARM, using the LB pro-
gram below as an example.

𝑎 ∶= 𝑦;
𝑥 ∶= 1

𝑏 ∶= 𝑥;
𝑦 ∶= 1

(LB)

The execution graphs of LB under POWER/ARMcanbe seen in Fig. 5.12.
As it can be seen, even though𝐺.porfmight contain cycles in suchmod-
els (e.g., graph 3), the models still satisfy well-formedness: no event
is included in its causal prefix (using the definition of §2.4.1).

As such, the algorithm presented so far works out-of-the-box for LB,
with the only exception being the definition of the causal prefix used
when cutting the graph as a result of a backward revisit.

1 init

R(𝑥)

W(𝑦, 1)
3 init

R(𝑥)

W(𝑦, 1)

R(𝑥)

1 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

W(𝑥, 1)

2 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

4 init

R(𝑥)

W(𝑥, 1)

5 init

R(𝑥)

W(𝑦, 1) W(𝑥, 1)
4 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

W(𝑥, 1)

3 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

W(𝑥, 1)

2 init

R(𝑥)

W(𝑦, 1)

R(𝑦)

W(𝑥, 1)

Figure 5.13: GENMC: Enumerating the execution graphs of LB

The exploration procedure for LB can be seen in Fig. 5.13. GENMC
starts from the empty graph and adds the events of thread I (graph
1). These can only be added in a single way, as only the initializer
event is present when R(𝑥) is added, and no read of 𝑦 is present when
W(𝑦, 1) is added.

62 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

69 In the
non-dependency

tracking case, writes
do not revisit reads
in their porf-prefix,
since corder △= porf.

In the
dependency-tracking
case, revisiting such

reads is possible.

Next, GENMCwill add the R(𝑦) event corresponding to 𝑏 ∶= 𝑦. Since
this read can read both from the initializer and from W(𝑦, 1), GENMC
will initiate two subexplorations (graphs 2 and 3).

Let us assume that GENMC first explores graph 2 . In the next step,
it adds the W(𝑥, 1) of thread II, which can potentially backward-revisit
R(𝑥)69. (If it does not, we obtain execution 2 .)

In the casewhere W(𝑥, 1)does backward-revisit R(𝑥)weobtain graph
4 , which contains a “hole” in the place of R(𝑦). Indeed, as the causal
prefix of W(𝑥, 1) is empty, the cut graph only contains W(𝑥, 1) itself, as
well as R(𝑥) (and the event added before it).

Removing R(𝑦) in the cut graph is crucial. When it is re-added in
graph 5 , it will be able to read both 0 and 1, and both of these options
will be explored by GENMC (leading to graphs 3 and 4). If it were
not removed, however, the obtained graph would be inconsistent, as
R(𝑦) would be reading from (the non-existent) W(𝑦, 1), thereby violat-
ing graph well-formedness.

Finally, when GENMC explores the forward revisit for R(𝑥) (graph
3), itwill add W(𝑥, 1) again. This time, however, W(𝑥, 1)will not backward-
revisit R(𝑥) (even though it is not in its causal prefix), as graph 4
(where the backward revisit occurs) has been explored before.

5.8 ALGOR I THM

In this section, we present GENMC in its entirety. We start with a vari-
ant of GENMC for the Mazurkiewicz/Shasha-Snir equivalence (which
fully tracks co), and then, in §5.8.2, we adapt GENMC to work for the
coarser reads-from equivalence.

5.8.1 Overview

GENMCuses a consistent execution graph to drive the exploration. Start-
ing froman empty graph, GENMC repeatedly interprets the program to
find the next event to be added to the graph. Whenever a read is added
andmore than one rf options exist, the algorithm explores them recur-
sively, in a depth-first manner.

As explained in §5.3, whenever a read is added to the graph, GENMC
detects the available places it can read from by scanning the graph, and
not the program. And as not all possible writes may have been added
to the graph when a read is added, whenever GENMC adds a write, it
checkswhether any of the existing reads in the graph can be backward-
revisited and made to read from the newly added write.

The algorithm consists of two main components: (1) the interpreter,
which executes the program and produces the next event to be added
to an execution graph; and (2) the exploration algorithm, which re-
peatedly calls the interpreter to generate every execution of the pro-

5.8 ALGOR I THM 63

Algorithm 5.1 Generating events incrementally
procedure GEN(𝐺, 𝑎)

if 𝑎 ∉ 𝐺.E then
produce 𝑎

return 𝑎

Algorithm 5.2 Choosing non-blocked threads
1: procedure NEXTEVENT𝑃(𝐺)
2: 𝑆 ← {EXECTHREAD(t, 𝑠𝑝𝑟𝑜𝑔, 𝐺) ∣ ⟨t, 𝑠𝑝𝑟𝑜𝑔⟩ ∈ 𝑃}
3: if 𝑆 = ∅ then return ⊥
4: 𝑎 ← min<next𝑆
5: 𝐺.E ← 𝐺.E++𝑎
6: return 𝑎

70 Observe that the
interpreter re-runs
the program at every
call in order to
determine which
event to add. This
can be avoided if we
make NEXTEVENT
decrement 𝑝𝑐 for the
non-selected threads,
and EXECTHREAD to
resume execution
right after produce.
71 This is to ensure a
single-step
temporary
inconsistency as
described in §5.5.

gram exactly once. These two components can be thought of as as
“coroutines” calling each other.

In what follows, we describe these two components in turn.

THE PROGRAM INT ERPRE T ER The interpreter defines theNEXTEVENTP(𝐺)
routine, which continues interpreting the program from where it had
previously stopped until the next event is added to the graph, after
which it returns the newly added event. If no further event can be
added (i.e., the program has terminated), it returns ⊥.

Technically, NEXTEVENTP(𝐺) is an incremental version of EXECPRO-
GRAM (algorithm 2.1), which instead of checking that all the events re-
sulting from 𝑃 belong to 𝐺, simply returns the next event to be added
to 𝐺.

Concretely, this is done in two steps. First, we replace the GEN proce-
dure of algorithm 2.1 with that of algorithm 5.1. Whenever the event 𝑎
passed to GEN does not already belong to 𝐺.E, the new GEN returns it
with a produce statement so that it can be added to the graph. The pro-
duce statement means that EXECTHREAD halts at that point and returns
𝑎 to its caller.Equivalently, we can also think of the produce as throw-
ing an exception that NEXTEVENT catches in order to find the next event
to be added to the graph70.

Second, as far as choosingwhich thread to execute next, even though
EXECPROGRAM explores each thread to completion before moving on
to the next one, this does not need to be the case for NEXTEVENT. In-
deed, we simply assume that there is some total order <next on events
such that a) it respects the program order (i.e., po ⊆<next), and b) any
read and write events that correspond to the same RMW instruction
are adjacent in <next (i.e., rmw ⊆ <next|imm)71. Given a set avail(𝐺) of
available events that could be added to 𝐺, (i.e., namely, the set of next
events of each non-terminated, non-blocked thread of the program),
NEXTEVENTP(𝐺) adds the <next-minimal such event w.r.t. to <next. In

64 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

72 Recall from §2.4
that apart from

searching for Error
labels, error checks

might also be
memory-model-

specific. We give an
example of such
memory-model-

specific error checks
in §7.1.

particular, this means that if 𝐺 contains an event corresponding to
the read-exclusive event of a successful RMW instruction without its
matching write-exclusive event, then NEXTEVENTP(𝐺) will return that
write-exclusive event (which is anyway immediately po-after it).

Putting everything together, NEXTEVENT can be seen in algorithm 5.2.
NEXTEVENT obtains a list 𝑆 of the next available event of each thread
(line 2), and returns the <next-minimal event of 𝑆 after adding it to the
graph (line 6), or ⊥ if 𝑆 is empty (line 3).

Note that algorithm 5.2 does not take any special care for blocked
threads. As soon as a thread blocks (and the corresponding B is added
to the graph), no further instructions from that thread can be executed,
as the special labels block and error do not point to valid instructions
(see §2). When VISIT is later called with some graph that does not con-
tain a B label (e.g., due to some different exploration choice before the
blocked event), the threadwill be again schedulable, and other options
that might not lead to the blocking will be considered.

THE EXP LORAT ION PROCEDURE GENMC’s algorithm can be seen
in algorithm 5.3. Given an input program P, VERIFY verifies P by call-
ing VISIT with an execution graph 𝐺∅ containing only the initialization
event. Subsequently, VISIT will enumerate all execution graphs of P in
a depth-first manner, and ensure that none of them contains an Error,
denoting a safety violation.

Let us now take a closer look at the VISIT function, lying at the heart
of the verification procedure. At each step, so long as the current execu-
tion graph 𝐺 remains consistent according to the underlying memory
model (line 4) and is not erroneous (line 5)72, VISIT extends the current
graph 𝐺 by calling NEXTEVENTP(𝐺).

As explained, the NEXTEVENTP(𝐺) function locates a thread that is
not blocked nor finished, adds the corresponding event to 𝐺.E, and
returns it via 𝑎 (line 6), without updating 𝐺.rf or 𝐺.co. If no such
thread exists, it returns ⊥.

The next action that VISIT takes, depends on 𝑎 itself.
• If 𝑎 is ⊥, VISIT returns (line 7).

• If 𝑎 is a read, VISIT needs to calculate all possible rf options for
the newly added event. To that end, for each write𝑤 to the same-
location as 𝑎 (line 10), it recursively calls VISIT on the graph that
results if 𝑟 reads from 𝑤. Any inconsistent choices will be sub-
sequently eliminated by the consistency check on line 4 of the
corresponding recursive call.

• If 𝑎 is a write, as explained in the previous sections, VISIT needs to
examine both the case where 𝑎 does not revisit any of the graph
reads, and the case where 𝑎 revisits some read in 𝐺.

To take care of the first case, VISIT calls VISITCOS (line 13). For each
possible co-predecessor𝑤𝑝 of 𝑎 in𝐺, VISITCOSwill insert 𝑎 immediately

5.8 ALGOR I THM 65

Algorithm 5.3 GENMC: Generic Model Checking
1: procedure VERIFY(P)
2: VISITP(𝐺∅)

3: procedure VISITP(𝐺)
4: if ¬consistentM(𝐺) then return
5: if ISERRONEOUSM(𝐺) then exit(“error”)
6: switch 𝑎 ← NEXTEVENTP(𝐺) do
7: case 𝑎 = ⊥
8: return “Visited full execution graph 𝐺”
9: case 𝑎 ∈ R

10: for 𝑤 ∈ 𝐺.Wloc(𝑎) do
11: VISITP(SetRF(𝐺, 𝑎, 𝑤))
12: case 𝑎 ∈ W
13: VISITCOSP(𝐺, 𝑎)
14: for 𝑟 ∈ 𝐺.Rloc(𝑎) such that 𝑟 ∉ 𝐺.cprefix(𝑎) do
15: Deleted ← {𝑒 ∈ 𝐺.E ∣ 𝑟 <𝐺 𝑒 ∧ 𝑒 ∉ 𝐺.cprefix(𝑎)}
16: if SHOULDREVISIT(𝐺, 𝑟, 𝑎) then
17: VISITCOSP(SetRF(𝐺|𝐺.E\Deleted, 𝑟, 𝑎), 𝑎)
18: case _
19: VISITP(𝐺)

20: procedure VISITCOSP(𝐺, 𝑎)
21: for 𝑤𝑝 ∈ 𝐺.Wloc(𝑎) do VISITP(SetCO(𝐺,𝑤𝑝, 𝑎))

22: procedure SHOULDREVISIT(𝐺, 𝑟, 𝑤)
23: static 𝑆 ← ∅
24: Deleted ← {𝑒 ∈ 𝐺.E ∣ 𝑟 <𝐺 𝑒 ∧ 𝑒 ∉ 𝐺.cprefix(𝑎)}
25: returnSetRF(𝐺|𝐺.E\𝐷𝑒𝑙𝑒𝑡𝑒𝑑, 𝑟, 𝑤) ∈ 𝑆

after 𝑤𝑝 in co via SetCO(𝐺,𝑤𝑝, 𝑎), and then call VISIT on the resulting
graph (line 21).

To dealwith the casewhere 𝑎 backward-revisits some read in𝐺, VISIT
iterates over all same-location reads as 𝑎 that do not causally precede 𝑎
as candidates for a backward revisit (line 14). (Reads that causally pre-
cede 𝑎 are excluded because revisiting them would create a causal cy-
cle, which is forbidden by memory-model well-formedness.) For each
candidate read 𝑟, VISIT calculates the set of events that will be deleted
from𝐺 if 𝑎 backward-revisits 𝑟 (line 15), and checks whether the graph
resulting by removing the deleted events has been encountered before
by calling SHOULDREVISIT (line 16). If so, VISIT appropriately restricts
𝐺 by removing the deleted events, makes 𝑟 read from 𝑎, and then calls
VISITCOS to explore all possible coherence positions for 𝑎 in the new
graph (line 17).

66 GENMC : MODEL CHECK ING UNDER WEAK MEMORY CONS I S T ENCY

73 “Model checking
for weakly consistent
libraries” [KRV19]

SHOULDREVISIT(𝐺, 𝑟, 𝑤) simply checks whether the graph resulting
from the backward revisit has been seen before. To that end, it main-
tains a set of “seen” backward revisits across explorations 𝑆 (line 23).
Then, after obtaining a restriction 𝐺′ of 𝐺 that contains the events that
were added before 𝑟, as well as the causal prefix of𝑤, it checks whether
𝐺′ is in 𝑆, and if so returns false.

Finally, coming back to the switch-statement of VISIT, for all other
cases of events (e.g., memory fences), VISIT simply initiates a recursive
call (line 18), with no special care taken.

Remark 4. A more space-efficient implementation of SHOULDREVISIT
that does not save full graphs (but rather the prefixes of backward-
revisiting writes) can be found in the respective paper73. In §6 we
present an implementation of SHOULDREVISIT that does not require sav-
ing.

5.8.2 Adaptation for a Reads-From Equivalence

Adapting algorithm 5.3 for a reads-from equivalence partitioning is
straightforward. Indeed, one has to simply check consistency (line 4)
using wb as opposed to co, and make VISITCOSP(𝐺,𝑤) boil down to a
single VISITP(𝐺) call.

6

74 “Truly stateless,
optimal dynamic
partial order
reduction”
[Kok+22a]

75 The name stems
from the fact that, for
non-dependency-
tracking models,
adding events
co-maximally
guarantees
extensibility.

TRUST : POLYNOM IAL MEMORY REQU IREMENTS
FOR GENMC

As described in §5, GENMC is optimal: it does not explore the same
graph twice, nor does it embark on fruitless explorations that are doomed
to never yield a consistent execution graph. While this is satisfactory
in terms of time complexity, it might lead to exponential memory con-
sumption.

In this chapter, we present TRUST 74, amodification forGENMC’s core
algorithm that provides linear memory requirements in the size of the
program under test. TRUST achieves that first by observing that dupli-
cate exploration can only arise due to backward-revisiting, and then by
imposing a condition on the subexplorations that perform the same
backward revisit, so that a given backward revisit is only performed
once across all subexplorations. The only question to be answered is
what condition would be both sufficient (i.e., guarantees uniqueness
of a backward revisit) and necessary (i.e., guarantees existence of the
subexploration performing the backward revisit).

Uniqueness is easily obtained by observing that, givenmultiple subex-
plorationswhich canperform the samebackward revisit, only the events
affected by the backward revisit (i.e., the deleted events and the read
being revisited) are different among them. Indeed, recall the W+RW+W
example from §5.3. Graph 3 can occur as a result of a backward re-
visit from both subexploration 2 and subexploration 3 , and the only
difference between 2 and 3 are the events of thread II and R(𝑥). As
such, any condition differentiating the affected events among differ-
ent subexplorations performing the same backward revisit would be a
sufficient one.

Existence, on the other hand, is much more challenging, as it effec-
tively boils down to ensuring that the execution that produces a given
backward revisit will be explored. TRUST guarantees existence by in-
tertwining the definition of the revisiting condition with extensibility.
Specifically, TRUST’s revisiting condition (called maximal extension75)
only allows a given backward revisit if the events affected by it were
added in the way prescribed by fext. In the case of W+RW+W (and
assuming that fext(𝐺, 𝑒) △= max𝐺.co(𝐺.Wloc(𝑒))) TRUST will backward-
revisit R(𝑥) from graph 3 (as the R(𝑥) is reading co-maximally), and
not from graph 2 .

In what follows, we formally describe maximal extensions and the
changes they induce in GENMC’s algorithm. In §6.4 we show how us-
ing maximal extensions leads to linear memory consumption.

67

68 TRUST : POLYNOM IAL MEMORY REQU I R EMENT S FOR GENMC

76 The same
definition would
work if backward

revisits were
calculated after

adding a write to co.

6.1 MAX IMAL EX T ENS IONS

The key idea behind maximal extensions is simple. Consider the (con-
sistent) graph 𝐺′ that may occur as a result of a backward revisit of a
read event 𝑟 by a write event 𝑤. From prefix-closedness (see §5.2), we
also know that 𝐺″ △= 𝐺′ \ {𝑟, 𝑤} is consistent. Starting from 𝐺″ and as-
suming a fixed construction order, if we add all the remaining events
of the program, we can in general arrive to multiple graphs 𝐺1, 𝐺2,…,
depending on the way we add the remaining events (e.g., the rf edges
of reads, etc). In principle, these are all the graphs which can lead to a
backward revisit of 𝑟 from 𝑤. Our goal is to both allow such revisiting
in only one of these graphs,𝐺, and also ensure that such a graph exists.
We achieve this by requiring that (1) all additional events be added in
the way prescribed by fext (to guarantee consistency), and (2) no re-
visiting takes place while constructing 𝐺. Uniqueness follows because
fext prescribes a single way to add all events if no revisiting takes place,
while existence follows from extensibility: since 𝐺″ is consistent, it is
always consistent to add events in the way prescribed by fext.

Before formalizing maximal extensions, let us provide some auxil-
iary definitions. Given a set of events 𝐸, we say that a write event
𝑤 ∈ 𝐺.W is maximal w.r.t. 𝐸 if 𝑤 ∈ 𝐸 and pred𝐺.co|𝐸

(𝑤) = fext(𝐺|𝐸, 𝑤).
Similarly, a read event 𝑟 ∈ 𝐺.R ismaximal w.r.t. 𝐸 if 𝑟 ∈ 𝐸 and𝐺.rf(𝑟) =
fext(𝐺|𝐸, 𝑟). An event 𝑒 ∈ 𝐺.E ismaximally added before a write 𝑤 ∈ 𝐺.W
if 𝑒 ismaximalw.r.t. Prevs𝐺(𝑒, 𝑤) △= {𝑒′ ∈ 𝐺.E ∣ 𝑒′ ≤𝐺 𝑒 ∨ 𝑒′ ∈ 𝐺.cprefix(𝑤)},
and there does not exist 𝑟 ∈ Prevs𝐺(𝑒, 𝑤) such that 𝐺.rf(𝑟) = 𝑒.

Given the above, maximal extensions can be defined as follows.

Definition 6.1.1 (Maximal Extension). An execution graph 𝐺 is amax-
imal extension of a potential backward revisit from 𝑤 ∈ 𝐺.W to 𝑟 ∈ 𝐺.R
if every 𝑒 ∈ 𝐺.E such that 𝑟 ≤𝐺 𝑒 and 𝑒 ∉ 𝐺.cprefix(𝑤) is added maxi-
mally before 𝑤.

The above definition closely follows the intuitive description above,
so let us go through it in detail, while keeping the above explanation in
mind. First, notice thatmaximality of an event 𝑒 is checkedw.r.t. the set
Prevs𝐺(𝑒, 𝑤), which contains 𝑒 and all events added before it, as well as
those events that are causally preceding 𝑤, since the latter events will
be included in the resulting graph 𝐺′. Second, notice that maximality
is only required for 𝑟 and all the events added after it, excluding those
events that in the causal prefix of 𝑤. The reason why the causal pre-
decessors of 𝑤 are excluded is because, as explained previously, this
prefix will be included in the resulting graph 𝐺′. Observe that, even
though the definition technically requires maximality for𝑤, in fact this
is unimportant: since backward revisits are calculated when a write is
encountered, the write has not been added to co yet76. Finally, no-
tice that the definition of Prevs𝐺(𝑒, 𝑤) forbids backward revisits from
deleted events.

6.2 EXAMPLE S 69

1 init

R(𝑥)

R(𝑦)
3 init

R(𝑥)

R(𝑦, 1)

W(𝑦)

2 init

R(𝑥)

R(𝑦)

W(𝑦, 1) W(𝑥, 1)

2 init

R(𝑥)

R(𝑦)

W(𝑦, 1)

4 init

R(𝑥) W(𝑥, 1)
4 init

R(𝑥)

R(𝑦, 1)

W(𝑦, 1) W(𝑥, 1)

3 init

R(𝑥)

R(𝑦)

W(𝑦, 1) W(𝑥, 1)

1 init

R(𝑥)

R(𝑦)

W(𝑦, 1) W(𝑥, 1)

Figure 6.1: TRUST: Enumerating the execution graphs of RR+W+W

77 Recall that all
writes are co-after
the initializer.

6.2 EXAMPLE S

We begin with an example of how TRUST avoids performing the same
backward revisit twice with the RR+W+W example below.

𝑎 ∶= 𝑥
𝑏 ∶= 𝑦

𝑦 ∶= 1 𝑥 ∶= 1 (RR+W+W)

An TRUST exploration of RR+W+W can be seen in Fig. 6.1. For conve-
nience, let us also assume that fext(𝐺, 𝑒) △= max𝐺.co(𝐺.Wloc(𝑒)). As it can
be seen, the backward revisit of R(𝑥) from W(𝑥, 1) is considered twice,
in executions 2 and 3 . However, according to Def. 6.1.1, the back-
ward revisit will only be performed from execution 2 , since R(𝑥), R(𝑥)
and W(𝑦, 1) were all added in a maximal manner77. (Note that R(𝑦) is
not reading from W(𝑦, 1), which is the co-maximal write in execution
1 , but that is OK, since we only want events to be maximal when they
are added.) By contrast, graph 3 is not a maximal extension of the
same revisit because R(𝑦)was not maximally added: it is reading from
W(𝑦, 1), which was added to the graph after it and does not belong in
the causal prefix of W(𝑥, 1).

Another way of seeing why TRUST should not do the revisit of R(𝑥)
in execution 3 , is that, by doing it, it would “undo” the previous re-
visit of R(𝑦) by W(𝑦, 1). This is indeed the case: the maximal extension
condition ensures that a backward revisit cannot be contained among
the events that will be deleted by a subsequent backward revisit.

As we will shortly see (§6.4), the fact that TRUST avoids undoing
work that it has already done, along with maximal extensions, are cru-
cial in achieving polynomial memory requirements.

70 TRUST : POLYNOM IAL MEMORY REQU I R EMENT S FOR GENMC

1 init

R(𝑥)

2 init

R(𝑥) W(𝑥, 1)

1 init

R(𝑥) W(𝑥, 1) W(𝑥, 2)

2 init

R(𝑥) W(𝑥, 1) W(𝑥, 2)

4 init

R(𝑥) W(𝑥, 2)
5 init

R(𝑥) W(𝑥, 1) W(𝑥, 2)

6 init

R(𝑥) W(𝑥, 1) W(𝑥, 2)

3 init

R(𝑥) W(𝑥, 1)
3 init

R(𝑥) W(𝑥, 1) W(𝑥, 2)

4 init

R(𝑥) W(𝑥, 1) W(𝑥, 2)

Figure 6.2: TRUST: Enumerating the execution graphs of R+W+W

78 Recall that the
maximality of

W(𝑥, 2) is
unimportant,

because backward
revisits are

considered before
calculating its co

placings.

Let us nowmove on to a different example demonstrating howTRUST
enumerates the coherence-tracking graphs of the R+W+W program be-
low:

𝑎 ∶= 𝑥 𝑥 ∶= 1 𝑥 ∶= 2 (R+W+W)

This program has 6 executions under SC, which can be seen at the
leaf nodes of the exploration procedure of Fig. 6.2 (assuming a left-
to-right exploration by TRUST). In what follows, we again assume that
fext(𝐺, 𝑒) △= max𝐺.co(𝐺.Wloc(𝑒)).

Focusing on the exploration, when TRUST first encounters W(𝑥, 1), it
can either revisit R(𝑥) or not. For each of these scenarios, TRUST will
initiate a recursive subexploration (graphs 2 and 3). Revisiting R(𝑥)
is possible, as the current graph is a maximal extension of the graph
resulting if W(𝑥, 1) revisits R(𝑥).

Assuming that TRUST first explores the non-revisiting case (graph
2), it will next add W(𝑥, 2), in all possible co positions. When adding
W(𝑥, 2), TRUST also has the option of backward-revisiting R(𝑥), and,
since the graph forms a maximal extension, recursively explores that
option too (graph 4)78. In that case, W(𝑥, 1) is re-added to the graph,
but now it cannot revisit R(𝑥) because the latter is notmaximally added
(it has been backward-revisited by a write not in the causal prefix of
W(𝑥, 1)).

Finally, TRUST explores the second top-level recursive callwhere W(𝑥, 1)
backward-revisits R(𝑥) (graph 3). When W(𝑥, 2) is re-added, it cannot
revisit R(𝑥), since again it is not maximally added before W(𝑥, 2). TRUST

6.3 ALGOR I THM 71

1 init

R(𝑥)

3 init

R(𝑥) W(𝑥, 1)

1 init

R(𝑥) W(𝑥, 1)

W(𝑥, 2)

2 init

R(𝑥) W(𝑥, 1)

2 init

R(𝑥) W(𝑥, 1)

W(𝑥, 2)

Figure 6.3: Revisiting a read multiple times is often necessary

will, however, explore all possible co placings for W(𝑥, 2), thus conclud-
ing the verification of this program.

We conclude this section with a last example demonstrating an im-
portant point, namely that TRUST can backward-revisit a given read
multiple times, even though backward revisits are generally preserved.
Doing so is frequently necessary to obtain some outcomes.

One such case can be seen with the R+WW program below, and the
exploration of Fig. 6.3.

𝑎 ∶= 𝑥
𝑥 ∶= 1
𝑥 ∶= 2

(R+WW)

In this example, graph 2 where 𝑎 ∶= 𝑥 reads 2 can only be obtained
if R(𝑥) is revisited twice: R(𝑥) is not maximally added before W(𝑥, 2)
in graph 3 where it is not revisited by W(𝑥, 1) and keeps reading 0,
thereby precluding the revisit of R(𝑥) by W(𝑥, 2).

More generally, even though maximal extensions forbid backward
revisits fromdeleted events, theydo allowbackward revisits fromcausally
related writes.

6.3 ALGOR I THM

Let us now present TRUST in detail. Similarly to the algorithm of §5.8,
TRUST works for both the Snasha-Snir and the reads-from equivalence
(with no further changes required), aswell as for dependency-tracking
models. In this section, we present an overview of TRUST (§ 6.3.1),
while in §6.4 we show a version of TRUST with linear memory require-
ments.

6.3.1 Overview

TRUST shares the algorithmic structure of GENMC. In fact, TRUST can be
expressed in terms of algorithm5.3, simply by redefining SHOULDREVISIT
(see algorithm 6.1). As it can be seen, TRUST only performs a backward

72 TRUST : POLYNOM IAL MEMORY REQU I R EMENT S FOR GENMC

Algorithm 6.1 TRUST: Backward-revisiting condition
1: procedure SHOULDREVISIT(𝐺, 𝑟, 𝑤)
2: Affected ← {𝑒 ∈ 𝐺.E ∣ 𝑟 ≤𝐺 𝑒 ∧ 𝑒 ∉ 𝐺.cprefix(𝑎)}
3: return∀𝑒 ∈ Affected. ISMAXIMALLYADDED(𝐺, 𝑒, 𝑤)
4: procedure ISMAXIMALLYADDED(𝐺, 𝑒, 𝑤)
5: Prevs ← {𝑤′ ∈ 𝐺.E | 𝑤′ ≤𝐺 𝑒 ∨ 𝑤′ ∈ 𝐺.cprefix(𝑤)}
6: if ∃𝑟 ∈ Prevs such that 𝐺.rf(𝑟) = 𝑒 then return false
7: if 𝑒 ∈ 𝐺.R then return𝐺.rf(𝑒) ∈ Prevs∧fext(𝐺|Prevs, 𝑒) = 𝐺.rf(𝑒)
8: if 𝑒 ∈ 𝐺.W \ Wexcl then return pred𝐺.co|Prevs

(𝑒) = fext(𝐺|Prevs, 𝑒)

9: return true

revisit from 𝑤 to 𝑟 when the current graph 𝐺 forms a maximal exten-
sion: all the events affected by the revisit have been added maximally
(line 3).

Accordingly, ISMAXIMALLYADDED(𝐺, 𝑒, 𝑤) closely follows the defini-
tion of the event 𝑒 being maximally added before 𝑤 in 𝐺 (cf. §6.1).
First, it calculates the set Prevs of previous events (i.e., those that were
added before 𝑒 or that causally precede 𝑎). Next, it checks whether
some other event 𝑟 that has been backward-revisited by 𝑒 and, if so,
returns false. Then, if 𝑒 is a read event, it checks that 𝑒 reads from
the event prescribed by fext when it was added. If 𝑒 is a write event, it
checks that 𝑒 itself was added in the way prescribed by fext. Note that if
𝑒 is neither a read nor a write (e.g., a fence event), then the maximality
check trivially succeeds.

6.3.2 Memory Requirements

Let us now examinewhy TRUST has polynomial memory requirements.
As already mentioned, the key in achieving this is the fact that in the
maximal extension of a given backward revisit there cannot be a read
𝑟 that is going to be deleted that was backward-revisited by a write 𝑟
that is also going to be deleted.

As such, since an already performed backward revisit will not be
“deleted” from the graph by subsequent backward revisits, the number
of events that will never be removed from the graph increases. In turn,
as the number of events that can be added in a graph is bounded by the
program size, so is the number of recursive calls that can be performed
from a given graph.

A simple calculation gives us a space complexity bound of 𝒪(𝑛3),
where 𝑛 is the size of the program: the recursion depth is at most 𝑛2

(there are at most 𝑛 backward revisits, between any pair of which up
to 𝑛 events may have been added) and each recursive call uses 𝒪(𝑛)
space to store the execution graph.

6.4 L INEAR MEMORY REQU I R EMENT S 73

Algorithm 6.2 TRUST: Iterative version with linear memory
1: procedure VISITP(𝐺)
2: while true do
3: 𝑎 ← if consistentM(𝐺) then NEXTEVENTP(𝐺) else ⊥
4: if 𝑎 ∈ error then exit(“error”)
5: else if 𝑎 ∈ R then SetRF(𝐺, 𝑎,max<𝐺

𝐺.Wloc(𝑎))
6: else if 𝑎 ∈ W then 𝐵[𝑎] ← 𝑎
7: else if 𝑎 = ⊥ then BACKTRACK(G)

79 “Parallel
Graph-Based
Stateless Model
Checking” [LS20]

With clever data structures and a more careful calculation, we can
bring down TRUST’s memory requirements to 𝒪(𝑛). Such an adapta-
tion is presented in §6.4.

6.3.3 Parallelization

Another major benefit of TRUST is that it is inherently parallelizable.
Indeed, as shown above, different revisits proceed in a completely dis-
joint manner, and they can thus be explored concurrently. In other
words, TRUST’s revisiting condition does not require any information
not present in the current exploration.

Even thoughoptimalDPORalgorithmshave beenparallelized79, such
parallelizations concerned the implementation of those algorithms, and
not the algorithms themselves, as data sharing was required for revis-
iting. TRUST is the first optimal, memory-model-agnostic DPOR that
requires absolutely no sharing among different threads.

Aswe show in §10.2.7, the parallelizable nature of TRUST enables it to
scale extremely well in architectures offering a large number of cores.

6.4 L INEAR MEMORY REQU I R EMENT S

The key idea in achieving linear memory consumption is to store a sin-
gle execution graph, and to have all recursive calls update the graph
in place when they are called, and to roll back their updates when they
return.

Rolling back forward revisits is easy as they update only one rf or
co edge. Further, by executing forward revisits for a given read in a
fixed order (e.g., examining rfs in reverse-addition order), we do not
need to remember any information to return to the previous state.

Rolling back backward revisits is somewhat more difficult, but can
still be achieved by keeping only a constant amount of information per
backward revisit. Specifically, as a read may be backward-revisited by
a write from a unique configuration (the graph being a maximal ex-
tension), to get to that configuration it suffices to remove the revisited
read-write pair from the graph and to keep adding events maximally
until the revisiting write is reached.

74 TRUST : POLYNOM IAL MEMORY REQU I R EMENT S FOR GENMC

80 For algorithm 6.2,
we assume that

SetRF operates in
place.

81 PREV(G) performs
a case analysis on the
maximal event of 𝐺,
and returns a tuple
of the graph 𝐺𝑝 at
the previous step,

along with the type
of the step

(revisit/non-revisit).

Algorithm algorithm 6.2 presents an iterative version of TRUST that
has linear memory consumption. For simplicity, in algorithm 6.2, we
show the version that does not record co and works for the reads-from
equivalence.

The algorithm clearly has linear space complexity, as it keeps only
one copy of the execution graph 𝐺 together with an auxiliary array 𝐵
for tracking backward revisits, and does not call itself recursively80.

Algorithm 6.2 operates in an iterative fashion in one of two modes:
1. the forward mode, which keeps adding events to the graph while pos-
sible; and 2. the backtracking mode, which changes rf edges of graph
when alternative exploration options are possible, removes events (e.g.,
to perform a backward revisit or when all revisit options of an event
have been explored), and/or restores events that were removed by a
backward revisit that needs to be undone.

The forwardmode corresponds to the outerwhile loop of algorithm6.2
and is quite straightforward. As long as the graph is consistent, the
graph is extended with the next available event 𝑎 (line 3). If that event
signifies an error, verification fails with an error message (line 4). If
𝑎 is a read, its rf is set to the maximal write of the same location ac-
cording to insertion order. If 𝑎 is a write, we initialize its index in the
𝐵 array. Otherwise, if the execution is complete (or inconsistent), we
enter into the backtracking mode (line 2).

The backtrackingmode corresponds to the BACKTRACKprocedure and
is a bit more subtle. It starts by selecting the maximal event 𝑎 from
𝐺 (line 3). If no such event exists (i.e., the graph contains only the
initialization event), backtracking is complete, and so verification fin-
ishes (line 4). Now if 𝑎 exists and is a read event, we have to examine
whether 𝑎 has any remaining forward revisiting options that were not
considered. If there are further possible writes where 𝑎 can read from,
earlier in insertion order than the write 𝑎 is currently reading (line 5),
thenwe set 𝑎 to read from themaximal suchwrite (line 6), and go back
into the forward mode (line 7).

Similarly, if 𝑎 is a write event, we have to examine whether there are
any (further) reads that need to be backward-revisited by 𝑎. If there
are such reads (line 8), we select the latest according to insertion or-
der, and store it in 𝐵[𝑎] (line 9). Then, if the selected read satisfies the
maximal extension condition (line 11), we update its rf to read from
𝑎 (line 12), restrict the graph (line 13), and go back into the forward
mode (line 14).

Finally, if 𝑎does not have any remaining revisit options, we call PREV(𝐺)
(algorithm 6.4) that returns the previous execution step (line 15)81. If
that is not a backward-revisit step, we simply remove the maximal
event from 𝐺 (line 16). If, however, it was a backward revisit from
a graph 𝐺𝑝 (line 18), we need to do some more work to reconstruct
the correct sequence of events in 𝐺𝑝. For this, we follow the order of
events in 𝐺 for events prior to 𝑎, and the insertion order for the deleted

6.5 CORRECTNE S S PROOF S 75

Algorithm 6.3 TRUST: Iterative version (backtracking)
1: procedure BACKTRACKP(𝐺)
2: while true do
3: 𝑎 ← max<𝐺

𝐺.E
4: if 𝑎 = ⊥ then exit(“Verification complete”)
5: if 𝑎 ∈ R∧ ∃𝑤 ∈ 𝐺.Wloc(𝑎).𝑤 <𝐺 𝐺.rf(𝑎) then
6: SetRF(𝐺, 𝑎,max<𝐺

{𝑤 ∈ 𝐺.Wloc(𝑎) ∣ 𝑤 <𝐺 𝐺.rf(𝑎)})
7: break
8: else if 𝑎 ∈ W∧∃𝑟 ∈ 𝐺.Rloc(𝑎). 𝑟<𝐺𝐵[𝑎]∧𝑟∉𝐺.cprefix(𝑎) then
9: 𝐵[𝑎] ← max<𝐺

{𝑟 ∈ 𝐺.Rloc(𝑎) ∣ 𝑟 <𝐺 𝐵[𝑎] ∧ 𝑟 ∉ 𝐺.cprefix(𝑎)}
10: Deleted ← {𝑒 ∈ 𝐺.E ∣ 𝐵[𝑎] <𝐺 𝑒 ∧ 𝑒 ∉ 𝐺.cprefix(𝑎)}
11: if SHOULDREVISIT(𝐺, 𝑟, 𝑎) then
12: SetRF(𝐺, 𝐵[𝑎], 𝑎)
13: 𝐺 ← 𝐺 \Deleted
14: break
15: else switch PREV(𝐺) do
16: case ⟨_, “non-revisit 𝑒”⟩
17: 𝐺 ← 𝐺 \ {𝑒}
18: case ⟨𝐺𝑝, “𝑒 back-revisits 𝑎”⟩
19: 𝐸≤ ← 𝐺.E|{𝑒∈𝐺.E ∣ 𝑒<𝐺𝑎}
20: while 𝑑 ← min<next (𝐺𝑝.E \ 𝐸≤) do
21: 𝑃 ← 𝐺.E|{𝑏∈𝐺.E∩𝐺𝑝.E\𝐸≤ ∣ 𝑏 ≤𝐺𝐺𝑝.rf(𝑑)}
22: 𝐸≤ ← 𝐸≤ ++ 𝑑 ++ 𝑃
23: 𝐺 ← 𝐺𝑝 ; 𝐺.E ← 𝐸≤

82 We assume that
𝑏 ≤𝐺 𝐺.rf(𝑑) is
false if 𝑑 ∉ 𝐺.R.

83 “Truly Stateless,
Optimal Dynamic
Partial Order
Reduction
(supplementary
material)”
[Kok+22b]
84 The proofs of
correctness for
TRUST should be
attributed to Iason
Marmanis.

events. Whenever a deleted event 𝑑 reads from a later (in insertion or-
der) event of 𝐺, this means that 𝑑 had been backward-revisited; thus,
we also add all prior (not yet added) events of 𝐺 immediately after
𝑑82.

6.5 CORRECTNE S S PROOF S

Assuming that the input program P has executions only of a bounded
size, we show that the TRUST algorithm (algorithm 5.3) always termi-
nates, and is sound, complete and optimal. Soundness ensures that
if VERIFY(P) generates 𝐺, then 𝐺 is a consistent full program execu-
tion. Completeness ensures that if 𝐺 is a consistent full execution of
P, then VERIFY(𝑃) will generate 𝐺. Optimality ensures that TRUST gen-
erates each execution exactly once and never engages in wasteful ex-
plorations. Proofs of these results are given in full in a technical ap-
pendix83; we proceed with an overview84.

76 TRUST : POLYNOM IAL MEMORY REQU I R EMENT S FOR GENMC

Algorithm 6.4 PREV: Backward step from 𝐺 to 𝐺𝑝

1: procedure PREVP(𝐺)
2: 𝑎 ← max<next {𝑒 ∈ 𝐺.E ∄𝑒′. 𝑒 ∈ 𝐺.cprefix(𝑒′)}
3: if 𝑎 ∈ R ∧ ⟨𝑎, 𝐺.rf(𝑎)⟩ ∈<next ∧∄𝑏 ≠ 𝑎.𝐺.rf(𝑎) ∈ 𝐺.cprefix(𝑏)

then
4: return ⟨MAXCOMPLETIONP(𝐺\{𝑎, 𝑤}, 𝑤), “𝑤 back-revisits 𝑎”⟩
5: else
6: return ⟨𝐺 \ {𝑎}, “non-revisit 𝑎”⟩

7: procedure MAXCOMPLETIONP(𝐺, 𝑒)
8: while 𝑎 ← NEXTEVENTP(𝐺) do
9: if 𝑎 = 𝑒 then return 𝐺 \ {𝑒}

10: else if 𝑎 ∈ R then SetRF(𝐺, 𝑎, fext(𝐺, 𝑎))
11: else if 𝑎 ∈ W then SetCO(𝐺, 𝑎, fext(𝐺, 𝑎))

6.5.1 Termination

We first show that once any write 𝑤 backward-revisits some read 𝑟, it
cannot be deleted in any subsequent subexploration. Suppose, by con-
tradiction, that 𝑤 gets deleted by a backward revisit of some previous
read 𝑟′ by a write 𝑤′. If it is 𝑟′ ≤ 𝑟, then 𝑟 must be in the set of deleted
events for the revisit of 𝑟′, or else 𝑤 would not get deleted. But 𝑟 itself
cannot be deleted in such a scenario because it has not been addedmax-
imally before 𝑤′: it reads from the deleted event 𝑤 which was added
after it. Otherwise, it must be 𝑟′ > 𝑟, but in that case 𝑤 cannot be
deleted because a non-deleted event (𝑟) is reading from it.

Termination of algorithm 5.3 follows from the assumption that all
executions of P are of bounded size. Since all algorithm steps except
for backward revisits increase the graph size, and since writes initiat-
ing a backward revisit cannot be removed, there can only be a bounded
number of backward revisits, and therefore a bounded number of al-
gorithm steps.

6.5.2 Soundness

TRUST is trivially sound because events are added to the graph follow-
ing the program semantics, while inconsistent executions are dropped
as soon as they are reached.

6.5.3 Completeness

Completeness states that VERIFY(𝑃) visits every consistent full graph of
𝑃.

Theorem1 (Completeness). Let𝐺𝑓 be a consistent full execution graph
of 𝑃. Then VERIFY(𝑃) calls VISITP(𝐺′

𝑓) for some graph 𝐺′
𝑓≈𝐺𝑓 .

6.5 CORRECTNE S S PROOF S 77

The key idea behind the proof is that, given an execution 𝐺 reached
by the algorithm, we can infer the execution that immediately pre-
cedes it in the (unique) production sequence that leads to 𝐺. This ob-
servation enables us to define a procedure PREV (algorithm 6.4) that
maps every non-empty consistent execution to its “previous” execu-
tion. PREV lets us take a backward step; from𝐺 to the unique execution
𝐺𝑝 such that VISITP(𝐺𝑝) immediately leads to a VISITP(𝐺) call.

We show that repeatedly taking PREV-steps from 𝐺𝑓 will eventually
lead to the initial graph: at each point 𝐺𝑓 ’s maximal event is removed
or made to read from an earlier event. Next, we show that whenever
a graph 𝐺 is PREV-reachable from a consistent full execution and 𝐺𝑝
is a reachable algorithm configuration such that PREV(𝐺) = ⟨𝐺′

𝑝, _⟩
with 𝐺′

𝑝≈𝐺𝑝, then VISITP(𝐺𝑝) calls VISITP(𝐺′) for some 𝐺′≈𝐺. Then,
Theorem 1 follows by induction on the sequence of PREV-steps from
𝐺𝑓 .

6.5.4 Optimality

Optimality consists of showing two properties: (1) that there are no
duplicate explorations, and (2) that there are no fruitless explorations
that are doomed to be blocked and can never lead to a full execution.

To establish the former, we first show that for every reachable algo-
rithm configuration 𝐺, if 𝐺 performs an algorithm step 𝑡 and reaches
configuration 𝐺′, then PREV(𝐺′) = ⟨𝐺, 𝑡⟩. This follows because 𝑡 will
either be adding the maximal event to 𝐺 (non-revisiting case) or the
write read by it (backward-revisit case). In either case, PREV(𝐺′) will
identify that step and “undo” it.

We can then easily prove that there are no duplicate explorations, in
that each configuration 𝐺 is reached at most once. (Assume by contra-
diction there are two production sequences that reach the same con-
figuration. However, we have just shown that they must have the ex-
act same last step, and nowwe have two shorter production sequences
reaching the same configuration,which by induction should also agree.)

Theorem 2 (No duplicate exploration). Given a graph 𝐺, VERIFY(𝑃)
goes through at most one sequence of nested VISITP(_) calls before call-
ing VISITP(𝐺′) for some 𝐺′≈𝐺.

To establish the latter property, we can show that if a reachable algo-
rithm configuration is fruitless, then it is immediately blocked. In fact,
the only way a fruitless configuration could arise is by adding the read-
exclusive part of an RMW event reading from a write already read by
another RMW. The immediate next step will add its write-exclusive
part, thereby making the graph inconsistent.

7

85 Not to be confused
with memory
barriers.
86 pthread.h man
page [17]

OPT IM I Z ING GENMC FOR PROGRAMMING
PATTERNS

In this chapter, we present how GENMC (with or without TRUST) can
be optimized for programming patterns commonly occurring in con-
current programs. Indeed, even though GENMC is optimal w.r.t. the
number of explored execution graphs, this number can significantly
drop if we model certain common constructs in a special manner.

Here we focus on three patterns: synchronization barriers, zero-net-
effect spinloops, and assume statements. First (§7.1), we present BAM,
a DPOR extension that achieves an exponential speedup in programs
with barriers by observing that the order in which different threads
meet at a barrier is irrelevant to most user programs. Next (§7.2), we
present SAVER, a DPOR extension that automatically transforms spin-
loops to assume statements, as long as such loops can be (statically or
dynamically) proven to be side-effect-free. We conclude this chapter
(§7.3) by presenting certain heuristics than can reduce the number of
blocked executions caused by blocked assume statements.

A high-level overview of the key ideas is presented in the beginning
of the respective sections.

7.1 BAM : DPOR FOR SYNCHRON I ZAT ION BARR I E R S

Synchronization barriers85 (as in e.g., pthread_barrier86) are synchro-
nization primitives used to ensure that the execution of a programwill
continue only after all threads have reached a certain point (“a bar-
rier”).

Their usage is best understood with an example:

barrier_init(𝑏,𝑁)
𝑚[1] ∶= …
barrier_wait(𝑏)
𝑛[1] ∶= …

…
𝑚[𝑁] ∶= …
barrier_wait(𝑏)
𝑛[𝑁] ∶= …

(BARRIER-𝑁-SYNC)

In this program, the main thread first initializes a barrier object to 𝑁,
indicating that 𝑁 threads will meet together (“rendezvous”) at the
barrier. Each thread calculates a part of the array 𝑚, and waits for
all the other threads using a barrier_wait call: no thread gets past
barrier_wait until all threads have executed their respective call to
barrier_wait. After all threads have met at the barrier, each thread
continues and calculates a part of the array 𝑛, which (potentially) uses
the array 𝑚 that was calculated in the previous step. Such iterative

79

80 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

87 Barriers are
typically

implemented using
fetch-and-increment

instructions; see
§7.1.1 for more

details.
88 pthread.h man

page [17]

parallel computations are common in scientific applications, e.g., sim-
ulations.

More generally, barriers are useful when we want to wait for the
threads to perform some calculations before continuing. Upon contin-
uation, all calculations performed by one thread will be visible to all
other threads. In contrast to joining the threads, using barriers does
not cause the threads to be terminated, but rather blocked; this can be
crucial for performance reasons.

Butwhile the usage of barriers is straightforward, verifyingprograms
with barriers is not always so. Suppose that we want to verify the
BARRIER-𝑁-SYNC program from above usingGENMC.Alas, GENMCwill
explore an exponential number of executions for this program, as it ex-
amines all possible orderings in which different threads arrive at the
barrier87 . Evenworse, GENMCdoes so even though the order inwhich
the threads rendezvous is irrelevant.

In fact, the order in which threads reach the barrier is not even ob-
servable by the user program; the only thing that is observable accord-
ing to the pthread_barrier documentation88, is whether a thread was
the last one to reach the barrier. However, for the programs we are
aware of, even that condition is never used.

Leveraging this insight, we will now discuss BAM (Barrier-Aware
Model-checker), a DPOR extension that reconciles GENMC with bar-
riers. BAM avoid the exploration of executions that only differ in the
order in which threads execute barrier_wait, by treating such calls
as no-ops. Since the order in which threads arrive at the barrier is
unimportant, BAM can correctly model the program semantics sim-
ply by waiting for all threads to arrive at the barrier (in some order),
and then synchronizing them so that all instructions executed after a
rendezvous at a barrier will see the effects of all instructions executed
before the rendezvous.

In what follows, we first review the interaction of DPOR and barri-
ers (§7.1.1), and then present BAM in detail (Section 7.1.2 and 7.1.3).
As our experiments confirm (see §10.2.3), BAM is exponentially faster
than vanilla GENMC in programs with barriers.

7.1.1 Barriers and DPOR

The reason why barriers and DPOR do not work well together is that
barriers inhibitDPOR. ExistingDPORalgorithms consider barrier_wait
calls conflicting, and thus explore an exponential number of interleav-
ings, even for a barrier program doing the bare minimum:

barrier_init(𝑏,𝑁)
barrier_wait(𝑏) … barrier_wait(𝑏)

(BARRIER-𝑁)

For BARRIER-𝑁, a DPOR algorithm would explore 𝑁! executions, effec-
tively rendering DPOR a useless addition to SMC.

7.1 BAM : DPOR FOR SYNCHRON I ZAT ION BARR I E R S 81

barrier_init(𝑏, 0) ∶
[𝑏] ∶= 𝑁
[𝑏 + 1] ∶= 𝑁

barrier_wait(𝑏) ∶
𝑟𝑁 ∶= [𝑏 + 1]
𝑟0 ∶= fetch_add(𝑏, 1)
𝑟1 ∶= [𝑏]
assume(𝑟1

𝑟𝑁 > 𝑟0
𝑟𝑁)

Figure 7.1: A toy implementation of synchronization barriers

89 We assume this
location is
inaccessible to
non-barrier
operations.

To understandwhy barriers are considered conflicting operations by
DPOR, however, we have to examine how barriers are implemented.
Typically, barriers are implemented using condition variables or fu-
texes: a thread executing barrier_wait acquires a lock, manipulates
a variable indicating the number of threads that have reached the bar-
rier, and then waits on a futex/condition variable. Such implemen-
tations, however, while standard for barrier libraries, are suboptimal
for model checking: each barrier_wait call would boil down to many
different instructions, thus unnecessarily increasing the number of dif-
ferent events a model checker would have to generate.

Since we are only interested in verifying programs that use barriers,
we can get away with a much more abstract barrier implementation,
such as the one in Fig. 7.1. We model each barrier_init(𝑏,𝑁) as a
plain write that initializes the barrier 𝑏 to 0, followed by another plain
write that stores𝑁 to the (read-only) location89 𝑏+1. In turn, wemodel
barrier_wait(𝑏) as an atomic fetch-and-add instruction followed by a
read and an assume statement. For the barrier_wait call, the assume
blocks the calling thread if 𝑟1

𝑁 ≤ 𝑟0
𝑁 , denoting that fewer than𝑁 threads

have executed barrier_wait(𝑏).

Given this implementation, it becomes clear that programs like BARRIER-
𝑁 lead to an exponential blowup in the state space. Since the RMW
instructions all write to the same location 𝑏, they are considered con-
flicting, and so the model checker will examine all their 𝑁! possible
orderings.

What’smore, in addition to these𝑁! executions, state-of-the-artDPOR
implementations like GENMC will also consider an exponential num-
ber of blocked executions. To see this, consider the executions of BARRIER-
𝑁 for 𝑁 = 2 under SC, using the conventional modeling of barriers
of Fig. 7.1 (see Fig. 7.2). Execution graphs 1 and 3 are blocked be-
cause one assume condition is violated. By contrast, graphs 2 and
4 satisfy the assume conditions and are thus non-blocked. DPOR al-
gorithms will thus have to generate at least the two non-blocked ex-
ecutions, though actual implementations typically generate all four
(blocked and non-blocked) executions.

82 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

1 init

W(𝑏, 0)

W(𝑏 + 1, 2)

R(𝑏 + 1)

Rexcl(𝑏)

Wexcl(𝑏, 1)

R(𝑏)

B

R(𝑏 + 1)

Rexcl(𝑏)

Wexcl(𝑏, 2)

R(𝑏)

2 init

W(𝑏, 0)

W(𝑏 + 1, 2)

R(𝑏 + 1)

Rexcl(𝑏)

Wexcl(𝑏, 1)

R(𝑏)

R(𝑏 + 1)

Rexcl(𝑏)

Wexcl(𝑏, 2)

R(𝑏)

3 init

W(𝑏, 0)

W(𝑏 + 1, 2)

R(𝑏 + 1)

Rexcl(𝑏)

Wexcl(𝑏, 2)

R(𝑏)

R(𝑏 + 1)

Rexcl(𝑏)

Wexcl(𝑏, 1)

R(𝑏)

B

4 init

W(𝑏, 0)

W(𝑏 + 1, 2)

R(𝑏 + 1)

Rexcl(𝑏)

Wexcl(𝑏, 2)

R(𝑏)

R(𝑏 + 1)

Rexcl(𝑏)

Wexcl(𝑏, 1)

R(𝑏)

Figure 7.2: Execution graphs of BARRIER-𝑁 for 𝑁 = 2.

7.1.2 Keeping Barriers Unordered

Wenote that, although the barrier implementation of Fig. 7.1 effectively
records the order inwhich different thread call barrier_wait by count-
ing the number of threads that have joined the barrier, programs that
use barriers do not care about this order. In fact, even though bar-
rier implementations typically provide a distinct value returned by the
barrier_wait call that resets the barrier to its initial value, the user pro-
grams we are aware of do not make use of that.

We further observe that programs using barriers typically initialize
the barrier to the number of threads in the system, and so there is never
a case with more parallel calls to barrier_wait than the barrier’s ini-
tial value. Intuitively, this is because the standard scenario for barrier
synchronization is to arrange a rendezvous between all threads partic-
ipating in a parallel computation. With that in mind, it does not really
make sense to initialize a barrier with a value smaller than the number
of threads calling barrier_wait, as that would imply that only some
threads will be unblocked after reaching the barrier, while the others
will remain blocked.

The key insight behind BAM is that, for programs satisfying the two
conditions described above, tracking the order between barrier_wait
calls is unnecessary. BAM models barrier_wait calls as dummy events
that are not considered conflicting, thus enabling the underlyingDPOR
algorithm to consider fewer executions. More specifically, when a thread
executes barrier_wait it simply checks howmany threads have reached
the barrier: if not all threads have arrived, the thread blocks; other-
wise all program threads unblock and continue their execution. Notice
that, when all threads unblock, all the instructions before the respec-
tive barrier_wait statements will have been executed, thereby satisfy-
ing the fundamental guarantee provided by barriers i.e., instructions

7.1 BAM : DPOR FOR SYNCHRON I ZAT ION BARR I E R S 83

init

W(𝑏, 2)

BW(𝑏) BW(𝑏)

Figure 7.3: Un-
ordered barriers:
a single graph for
BARRIER-𝑁

executed after the threads have rendezvousedwill see the effects of the
instructions executed before the rendezvous.

Let us now make the above idea formal in the framework of §2.
First of all, we assume that the underlying model defines an hb rela-

tion (see §2.3), that encompasses barrier-induced synchronization.
Then, tomodel barriers, we extend thedefinition of events (Def. 2.2.1)

to allow for a new kind of label modeling calls to the barrier_wait op-
eration:

• Barrier-wait label: BW(l) where l ∈ Loc is the barrier location ac-
cessed.

Wewrite𝐺.BW for all the barrier events of an execution graph𝐺. Barrier
events do not participate in the rf relation of execution graphs.

Keeping barriers unordered by rf achieves an exponential reduction
in the number of execution graphs of programs like BARRIER-𝑁, as all
four graphs of Fig. 7.2 would correspond to the single execution graph
of Fig. 7.3.

Treating barrier events as dummy events is inadequate because the
barrier_wait calls also provide some synchronization guarantees. Specif-
ically, every event po-before a barrier call is guaranteed to happen be-
fore every event po-after a barrier call in the same rendezvous. Recall
the BARRIER-𝑁-SYNC program from §7.1:

𝑚[1] ∶= …
barrier_wait(𝑏)
𝑛[1] ∶= …

…
𝑚[𝑁] ∶= …
barrier_wait(𝑏)
𝑛[𝑁] ∶= …

(BARRIER-𝑁-SYNC)

Here, merely treating BW events as dummy events is unsound. As BW
events do not contribute to hb between different threads, each thread
will only see its own calculation of a single part of 𝑚. By contrast, had
we used the conventional barrier representation, the rf edges across
threads would ensure that the calculation of 𝑚 is visible when 𝑛 is cal-
culated.

To solve this problem, we extend the definition of execution graphs
(Def. 2.2.2) with a new component:

• a partial equivalence relation𝐺.sbr, called same-barrier-round, that
relates barrier events that synchronize with each other in a ren-
dezvous. Events related by 𝐺.sbr act on the same (barrier) loca-
tion.

We will use the sbr relation to enforce synchronization between the
events executed before the threads meet at the barrier, and the events
executed after the rendezvous at the barrier. But before presenting how
barrier synchronization works, we assume two basic conditions about
the sbr relation.

Given a graph𝐺 and a barrier location 𝑏 initializedwith value𝑁 (i.e.,
there is a unique write 𝑤 ∈ 𝐺.E such that lab(𝑤) = W(𝑏,𝑁), and that

84 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

W(𝑏, 2)

W(𝑚[1],…)

BW(𝑏)

W(𝑛[1],…)

Figure 7.4: An
invalid graph for
BARRIER-𝑁-SYNC

init

W(𝑏, 2)

W(𝑚[1], ..)

BW(𝑏)

W(𝑛[1], ..)

W(𝑚[2], ..)

BW(𝑏)

W(𝑛[2], ..)

sbr

Figure 7.5: BAM:
Execution graph of
BARRIER-𝑁-SYNC for
𝑁 = 2.

W(𝑏, 2)

BW(𝑏)

BW(𝑏)

BW(𝑏)

BW(𝑏)
sbr sbr

Figure 7.6: An in-
valid sbr relation
for BARRIER2-𝑁

⟨𝑤, 𝑛⟩ ∈ 𝐺.hb, for all 𝑛 ∈ 𝐺.BW𝑏), we further require that 𝐺.sbr satisfy
the following conditions:

|𝐺.BW𝑏 \ dom(𝐺.sbr)| < 𝑁 (SBR-MUST-MEET)
∀𝑒 ∈ 𝐺.BW𝑏. |succ𝐺.sbr(𝑒)| = 𝑁 ∨ succ𝐺.sbr(𝑒) = succ𝐺.po(𝑒) = ∅

(SBR-BLOCK)

The SBR-MUST-MEET condition captures the basic guarantee provided
by the barrier implementation that once 𝑁 barrier_wait calls are is-
sued, then they will meet in a rendezvous round. A consistent graph
can therefore contain at most 𝑁 − 1 barrier calls that do not belong to
any barrier round.

The purpose of the SBR-BLOCK condition is twofold. First, it dictates
that exactly 𝑁 calls to barrier_wait participate in the same barrier
round. That is, each event 𝑒 either belongs in the same round with
𝑁 events or does not have any events in the same round. Second, it
dictates that no thread is allowed past a barrier_wait call before all
threads rendezvous at the barrier. In other words, if an event does
not participate in a (full) barrier round, it is blocked and has no po-
successors in the graph. This condition renders graphs like the in Fig. 7.4
for BARRIER-𝑁-SYNC and 𝑁 = 2 invalid.

As soon as all threads reach the barrier, all corresponding barrier
events become part of sbr, and events past the barrier may be added.

Wenext discuss howbarrier synchronization contributes to the happens-
before (hb) relation. We extend the (model-specific) definition of hb
with sbr; po and po; sbr. That is, a barrier happens before the po-successors
of any barriers it synchronizes with and after their po-predecessors.
Since hb is transitive, this means that all events that are po-before a
given barrier round happen before all events that are po-after the same
barrier round. For example, for the BARRIER-𝑁-SYNCprogram(cf. Fig. 7.5),
all events po-after the highlighted barrier round will also be hb-after
the events that are po-before the highlighted barrier round.

Synchronization ensures that the barrier_wait events related by
sbr belong to the same barrier round. To see how this is achieved, con-
sider the program below where two threads rendezvous at a barrier
twice:

barrier_init(𝑏,𝑁)
barrier_wait(𝑏)
barrier_wait(𝑏)

barrier_wait(𝑏)
barrier_wait(𝑏)

(BARRIER2-𝑁)

For this example, graphs like the one in Fig. 7.6, where sbr includes
barrier_wait events from different rounds of the same barrier acqui-
sition, are invalid.

The reason why this graph is invalid, is that 𝐺.sbr; 𝐺.po is included
in 𝐺.hb. This condition implies that, e.g., the second barrier event of
thread I is hb-before itself (since we can take an sbr; po step), which
contradicts the fact that hb is a strict partial order.

7.1 BAM : DPOR FOR SYNCHRON I ZAT ION BARR I E R S 85

Algorithm 7.1 Adaptation of NEXTEVENT for BAM
1: procedure NEXTEVENTP(𝐺)
2: …
4: 𝑎 ← min<next

{𝑎 ∈ 𝑆 ∣ max𝐺.po(𝐺.Etid(𝑎)) ∉ 𝐺.BW \ 𝐺.sbr}
5: …

6: procedure EXECINSTRUCTION(𝐺,Φ, t,n, i)
7: switch i do
8: case i ≡ barrier_wait(𝑒)
9: GEN(𝐺, ⟨t,n+ 1, BW(Φ(𝑒))⟩)

10: …

90 Checked as part of
ISERRONEOUS; see
§7.1.3.

Finally, let us end this section by formalizing the conditions under
which BAMcan be used (see §7.1.2). These are expressed by the notion
of barrier well-formedness, as described below.

Definition 7.1.1 (Barrier Well-formedness). An execution graph 𝐺 is
barrier-well-formed on a barrier location 𝑏 if𝐺.BW𝑏 = ∅ or if the following
hold.

1. There is a unique plain write event 𝑤0 ∈ 𝐺.W \ 𝐺.Wexcl \ {init}
with loc(𝑤0) = 𝑏.

2. 𝑤0 is hb-before all BW𝑏 events: ⟨𝑤0, 𝑒⟩ ∈ 𝐺.hb for all 𝑒 ∈ 𝐺.BW𝑏.

3. For all 𝑆 ⊆ 𝐺.BW𝑏 with |𝑆| > 𝐺.val(𝑤0), there exist 𝑒, 𝑒′ ∈ 𝑆 s.t.
⟨𝑒, 𝑒′⟩ ∈ 𝐺.hb.

Barrier well-formedness90 ensures that there is a unique initializing
write for each barrier location, and that no more threads than the bar-
rier’s initializing value call barrier_wait concurrently. Note that the
latter precludes the usage of BAM in programs like the following:

barrier_init(𝑏, 2)
barrier_wait(𝑏) barrier_wait(𝑏) barrier_wait(𝑏)

That said, as already mentioned, we do not expect such programs to
show up often in practice, as they are built on the (not very useful)
premise that some subset of the threads meeting at the barrier will
continue past the barriers, while the rest will remain blocked.

7.1.3 Algorithm

We now explain how GENMC can be extended to accommodate BAM.
The changes required are shown in algorithm 7.2.

A first modification that we need to perform is to change NEXTEVENT.
As can be seen in algorithm 7.1, NEXTEVENTP(𝐺) considers a thread

86 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

Algorithm 7.2 Adaptation of algorithm 5.3 for BAM
1: procedure VISITP(P, 𝐺)
2: …
19: case 𝑎 ∈ 𝐺.BW
20: 𝑁 ← 𝐺.val(𝑤) where 𝑤 ∈ 𝐺.Wloc(𝑎) \ {init}
21: 𝑆 ← 𝐺.BWloc(𝑎) \ dom(𝐺.sbr)
22: if |𝑆| = 𝑁 then 𝐺.sbr ← 𝐺.sbr∪ {⟨𝑒, 𝑒′⟩ | 𝑒 ∈ 𝑆, 𝑒′ ∈ 𝑆}
23: VISITP(𝐺)
24: …

blocked if it contains a barrier event that is not in the domain of 𝐺.sbr.
(By construction, such events are po-maximal.)

A second modification is that ISERRONEOUS now needs to report an
error if the graph is not barrier-well-formed.

All other barrier-related changes are done when handling BW events
(i.e., a new case is added). If 𝑎 is a barrier-wait event, BAM-specific
code takes over. First, BAMfinds this barrier initializing value𝑁 (line 20).
Well-formed programs contain a unique initialization of barrier, and
so their execution graphs have a unique write event 𝑤 to each barrier
location. Then, BAM collects in the set 𝑆 all barrier events to the same
location as 𝑎 that are not related by 𝐺.sbr (line 21). This set contains
𝑎 as well as all blocked events to the same location. If the number of
such events is 𝑁, then they form a rendezvous and are thus added to
𝐺.sbr, which has the effect of unblocking the waiting threads (line 22).
Subsequently, VISIT recursively calls itself.

As can be seen, BAM can be seamlessly integrated into GENMC. The
additional work performed—a linear scan over the graph—does not in-
cur any overhead as it is dominated by the memory-model consistency
checks.

7.2 SAVER : D POR FOR S P INLOOP S

As explained in §5, the key design choice that makes DPOR scalable is
that it does not record the set of all visited program states. The down-
side of this choice, however, is that DPOR struggles with spinloops,
i.e., loops that continuously read a shared variable until some condi-
tion holds: with no set of visited program states, DPOR cannot distin-
guish loop iterations that make progress from those that return to the
same state. To make matters even worse, such loops are ubiquitous in
real-world concurrent programs, whether lock-based or lock-free.

Consequently, spinloops typically have to be bounded. Since bound-
ing generally sacrifices the soundness of the verification, one would
like to use fairly large loop bounds to be confident enough that the pro-
gram verified is correct. Doing so, however, is practically infeasible. A
loop bound of 𝑁 ≥ 2 typically leads to an exponential blowup in the

7.2 SAVER : D POR FOR S P INLOOP S 87

state space, since the model checker explores the possibility of each
spinloop failing 0, 1, …, 𝑁 − 1 times and, for each failure, all possible
stores from which the spinloop load(s) can read.

To avoid the blowup, the solution is to use a bound of 𝑁 = 1. So
far, this is typically done manually by rewriting the program to use
assume statements (a.k.a. await), special verifier commands that block
the execution of the relevant thread when the condition of the assume
is violated.

We nowdiscuss SAVER, aDPOR extension that determines conditions
under which it is sound to do such conversions automatically, and re-
duces spinloops that satisfy these conditions to a single iteration. The
key idea behind SAVER is to operate at the level of reduced control flow
graphs, obtained by merging bisimilar nodes. Whenever a spinloop
cannot be shown to be side-effect-free statically, SAVER checks that the
reduced spinloop iterations have a zero net effect (in particular, that
the context does not observe any of their effects) dynamically, and if
the check fails, it rolls back the transformation.

In what follows, we review the challenges that spinloops pose for
DPOR (§7.2.1), and then how representing programs as control flow
graphs (§2.1) helps SAVER in exponentially improvingDPOR (Sections
7.2.3 to 7.2.7).

7.2.1 Spinloops and DPOR

Automatically bounding loops to a single iteration is challenging for a
couple of reasons.

First, spinloops cannot be adequately detected by a simple syntac-
tic criterion. Since programming languages have many ways of cre-
ating spinloops (e.g., while loops, repeat-until loops, for-loops, goto
statements), their detection is best done after converting each program
thread into a control-flow graph (CFG). However, even there, simply re-
moving the CFG backedges for side-effect-free loops (i.e., loops with
no stores to global variables or to local variables that are live at the loop
header) is insufficient, as illustrated by the program below.

do 𝑎 ∶= 𝑥
while (𝑎 ≠ 0)

𝑏 ∶= 𝑥
while (𝑏 ≠ 0) 𝑏 ∶= 𝑥

(LOOP-PEEL)

While the loop in thread I can be easily bounded by converting it into
𝑎 ∶= 𝑥; assume(𝑎 = 0), the one in thread II cannot because 𝑏 is “live” at
the header of the loop (its value is used in the loop).

Second, some spinloops may have side-effects, but these either do
not occur on all their iterations or are never observed by the other
threads (e.g., writing to a global variable that is not concurrently read)
or cancel each other out (e.g., incrementing and then decrementing a
variable, acquiring and releasing a lock). As an example of the latter

88 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

91 Technically, these
directed graphs are

control flow
automata but in this

thesis we use the
term CFG.

kind, consider the following zero-net-effect (ZNE) spinloops extracted
from a lock implementation.

while (true)
𝑎 ∶= fetch_add(𝑥, 1)
if (𝑎 = 0) break
fetch_add(𝑥,−1)

// critical section
fetch_add(𝑥,−1)

while (true)
𝑏 ∶= fetch_add(𝑥, 1)
if (𝑏 = 0) break
fetch_add(𝑥,−1)

// critical section
fetch_add(𝑥,−1)

(INC-DEC-SPIN)

Each thread tries to acquire the lock by incrementing 𝑥. If the lock was
already taken, it decrements 𝑥 and tries again. The lock is finally re-
leased by decrementing 𝑥. Since each decrement cancels out the previ-
ous increment, wewould like to avoid considering loop iterations with
a decrement, i.e., unsuccessful lock acquisition attempts. The sound-
ness of doing so depends on the context. If, for instance, there is an-
other thread repeatedly reading 𝑥, it may observe the value of 𝑥 flick-
ering, which cannot happen if we bound the ZNE loops to a single
iteration. Similarly, if another thread writes to 𝑥 concurrently, the loop
may no longer have a zero net effect, rendering the transformation un-
sound.

As we will shortly see, SAVER addresses these challenges through a
combination of some static and dynamic checks.

7.2.2 Control Flow Graphs

The static transformations that SAVERperformsheavily rely on a control-
flow-graph (CFG) representation.

A program P in written in the language of §2.1 can be alternatively
expressed as a top-level parallel composition of threads, each of which
is modeled as a control-flow graph (CFG). A CFG is a directed graph
whose nodes are program labels and whose edges are labeled with
instructions of the grammar presented in §2.191.

We assume that input programs are deterministic in that each node
𝑛 either has at most one successor (for standard program statements),
or it has two successors labeledwith assume(𝑒) and assume(¬𝑒) respec-
tively (for conditionals and loops). To ease the presentation, we also
consider RMWsas single instructions (instead of splitting them to their
constituent parts).

As an example, Fig. 7.7 shows the CFGs for the two threads of the
LOOP-PEEL program from §7.2.1. The loops generate cycles in the CFGs,
and the conditional tests (whether to execute another loop iteration or
to exit the loop) generate the edges labeled with assume statements.

Let us now provide some more definitions on CFGs.
A path 𝜋 in a CFG is an alternating sequence of nodes and instruc-

tions corresponding to edges in the CFG, starting and ending with a

7.2 SAVER : D POR FOR S P INLOOP S 89

1

2 3

𝑎 ∶= 𝑥 assume(𝑎 ≠ 0)

assume(𝑎 = 0)

4

5 7

6

𝑏 ∶= 𝑥
assume(𝑏 = 0)

assume(𝑏 ≠ 0)𝑏 ∶= 𝑥

Figure 7.7: CFGs for the two threads of LOOP-PEEL.

node. That is,𝜋 is of the form𝑛1𝑖1𝑛2𝑖2𝑛3 …𝑛𝑘−1𝑖𝑘−1𝑛𝑘 where (𝑛𝑗, 𝑖𝑗, 𝑛𝑗+1)
is an edge in the CFG for all 1 ≤ 𝑗 < 𝑘. As it is common in the literature,
we are primarily interested in simple paths, which do not visit the same
node twice, except possibly by their last node. A (simple) path is cyclic
if it starts and endswith the same node, while a lasso path is onewhose
end node is one of its intermediate nodes. We write |𝜋| to denote the
length of the path (i.e., the number of edges it contains), and 𝜋(𝑘) to
project the 𝑘th node and/or instruction of the path.

We say that node 𝑎 dominates 𝑏 if all paths from the entry node of the
CFG to 𝑏 contain 𝑎. Given a path 𝜋 in a CFG, we say that a node ℎ of 𝜋
is its header if it dominates all nodes in 𝜋. By definition, paths can have
at most one header; in the case of reducible graphs, every cyclic path
has a header. For example, in Fig. 7.7, nodes 1 and 5 are the headers of
the two cyclic paths, respectively.

A loopy path is a simple path that starts and ends at its header.
Formally, a simple path 𝜋 is called a loopy path of an edge 𝑛 → ℎ if
𝜋(1) = 𝜋(|𝜋|) = ℎ and 𝜋(|𝜋| − 1) = 𝑛 and ℎ dominates all nodes in 𝜋
(i.e., ℎ is a header of 𝜋).

7.2.3 Effect-Free Spinloops

Effect-free loop iterations that do not exit the loop are almost unob-
servable: they do not affect the set of reachable program states, and
so can be ignored when verifying safety properties of a program. (We
note that for liveness properties, effect-free loop iterations cannot be
discarded that simply. An infinite sequence of such effect-free itera-
tions, unless prevented by some fairness assumption about the pro-
gram’s semantics, yields a non-terminating run of the program.)

What remains to be clarified is what exactly constitutes an effect-free
loop iteration. Clearly, the iteration should not be writing to a global
variable, as otherwise other threads may be able to observe whether
the iteration took place or not. Similarly, it should also not be assigning
to any local registers that could affect the subsequent execution of the
thread itself, i.e., to any variables that are live at the header of the loop.
Assigning to a dead variable is harmless because, by definition, it does
not affect the subsequent execution of the thread, even if technically it
might reach a slightly different local state (differing only in the values
of dead variables).

90 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

while (true)
ℎ ∶= head
𝑡 ∶= tail
𝑛 ∶= next[ℎ]
ℎ′ ∶= head
if (ℎ ≠ ℎ′) continue

if (ℎ = 𝑡)
if (𝑛) break

CAS(tail, 𝑡, 𝑛)
else

𝑏 ∶= CAS(head, ℎ, 𝑛)
if (𝑏) break

1

2

3

4

5

6

7

8

ℎ∶=…
𝑡∶=…
𝑛∶=…
ℎ′∶=…

ℎ≠ℎ′

ℎ=ℎ′

ℎ=𝑡 ℎ≠𝑡

¬𝑛
𝑛

CAS(…)

𝑏∶=…

¬𝑏

𝑏

Figure 7.8: Simplified dequeu from ms-queue and its CFG92

Wenote that spinloops need to be effect-free only along loopingpaths—
they may well have side-effects on paths exiting the loop. This is fre-
quently the case for CAS-loops, such as the following implementation
of an atomic increment:

do

𝑎 ∶= 𝑥
success ∶= CAS(𝑥, 𝑎, 𝑎 + 1)

while (¬success)

(CAS-LOOP)

Here, even though the loop contains a CAS, which is generally an effect-
ful instruction, along the looping path, the CAS fails, and so the path is
effect-free.

We also note that loops often havemultiple looping paths, only some
ofwhich are effect-free. Consider, for instance, the while loop in Fig. 7.8,
which is extracted from the ms-queue benchmark of §10.2.4. It contains
three loopy paths. The first (through the continue statement) is triv-
ially effect-free because it contains only loads and assignments to dead
variables. (All local variables are dead at the loop header.) The second
path (when ℎ = 𝑡) can have side-effects—the CAS to tail. The third path
(when ℎ ≠ 𝑡) is again effect-free becausewhenever its CAS succeeds, the
function returns.

Let us now make these intuitions more formal. A path 𝜋 is pure if
it either contains no store instructions or, if it contains any, all of them
are failed CASes. That is, whenever 𝜋(𝑖) is a store instruction, then it
is of the form 𝑟 ∶= CAS(𝑥, 𝑒1, 𝑒2) and there is 𝑖 < 𝑗 < |𝜋| such that
𝜋(𝑗) = assume(¬𝑟) and for all 𝑖 < 𝑘 < 𝑗, 𝜋(𝑘) does not assign to 𝑟.

Pure paths do not affect the global state, but can affect the local state.
A loopy path does not affect the local state if it always reaches the same

7.2 SAVER : D POR FOR S P INLOOP S 91

92 head, next, and
tail are global
variables, while 𝑏, ℎ,
ℎ′, 𝑛, and 𝑡 are local
registers

local state it started from. A simple approximation to reaching the
same state is for the path to not assign to any variable that is live at
its header. Putting these conditions together, an effect-free spinloop is a
pure loopy path that does not assign to any variable live at its header.
Formally:

Definition 7.2.1. A CFG edge 𝑛 → ℎ is an effect-free spinloop backedge if
every loopy path of 𝑛 → ℎ is pure and assigns only to registers dead at
ℎ.

The spin-assume transformation removes all effect-free spinloopbackedges
from theCFG. Returning to the example in Fig. 7.7, the edge 2 → 1 is an
effect-free spinloop backedge; removing it transforms thread I of LOOP-
PEEL into 𝑎 ∶= 𝑥; assume(𝑎 = 0). By contrast, the backedge of thread II
(6 → 5) is not effect-free and so the spin-assume transformation does
not affect thread II.

7.2.4 Transforming Loops into Effect-Free Spinloops

While the spin-assume transformation defined in the previous section
can detect typical cases of do-while spinloops, it does not apply to
while loops that have a non-trivial condition.

The main problem is that the registers used to evaluate the condi-
tion are live at the loop header, and so any loop iterations that update
these registers are deemed effectful. As a simple example, consider the
spinloop of thread II of LOOP-PEEL from §7.2.1: register 𝑏 is live at the
beginning of the loop, and so the body of the loop (𝑏 ∶= 𝑥) is effectful.
(Formally, in the CFG of Fig. 7.7, register 𝑏 is live at node 5—the loop
header.)

One simple way to resolve this problem is to apply a compiler trans-
formation called loop rotation, which moves the loop exit checks to the
end of the loop. Applying loop rotation transforms thread II of LOOP-
PEEL as follows:

𝑏 ∶= 𝑥
while (𝑏 ≠ 0)

𝑏 ∶= 𝑥
⇝

𝑏 ∶= 𝑥
if (𝑏 ≠ 0)

do 𝑏 ∶= 𝑥 while (𝑏 ≠ 0)

The transformed loop can be bounded with the spin-assume transfor-
mation yielding executions with at most two loads of 𝑥. We note that
this bounding outcome is suboptimal, since thread I of LOOP-PEEL is
bounded with a single load of 𝑥.

A better approach for this example is to exploit bisimilarity among
CFG nodes. Two nodes are bisimilar if they produce the exact same
computations, i.e., if their outgoing edges can be matched 1-to-1 in a
way that every two matched edges are labeled with the same instruc-
tion and lead to bisimilar nodes. Bisimilarity can be computed as a

92 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

greatest fixed point, starting with the identity relation (i.e., each node
being bisimilar to itself) and adding pairs of nodeswhenever they have
matching outgoing edges to nodes already calculated to be bisimilar.
For example, in Fig. 7.7, nodes 4 and 6 are bisimilar because they both
have only one outgoing edge labeledwith the same instruction (𝑏 ∶= 𝑥)
and leading to the same node (5).

Having detected that two (distinct) nodes 𝑎 and 𝑏 are bisimilar, we
can then merge them into one node by redirecting 𝑏’s incoming edges
to 𝑎 anddeleting node 𝑏. For example, merging nodes 4 and 6 of Fig. 7.7
would add an edge from 5 to 4 with label assume(𝑏 ≠ 0), and remove
node 6. Effectively, this transformation converts thread II of LOOP-PEEL
to a do-while loop analogous to that in its first thread, which makes
the spin-assume transformation applicable.

We note that merging bisimilar nodes is not always strictly better
than loop rotation. There are cases where loop rotation (or a similar
transformation called jump threading) can transform a loop into the do-
while form, but no two distinct bisimilar nodes exist. Such cases fre-
quently arise with CAS loops like the following.

success ∶= false
while (¬success)

𝑎 ∶= 𝑥
success ∶= CAS(𝑥, 𝑎, 𝑎 + 1)

(CAS-LOOP2)

Here, the spin-assume transformation is not directly applicable to CAS-
LOOP2 because success is live at the loop header and is updated by the
loop body. Loop rotation and/or jump threading, followed by dead
assignment elimination, convert this program to CAS-LOOP, which can
by handled by the spin-assume transformation. By contrast, merging
bisimilar nodes does not change the program, since the program does
not contain the same instruction twice.

7.2.5 Potentially Effect-Free Spinloops

The spin-assume transformation as described in § 7.2.3 uses a com-
pletely static definition of purity. If a CAS along a CFG path cannot be
determined to always fail, the path is deemed effectful. This is, how-
ever, suboptimal for two reasons.

First, using a static purity definition prevents us from transforming
paths that are pure only under certain contexts. For instance, consider
the thread in Fig. 7.9, and assume that it is running as part of a program
that only writes the value 0 to 𝑧 (this might not be inferable statically).

In this case, the (only) loopy path of this thread will not be deemed
pure (as the CAS is not followed by an assume(¬𝑏) statement), even
though it will never produce observable effects in its running context
as 𝑎 will always be 0.

7.2 SAVER : D POR FOR S P INLOOP S 93

do

𝑎 ∶= 𝑧
𝑏 ∶= CAS(𝑥, 0, 1)

while (𝑎 = 𝑏)

1 2 3

4

𝑎 ∶= 𝑧 𝑏 ∶= CAS(𝑥, 0, 1)

assume(𝑎 = 𝑏)
assume(𝑎 ≠ 𝑏)

Figure 7.9: Example where static purity inference is impossible

93 That is, these
writes do not have
any rf edges toward
other threads.

94 stack is a global
variable, while 𝑏, 𝑛,
and 𝑠 are registers

Second, in cases where a loopy path contains a CAS that does have
observable effects, it is wasteful to explore executions where such a
CAS fails. To see this, consider again the dequeue operation of the ms-
queue example in Fig. 7.8. As explained in § 7.2.3, the second loopy
path of this operation is not pure, as it potentially has side-effects. Still,
it does not make sense to consider iterations where the CAS of this
path fails, as they both do not contribute to the loop exiting, and they
produce no observable side-effects.

Leveraging the insights above, we say that a CFG backedge 𝑛 → ℎ
is a potentially effect-free spinloop backedge if every loopy path of 𝑛 → ℎ
assigns only to registers dead at ℎ. The dynamic-spin-assume transfor-
mation marks all potentially effect-free spinloop backedges with a dy-
namic purity check. Whenever the NEXTEVENTP(𝐺) function of algo-
rithm 5.3 encounters such a check, it validates whether 𝐺 contains any
write event originating from the respective loop iteration and, if not,
it returns a B event, thereby blocking the execution of the respective
thread. Otherwise, if the loop iteration did generate a write event,
NEXTEVENTP(𝐺) proceeds with the next event.

In fact, the dynamic purity check described above can be relaxed
even further: SAVER allows loop iterations to contain write events, as
long as these only affect memory locations that are not reachable by
other threads93. In turn, this proves very useful in cases where some
initialization writes need to take place as part of a loop.

𝑛 ∶= new-node()
𝑛.value ∶= 42
do

𝑠 ∶= stack
𝑛.next ∶= 𝑠
𝑏 ∶= CAS(stack, 𝑠, 𝑛)

while (¬𝑏)

1

2

𝑛 ∶= new-node()
𝑛.value ∶= 42

𝑠 ∶= stack
𝑛.next ∶= 𝑠
𝑏 ∶= CAS(stack, 𝑠, 𝑛)

assume(¬𝑏)

assume(𝑏)

Figure 7.10: Simplified push from treiber-stack and its CFG94

To see an example of this, consider the push operation of the treiber-
stack benchmark (cf. Fig. 7.10). First, a node to be inserted to the stack
is created, but this node cannot be initialized fully: its next field needs
to point to the existing top of the stack, but the stack top might change

94 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

95 Assuming this is
not the first

spin_begin of loop
𝑛.

between the time it is read, and the time the node is created. Thus, the
push operation first reads the stack, sets it as the node’s next, and then
tries to atomically replace the stack with the newly created node. If the
replacement succeeds, the operation exits; otherwise, it tries again. No-
tice, however, that, as long as the replacement CAS does not succeed,
the store to the node’s next remains unobserved by the other threads.
Thus, it is safe to consider failed CAS loop iterations as effect-free, and
block their exploration.

Formally, we assume that the program is annotated such that each
header loop first executes a spin_begin(𝑛), where 𝑛 ∈ Lid △= ℕ is a
unique identifier for each loop. We also extend the definition of events
(Def. 2.2.1) with a new label type spin that corresponds to the begin-
ning of a spinloop iteration:

• Spin-begin label: spin(𝑛), where 𝑛 ∈ Lid is loop’s unique identi-
fier

WhenNEXTEVENTP(𝐺) encounters the next instruction after a spin_begin(𝑛)
statement, this means that a spinloop iteration has been completed95.
If the iteration was effect free, then NEXTEVENTP(𝐺) can safely block
this thread, until someother thread reads from somewrite in the blocked
loop iteration. The full algorithm is provided in §7.2.7.

As a final remark, we observe that validating effect-free loops dy-
namicallymakes SAVER resilient tomore aggressive loop rotationpasses
that convert loops to a canonical form containing a single backedge
(see §9.2.2.2).

7.2.6 Zero-Net-Effect Spinloops

Let us now consider the more challenging case of zero-net-effect (ZNE)
loops. Recall that these are spinloop iterations that do have side-effects
but (1) whose side-effects cancel each other out, and (2) whose inter-
mediate effects are not observed by other threads. While condition (1)
can be checked pretty well statically, condition (2) has to be checked
dynamically. In the discussion below, we focus on ZNE loops that arise
because of an atomic increment being followedby an atomic decrement
of the same location and value.

A decrement instruction at node 𝑘 is a canceling decrement in a loop
ℎ if all of ℎ’s loopy paths that contain node 𝑘 also contain a prior op-
posite increment instruction, and the paths are effect-free modulo two
instructions. More formally:

Definition 7.2.2. A node 𝑘 in a (minimal) CFG cycle with header ℎ is
a canceling decrement if it has a (unique) outgoing edge of the form
𝑟1 ∶= fetch_add(𝑥,−𝑛), and for every loopy path 𝜋 of ℎ such that
𝜋(𝑖) = 𝑘 for some 1 < 𝑖 < |𝜋|, there exists 𝑗 < 𝑖 such that 𝜋(𝑗) =
𝑟2 ∶= fetch_add(𝑥, 𝑛) for some 𝑟2, and replacing the instructions at

7.2 SAVER : D POR FOR S P INLOOP S 95

96 Annotated
fetch-and-add
instructions have
both attributes, but
we omit writing fai
in graphs for brevity.

𝜋(𝑖) and 𝜋(𝑗) with plain assignments to 𝑟1 and 𝑟2 yields an effect-free
path.

SAVER’s spin-zne transformation annotates all canceling decrements
so that when NEXTEVENTP(𝐺) encounters them for the first time, it gen-
erates a special zne event and blocks the thread instead of generating
a read event followed by a write event.

Formally, we extend the definition of events (Def. 2.2.1) to allow for
a new kind of label modeling canceling decrements:

• ZNE label: zne(l), where l is the location accessed by the cancel-
ing decrement.

In effect, the zne(𝑥) event serves as a marker for SAVER to validate that
the transformation is sound. We also use the fai and zne attributes to de-
note events from fetch-and-add and annotated fetch-and-add instruc-
tions, respectively96.

Let us now examine how this validation is performed. SAVER vali-
dates ZNE loops every time a new event 𝑒 is added to the graph. If
we use the pair ⟨𝑤, 𝑧⟩ to represent a blocked ZNE loop iteration with 𝑤
being the event corresponding to the increment of the ZNE loop and
𝑧 being the zne event, the addition of 𝑒 can render the reduction of the
⟨𝑤, 𝑧⟩ loop unsound in one of the following two ways.

First, if 𝑒 writes to the same location as𝑤, it can be ordered (in coher-
ence) between 𝑤 and the blocked decrement (after 𝑧), and so, unless
𝑒 is also an atomic increment, 𝑤 and its corresponding decrement will
no longer cancel each other out.

Second, if 𝑒 reads from 𝑤 and there is already some other read event
reading from 𝑤, then, in an alternate execution, it is possible for 𝑒 to
read from the canceling decrement instead of𝑤, thereby observing the
value of the shared variable flickering. To see this, consider the exam-
ple below.

while (𝑡𝑟𝑢𝑒)
𝑎 ∶= fetch_add(𝑥, 1)
if (𝑎 = 42) break
fetch_add(𝑥,−1)

𝑏 ∶= 𝑥
if (𝑏)

𝑐 ∶= 𝑥
assert(𝑐)

(ZNE-OBS)

Note that the loop of thread I fulfills the conditions of a ZNE loop, and
so the second fetch_add() will be annotated by the spin-zne transfor-
mation.

Figure 7.11 shows the execution graph arising fromadding the events
of thread I and then adding the read event corresponding to the 𝑏 ∶= 𝑥
instruction of thread II in the case it reads the incremented value of 𝑥.
Next, we have to add the event corresponding to 𝑐 ∶= 𝑥. In this graph,
the only consistent option for this event is to also read the incremented
value of 𝑥, which satisfies the subsequent assertion. Yet, if we had the
decrement of 𝑥 instead of the zne event in the graph, 𝑐 could also have

96 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

init

Rexcl,zne(𝑥)

Wexcl,zne(𝑥, 1)

zne(𝑥)

R(𝑥)

rf

rf

Figure 7.11: Graph
encountered dur-
ing the exploration
of ZNE-OBS.

97 spin events are
handled by VISIT

recursively calling
itself.

read the value 0 from the decrement, and the assertwould have failed.
Thus, it is clear that concurrent reads can render the transformation of
ZNE spinloops unsound.

Therefore, SAVER checkswhether either of these two conditions holds
for any existing zne(𝑥) event in the graph (where 𝑥 is the location ac-
cessed by 𝑒), and if so, it removes the zne event(s) and unblocks the
corresponding thread(s), whichwill eventually add themissing decre-
ment event(s) and restore soundness.

Other cases of ZNE loops can be handled in a similarmanner. For ex-
ample, consider spinloops containing matching lock acquisitions and
releases. In such a case, acquiring the lock acts as the increment oper-
ation and releasing the lock as the matching decrement. Statically, it
therefore suffices to check that each lock release in the spinloop has its
corresponding lock acquisition earlier in the same spinloop iteration.
Dynamically, we simply check that no other thread accesses the lock
besides by calling the acquire and release methods.

7.2.7 Algorithm

Algorithm 7.3 ZNE Spinloop Validity Check
1: procedure VISITP(𝐺)
2: …
7: ENSUREZNEVALID(𝐺)
8: switch 𝑎 ← NEXTEVENTP(𝐺) do
9: …
11: case 𝑎 ∈ R
12: if 𝑎 ∈ Rzne ∧ ISZNEVALID(𝐺, 𝑎) then
13: VISITP(SetZNE(𝐺, 𝑎))
14: break
15: …

16: procedure ISZNEVALID(𝐺, 𝑒)
17: return 𝐺.Wloc(𝑒) ⊆ 𝐺.Wfai ∧ ∄𝑤 ∈ 𝐺.Wloc(𝑒). |[𝑤]; 𝐺.rf| > 1

18: procedure ENSUREZNEVALID(𝐺)
19: let 𝑒 be the last event in sequence 𝐺.E
20: if 𝑒 ∈ 𝐺.W \ 𝐺.Wfai ∨ 𝑒 ∈ 𝐺.R∧ ∃𝑒′ ≠ 𝑒.𝐺.rf(𝑒′) = 𝐺.rf(𝑒) then
21: 𝐺.E ← 𝐺.E \ zneloc(𝑒)

The algorithmic changes induced by SAVER can be seen in algorithm7.4
and algorithm7.3. Similarly to BAM, SAVERmodifies both theNEXTEVENT
procedure, as well as VISIT and the main exploration procedure.

Let us begin with the changes to VISIT. These changes only con-
cern ZNE loops, as potentially effect-free loops only require changes
in NEXTEVENT 97. the first thing that SAVER when a new event 𝑎 is
added is to check whether 𝑎 causes the rollback of a previously per-

7.2 SAVER : D POR FOR S P INLOOP S 97

Algorithm 7.4 Adaptation of NEXTEVENT for SAVER
1: procedure NEXTEVENTP(𝐺)
2: …
4: 𝑎 ← min<next

{𝑎 ∈ 𝑆 ∣ (𝑚 ∉ 𝐺.zne∪𝐺.spin)∨
(𝑚 ∈ 𝐺.spin∨¬ISEFFECTFREE(𝐺,𝑚))}
where 𝑚 = max𝐺.po(𝐺.Etid(𝑎))

5: …

6: procedure ISEFFECTFREE(𝐺, 𝑎)
7: return ∃𝑏 ∈ 𝐺.spinlid(𝑎) \ {𝑎}. [𝑏]; 𝐺.po; [W]; 𝐺.po; [𝑎] = ∅

8: procedure EXECINSTRUCTION(𝐺,Φ, t,n, i)
9: switch i do

10: case i ≡ spin_begin(𝑒)
11: GEN(𝐺, ⟨t,n+ 1, spin(𝑒)⟩)
12: …

98 In line 4, the last
event of each thread
has to be checked
(instead of the
po-predecessor of 𝑎),
because as soon as
the interpreter
encounters a
canceling decrement
it will stop the
execution (see
algorithm 5.1),
because the read
produced by the
interpreter is not
contained in the
graph (it has been
replaced by a zne
event).
99 For effect-free
loops, writes that
were allocated in
within a given loop
iteration can be
excluded from the
check in line 7.

formed ZNE-assume (lines 7 and 21). This check is performed by the
ENSUREZNEVALID and ISZNEVALID procedures, which closely follow
the description of §7.2.6: if there is a non-FAI write or two reads on a
ZNE location, the transformation is rolled back (line 21).

In the case where 𝑎 is the read of a canceling decrement, and ZNE-
assume is valid (line 12), SAVER used the SetZNE(𝐺, 𝑎) function to add
a ZNE label to the graph instead of a read (line 13), and calls VISIT on
the new graph. Formally, SetZNE(𝐺, 𝑎) returns a new graph 𝐺′ that
agrees with 𝐺 on all components apart from its events:

𝐺′.E = (𝐺.E \ {𝑎})++⟨tid(𝑎), idx(𝑎), zne(loc(𝑎))⟩

Now let us turn our attention to NEXTEVENT (algorithm 7.4). SAVER
has to ensure that thread blocked on ZNE or potentially effect-free
loops (with no side effects) are not scheduled. To that end, SAVER only
selects events in threads where the last event98 is not a zne event or a
spin event of an effect-free iteration (line 4)99. Since zne events replace
reads of canceling decrements, whenever the ZNE-assume transforma-
tion is rolled back, the interpreter needs to be reset, however this is al-
ready taken care of by NEXTEVENT, which re-interprets the program at
every visit call (see §5.8).

Similarly to BAM, SAVER imposes negligible overhead over GENMC,
as its transformations take place statically, before the verification pro-
cedure starts, and the dynamic conditions for purity and ZNE loops
can be checked in 𝒪(𝑛) time (where 𝑛 is the size of the graph), which
is dominated by GENMC’s existing consistency checks.

Remark 5. For these transformations to be correct (i.e., for bounding
to a single iteration to be sound), ISERRONEOUSM must not contain a
condition involving only one thread. For instance, if ISERRONEOUSM de-
mands that a thread not contain four reads of 𝑥 in a row, an error will

98 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

100 See the approach
of Kokologiannakis,

Marmanis, and
Vafeiadis[KMV23]

for a better
alternative when it
comes to completely
eliminating blocking.

not be reported for a programwith a single effect-free spinloop reading
𝑥.

7.3 PR EVENT ING BLOCK ING IN DPOR

Now suppose that we have applied the transformations of the previ-
ous sections and the program contains a number of assume statements.
Whenever GENMC encounters an assume(e) statement and the condi-
tion 𝑒 does not hold, it blocks the current thread and continues execut-
ing the other threads, just in case one of the other threads produces a
write that will revisit some read before the assume statement, in which
case the relevant thread will be unblocked. Naturally, this can lead to
exploring a large number of blocked executions.

In this section, we show how we can reduce the number of blocked
executions induced by assume statements. There are two ideas that we
can leverage. First, we can (automatically) annotate the loads whose
results are used in an assume statement, and only consider values that
will make the assume succeed. Second, we can detect that a given ex-
ecution will not produce any new behaviors (e.g., because a read be-
fore a block label was not added maximally, and eagerly stop the cor-
responding subexploration.

We note that the ideas above are just heuristics. Even though they
dramatically reduce blocking in certain cases (see §10.2.5), they are not
guaranteed to eliminate it100.

7.3.1 Assume Annotations

Consider the following program, where the assume statement only suc-
ceeds if it reads 𝑎 = 42.

for (𝑖 = 1; 𝑖 ≤ 42; 𝑖++)
𝑥 ∶= 𝑖

𝑎 ∶= 𝑥;
𝑏 ∶= 𝑎 − 42
assume(𝑏 = 0)

(ASM-ANNOT)

To avoid exploring the blocked executions where 1 ≤ 𝑎 ≤ 41, we can
annotate the load of 𝑥 with the expression val − 42 ≠ 0, where val is
a symbolic variable tied to the result of the reading 𝑥. Then, when
GENMC adds the event corresponding to 𝑎 ∶= 𝑥, it will calculate the
annotated expression (see §7.3.1.1) and discard all values that satisfy
it, since they would subsequently block at the assume statement.

Just doing this simple check canprevent exploring a number of blocked
executions, but is unfortunately generally unsound. At the very least,
some care is requiredwhenever all reads-from choices lead to blocking.
In that case, GENMC cannot simply discard the execution, because it
will miss any case where the read is revisited by later threads. Rather,
it has to continue exploring one of the choices leading to blocking, so
as to allow later writes to revisit the load.

7.3 PR EVENT ING BLOCK ING IN DPOR 99

101 Assuming
fext(𝐺, 𝑒) △=
max𝐺.co𝐺.Wloc(𝑒) for
SC.

But even thatmodification is not enough, aswewill shortly see. Con-
sider the following program and its annotated behavior, which is possi-
ble under SC simply by running thread II before thread I, and suppose
that the load of 𝑦 is annotated to say that it can read only 0.

𝑎 ∶= 𝑧; //reads 1
if (𝑎 = 0)

𝑥 ∶= 1;
𝑏 ∶= 𝑦;
assume(𝑏 = 0);

𝑦 ∶= 1;
𝑐 ∶= 𝑥; //reads 0
if (𝑐 = 0)

𝑧 ∶= 1;

(ASM-SB-CYCLE)

Suppose further that GENMC considers the instructions in a different
order, by first executing 𝑦 ∶= 1 from thread II and then the instructions
in thread I. Under such a scheduling, GENMC will never produce the
annotated execution.

Let us consider what happens in detail. When considering the load
𝑎 ∶= 𝑧, the only available reads-from value is 0 from the implicit initial-
ization write to 𝑧. Thus, a read event is added to the current execution
graph, and next a write event for 𝑥 ∶= 1 is added. Next comes the
𝑏 ∶= 𝑦 instruction, which can read two values: 0 (from the implicit ini-
tialization write) and 1 (from thread II). Reading 1 satisfies the load
annotation, so, according to the description so far, we discard it, and
we are left with only the execution where the value 0 is read. This
satisfies the assume check and so thread II is complete. Next, GENMC
moves to the next instruction of thread II, namely 𝑐 ∶= 𝑥. This has two
writes it could potentially read from (the initial one and the write of
thread I). Reading from the initial write, however, is inconsistent ac-
cording to SC because it results in a store buffering pattern: there is no
interleaving of the threads that yields 𝑎 = 𝑏 = 𝑐 = 0. So, we are left
with reading 𝑐 = 1, which completes the exploration procedure.

It is worth pondering for a moment: What went wrong? Had the
𝑏 ∶= 𝑦 load not been annotated, or hadGENMC explored the (blocking)
option of reading 1, it would have explored all expected interleavings.
Specifically, although getting 𝑏 = 1 blocks thread I, the algorithm con-
tinues exploring thread II, and now getting 𝑐 = 0 is a consistent option
for the 𝑐 ∶= 𝑥 load (it’s obtained by ordering all memory accesses of
thread I before those of thread II). The algorithm then continues and
generates an event for the write of 𝑧, which revisits the read of 𝑧 in
thread I and completes the exploration.

It is no accident that making thread I read from the 𝑦 ∶= 1 store al-
lows all options for the subsequent 𝑐 ∶= 𝑥 read to be consistent (whereas
reading from the initialization write does not). The key difference be-
tween the two writes is that W(𝑦, 1) is the rf prescribed by fext

101, and
so reading from it guarantees consistency of subsequent graph exten-
sions, and will enable possible future backward revisits.

100 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

102 Another way to
see why fext(𝐺, 𝑒) △=

max𝐺.co𝐺.Wloc(𝑒)
preserves

consistency for SC is
that (1) the read can

be interleaved
immediately after all
the events that were
added before it in the
execution graph and
(2) the read cannot
be observed by other
threads and so does

not directly affect the
consistency of their

actions.

Put differently, if all the choices for a read lead to blocking, GENMC
needs to continue exploring one option that preserves consistency, and
this option is the one prescribed by fext

102.

7.3.1.1 Annotatable Loads

A second challenge is deciding which loads to annotate, especially in
cases where the results of multiple loads are used in an assume state-
ment. To see why this can be challenging, consider the following ex-
ample:

𝑎 ∶= 𝑥
𝑏 ∶= 𝑦
assume(𝑎 + 𝑏 = 42)

If we try to annotate the first load, GENMC will not be able to evaluate
the annotation, as the value of 𝑏 is unknown at the timewhen the event
corresponding to 𝑎 ∶= 𝑥 is added. By contrast, we can annotate the
second load, 𝑏 ∶= 𝑦 because by the time that it is executed the value of
𝑎 will be known.

More generally, we define the notion of an annotatable load as follows.

Definition 7.3.1. A load instruction 𝑟 ∶= 𝑥 is annotatable along a simple
path 𝜋 if 𝜋(1) = 𝑟 ∶= 𝑥, 𝜋(|𝜋| − 1) = assume(𝑒), and for all 1 < 𝑖 <
|𝜋| − 1, 𝜋(𝑖) is neither a memory access nor an error.

Note that the definition above states that only plain loads are anno-
tatable. Indeed, this is because FAIs and CASes have side-effects, and
these side-effects might affect different threads. For instance, in the
case of a CAS, an assume can depend on the CAS failing, but other
threads might crash if the CAS succeeds; not considering the options
where the CAS succeeds due to not satisfying the assume leads to not
identifying the error. Therefore, GENMC needs to explore all possible
reads-from edges for such loads, which explains why they are not an-
notatable.

Algorithm 7.5 Calculate the blocking condition at a given node
1: procedure BLOCKCONDITION(𝑛)
2: if 𝑛 is a loop header, an error, or a memory instruction then
3: return false
4: if CFG has edges (𝑛, assume(𝑒),𝑚), (𝑛, assume(¬𝑒),𝑚′) then
5: return 𝑒 ? BLOCKCONDITION(𝑚) ∶ BLOCKCONDITION(𝑛)
6: else if 𝑛 has a single outgoing of the form (𝑛, assume(𝑒),𝑚) then
7: return ¬𝑒
8: else if 𝑛 has a single outgoing of the form (𝑛, 𝑟 ∶= 𝑒,𝑚) then
9: return BLOCKCONDITION(𝑛)[𝑒/𝑟]

7.3 PR EVENT ING BLOCK ING IN DPOR 101

We annotate a load 𝑟 ∶= 𝑥 by computing the blocking condition of
its successor and replacing any occurrences of 𝑟 in it with val, which
is a symbolic value that will stand for the value returned by the load.
The blocking condition is defined recursively by algorithm 7.5 and cal-
culates when it is possible to reach an assume(e) instruction with 𝑒 be-
ing false without having executed any other memory accesses or error
instructions along the way. This ensures that the load is annotatable
along the path to the assume.

For instance, for the program below, the load in the then-branch is
going to be annotated with val + 1 ≤ 0, while the load in the else-
branch is going to be annotated with val ≤ 0, where val is a symbolic
value. The first load is not annotated (technically, it is annotated with
false).

𝑎 ∶= 𝑥; //no annotation
if (𝑎)

𝑏 ∶= 𝑦; //annotation: val+ 1 ≤ 0
𝑏 ∶= 𝑏 + 1;

else

𝑏 ∶= 𝑥; //annotation: val ≤ 0
assume(𝑏 > 0);

In terms of execution graphs, it ismore convenient to represent block-
ing conditions using special read attributes encompassing all the val-
ues that make symbolic expressions succeed. As such, we introduce
newattributes bcond(v𝑠) ∈ Rattr, for v𝑠 ⊆ 𝒫(Val), andwewrite annot(𝑟)
to get the values v𝑠 on which a given 𝑟 ∈ 𝑅bcond(v𝑠) blocks.

7.3.2 Futile Explorations

Now thatwe have seen how loads affect subsequent assume statements,
let us present a more general way to reduce the number of blocked
executions in DPOR.

The idea is to detect (as early as possible) that a given execution is
futile, i.e., will not expose any program errors, and some thread will
always remain blocked.

One way of doing this is by leveraging fixed reads, i.e., reads that can-
not be revisited or removed in any subsequent subexploration.

Formally, we define fixed reads as follows:

Definition 7.3.2. An event 𝑟 ∈ R is fixed in a graph 𝐺 if it was added
reading from a previously added write 𝑤 (i.e., 𝐺.rf(𝑟) <𝐺 𝑟) such that
𝑤 ≠ fext(𝐺|{𝑒∈𝐺.E∣𝑒≤𝐺𝑟}, 𝑟).

It is easy to see that maximal extensions ensure that reads satisfying
Def. 7.3.2 in a graph 𝐺 are never going to be removed. To see why, let

102 OPT IM I Z ING GENMC FOR PROGRAMM ING PAT T ERNS

103 Certain
languages even

provide such
annotations for free;

e.g., Java final
fields.

init
R(𝑥)

B Wfreeze(𝑥, 1)

Figure 7.12: Freez-
ing writes example
104 In the latter case,

𝑟 is reading from
init.

105 It is easy to
extend the definition
to also allow for local

accesses (i.e.,
accesses to

non-leaked allocated
locations) in

addition to frozen
reads and

non-memory
accesses.

106 We can relax this
check and also allow
a series of hb-ordered

“initialization”
writes performed

hb-before a freezing
write.

us argue by contradiction. In order for a write 𝑤 to backward-revisit 𝑟
in a graph 𝐺′, 𝑟 would have to be maximally added before 𝑤 (i.e., be
maximal w.r.t. {𝑒 ∈ 𝐺′.E ∣ 𝑒 <𝐺′ 𝑟 ∨ ⟨𝑒, 𝑤⟩ ∈ 𝐺′.corder}), which contra-
dicts the definition of fixed reads.

Another way of detecting futile explorations is by exploiting freezing
writes, i.e., writes that are guaranteed to never be overwritten (as is
often the case with insertions into queues and stacks).

Formally, we assume that certain writes are annotated103 with the
freezing write attribute, freeze ∈ Wattr. (It is trivial to check the cor-
rectness of such annotations as part ofGENMC’s error checks; see §7.3.3.)

We illustrate how freezingwrites can be leveraged in DPORwith the
program below and its partially explored execution in Fig. 7.12.

𝑎 ∶= 𝑥
assume(𝑥 ≠ 1)

𝑥 ∶= 1 //freezing
[lots of code]

[lots of code]

By default, DPOR continues to explore the graph of Fig. 7.12 in the
hope that another write to 𝑥 is added, which will cause a revisit of the
read of thread I. Since, however, the 𝑥 ∶= 1 write is annotated as a
freezing store, such a write will never be added, and thus thread I will
never become unblocked.

Generalizing a bit, we call a read 𝑟 frozen in 𝐺 if it is reading from a
freezing write (i.e., 𝐺.rf(𝑟) ∈ 𝐺.Wfreeze) or there exists a same-location
freezing write 𝑤 ∈ 𝐺 whose po-predecessor is a fixed read104. Note
that a frozen read is not necessarily fixed: while it will never directly
be revisited, it may be removed from 𝐺 if an (insertion-order) earlier
read is revisited.

Given fixed and frozen reads, we can define futile graphs as follows.

Definition 7.3.3. An execution graph 𝐺 is futile, written futile(𝐺), if
there is a blocked event 𝑏 ∈ 𝐺.B and a po-prior event 𝑠, which is either
a fixed read or the initialization event init, and all events po-between
𝑠 and 𝑏 are either frozen reads or non-memory-access events105.

7.3.3 Algorithm

The changes to GENMC induced by blocking annotations and futile ex-
plorations can be seen in algorithm 7.6.

First, whenever GENMC encounters an annotatable load (line 13), it
only considers values not satisfying the blocking condition, as well as
the rf prescribed by fext (which is always considered).

Then, whenever the current graph is futile, VISIT returns (line 2). In
a similar fashion, if a write has been incorrectly annotated as freezing
(i.e., there is 𝑤1 ∈ 𝐺.Wfreeze and 𝑤2 ∈ 𝐺.Wloc(𝑤1) \ {init, 𝑤1}), GENMC
reports an error via ISERRONEOUS (line 3)106.

Note that such annotation errors are caught, even if executions are
dropped as futile (i.e., it cannot be the case that the only graph where

7.3 PR EVENT ING BLOCK ING IN DPOR 103

Algorithm 7.6 Preventing blocking in DPOR
1: procedure VISITP(𝐺)
2: if ¬consistentM(𝐺) ∨ futile(𝐺) then return
3: if ISERRONEOUSM(𝐺) then exit(“error”)
4: switch 𝑎 ← NEXTEVENTP(𝐺) do
5: …
11: case 𝑎 ∈ R
12: for 𝑤 ∈ 𝐺.Wloc(𝑎) do
13: if 𝐺.val(𝑤) ∉ annot(𝑎) ∨ 𝑤 = fext(𝐺, 𝑎) then
14: VISITP(SetRF(𝐺, 𝑎, 𝑤))
15: …

an annotation error is generated by a futile one). Since the causal pre-
fixes of 𝑤1 and 𝑤2 cannot contain the frozen reads before the block
event of a futile execution (because there is no write to read from), this
means that the (erroneous) graph 𝐺 constructed by taking the causal
prefixes of𝑤1 and𝑤2 and addingmaximally the rest of the events, will
be considered.

8

107 These are
determined by the
durable setting
assumed (e.g.,
filesystem,
non-volatile memory,
etc).
108 Recall that x86
does not reorder
writes; see “A better
x86 memory model:
x86-TSO” [OSS09].

PER S EVERE : MODEL CHECK ING FOR
PER S I ST ENCY

In chapters 5 to 7, we saw how GENMC verifies safety properties of
concurrent programs, assuming these were executed correctly by the
underlying machine (i.e., according to the given memory consistency
model). We did not take into account the possibility of the machine
crashing during the execution of a program and what portion of the
state would be preserved after the crash.

In this chapter, we present PERSEVERE, an algorithm that can verify
persistency properties, i.e., whether certain invariants hold in the pres-
ence of a crash. In essence, given a consistent execution of a given pro-
gram, PERSEVERE enumerates all its possible post-crash persisted states,
and checkswhether the supplied assertions/invariants hold. The novel
major challenge in doing so is to combat the state space explosion aris-
ing from the persistency semantics107.

To see this, consider the following sequential program under x86,
with 𝑁 writes to different memory locations:

𝑥1 ∶= 1;… ; 𝑥𝑁 ∶= 1 (NW)

Even though these writes are executed in-order by x86108, they might
persist to durable storage out of order. If NW crashes, 𝑥𝑖 ∈ {0, 1} for all
1 ≤ 𝑖 ≤ 𝑁.

Now suppose we want to enumerate all possible crash states for this
program. The writes may persist to durable storage in any order (i.e.,
𝑁! ways) and any prefix of such orders may have completed before a
crash (i.e., 𝑁×𝑁! possible states). However, this naive enumeration of
persistency ordering is far from optimal.

A much better way is not to enumerate the orders in which opera-
tions persist, but rather to consider whether each of the 𝑁 operations
persisted before the crash (i.e., 2𝑁 states). Moreover, it is typically the
case that only 𝑀 ≪ 𝑁 of operations are relevant for the invariant in
question, so it suffices to enumerate 2𝑀 states. When there are syn-
chronization calls (e.g., flushes), persistency of one write implies per-
sistency of (all) prior (same-location) writes that are separated by a
synchronization call, which further reduces the number of states.

PERSEVERE’s key idea for exploring this vast state space efficiently is
to model the assertions about the persisted state as a recovery observer
that runs in parallel to the main program P and whose accesses are
subject to different consistency axioms from those of P. By ensuring
that these axioms do not require a total persistency order, PERSEVERE
never enumerates this order explicitly and thus significantly reduces

105

106 P ER S EVERE : MODEL CHECK ING FOR PER S I S T ENCY

109 “Persistence
semantics for weak

memory: Integrating
epoch persistency

with the TSO
memory model”
[RV18]; “Weak

persistency
semantics from the

ground up”
[RWV19];

“Persistency
semantics of the

Intel-x86
architecture”

[Raa+19]

the number of states to explore. Finally, following a declarative seman-
tics enables us to integrate PERSEVERE into GENMC, thereby leveraging
its implementations.

Webegin bydiscussingpersistencymodels and their semantics (§8.1),
we thenpresent howanaive enumerating approachwouldwork (§8.2),
and finally present PERSEVERE (§8.3).

8.1 P ER S I S T ENCY S EMANT I C S

In the past few years, a lot of work has been devoted to persistency
models109. Analogously to memory consistency models (see §2.3),
persistencymodels describe the exact state the durable storage of a sys-
tem (e.g., disk, non-volatile memory) might have if a program crashes.
Suchmodels are useful to be able to reasonwhether a particular invari-
ant holds in the presence of crashes.

We do not provide a full framework for specifying persistency mod-
els in this thesis. Instead, we extend the framework of §2.3 so that it can
be used to reason about persistency (assuming single-crash scenarios)
as follows.

First, we assume that memory locations are partitioned to durable
and volatile, Loc △= Dloc ⊎ Vloc, depending on whether they may prop-
agate to durable storage or not. This location partitioning naturally in-
duces a label partitioning: Lab △= Dlab⊎Vlab (labels that not associated
with a durable location are volatile). Given an execution graph, we
write𝐺.D to refer to the durable events of𝐺 (i.e.,𝐺.D △= {𝑒 ∈ 𝐺.E | loc(𝑒) ∈ Dloc}).

Second, we assume that the underlying model provides a persists-
before relation, pb ⊇ co, capturing the order in which durable writes
persist. Similarly to hb, pb is a parameter of the memory model, and
we assume that for all 𝐺 ∈ Exec, if consistentM(𝐺), then pb is a strict
partial order.

As a couple of examples on how pb can be defined, assuming SC,
we define strict persistency as pb △= (porf ∪ co ∪ rb)+, prescribing that
writes persist in the order they are executed, and weakest persistency as
pb △= co, prescribing that only co-related writes persist in order.

Let us now go on to define the persistency semantics of a given pro-
gram. We employ the notation 𝑃E𝑇 to specify persistency invariants,
where 𝑃 is a (concurrent) program and 𝑇 is an invariant expressed as
a sequential program that consists of a series of reads of durable loca-
tions and an assert.

We first define a snapshot as follows:

Definition 8.1.1 (Snapshot). Given an execution graph 𝐺, a snapshot
S ⊆ 𝐺.D is a set of durable events that (1) includes the initializer event,
and (2) is downward-closedwith respect to pb, i.e., dom([W]; pb; [S]) ⊆ S.

Intuitively, a snapshot prescribes a set of durable events whose ef-
fects have reached the durable storage prior to a crash.

8.2 A NA IV E APPROACH 107

110 “Persistence
semantics for weak
memory: Integrating
epoch persistency
with the TSO
memory model”
[RV18]; “Weak
persistency
semantics from the
ground up”
[RWV19];
“Persistency
semantics of the
Intel-x86
architecture”
[Raa+19]

Given a snapshot 𝑆, we define its frontier as follows:

Definition 8.1.2 (Snapshot frontier). Given an execution graph 𝐺 and
a snapshotS, the frontier ofS, is frontier(S) △= {max𝐺.pb(Sdl) dl ∈ Dloc}.

Intuitively, the frontier of a snapshot S contains exactly one write for
each durable location, corresponding to the pb-maximal write in S in
that location.

Definition 8.1.3 (Persistency Correctness). A (concurrent) program
𝑃E𝑇 contains a persistency error under amodel M, if, there exists a con-
sistent execution𝐺 of 𝑃 and a snapshot S of𝐺, such that 𝑇 is erroneous
(Def. 2.4.1) when run from the initial state frontier(𝑆). A program is
p-correct if it does not contain a persistency error.

8.2 A NA IV E APPROACH

Let us now see how we can enumerate the snapshots of a given execu-
tion, and their frontiers. To avoid confusion, we use the term p-ordering
to refer to persistency orderings induced (due to pb).

Thefirst partitioningmechanismwe employ is representingp-ordering
as a partial rather than a total relation: our definition of consistency
(§8.1) does not require the p-ordering relation pb to be total and ad-
mits partial pb orders. This is in contrast to the existing literature on
persistency 110, which requires p-ordering to be a total order.

Modeling pb as a partial order is highly effective in that it signifi-
cantly reduces the number of executions to explore. To see this, as-
sume a representation that requires a total p-ordering, and consider
the 3W-PB program below comprising three parallel writes to 𝑥, 𝑦 and
𝑧:

𝑥 ∶= 1 𝑦 ∶= 1 𝑧 ∶= 1 (3W-PB)

Under such a representations, there are six (3!) possible p-orderings,
i.e., the number of [𝑤𝑥, 𝑤𝑦, 𝑤𝑧] permutations. Moreover, recall from
our notion of snapshots that a prefix of each p-ordering may have per-
sisted prior to the crash. As such, since each p-ordering has three pre-
fixes, the total number of explorations is 19 (3 × 3! + 1).

On the other hand, a representation with a partial p-ordering defi-
nition does not order the three writes, since they are in different loca-
tions. Thus, when constructing our p-snapshot S, it suffices to consider
whether (the effect of) eachwrite has persisted, i.e., S ∈ 𝒫({𝑤𝑥, 𝑤𝑦, 𝑤𝑧}),
thus yielding eight (23) explorations corresponding to eight different
snapshots. In the general case of 3W-PB with 𝑁 parallel writes, this
amounts to reducing the number of explorations from 𝑁 × 𝑁! + 1 to
2𝑁 .

108 P ER S EVERE : MODEL CHECK ING FOR PER S I S T ENCY

8.3 R ECOVERY OB S ERVER

Although keeping pb partial eliminates a significant number of explo-
rations, it nevertheless includes redundancies and can be further im-
proved.

Given a program 𝑃E𝑇, our key idea is to not treat 𝑇 as a program that
runs after 𝑃, but rather as a thread running in parallel with 𝑃.

Let us demonstrate this idea with an example. Consider the REC-OB
example below where 3W-PB from §8.2 runs in parallel with an inde-
pendent write to 𝑤 and crashes thereafter (E); upon recovery (to the
right of E) we check whether the write to 𝑤 has persisted:

3W-PB 𝑤 ∶= 1 E assert(𝑤 = 1) (REC-OB)

Since there are eight (23) possible snapshots for the locations 𝑥, 𝑦, 𝑧
and two (21) snapshots for 𝑤, this amounts to 16 (8 × 2) possible ex-
plorations.

However, note that although 𝑥, 𝑦 and 𝑧 are all written by 3W-PB, they
are never read upon recovery. By contrast, 𝑤 is observed (read from)
upon recovery, and we must therefore consider two explorations: one
in which the pre-crash write on 𝑤 persists and one in which it does
not. In other words, it suffices to consider p-orderings only on those
locations that are read from upon recovery.

In fact, we use this intuition to reduce the number of explorations fur-
ther, as long as the recovery routine only inspects the durable storage,
and does not modify it. More concretely, we model observable snap-
shots through a recovery observer, a designated thread that runs in par-
allel with the original program. This way, we can model observability
by reads-from (rf) edges between the events of the original program
and those of the recovery observer. To this end, we instrument our ex-
ecutions (Def. 2.2.2) to include recovery events, as described below.

Definition 8.3.1 (Instrumented execution). An instrumented execution
graph is an execution graph 𝐺 such that the event set is partitioned,
𝐺.E = 𝐺.NREC ⊎ 𝐺.REC, into non-recovery events, 𝐺.NREC, and recovery
events,𝐺.REC, comprisingdurable reads by adesignated thread tr: 𝐺.REC ≝
{𝑒 ∈ 𝐺.E∩𝐺.DR 𝐺.tid(𝑒) = tr}.

Note that instrumented executions are executions (Def. 2.2.2) that
additionally include recovery events comprising durable reads by the
designated recovery thread tr. That is, wemodel programs such as REC-
OB, by having tr issuing recovery read instructions to inspect the durable
storage after the crash, e.g., the read to the right of Ein REC-OB.

With instrumented executions in place, we no longer need a snap-
shot and its frontier to determine the observable values upon recovery.
Instead, we simply constrain the set of observable values by requiring
that the resulting instrumented execution be consistent, as defined be-
low.

8.3 R ECOVERY OB S ERVER 109

NREC REC
𝑤 ∶ W(dl, −)

𝑤″ ∶ W(dl, −)

𝑤′ ∶ W(dl′, −)

𝑟 ∶ R(dl)

𝑟′ ∶ R(dl′)

rf

rf

co

pb?
rb

Figure 8.1: An instrumented execution precluded by REC

Definition 8.3.2 (Instrumented consistency). An instrumented execu-
tion G is consistent iff:

• 𝐺|𝐺.NREC is consistent according to the underlying memorymodel
(see §2.3); and (CON)

• [𝐺.REC]; rb; pb?; rf; [𝐺.REC] = ∅ (REC)

The REC axiom equivalently enforces the conditions imposed by snap-
shots and frontiers.

To see an example how, let us consider an arbitrary persistencymodel
M𝑃 that among others requires that co ⊆ pb. REC preempts scenarios
such as the one in Fig. 8.1, where a recovery read 𝑟 on dl reads from
𝑤 which is later overwritten by 𝑤″: ⟨𝑤,𝑤″⟩ ∈ co. As co and pb agree
for each location, we also have ⟨𝑤,𝑤″⟩ ∈ pb. Moreover, as 𝑟 and 𝑟′
respectively read from 𝑤 and 𝑤′, then 𝑤,𝑤′ must have persisted prior
to the crash, i.e., they are in the snapshot. As 𝑤″ is pb-before 𝑤′, for
the snapshot to be pb-downward-closed, 𝑤″ must also be in the snap-
shot. As such, since ⟨𝑤,𝑤″⟩ ∈ pbdl and 𝑤″ is in the snapshot, then 𝑤″

is the pb-maximal write in the snapshot for the location dl and not 𝑤,
violating the pbdl-maximality condition of the snapshot frontier.

In turn, we can define correctness for instrumented executions as
follows.

Definition 8.3.3 (Persistency correctness). A program 𝑃E𝑇 contains a
persistency error if any of its consistent execution graphs (according
to Def. 8.3.2) contains an error event in 𝐺.REC. A program is p-correct
if it does not contain a persistency error.

Finally, we can now prove that recovery observers are sound and
complete.

Theorem3 (Equivalence). Aprogram𝑃E𝑇 is erroneous underDef. 8.1.3
if and only if 𝑃 ⊎ {⟨tr, 𝑇⟩} is erroneous according under Def. 8.3.3.

Proof. (⇒)
LET: Let 𝐺 be an erroneous consistent instrumented execution
SUFFICES: 𝑆 △= init∪dom([W]; pb?; rf; [𝐺.REC]) is a snapshot of 𝐺|𝐺.NREC
⟨1⟩1. init ∈ 𝑆

PROOF: By construction.
⟨1⟩2. dom([W]; pb; [𝑆]) ⊆ 𝑆

110 P ER S EVERE : MODEL CHECK ING FOR PER S I S T ENCY

⟨2⟩1. dom([W]; pb; [init]) ⊆ 𝑆
PROOF: Trivially, as dom([W]; pb; [init]) = {init}.

⟨2⟩2. dom([W]; pb; [dom([W]; pb?; rf; [𝐺.REC])]) ⊆ 𝑆
PROOF: dom([W]; pb; [dom([W]; pb?; rf; [𝐺.REC])]) =
dom([W]; pb; [W]; pb?; rf; [𝐺.REC]) =
dom([W]; pb; rf; [𝐺.REC]) ⊆ 𝑆

⟨2⟩3. Q.E.D.
PROOF: Steps ⟨2⟩1 and ⟨2⟩2 suffice; 𝑆 is a union of two sets.

⟨1⟩3. Q.E.D.
PROOF: Steps ⟨1⟩1 and ⟨1⟩2 render 𝑆 a snapshot by definition.

(⇐)
LET: 1. 𝐺 be an erroneous consistent execution of 𝑃 and 𝑆 a snapshot

of 𝐺
2. 𝐺′ be the corresponding instrumented execution of 𝐺 where

dom(rf; [𝐺′.REC]) ⊆ frontier(𝑆)
SUFFICES: 𝐺′ is consistent according to Def. 8.3.2
⟨1⟩1. 𝐺′|𝐺′.NREC = 𝐺 is consistent

PROOF: By construction.
⟨1⟩2. [𝐺′.REC]; rb; pb?; rf; [𝐺′.REC] = ∅
LET: Let 𝑟 = [𝐺′.REC]; rb; pb?; rf; [𝐺′.REC]

⟨2⟩1. 𝑟 = [𝐺′.REC]; rf−1; co; pb?; rf; [𝐺′.REC]
PROOF: By definition of rb.

⟨2⟩2. 𝑟 ⊆ [𝐺′.REC]; rf−1; [frontier(𝑆)]; co; pb?; [frontier(𝑆)]; rf; [𝐺′.REC]
PROOF: From ⟨2⟩1 andby construction (dom(rf; [𝐺′.REC]) ⊆ frontier(𝑆)).

⟨2⟩3. 𝑟 ⊆ [𝐺′.REC]; rf−1; [frontier(𝑆)]; co; pb?; [𝑆]; rf; [𝐺′.REC]
PROOF: From ⟨2⟩2 and frontier(𝑆) ⊆ 𝑆.

⟨2⟩4. 𝑟 ⊆ [𝐺′.REC]; rf−1; [frontier(𝑆)]; co; [𝑆]; pb?; rf; [𝐺′.REC]
PROOF: From ⟨2⟩3 and 𝑆 being pb-downward-closed.

⟨2⟩5. Q.E.D.
PROOF: From ⟨2⟩4 and frontier(𝑆); co; [𝑆] ⊆ frontier(𝑆); pb; [𝑆] = ∅

⟨1⟩3. Q.E.D.
PROOF: Steps ⟨1⟩1 and ⟨1⟩2 guarantee consistency of 𝐺′ by definition.

8.4 EXAMPLE

Let us now see how PERSEVERE works through an example. Consider
the program below manipulating 𝑥 and 𝑦 under SC with weakest per-
sistency:

𝑥 ∶= 1
𝑦 ∶= 1

E
𝑎 ∶= 𝑦
𝑏 ∶= 𝑥
assert(¬(𝑎 = 1 ∧ 𝑏 = 0))

(REC-WW+RR)

As before, the code to the right of E denotes the recovery observer, in-
quiring whether it is possible upon recovery to see the second write

8.4 EXAMPLE 111

1 init

W(𝑥, 1)

W(𝑦, 1)

3 init

W(𝑥, 1)

W(𝑦, 1)

R(𝑦)

4 init

W(𝑥, 1)

W(𝑦, 1)

R(𝑦)

R(𝑥)

3 init

W(𝑥, 1)

W(𝑦, 1)

R(𝑦)

R(𝑥)

2 init

W(𝑥, 1)

W(𝑦, 1)

R(𝑦)

2 init

W(𝑥, 1)

W(𝑦, 1)

R(𝑦)

R(𝑥)

1 init

W(𝑥, 1)

W(𝑦, 1)

R(𝑦)

R(𝑥)

Figure 8.2: PERSEVERE: Enumerating post-crash states of REC-WW+RR

111 Recall that only
same-location writes
are pb-ordered.

but not the first; i.e., 𝑎 = 1 ∧ 𝑏 = 0. Under weakest persistency, this is
indeed possible111; we next show how PERSEVERE generates all possible
outcomes of REC-WW+RR including one where 𝑎 = 1 ∧ 𝑏 = 0.

Assuming that the recovery observer runs after the main program,
PERSEVERE takes over after all consistent executions of a given program
have been enumerated (see Fig. 8.2). In the case of REC-WW+RR, the
program has a single execution (execution 1), and there is no pb edge
between the two W events as they write to different locations. This will
play in important role in the next steps, when PERSEVERE starts explor-
ing the recovery thread.

PERSEVERE adds the events of the recovery observer and checks for
instrumented consistency. When R(𝑦) is added, it is consistent for it
to read either the value of the main program or the initial value, and
hence PERSEVERE recursively explores both scenarios (graphs 2 and
3). (Note that consistency is checked in the instrumented execution;
see Def. 8.3.2.)

Let us assume that PERSEVERE continues with 2 . Next, PERSEVERE
adds the R event corresponding to 𝑏 ∶= 𝑥, which can similarly read
from two values without breaking consistency: the value 1 written by
the main program or the initial value. As before, PERSEVERE explores
both options, leading to executions 1 and 2 .

112 P ER S EVERE : MODEL CHECK ING FOR PER S I S T ENCY

Finally, PERSEVERE backtracks to graph 3 and, after adding the R(𝑥)
event again, explores executions 3 and 4 , thereby concluding the
exploration.

Suppose now we used strict persistency as the model instead. Then,
the exploration would proceed as before except that 2 would not be
generated because it would be inconsistent.

Part III

TOOL S & EVALUAT ION

9
112 Kater:
Automating Weak
Memory Model
Metatheory and
Consistency
Checking (Project
page) [KLV23a];
GenMC: Generic
model checking for
C programs [Kok]

113 “Checking NFA
equivalence with
bisimulations up to
congruence” [BP13]

114 “Repairing
sequential
consistency in
C/C++11”
[Lah+17]

TOOLS

KATER and GENMC as described in §3 and §5 are available as open-
source tools112. KATER can provemetatheoretical properties ofmemory
models written in the kat language of §3, while GENMC can currently
verify C/C++programs, but can be easily extended to verify programs
in any language that compiles down to LLVM-IR.

In this chapter, we describe the implementation of each tool, as well
as their interaction: aswe saw in §4, KATER can also be used as ametapro-
gramming tool to produce consistency-checking code that can be in-
tegrated to GENMC. This makes integrating new memory models to
GENMC trivial.

9.1 KAT ER

The most important design decision we have to take as far as language
inclusion is concerned is the inclusion algorithm itself. We opt for a
breadth-first version of the Hopcroft-Karp algorithm that constructs
DFAs on the fly, instead of constructing them a priori. Even though
one canuse amore sophisticated algorithm for inclusion checking (e.g.,
the ones described by Bonchi and Pous113), the Hopcroft-Karp algo-
rithm seems to perform well enough for the tests we consider (see
§10.1.1). Breadth-first traversal naturally leads to minimal counterex-
amples, which are easier to understand by humans.

To reduce the size of the automata used in the inclusions, weperform
some of the saturations described in §3 implicitly. Instead of replacing
rf with rfe ∪ rfi on the right-hand side of an inclusion, we simply
modify our inclusion algorithm to allow the right-hand side to take
an rfe/rfi step whenever the left-hand side takes an rf step. More
generally, given an inclusion 𝑎 ⊆ 𝑏, we do allow 𝑏 to take a transition 𝑡𝑏
when 𝑎 takes a transition 𝑡𝑎, as long as 𝑡𝑎 ⊆ 𝑡𝑏. Finally, in order for us
to avoid empty assumptions like rf ;co = ∅we equip KATER with some
domain knowledge so that it can automatically understand when two
transitions do not compose.

9.2 GENMC

GENMC is a push-button verification tool that accepts as input aC/C++
program using C/C++11 atomics and/or the concurrency primitives
from the pthread library, and reports any data races, assertion vio-
lations, or other errors encountered. By default, verification is per-
formed with respect to the RC11 memory model114, but there are com-

115

116 TOOL S

115 “Bridging the gap
between

programming
languages and
hardware weak

memory models”
[PLV19]

116 “Frightening
small children and

disconcerting
grown-ups:

Concurrency in the
Linux kernel”

[Alg+18]

117 “VSync:
Push-Button

Verification and
Optimization for
Synchronization

Primitives on Weak
Memory Models”

[Obe+21b]

118 See §7.

mand line options for selecting othermodels, such as IMM115, LKMM116,
or any other model that can be encoded in KAT.

The main design goals of its implementation were:

G ENERAL I T Y: The tool should be able to verify programs written in
a variety of programming languages with respect to a variety of
memory models.

E F F I C I ENCY: The tool should implement a state-of-the-art SMC algo-
rithm and incorporate further optimizations for common pro-
gramming patterns.

U SAB I L I T Y: The tool should provide useful and readable error mes-
sages.

E X T ENS I B I L I T Y: The tool should be easily adaptable to support addi-
tional models and synchronization primitives, and to tweak its
performance. Extensibility is key to achieving the other goals,
since it allows gradual improvements to the tool in terms of cov-
erage, performance, and error detection/reporting.

These goals are achieved by a combination of techniques:

• GENMC’s core DPOR algorithm is parametric in the choice of the
memory model—subject to a few minimal constraints (§5)

• The implementation is based on LLVM, a versatile intermediate
language for multiple programming languages.

• GENMC follows a modular architecture minimizing dependen-
cies across components (see § 9.2.3.1), which makes it easy to
extend with support for additional memory models (§9.3) and
synchronization primitives (§9.2.1).

• GENMC contains a number of optimizations that provide notice-
able performance benefits on common workloads (§9.2.3.2).

• GENMC keeps additional metadata so as to present error mes-
sages in terms of variables names appearing in the source code
(§9.2.3.4).

GENMC has been applied to a few industrial settings, where it has
foundbugs and/or verified bounded correctness of concurrent libraries117.

Verification with GENMC comprises three stages (Fig. 9.1).
The first stage invokes clang to compile the source C/C++ program

to LLVM-IR. To accommodate programswritten in different languages,
GENMC also accepts LLVM-IR as its input, provided that it adheres to
certain conventions about thread creation.

The second stage transforms the LLVM-IR code to make verification
more effective by replacing spinloops by assume statements118, bound-
ing infinite loops, and performing sound optimizations, such as dead

9.2 GENMC 117

Compilation

Transformation

Verification

� Success X Error report

Figure 9.1: GENMC’s overall architecture

119 See §9.2.3.4 for
an error report
produced by
GENMC.

120 “Frightening
small children and
disconcerting
grown-ups:
Concurrency in the
Linux kernel”
[Alg+18]
121 As these features
seemed to be largely
ignored by the tool
users, recent
GENMC versions no
longer support them.
122 “PerSeVerE:
Persistency
semantics for
verification under
ext4” [Kok+21]

allocation elimination. It also collects additional debugging informa-
tion to enable better error reporting.

The third stage invokes the verification procedure, which explores
all the executions of the program. If an error is found during this stage,
the execution is halted and an error report is produced119.

In what follows, we describe these stages in detail.

9.2.1 Compilation and Supported Libraries

As already mentioned, even though GENMC operates on LLVM-IR, it
also accepts input programs written in high-level languages like C or
C++. In principle, GENMC can be extended to handle any input lan-
guage that compiles to LLVM-IR, as GENMC only relies on a working
compiler installation for a given language.

Crucially, however, GENMC requires that all concurrency aspects of
a program (i.e., atomic accesses, memory allocation and thread cre-
ation) are compiled to specific LLVM-IR instructions that the runtime
can intercept (see §9.2.3). GENMC achieves this by providing its own
concurrency API, which is then used by language headers. Concretely,
in the case of C and C++, GENMC provides stubs for commonly used
headers (e.g., pthread.h, threads.h, stdatomic.h, etc) that compile
to its own concurrency API, so that user code that uses such headers
can be properly analyzed by the tool.

Providing such an API is also beneficial when extending GENMC for
differentmemorymodels and languages. For instance, adding support
for LKMM120 required thatGENMCsupport LKMM-specific primitives
for atomic accesses, thread creation, etc. Adding such supportwas triv-
ial, as it merely entailed having all LKMM-specific primitives compile
to GENMC’s API. In a similar manner, adding support for a new lan-
guage merely entails providing certain stubs, as opposed to adding
extra runtime support for the language’s concurrency primitives.

In addition to providing stubs for all concurrency-related headers,
GENMCalso used to provide stubs for certain system calls121 like open(),
read(), write(), etc, andmodeled both their consistency and their per-
sistency effect, assuming an ext4 filesystem122.

118 TOOL S

123 Unfortunately,
this design choice

turned out to be an
erroneous one. The

design of the
interpreter changed

more often than
anticipated, thereby

making the
maintenance of the

system call
implementations

arduous.
124 GENMC

generally tries to be
SV-COMP-

compatible, and
prefixes such

function names with
__VERIFIER_.
125 Writing an

LLVM Pass [03b]

There are two ways one could implement these system calls: either
by providing an actual implementation (which would then be com-
piled to LLVM-IR) or by adding support in the interpreter to inter-
nally implement those calls and communicating multiple times with
the driver.

GENMC employed the latter solution because it is more portable and
more efficient. An external implementationwould have to bemanually
ported whenever support for more languages is added. By contrast,
the internal implementation needs no change. Further, even if a new
interpreter for a different runtime system is added, it should be simple
to decouple the system calls from the interpreter, and have the different
runtime systems share the infrastructure that handles system calls123.

Finally, GENMC also exposes some header files that contain func-
tions that can be used by user programs to aid verification. Examples
of such functions include assume statements124, functions that can be
used to declare that awrite to a (static) variable cannot be seen by other
threads, functions that can be used to denote zero-effect spinloops, etc.

9.2.2 Static Transformations

As soon as the program code is compiled to LLVM-IR, verification can,
in principle, begin. Instead of immediately trying to verify the pro-
gram, however, it is beneficial to first employ some static transforma-
tions so as to make verification faster (often, exponentially faster).

In this section, we describe the implementation of some key static
transformations employed by GENMC, including the ones of SAVER
(see §7.2). These transformation are implemented as LLVM passes125.

9.2.2.1 Dead Code Elimination & Function Inlining

A first transformation performed by GENMC is an SMC-safe form of
dead code elimination (DCE). The reason an SMC-safe form of DCE is
required is that we cannot simply remove e.g., unused load/store in-
structions, as these can potentially access unallocated/freed memory,
thereby revealing memory errors.

As such, GENMC employs a conservative worklist-based algorithm
to eliminate dead or redundant instructions. By dead, we mean (non-
memory) instructions the result of which is never used, while by re-
dundant wemean certain LLVM-specific instructions that can be safely
removed (e.g., LLVM intrinsics, typecasts to the same type).

Even though DCE is purely an engineering improvement (and does
not aid verification), it can lead to a significant performance improve-
ment. As the performance of GENMC’s interpreter greatly depends on
the LLVM code size, reducing that size has a large cumulative effect
when the interpreter re-runs the program.

9.2 GENMC 119

To further aid DCE, GENMC additionally applies a function inlining
pass before performing DCE.

9.2.2.2 Loop Rotation

Let us now move to some transformations related to SAVER, and the
transformations of loops to effect-free spinloops (see §7.2.4). The first
such transformation is loop rotation.

Although LLVM already contains an implementation of a loop ro-
tation pass, GENMC employs a custom pass that is applied to loops
whose rotation is deemed worthwhile. The problem with the LLVM
loop rotation implementation is that it performs a more aggressive
transformation by converting loops to a canonical form containing a
single backedge. That is, if the loop containsmultiple backedges, it con-
structs a new nodewith a backedge to the loop header and redirects all
the existing backedges to the new node. This latter transformation is
detrimental to the static detection of effect-free paths because it would,
for example, conflate the three loopy paths of ms-queue’s dequeue op-
eration (Fig. 7.8), thereby disabling the spin-assume transformation
for the two that are effect-free.

To avoid this unintended consequence, onewould then have to undo
this transformation (e.g., by invoking a form of jump threading) or rely
on dynamic purity checks (see §7.2.5).

Instead, and to be able to statically transform asmany loops as possi-
ble, we opted for implementing a custom loop rotation pass, that trans-
forms simple loops like CAS-LOOP2; loops that are not captured by the
custom pass are handled dynamically.

9.2.2.3 Bisimilarity

Moving on to the merging of bisimilar nodes, there are also a couple
of points worth mentioning regarding the implementation. First, de-
tecting bisimilar nodes on LLVM is more complicated than what was
discussed in §7.2.4 because LLVM represents programs in static single
assignment (SSA) form. The effect of this design choice is that there are
never two nodes with identical assignments on their outgoing edges,
since by the SSA definition each assignment is to a different register.
Therefore, the standard bisimilarity algorithm outlined earlier in this
section will not detect any nodes as being bisimilar!

As an example, consider the “SSA-CFG” of thread II of the LOOP-PEEL
program from § 7.2.4, which is shown below. The SSA-CFG is an
enriched kind of CFG whose nodes may have 𝜙-guards that define a
variable differently depending on the incoming control flow path. For
instance, in the SSA-CFG above, at node 2, 𝑏1 is defined to be equal to
𝑏0 if node 2 is reached from node 1, or to 𝑏2 if it is reached from node
4.

120 TOOL S

1

2𝑏1 ∶= 𝜙(𝑏0/1, 𝑏2/4) 3

4

𝑏0 ∶= 𝑥
assume(𝑏1 = 0)

assume(𝑏1 ≠ 0)𝑏2 ∶= 𝑥

Figure 9.2: The “SSA-CFG” of thread II of LOOP-PEEL

𝑎 ∶= 0
𝑏 ∶= 𝑥
while (true)

𝑎 ∶= 𝑎 + 1
𝑏 ∶= 𝑥

1

2

3𝑎1 ∶= 𝜙(𝑎0/2, 𝑎2/4) 𝑏1 ∶= 𝜙(𝑏0/2, 𝑏2/4)

4

𝑎0 ∶= 0

𝑏0 ∶= 𝑥

𝑎2 ∶= 𝑎1 + 1𝑏2 ∶= 𝑥

Figure 9.3: Merging bisimilar nodes in SSA

In order to match nodes 1 and 4, GENMC’s bisimilarity implementa-
tion has to not only account for 𝜙-nodes, but also unify the variables 𝑏0
and 𝑏2. It does so by collecting equality constraints and solving them
by unification. For each node with more than one incoming edge, the
algorithm starts iterating backwards for each pair of predecessors, and
collects the constraints under which these predecessors are equal, sim-
plifying them along the way. The iteration stops when some nodes
cannot be equal under any constraints, or the entry node has been
reached. At that point, any pair of nodes whose constraints can be
trivially solved (namely, nodes 1 and 4 above) are deemed bisimilar.

Besides making bisimilarity detection more complex, SSA also af-
fects the merging of bisimilar nodes. Consider the program of Fig. 9.3
along with its SSA-CFG. As can be seen, each of the assignments is to
a different register, and node 3 contains two 𝜙-guards (one for 𝑎 and
one for 𝑏) selecting the appropriate register to use depending on the
incoming branch.

With the algorithm outlined above one can detect that nodes 2 and
4 are bisimilar. However, one cannot simply add an edge 𝑎2 ∶= 𝑎1 + 1
from node 3 to node 2 because that would violate the SSA form. To
ensure that the resulting CFG is well-formedwe also have to introduce
a 𝜙-guard at node 2 to say which version of 𝑎 should be used for node
2.

GENMC’s implementation achieves this by moving 𝜙-guards the in-
coming values of which have not been deemed bisimilar (e.g., the 𝜙-
guard for 𝑎 here) to the new loop header, along with any other incom-
ing edges these 𝜙-guards have.

9.2 GENMC 121

126 An example of
such a loop is the
push method of
treiber-stack as
described in §7.2.5.

127 Possibly
excluding certain
loops indicated by
the user.

9.2.2.4 Escape Analysis

Next, to increase the applicability of the (static) spin-assume transfor-
mation, GENMC employs an escape analysis pass. Whenever a loop
contains store instructions which write to variables that have not yet
been made visible to other threads126, the spin-assume transformation
should still apply.

GENMC’s escape analysis pass uses a simple worklist-based algo-
rithm to find possible escape points of allocation instructions. Such
escape points include call, return, and store instructions. If a loop con-
tains a store to a variable that escapes after the loop, then the spin-
assume transformation can still be applied.

9.2.2.5 Spin-Assume

Of course, there is also the spin-assume transformation itself (see §7.2),
that handles effect-free loops (§7.2.4), as well as the static part of the
ZNE transformation (§7.2.6).

9.2.2.6 Load Annotation

Tomitigate the state-space explosion created by the assume statements
in the code (e.g., introduced by the spin-assume pass), GENMC em-
ploys a load annotation pass, as described in §7.3.1.1. In terms of rep-
resentation, GENMC represents annotations as expressions with a dis-
tinguished register corresponding to the value of the load. This regis-
ter will then be replaced by possible values that the load can read at
runtime, from the verification driver.

9.2.2.7 Loop Bounding

Finally, a last transformation that helps in dealing with infinite loops
not handled by the spin-assume pass, is GENMC’s loop-bounding pass.
This pass bounds all loops in the program127 by modifying their CFGs
so that they decrement some dedicated variables (representing the
loop bound) every time a backedge is taken. When such a dedicated
variable reaches 0, the respective thread is “killed”.

9.2.3 Verification Infrastructure

Let us now take a closer look at the verification infrastructure ofGENMC.
Below, we describe its architecture, as well as certain optimizations the
tool performs, and its parallelization.

122 TOOL S

11
1 1

1

1

Driver

RC11 IMM LKMM

Interpreter Execution Graph

Work Set

Figure 9.4: GENMC’s verification components

128 See §9.3 for more
information how

these data structures
can be controlled by

the users.

129 lli - directly
execute programs

from LLVM
bitcode [03a]

130 “Design of a
separable

transition-diagram
compiler” [Con63]

9.2.3.1 Architecture

The architecture ofGENMC’s dynamic components are depicted in Fig. 9.4.
At the center lies the verification driver, which owns three independent
components: an interpreter, an execution graph, and a work set.

The execution graph records the visited execution trace, and has rou-
tines for calculating some basic relations on the graph, such as rf and
po. As each memory model comprises different relations, the execu-
tion graph contains intrusive data structures that are dynamically pop-
ulated during the exploration. These data structures are then used dur-
ing consistency calculation (which is performed by the driver)128.

The work set records revisit options for later exploration, the precise
definition of which can depend on the memory model.

The interpretermerely executes the user program, notifying the driver
each time a “visible” action (e.g., a load/store to sharedmemory) is en-
countered. It is directly based on the LLVM interpreter lli129, and is
the only part of GENMC’s code base that heavily depends on LLVM.

In turn, the driver modifies accordingly the execution graph, possi-
bly pushes some items to the work set, and returns control back to the
interpreter, along with a value that will be used by the interpreter, if
necessary (e.g., in the case of a load).

In effect, the driver and the interpreter can be thought of as corou-
tines130. The interpreter calls the driver whenever it encounters a vis-
ible action or finishes running a thread, while the driver monitors ex-
ecution consistency, schedules the program threads, and discovers al-
ternative exploration options, which are pushed to the work set.

As far as the verification algorithm itself is concerned, the driver
mostly follows the recursive version of TRUST (using an explicit stack—
the work set), but performs forward revisits in place, and only copies
the graph for backward revisits. Although this means that the im-
plementation consumes quadratic space, it is most likely faster than
the purely iterative version of TRUST that needs to rebuild the execu-
tion graph after each backward revisit by re-interpreting the program.

9.2 GENMC 123

131 Generated by
KATER; see §9.3.

132 These delete a
larger part of the
graph and hence the
interpreter has more
work to do than to
simply “replay” an
already existing part.

133 As one example,
each GENMC thread
compiles the user
program separately,
so that the
representation of the
compiled instances
do not share any
LLVM code.

Moreover, as our experiments confirm (§10.2), the memory consump-
tion of GENMC’s implementation is never an issue.

Finally, the aforementioned components are all parameterized by
user configuration options. The most important of these options is
the memory model, which also determines whether dependencies be-
tween instructions should be tracked by the interpreter and stored in
the execution graph. Concretely, the driver is overridden for each avail-
ablememorymodel, and each instance providesmemory-model-specific
consistency checks andmethods for crucial verification components131.

9.2.3.2 Optimizations

To further enhance the performance of its core algorithm(TRUST), GENMC
employs certain algorithmic and engineering optimizations.

As a first example of an algorithmic optimization, GENMC tries to re-
duce the verification problem to an easier one, using a simple syntactic
robustness criterion. More specifically, if the user requests verification
under a model M1, but only uses a fragment of M1 that coincides with
a model M2, then GENMC will verify the program under M2. For in-
stance, suppose the user requests verification under RC11, but the in-
put program only uses SC accesses and/or locking primitives. In such
a case, it is safe to verify the program under SC, which implies signifi-
cantly less complex consistency checking.

As a further example, leveragingTRUST’smaximal extensions, GENMC
does not perform any consistency checks whenever an event 𝑒 is added
maximally in the current exploration. As guaranteed by extensibility,
𝑒 does not violate consistency when added maximally, and hence con-
sistency checks can be skipped.

As far as engineering optimizations are concerned, two prime exam-
ples include the scheduling policy used and the caching of instructions.
Specifically, in order to reduce the number of backward revisits per-
formed132, GENMC prioritizes the scheduling of writes over reads. In
order to reduce reliance on the interpreter even more, GENMC caches
the instructions that follow each read (for each encountered value) in
a trie, so that the interpreter does not have to be re-run every time a
read is revisited.

9.2.3.3 Parallelization

As mentioned in §6.3.3, different subexplorations in GENMC can pro-
ceed completely in parallel, with no sharing required among them.

When parallelizing the implementation of GENMC, there were two
major challenges that had to be surmounted. The first challenge was
thatGENMCuses several LLVM intrinsics that are not thread-safe. Thus,
to preclude concurrency bugs due to the internal LLVM libraries on
which GENMC relies, a significant portion of GENMC’s infrastructure
was redesigned to reduce its reliance on LLVM intrinsics133, so that dif-

124 TOOL S

134 See §10.2.

135 DOT (graph
description

language) [23]

ferent threads can communicate in a thread-safe manner.
Another issuewas how topinpoint the correct design for inter-thread

communication. For that, GENMC employs the following simple solu-
tion: it generates parallel tasks only for backward revisits. Indeed, as
GENMC copies the current execution graph for backward revisits any-
way, in a multicore setting, the copied graph can simply be passed to
another worker thread, so that the two explorations can proceed in par-
allel.

Granted, such a design relies on there being enough backward revis-
its in a given program, but it nevertheless seems provides good scala-
bility in practice134. Even though we also tried providing each thread
with its ownwork-stealing queue, we found that this approach did not
yield any benefits over the current implementation.

Putting everything together, GENMC’s implementation has polyno-
mial memory requirements and takes full advantage of the underlying
machine’s parallelism: as we will see in § 10.2.7, GENMC achieves an
almost linear speedup when scaling to the number of physical cores
available.

9.2.3.4 Error Detection & Reporting

GENMCdetects a number of different kinds of errors: violations of user-
supplied regular and persistency assertions, data races, memory errors
and simple cases of termination errors. It reports errors by printing an
offending execution graph and highlighting the event(s) that caused
the violation. Upon request, GENMC can also print a total ordering
of the instructions that lead to the violation, or produce the offending
execution in the DOT language135.

M EMORY ERROR S Memory errors refers to accessing uninitialized,
unallocated or deallocated memory. In models like RC11, reasoning
about memory safety can be tricky at times, as demonstrated by the
example below:

𝑟 ∶= malloc()
[𝑟]rlx ∶= 42
𝑦rlx ∶= 1

𝑎 ∶= 𝑦rlx

if (𝑎 = 1)
𝑏 ∶= [𝑟]rlx

This example is erroneous under RC11 because the allocation stored
in 𝑟 is not guaranteed to have propagated to thread II by the time it is
dereferenced. (Since all accesses are relaxed, there is no synchroniza-
tion between the threads.)

GENMC also accounts for more complicated scenarios such as 𝑟’s lo-
cation being concurrently freedwhen accessed, 𝑟’s location being freed
twice, or 𝑟 containing the address of a local (stack) variable that might
not be alive when accessed.

9.2 GENMC 125

136 “VSync:
Push-Button
Verification and
Optimization for
Synchronization
Primitives on Weak
Memory Models”
[Obe+21b]

init

W(𝑥, 1) R(𝑥)

B

Figure 9.5: A live-
ness violation for
W+R-LOOP

137 Crossbeam: Flat
combining #63
[Sch16]

L I V ENE S S ERROR S In order to report liveness errors, GENMC follows
the approach of Oberhauser et al.136. Given a potentially effect-free
spinloop 𝐿 that blocks in a full execution 𝐺, if all the reads in 𝐿’s last
iterations are reading co-maximally in 𝐺, then 𝐺 represents a termina-
tion error and is reported to the user.

As a trivial example, consider the following (single-threaded) pro-
gram and its execution in Fig. 9.5:

𝑥 ∶= 1
𝑎 ∶= 𝑥
while (𝑎 = 1) {}

(W+R-LOOP)

As the read of 𝑥 is reading co-maximally (the only value available to it,
in this case) and the loop blocks, the graph corresponds to a liveness
violation.

R E F IN ING ERROR REPORT S It is often useful to refine the error re-
porting. For example, inmemorymodels that treat data races as errors
(such as RC11), GENMC by default detects data races and reports them
as errors. This, however, can be costly in terms of verification time or
even prohibit the verification of programs that use compiler/custom
primitives to access shared memory, as such programs would almost
certainly be considered racy.

To deal with such cases, GENMC provides switches that disable race
detection and refine the range of errors that will be reported to the
user. Switches of the latter kind are especially useful when dealing
with programs that contain system calls. By default, when such system
calls fail, GENMC reports an error, which is inconvenient for programs
that contain proper error handling, as some system errors are rather
benign (e.g., a file not existing). With the appropriate switch, in case
of system errors, an appropriate value is written in errno, as dictated
by the POSIX standard.

CA S E STUDY Wedemonstrate the error reporting capabilities ofGENMC
with a real use case. We consider a flat-combining queue137 that has
been proposed to be ported in Rust’s crossbeam library.

This queue serves as a nice case study for a couple of reasons. First,
it contains loops that can diverge, and so its verification requires loop
bounding, which GENMC can do automatically. Second, it is imple-
mented using compiler primitives for concurrent accesses, and so its
verification requires disabling race detection. Third, while experiment-
ing with it, we found it to be buggy.

The error report produced by GENMC can be seen in Fig. 9.6. The
error is quite intricate: it requires three threads to manifest, each of
which executes a large number of instructions. The error is due to an
ordering bug (relaxed accesses are used instead of release/acquire),
which demonstrates the need for model checking tools that handle
weak memory models.

126 TOOL S

Error detected: Attempt to read from uninitialized memory!
Event (3, 63) in graph:
<-1, 0> main:

<0, 1> thread_n:

(1, 18): Urel (cmb.queue, 0) [(0, 36)] L.169: combiner.c
(1, 19): Urel (cmb.queue, 2565579352) L.169: combiner.c

(1, 96): Racq (m.msg._meta.next, 2565579416) [(2, 26)] L.228: combiner.c

(1, 112): Wrlx (cmb.takeover, 2565579416) L.158: combiner.c
<0, 2> thread_n:

(2, 26): Wrel (m.msg._meta.next, 94798317999592) L.167: combiner.c
<0, 3> thread_n:

(3, 18): Urel (cmb.queue, 2565579352) [(1, 19)] L.169: combiner.c
(3, 19): Urel (cmb.queue, 2565579480) L.169: combiner.c

(3, 50): Rrlx (cmb.takeover, 2565579416) [(1, 112)] L.87: combiner.c

(3, 63): Racq (m.msg._meta.next, 0) [BOTTOM] L.187: combiner.c

Number of complete executions explored: 2795
Number of blocked executions seen: 6001
Total wall-clock time: 2.12s

Figure 9.6: GENMC error report after removing irrelevant lines

Note that the error report contains helpful debugging information,
such as the names of variables accessed (e.g., m.msg._meta.next) and
the values read/written. To display this information, GENMC main-
tains a mapping from addresses to program variables using the addi-
tional debugging information collected in the “Transformation” phase.

9.3 THE INT ERACT ION BE TWEEN KATER AND GENMC

We end this chapter by presenting some details on the integration of
the consistency checks produced by KATER (see §4.2) into GENMC. Af-
ter showing how KATER-generated checks are integrated into GENMC
GENMC(§9.3.1) , we showhow these routines can be optimized (§9.3.2),
and then how KATER can validate GENMC’s memory-model require-
ments (§9.3.3).

9.3.1 Integrating KATER with GENMC

Integrating the consistency checking procedure of §4.2 into GENMC
consists of merely generating C++ code that GENMC can use in order to
check graph consistency.

An example consistency checker for SC (see Fig. 4.2) is shown in
Fig. 9.7. In order to check consistency upon the addition of a new event
𝑒 in a graph 𝐺, isConsistent(G,e) initiates a single DFS exploration
by calling visit0 and visit1, essentially modeling that NFAM can be
in any state (i.e., 𝑞0 or 𝑞1) when a 𝐺-cycle accepted by NFAM passes
through 𝑒. Whenever the DFS algorithm detects a cycle (i.e., when-
ever it encounters a back edge; e.g., in line 5), it checks whether NFAM

9.3 THE INT ERACT ION BE TWEEN KATER AND GENMC 127

� �
bool visit0(const ExecutionGraph &g, Event e)
{
setStatusAt0(e, ENTERED);

4 for (auto &p : po_imm_succs(g, e)) {
if (getStatusAt0(p) == UNSEEN && !visit0(p)) return false;
else if (getStatusAt0(p) == ENTERED && cycleHasAccepting()) return false;

}
for (auto &p : rf_succs(g, e)) {

9 if (getStatusAt0(p) == UNSEEN && !visit0(p)) return false;
else if (getStatusAt0(p) == ENTERED && cycleHasAccepting()) return false;

}
for (auto &p : co_imm_succs(g, e)) {
if (getStatusAt0(p) == UNSEEN && !visit0(p)) return false;

14 else if (getStatusAt0(p) == ENTERED && cycleHasAccepting()) return false;
}
for (auto &p : rf_inv_succs(g, e)) {
if (getStatusAt1(p) == UNSEEN && !visit1(p)) return false;
else if (getStatusAt0(p) == ENTERED && cycleHasAccepting()) return false;

19 }
setStatusAt0(e, LEFT);
return true;

}

24 bool visit1(const ExecutionGraph &g, Event e)
{
setStatusAt1(e, ENTERED);
for (auto &p : co_imm_succs(g, e)) {
if (getStatusAt0(p) == UNSEEN && !visit0(p)) return false;

29 else if (getStatusAt0(p) == ENTERED && cycleHasAccepting()) return false;
}
setStatusAt1(e, LEFT);
return true;

}
34

bool isConsistent(const ExecutionGraph &G, Event e)
{
return visit0(G,e) && visit1(G,e);

}� �
Figure 9.7: KATER-generated code for SC-consistency checking

passed through an accepting state1, and if so, returns false to denote
a consistency violation.

9.3.2 Optimizing Consistency Checking for GENMC

Even though the above procedure is linear in the size of the product of
NFAM and NFA𝐺, there are still a couple of ways we can improve it in
the context of GENMC.

First, we can make NFAM even smaller by merging its transitions.
Take NFA𝑆𝐶 (cf. Fig. 4.2), for instance. If we merge rf−1; co|imm

+ into
a single rb|imm transition, we can get rid of visit1 and end up with a
single-state automaton for SC, yielding a twofold complexity improve-
ment. The only difference in the generated DFS code is that we will
have to iterate over the rb|imm successor instead of the rf−1 successor
in line 16.

Deciding whether to merge two transitions or not is largely a matter
of engineering and tuning (automaton size vs transition complexity).
In our experience, however, it is almost always worth merging pred-
icate (guard) transitions with their successors. Such transitions boil

1 The bookkeeping code for checkingwhether a cycle passed through an accepting state
is omitted here for brevity.

128 TOOL S

𝑞0 𝑞1𝑞2

rf, co, rb

po[R]

[W]po

� �
bool visit0(const ExecutionGraph &g, Event e)

2 {
setStatus0(e, ENTERED);
[...]
for (auto &p : po_imm_succs(g, e)) {
if (getStatus0(p) == UNSEEN && !visit1(p))

return false;
7 else if (getStatus0(p) == ENTERED &&

cycleHasAccepting()) return false;
}
if (isRead(g, e)) {
if (getStatus0(e) == UNSEEN && !visit2(e))

return false;
else if (getStatus0(e) == ENTERED &&

cycleHasAccepting()) return false;
12 }

setStatus0(e, LEFT);
return true;

}

17 bool visit1(const ExecutionGraph &g, Event e)
{
setStatus1(e, ENTERED);
if (isWrite(g, e)) {
if (getStatus0(e) == UNSEEN && !visit0(p))

return false;
22 else if (getStatus0(p) == ENTERED &&

cycleHasAccepting()) return false;
}
setStatus1(e, LEFT);
return true;

}
27

bool visit2(const ExecutionGraph &g, Event e)
{
setStatus2(e, ENTERED);
for (auto &p : po_imm_succs(g, e)) {

32 if (getStatus0(p) == UNSEEN && !visit0(p))
return false;

else if (getStatus0(p) == ENTERED &&
cycleHasAccepting()) return false;

}
setStatus2(e, LEFT);
return true;

37 }� �

𝑞0

rf, co, po, rb, po; [W], [R]; po

� �
bool visit0(const ExecutionGraph &g, Event e)
{
setStatus0(e, ENTERED);
[...]
for (auto &p : po_imm_succs(g, e))
if (isWrite(p)) {
if (getStatus0(p) == UNSEEN && !visit1(p))
return false;
else if (getStatus0(p) == ENTERED &&
cycleHasAccepting()) return false;

}
if (isRead(g, e))
for (auto &p : po_imm_succs(g, e)) {
if (getStatus0(e) == UNSEEN && !visit2(e))
return false;
else if (getStatus0(e) == ENTERED &&
cycleHasAccepting()) return false;

}
setStatus0(e, LEFT);
return true;

}� �

Figure 9.8: NFA𝑇𝑆𝑂 before and after merging predicate transitions

down to if-statements in the generated DFS code and can thus be very
efficiently merged with their successors.

To see this, consider the automaton corresponding to the TSO mem-
ory model before and after merging predicate transitions with their
successors Fig. 9.8. If no transitions are merged (cf. Fig. 9.8, left),
NFA𝑇𝑆𝑂 has three states, and each predicate transition will lead to a
separate state, thereby unnecessarily enlarging the state space. If we
domerge predicate transitions and their successors, on the other hand,
then NFA𝑇𝑆𝑂 has a single-state (cf. Fig. 9.8, right), and the merged
transitions will generate the same code as before, with the only differ-
ence being that the if-statements will be used as guards before/after
iterating the successors of an event (e.g., line 6).

9.3 THE INT ERACT ION BE TWEEN KATER AND GENMC 129

�]

� �
let eco = (rf ∪ mo ∪ fr)+

let sw = [REL] ; ([F] ; po)? ; (rf ; rmw)* ; rf ; (po ; [F])? ; [ACQ]
save hb = (po ∪ sw)+

let psc = [SC] ; po ; hb ; po ; [SC]
∪ [SC] ; ([F]; hb)? ; (po ∪ rf ∪ mo ∪ fr) scb ; (hb; [F])? ; [SC]
∪ [F]; [SC] ; hb ; [F]; [SC]
∪ [F]; [SC] ; hb ; eco ; hb ; [F]; [SC]

acyclic psc� �
Figure 9.9: The psc acyclicity axiom of RC11 in kat

138 See §5; this
relation corresponds
to corder.

The second way we can optimize our consistency checking routine
is inspired by GENMC’s existing infrastructure, and consists of saving
and reusing (parts of) relations. In many memory models, various in-
termediate relations are defined and then usedmultiple times in subse-
quent relation definitions. Take RC11’s psc, for example (cf. Fig. 9.9):
eco and hb are used multiple times in psc’s definition. Recalculating
these relations every time they are used is quite costly, as it may redo
the same computation for a given graph event, for different states of
NFAM.

To alleviate this problem, KATER provides a save keyword that can be
used to store the respective relation’s predecessors for a given event,
so that they do not have to ever be recalculated. If a user declares a
given relation 𝑟 as “saved”, KATER will generate code that calculates
an event’s 𝑟-predecessors when the event is first added, and then store
these predecessors in the graph so that they do not have to be recalcu-
lated. In addition, for relations that are transitive, it is sufficient to only
calculate the immediate predecessors of the event, so as to reduce the
memory and time complexity of the calculation.

9.3.3 Checking GENMC’s Memory-Model Requirements

Allowing users to specify memory models and to optimize their con-
sistency checks (e.g., by saving relations) makes porting new models
to GENMC much easier.

However, there are still some subtleties one has to take care of be-
fore adding support for a new model. First, GENMC requires memory
models to provide a ppo ⊆ po relation such that pporf △= (ppo ∪ rf)+
is irreflexive in consistent executions because by design it generates
only pporf-acyclic graphs138. Second, GENMC cannot usefully save ar-
bitrary relations. Since GENMC continuously modifies the current ex-
ecution graph (e.g., when trying a different rf edge for a read), we
can only save information about predecessors of an event 𝑒 that will
never be removed from the graph for as long as 𝑒 remains in the graph,
namely its pporf; ppo predecessors.

130 TOOL S

To preclude nonsensical GENMC behaviors when such requirements
are violated, KATER checks that GENMC’smemorymodel requirements
are satisfied before generating consistency checks. Concretely, KATER
will statically ensure that (a) the memory model acyclicity constraints
imply irreflexivity of pporf, and (b) for each saved relation 𝑟, we have
𝑟 ⊆ pporf; ppo, and if 𝑟 has, moreover, been declared as transitive, then
𝑟; 𝑟 ⊆ 𝑟.

10

139 Though not
strictly necessary,
readers are
encouraged to first
read §11 to get a
better overview of the
tools presented in
this section.

140 “Automated
Reasoning under
Weak Memory
Consistency
(replication
package)” [Kok23]

141 “Repairing
sequential
consistency in
C/C++11”
[Lah+17]

EVALUAT ION

Having discussed the implementation of KATER and GENMC, in this
section we evaluate their performance.

For KATER, we evaluate its performance in proving various metathe-
oretic properties.

For GENMC, we empirically demonstrate the various aspects of its
core algorithm (e.g., parametricity, polynomialmemory consumption)
on certain synthetic benchmarks, and then showhow the tool performs
on more realistic workloads. Where appropriate, we also compare
against other similar (bounded) verification tools139.

For their interaction, we compare the efficiency of KATER-generated
consistency checks in GENMC with that of GENMC’s previously em-
ployed handwritten checks.

E X P ER IMENTAL S E TUP We conducted all experiments on aDell Pow-
erEdge M620 blade system, running a custom Debian-based distribu-
tion, with two Intel Xeon E5-2667 v2 CPU (8 cores @ 3.3 GHz), and
256GB of RAM. We used LLVM 13.0.1 for GENMC. Unless explicitly
noted otherwise, all reported times are in seconds, and the timeout
limit is set to 30 minutes.

DATA AVA I LAB I L I T Y STAT EMENT All benchmarks used in this the-
sis are available online, as part of the thesis supplementarymaterial140.

10.1 KAT ER

We begin by summarizing the different metatheoretic properties we
were able to prove with KATER. These properties range over

• correctness of compilation,

• equivalence betweendifferent axiomatizations of the samemodel,
and

• soundness of local reorderings.

Arguably, the most interesting result of this part of our evaluation
is that KATER is able to reproduce some negative results from the liter-
ature, such as to show that the proposed compilation mapping from
the original version of the C11 model to Power is unsound141.

131

132 EVALUAT ION

Table 10.1: Proving correctness of queries with KATER

Compilation Time Result

RC11 → IMM 0.05 3

IMM → TSO 0.01 3

RC11 → TSO 0.04 3

C11strong → TSO 0.04 3

IMM → ARMv8 3.36 3

RC11 → ARMv8 3.48 3

C11strong → ARMv8 1.93 3

RC11/RA → POWER 3.11 3

RC11/SC → POWERweak 14.32 3

RC11/SCRW → POWER 138.35 3

RC11/SCF → POWER 56.67 3

C11orig → POWERweak 4.09 7

C11orig → POWER 16.00 7

POWER → POWERsimpl 2.48 3

Transformation Time Result

RA ↔ RA2 0.01 3

RA ↔ RA3 0.01 3

RC11 ↔ RC11alt 0.39 3

Equivalence Time Result

TSO ↔ TSOFM 0.15 3

SC ↔ SCFM 0.06 3

eco ↔ eco2 0.01 3

Coh ↔ Coh2 8.82 3

142 Some tests also
required manual

rotations. See §3.7
for more information
and for the produced

counterexamples.

10.1.1 Metatheoretic Properties

An overview with some mapping-correctness and equivalence results
we were able to prove with KATER can be seen in table 10.1. A 3 entry
denotes a successful proof, while an 7 entry denotes that KATER (cor-
rectly) identified a counterexample while trying to complete a proof.
Apart from the hard-coded assumptions on the primitive relations (see
§3.4), each of the mapping tests requires the encoding of the compila-
tion scheme as a KATER assumption142.

As is evident from the table, the time required to complete a proof
is proportional to the complexity of the memory models involved, and
ranges from a few seconds to a few minutes. As expected, KATER re-
quires less time to produce a counterexample than to prove compila-
tion for models of similar complexity, and the counterexamples it pro-
duces are minimal.

10.2 GENMC

We now proceed to evaluate the performance and features of GENMC
on a collection of synthetic and real-world benchmarks. Concretely,
the evaluation aims to answer the following questions:

• How does generality affect GENMC’s performance? Is it compet-
itive against memory-model-specific DPOR approaches?

10.2 GENMC 133

• Howstrongly does the optimality/memory tradeoffmanifest? Does
it have an impact on realistic workloads?

• How important are GENMC’s optimizations (BAM and SAVER)
for its scalability in real-world scenarios?

We can draw the following conclusions from the evaluation.
First, GENMC is the onlyDPOR tool that is optimal underweakmem-

ory models such as RC11, and optimality does play a major role when
verifying code under such models (§10.2.1).

Second, although exponential memory consumption is not typically
an issue in real-world benchmarks, there do exist certain workloads
which cause it (§ 10.2.2). Moreover, even with such workloads aside,
having different explorations being completely disjoint (with TRUST)
has another major benefit: the ability to parallelize the DPOR algo-
rithm with no sharing (§10.2.7).

Third, the optimizations employed by GENMC are crucial in its scal-
ing to larger test cases and multiple cores (Section 10.2.3 to 10.2.5).

Before evaluating the above features ofGENMC, however, we attempt
to answer a more fundamental question:

• When is DPOR useful?
There are a plethora of other automated verification techniques and

tools available, ranging frommemory-model simulators to SMT-based
approaches. It is not immediately evident, however, which techniques
are better suited for each scenario/workload.

The evaluation of §10.2.1 suggests the following.
As expected, memory-model simulators are better suited for exper-

imenting with memory-model features (typically expressed as litmus
tests), as they can handle a larger variety of models compared to SMT
and DPOR approaches.

SMT-based approaches typically scale better than DPOR for smaller
program sizes, and are more effective in leveraging symmetries in the
program code. However, they do not scale as well as DPOR does for
larger thread sizes or larger number of threads (as the whole program
code needs to be encoded as a SAT/SMT query), and do not handle
certain dynamic aspects of the code (such as aliasing) well.

Having said the above, DPOR and SMT-based approaches are very
different and cannot be fairly compared with one another. Whereas
DPOR explores all program executions up to equivalence, SMT ap-
proaches require the programs to be given a safety specification and
tries to explore only the part of the program pertinent to that specifi-
cation. SMT-based tools encode the memory model together with the
program semantics and the specification into a SAT/SMT formula, and
query an external solver to determine whether the specification is met.
To encode the program, SMT-based tools require an a priori loop bound
for programs with loops. By contrast, DPOR tools only require that all
loops terminate but do not need to unroll them.

134 EVALUAT ION

143 Competition on
Software

Verification
(SV-COMP)

[SV-19]

144 “Herding cats:
Modelling,

simulation, testing,
and data mining for

weak memory”
[AMT14]
145 rmem:

Executable
concurrency
models for

ARMv8, RISC-V,
Power, and x86

[rme09]
146 “Simplifying

ARM concurrency:
Multicopy-atomic

axiomatic and
operational models

for ARMv8”
[Pul+18]

147 “Stateless model
checking for TSO

and PSO”
[Abd+15];

“Stateless model
checking for

POWER” [Abd+16]

B ENCHMARK S E L EC T ION We harvested tests fromGENMC’s bench-
marking suite, theCompetition on SoftwareVerification (SV-COMP)143
(mostly from the pthread category), as well as benchmarks proposed
in the literature.

All in all, our suite comprises about 150 litmus tests, 120 synthetic
benchmarks, and 30 data-structure benchmarks (including lock-free
queues, stacks, and mutex algorithms).

TOOL S E L EC T ION To keep the evaluation short yet representative,
we select tools based on the following criteria.
T ECHN IQUE : To obtain a comprehensive overview of the (bounded)

verification landscape, we included tools based on different core
techniques, includingmemory-model simulators, SMT-based ap-
proaches, and DPOR algorithms.

PARAMETR I C I T Y: As tools aiming to be memory-model-parametric
are likely to face somewhat similar challenges, we preferred para-
metric tools when facing the choice to select among tools using
similar techniques. For non-parametric tools, we selected tools
that can handle weak models like RC11.

I N PUT LANGUAGE : To be able tomake sense of the resulting runtimes,
we opted for tools operating onC/C++(i.e., the tool thatGENMC
supports).

As such, the evaluation comprises the following tools.

MEMORY-MODEL S IMULATOR S HERD 144 is amemorymodel simula-
tor that allows users to experiment with different axiomatic memory
models on small “litmus test” programs written in a toy language. It
supports a wide range of models, but explores executions in a naive
fashion and scales rather poorly. For our tests, we compared against
HERD-ARMv8, due to technical issues when trying to use RC11.

RMEM 145 is a memory model simulator that, among others, supports
operational definitions of ARMv8 and RISC-V. Pulte et al. claim that
RMEM’s current operational definitions are suitable for model checking,
as they are much faster than the previous ones146, and tools like HERD.
RMEM operates on the ARMv8/RISC-V ISA, but does not support dy-
namic thread creation. Also, unlike SMC tools, RMEM does not employ
any DPOR techniques, and so does not scale very well. For our tests,
we ran RMEM under ARMv8, as RMEM does not provide RC11 semantics.

D POR TOOL S NIDHUGG 147 is a stateless model checker for C pro-
grams that supports SC, TSO, PSO, and also offers limited support for
POWER and ARMv7. Even though NIDHUGG supports multiple mem-
orymodels, it is not parametric in the choice of themodel. For SC, NID-
HUGG implements the optimal-DPOR algorithm (which may have ex-
ponential memory consumption), while under POWER it implements

10.2 GENMC 135

148 “CDSChecker:
Checking concurrent
data structures
written with C/C++
atomics” [ND13]
149 “Mathematizing
C++ concurrency”
[Bat+11]

150 “BMC for weak
memory models:
Relation analysis for
compact SMT
encodings”
[Gav+19]

151 We ran GENMC
under RC11 and a
Shasha-Snir
equivalence
partitioning.

the RSMC algorithm which is non-optimal, and does not support fea-
tures like RMW instructions. For our tests, we ran NIDHUGG under SC
and POWER, under a Shasha-Snir equivalence partitioning.

CDSCHECKER 148 is a stateless model checker for C/C++ programs
that supports a certain strengthening of the (original) C11 memory
model149 that forbids “out-of-thin- air” outcomes (see §5.1). Unlike
GENMC, it does not track dependencies, but rather uses a notion of
promises to support load-store reorderings. This often leads to infeasi-
ble explorations in programs with C11 “relaxed” memory accesses. In
addition, although CDSCHECKER operates under the reads-from equiv-
alence, it is non-optimal with respect to its partitioning, which leads to
duplicate explorations.

SMT- BA S ED MODEL CHECKER S Among the SMT-based tools, the
only one that is parametric in the choice of thememorymodel isDARTAG-
NAN 150. DARTAGNAN works for programs written in a toy language
similar—but not identical—to that of HERD, and also provides a C fron-
tend. For our tests, we ran DARTAGNAN under RC11.

10.2.1 DPOR vs Other Approaches

Westart by evaluatingGENMCagainst other state-of-the-artmodel check-
ing tools. Our evaluation revolves around the following points:

1. GENMCoutperforms all other SMC tools that supportweakmem-
orymodels likeRC11—i.e., NIDHUGG/POWERandCDSCHECKER—
as well as memory model simulators—i.e., HERD and RMEM.

2. Similarly to other SMC tools, GENMC cannot be fairly compared
against the state-of-the-art SMT-based model checkers. GENMC
tends to be faster on benchmarks with relatively few executions
(i.e., polynomial in the size of the benchmark), whereas SMT-
based tools are typically better on parametric benchmarks with
an exponential number of executions (though SMT-based approaches
explode as the program size becomes larger).

In what follows, we compare various tools on both synthetic and
data-structure benchmarks151.

10.2.1.1 Synthetic Benchmarks

Table 10.2 highlights the differences among different model checking
tools on a set of benchmarks with only loads and stores.

For the readers(N) benchmark, GENMC and CDSCHECKER perform
much better than the other stateless model checkers even though all
tools explore the same number of executions (2𝑁). On the other hand,
HERD, RMEM and NIDHUGG do not scale so well for 𝑁 = 15. For HERD
this is because it follows a very naive approach and uses inefficient

136 EVALUAT ION

Table 10.2: Synthetic benchmarks with only loads and stores
HERD RMEM NIDHUGG/POWER CDSCHECKER GENMC DARTAGNAN

readers(5) 0.03 0.13 0.12 0.01 0.04 1.93
readers(10) 1.81 2.72 4.11 0.19 0.19 127.53
readers(15) 96.36 207.66 295.58 11.07 2.61 OOM

nwrites-loc(5) 0.05 0.40 0.10 0.02 0.04 1.79
nwrites-loc(10) � � 1177.34 0.02 33.26 241.05
nwrites-loc(15) � � � 0.02 � OOM

nwrites(5) 0.02 0.42 0.08 0.01 0.04 2.25
nwrites(10) 0.03 � 0.08 0.01 0.04 37.86
nwrites(15) 0.03 � 0.09 0.02 0.04 OOM

mp(10) 2.08 0.13 0.09 0.01 0.04 1.54
mp(50) � 0.60 0.10 0.02 0.06 1.79
mp(100) � 1.88 0.16 0.03 0.23 2.32

readers(N): A writer thread and 𝑁 reader threads accessing the same memory loca-
tion (by Abdulla et al. [Abd+17]).

nwrites-loc(N): 𝑁 threads writing the same memory location (by Abdulla et al.
[Abd+18]).

nwrites(N): 𝑁 threads writing different memory locations.
mp(L): Two threads showcasing the Message Passing idiom, with the reader reading

the first variable in a loop until the value true has been read. 𝐿 is the loop bound.

152 About 32 GB in
the machine we used.

153 “HMC: Model
checking for

hardware memory
models” [KV20]

data structures (e.g., linked lists), while for RMEM and NIDHUGG this
is because, for every event that they add to the constructed trace, they
have to checkwhich of its possible parameters are consistent according
to the memory model. As can be seen, this is a costly procedure that
dominates the running time. We also note that DARTAGNAN performs
poorly, and consumes allmemory available to the JavaVirtualMachine
for 𝑁 = 15152. This is in contrast to previously reported results for the
same benchmark and DARTAGNAN 153, where the SMT solver was able
to verify this benchmark really fast.

Similarly, for nwrites-loc(N), CDSCHECKER outperforms the other
stateless model checkers. In this case, however, this is due to the used
equivalence partitionings. More specifically, while RMEM, HERD, NID-
HUGG andGENMCrununder the Shasha-Snir equivalence, CDSCHECKER
only runs under the reads-from equivalence, and does not order un-
read, same-location writes. Thus, RMEM, HERD, NIDHUGG and GENMC
explore 𝑁! executions, while GENMC and CDSCHECKER explore only
one execution.

Concluding table 10.2, the nwrites(N) and mp(L) benchmarks demon-
strate interesting aspects of RMEM and DARTAGNAN, respectively. For
nwrites(N), while all other SMC tools explore only one execution by
observing that the threads write to different memory locations, RMEM
explores𝑁! executions because it imposes a single total ordering across
thewrites of allmemory locations. For mp(L), whileDARTAGNANneeded
exponential time andmemory for the previous benchmarks where the

10.2 GENMC 137

Table 10.3: Synthetic benchmarks taken from SV-COMP [SV-19]
HERD RMEM NIDHUGG/POWER CDSCHECKER GENMC DARTAGNAN

peterson(10) � 5.16 0.14 0.05 0.02 2.72
peterson(20) � 31.93 0.24 0.17 0.02 4.54
peterson(30) � 97.47 0.39 0.40 0.03 7.84

parker(3) � 79.35 1.71 0.28 0.17 2.99
parker(4) � 224.39 5.01 0.89 0.27 3.89
parker(5) � 498.57 12.84 2.30 0.55 5.02

szymanski(1) � 1.10 0.13 0.45 0.05 4.85
szymanski(2) � 98.94 3.79 � 0.18 4.17
szymanski(3) � � 178.73 � 3.34 17.24

lamport(2) � 9.87 0.12 0.02 0.02 1.69
lamport(3) � � 313.57 24.41 2.76 1.93
lamport(4) � � � � � 2.48

peterson(L): Two threads performing Peterson’s mutual-exclusion algorithm, with 𝐿
being the loop bound.

parker(L): A recreation of a bug in JDK, adapted from [Abd+15]. 𝐿 is the loop bound.
szymanski(N): Two threads perform Szymanski’s mutual-exclusion algorithm 𝑁

times.
lamport(N): 𝑁 threads perform Lamport’s fast mutex algorithm.

154 “BMC for weak
memory models:
Relation analysis for
compact SMT
encodings”
[Gav+19]

155 Even though
DARTAGNAN needs
more time to verify
szymanski(3), in
contrast to SMC
tools, the time
required does not
increase
exponentially with
the program size.

number of threads increases, it only needs time that increases linearly
with 𝐿 for mp(L), where the number of threads remains constant.

Next, wemove on to table 10.3, which contains somewhat more chal-
lenging benchmarks, where HERD consistently times out. While the
observations for NIDHUGG and RMEM are similar to those for table 10.2
above, this table provides uswith someuseful insight regarding the dif-
ferences between CDSCHECKER and GENMC, but also between DARTAG-
NAN and stateless model checkers in general.

For the first two benchmarks, both GENMC and CDSCHECKER out-
perform DARTAGNAN. Indeed, in this case our observations agree with
those of Gavrilenko et al.154: when the executions do not grow expo-
nentially as the loop bound gets larger, stateless model checking tools
are faster than bounded model checkers. This is not only because the
SMT solver has a worst case exponential complexity, but also because
even the encoding fed to the SMT solver may be larger than the state
space of the program.

In the last two benchmarks, the situation is reversed: DARTAGNAN
scales more nicely than both CDSCHECKER and GENMC. As explained
before, this is because the number of executions grows exponentially,
much faster compared to the encoding fed to the SMT solver byDARTAG-
NAN 155.

Overall, observe that GENMC generally outperforms CDSCHECKER
by a large factor in table 10.3, mostly because CDSCHECKER explores
duplicate/infeasible executions. For instance, in the case of szyman-
ski(N), CDSCHECKER quickly times out, as the notion of promises it

138 EVALUAT ION

Table 10.4: Synthetic benchmarks with RMW instructions

HERD RMEM CDSCHECKER GENMC DARTAGNAN

ainc(3) 0.28 0.17 0.01 0.05 2.21
ainc(4) 7.58 0.89 0.34 0.05 2.84
ainc(5) 365.56 8.01 25.46 0.05 2.01

binc(3) 71.81 42.86 0.21 0.05 1.94
binc(4) � � 125.73 0.06 2.09
binc(5) � � � 0.87 2.42

indexer(12) � 0.89 0.05
indexer(13) � 131.75 0.11
indexer(14) � � 0.56
indexer(15) � � 4.40

ainc(n): 𝑁 threads perform fetch_addrlx(𝑥).
binc(n): 𝑁 threads perform fetch_addrlx(𝑥); fetch_addrlx(𝑦).
indexer(n): A classic benchmark by Flanagan and Godefroid [FG05] designed to

demonstrate the benefits of DPOR compared to classic POR techniques. 𝑁 threads
and each thread adds four entries in a shared hash tables. Collisions occur for
𝑁 ≥ 12.

employs make it explore many infeasible executions, which cripple its
performance.

Finally, in table 10.4, wepresent some synthetic benchmarks that con-
tain RMW accesses. We exclude NIDHUGG from that table because it
does not support RMW accesses under POWER and ARMv7. As can
be seen, GENMC scales fairly well for these benchmarks.

CDSCHECKER, by contrast, scales poorly because it explores a very
large number of infeasible executions. In some of the benchmarks,
they are even four orders of magnitude more than the consistent ones.
Similarly to to szymanski(N) in the previous table, infeasible execu-
tions arise due to the way CDSCHECKER handles porf cycles and re-
lease sequences. The problem manifests itself especially when relaxed
accesses are involved. When, for example, we change all accesses of
ainc(5) to acquire/release accesses, CDSCHECKER terminates in 0.07
seconds, and explores much fewer infeasible executions.

DARTAGNAN, on the other hand, scales nicely both for the ainc(N) and
binc(N) benchmarks. The SMT solver manages to establish the sup-
plied assertion without exploring the entire exponential search space,
presumably by leveraging the fact that addition is commutative.

For the indexer(N) benchmark, we had to excludeHERD andDARTAG-
NAN from the table because their input language does not support all
the necessary constructs (e.g., multiplication operations or proper con-

10.2 GENMC 139

Table 10.5: Benchmarks adapted from Pulte et al. [Pul+19]

RMEM DARTAGNAN GENMC

DQ/211-2-1 162.94 1.85 0.12
DQ-opt/211-2-1 732.04 1.90 0.14

STC/210-011-000 1081.44 240.98 0.14
STC-opt/210-011-000 1105.03 253.68 0.15

QU/100-100-010 1077.86 207.08 0.14
QU-opt/100-100-010 � 214.41 0.14

dq: An implementation of the Chase-Lev deque.
stc: An implementation of the Treiber stack.
qu: An implementation of the Michael-Scott queue.

156 “Promising-
ARM/RISC-V: A
simpler and faster
operational
concurrency model”
[Pul+19]

ditional branching). In addition, RMEM times out even for 𝑁 = 12, pre-
sumably because of the many accesses to different memory locations.

10.2.1.2 “Real World” Benchmarks

We proceed by evaluating GENMC on more realistic workloads. For
the rest of this section, we exclude NIDHUGG and HERD from our com-
parisons. NIDHUGG does not handle RMW instructions (which are re-
quired for these benchmarks), while HERD operates on a toy language
that is insufficient for these benchmarks, and thus requires a complete
rewrite of the code in its input format, which is tedious and very re-
stricting for larger benchmarks (e.g., no support for loops). Thus, we
only compare GENMC against RMEM, CDSCHECKER and DARTAGNAN.

That said, since RMEM and CDSCHECKER/DARTAGNAN require a differ-
ent format as input, we compare against each tool on two separate sets
of benchmarks (published along with RMEM and CDSCHECKER, respec-
tively). Unfortunately, we cannot use CDSCHECKER on RMEM’s bench-
marks since they contain structs with atomic pointer fields (which are
not supported byCDSCHECKER), nor canweuse RMEMonCDSCHECKER’s
benchmarks, since these benchmarks are too large to be translated to
RMEM’s input language.

We begin by comparing against the most intensive benchmarks for
which Pulte et al.156 published results for RMEM (cf. table 10.5). While
RMEM operates on litmus tests, Pulte et al. provide a C++ version of
these benchmarks, which we converted to C. We note that the “opt”
version of each benchmark differs from the non-opt version in that
it has “less” synchronization, i.e., the opt version uses weaker access
modes for some accesses.

As can be seen, GENMC outperforms RMEM by a very large margin,
which is consistent with the outcomes of § 10.2.1.1. Since RMEM does
not leverage DPOR techniques, it embarks on many redundant explo-

140 EVALUAT ION

Table 10.6: Benchmarks adapted from Norris and Demsky [ND13]

CDSCHECKER DARTAGNAN GENMC

linuxrwlocks 13.63 43.47 0.05
linuxrwlocks-bnd � 2.05 0.58
mpmc-queue 10.33 � 0.12
mpmc-queue-bnd 18.24 150.66 2.39

linuxrwlocks: A reader-writer lock ported from the Linux kernel. Three threads use
the lock to read and/or write a shared variable.

mpmc-queue: A multiple-producer multiple-consumer queue. Two threads are en-
queueing and then dequeueing an item.

157 “CDSChecker:
Checking concurrent

data structures
written with C/C++

atomics” [ND13]

158 “Finding and
reproducing

Heisenbugs in
concurrent
programs”
[Mus+08]

rations. In addition, the time for GENMC and GENMC does not change
much for the variations of each benchmark; by contrast, the time for
RMEM changes dramatically, even for DQ, where the number of consis-
tent executions (according to GENMC’s equivalence partitioning) re-
mains the same across the opt and the non-opt version.

As it can also be seen, DARTAGNAN only performs well for DQ. This
is because both STC and QU employ dynamic memory allocation, and
thus DARTAGNAN spends a lot of time on various analyses (e.g., alias
analysis) to make verification tractable.

We continue with the most intensive benchmarks published by Nor-
ris and Demsky157 for CDSCHECKER, which are shown in table 10.6.

Let us first focus on the two SMC tools, namely GENMC and CD-
SCHECKER. Before going into details about individual benchmarks, let
us briefly discuss the differentmechanisms these tools use to handle in-
finite loops. GENMC uses a combination of loop bounding along with
the transformation of infinite loops with no side-effects into assume()
statements. CDSCHECKER, on the other hand, uses a combination of
control over the memory liveness and a CHESS-like yield-based fair-
ness system158. As we will see, these different mechanisms force the
two tools to explore a different number of executions in tests with infi-
nite loops.

For linuxrwlocks, GENMC outperforms CDSCHECKER. That said,
GENMC also explores a different number of executions compared to
CDSCHECKER. More specifically, this test case contains infinite loops
that GENMC manages to transform into assume() statements, while
CDSCHECKER terminates only if we use an upper bound on the times
a thread is allowed to see the same value. Naturally, CDSCHECKER is
sensitive to that upper bound, and as this grows larger the verification
becomes even slower. In addition, CDSCHECKER explores more than 40
times more infeasible executions than consistent executions, presum-
ably due to its handling of relaxed accesses.

Given the above, in an effort to alleviate these discrepancies between
the explored executions and perform a more precise comparison, we

10.2 GENMC 141

159 Or due to some
bug in the
corresponding code.

160 “Stateless model
checking for TSO
and PSO”
[Abd+15];
“Optimal dynamic
partial order
reduction”
[Abd+14]
161 Recall that
NIDHUGG’s support
for POWER and
ARM is based on a
different
(nonoptimal)
algorithm, and spans
over a limited subset
of these models.

also manually bounded the test case, thus rendering the mechanisms
of all tools that handle infinite loops useless. We also simplified the
client code (the threads perform less operations on the lock), since the
manual bounding increases the state space of the program.

As can be seen in the respective entry for the first benchmark (namely,
linuxrwlocks-bnd), although the test case is simplified, CDSCHECKER
times out, while both GENMCfinishes almost instantly. While this may
be surprising at a first glance, it is again due to the way CDSCHECKER
handles relaxed accesses and release sequences159. More specifically,
the definition CDSCHECKER uses for release sequences leads the tool
to explore more executions compared to GENMC, and the relaxed ac-
cesses lead the tool to also explore many infeasible executions (plus a
few duplicates).

Interestingly enough, however, even though CDSCHECKER does not
verify linuxrwlocks-bnd after 8 hours, if all accesses are changed into
acquire/release accesses, it manages to verify it in only 4 seconds. As-
suming this is not to an implementation issue, this fact highlights the
importance of optimality and theway it affect theperformance of a tool.

For mpmc-queue, the observations are similar to linuxrwlocks. For
the original version of the test case, GENMC outperforms CDSCHECKER,
as it transforms infinite loops into assume() statements, whileCDSCHECKER
is sensitive to the liveness bound. For the boundedversion, CDSCHECKER
explores a few more consistent executions (due to its definition of re-
lease sequences) and many infeasible ones.

Finally, focusing on DARTAGNAN, we see that we can make observa-
tions similar to the ones for table 10.5. DARTAGNAN performs much
better for linuxrwlocks, where no dynamic allocation takes place, but
also for the bounded versions of the two benchmarks compared to the
unbounded ones.

10.2.2 Optimality and Memory Consumption

To measure how strongly the memory/optimality tradeoff manifests
and its impact, we perform an evaluation comprising two parts.

In the first part, we compare GENMC against NIDHUGG/SC160. We
chose NIDHUGG/SC because it provides both an optimal and a nonop-
timal (sleepset-based) DPOR algorithm, thus nicely highlighting the
tradeoff between time and memory that DPOR algorithms have to pay.
For GENMC, we run it in two modes: TRUST and naive, with the lat-
ter achieving optimality by recording the set of backward revisits per-
formed (see §5).

In the second part, we evaluate the two modes of GENMC on a set of
realistic, weak-memory benchmarks. As NIDHUGG does not support a
memory model similar to GENMC’s RC11161, we had to exclude it from
this comparison. Note, however, that it is easy to construct clients of

142 EVALUAT ION

Table 10.7: Synthetic benchmarks (24h timeout)
NIDHUGG/nonoptimal NIDHUGG/optimal GENMCnaive GENMC

Executions Mem. Time Executions Mem. Time Mem. Time Mem. Time

lastzero(10) 20 195 84 5.55 3328 84 1.19 74 0.14 84 0.22
lastzero(15) 4 799 353 84 2025.86 147 456 274 89.99 74 7.69 84 8.62
lastzero(20) � � � OOM OOM OOM 75 361.76 84 398.28

exp-mem(7) 10 080 83 1.78 10 080 98 1.99 227 0.80 84 1.17
exp-mem(8) 80 640 83 15.04 OOM OOM OOM OOM OOM 84 10.19
exp-mem(9) 725 760 83 152.81 OOM OOM OOM OOM OOM 84 101.69

exp-mem2(4) 21 386 83 3.78 20 736 84 3.94 86 1.09 84 1.55
exp-mem2(5) 746 378 83 164.01 705 600 84 157.82 418 45.46 84 59.88
exp-mem2(6) 36 044 140 83 8673.37 33 177 600 84 9298.98 OOM OOM 84 3204.28

162 GENMC is
somewhat slower

than its naive version
in some benchmarks

due to the two
implementations
being based on

different versions of
the tool.

163 “Source sets: A
foundation for

optimal dynamic
partial order
reduction”
[Abd+17]

164 “Source sets: A
foundation for

optimal dynamic
partial order
reduction”
[Abd+17]

such weak memory benchmarks where NIDHUGG/SC consumes an ex-
ponential amount of memory as well.

As we show in § 10.2.2.1, GENMC (with TRUST) is always exponen-
tially faster than nonoptimal DPOR implementations, and exponen-
tially “lighter” (in terms ofmemory consumption) than optimalDPOR
implementations. We also observe that the overhead that GENMC faces
due to TRUST is insignificant162. In addition, in cases where optimal
DPORs consume an exponential amount ofmemory, GENMCwithTRUST
can be exponentially faster, since its computations donot becomememory-
bound.

10.2.2.1 TRUST vs State-of-the-Art

Let us begin with some synthetic benchmarks that highlight the differ-
ences between the different DPOR algorithms (cf. table 10.7).

The first benchmark in table 10.7, lastzero from Abdulla et al.163,
is a prime example of (a) the memory/time tradeoff that DPOR algo-
rithms have to face, and (b) the different backtracking strategies that
DPORalgorithms employ. As can be seen in table 10.7, NIDHUGG/optimal
is exponentially faster thanNIDHUGG/source for both lastzero(10) and
lastzero(15), as it explores exponentially fewer executions than NID-
HUGG/source. That speed however, comes at a price: NIDHUGG/optimal
also consumes an exponential amount of memory, which makes it ex-
ceed the memory limit when the number of threads is increased to
20. GENMCnaive and GENMC, on the other hand, both consume much
lessmemory. (As already explained, GENMC is somewhat slower than
GENMCnaive due to it being based on a different tool version that the
naive implementation.)

As the next two benchmarks show, however, it is not at all hard for
GENMCnaive to exceed the memory limit as well. The exp-mem bench-
mark (adapted from Abdulla et al.164) is another example where op-
timal DPORs explore an exponential amount of memory. Here, both
GENMCnaive and NIDHUGG/optimal quickly exceed the memory limit,
while GENMC verifies all variants of this program with essentially the

10.2 GENMC 143

Table 10.8: Weak memory benchmarks (24h timeout)

GENMCnaive GENMC

Executions Mem. Time Mem. Time

lamport(3) 6690 75 0.36 84 0.40
lamport(4) 12 163 630 433 1121.41 84 719.75

mcs_spinlock(4) 15 264 107 6.80 84 0.27
mcs_spinlock(5) 964 320 OOM OOM 85 5.52

ttaslock(3) 162 73 0.02 85 0.04
ttaslock(4) 20 760 82 2.41 85 0.16
ttaslock(5) 14 457 720 OOM OOM 84 4.08

mpmc_queue(3) 143 75 0.14 85 0.20
mpmc_queue(4) 31 880 86 216.39 85 152.96
mpmc_queue(5) 1 270 584 OOM OOM 85 16 377.38

seqlock-atomic(5) 1500 135 16.68 85 8.02
seqlock-atomic(6) 16 200 OOM OOM 85 140.25
seqlock-atomic(7) 185 220 OOM OOM 85 2437.31

165 See e.g., the
mutex_musl
benchmark in
[Kok+22a].

same memory consumption. For exp-mem2 (a variant of exp-mem with
no RMW operations), GENMCnaive consumes an exponential amount
of memory for 6 threads and above, while GENMCmaintains the same
memory consumption, as expected.The reason why NIDHUGG/optimal
also maintains low memory consumption could be that the particular
exploration order the tool chooses, does not lead it to consume expo-
nential memory for this particular benchmark.

Moving on to the second part of this evaluation (cf. table 10.8),
we observe that the same high-level claims and trends we made for
table 10.7 also extend to realistic benchmarks. As can be seen in ta-
ble 10.8, as the number of threads increases, GENMCnaive quickly ex-
ceeds the memory limit, while GENMC’s memory consumption basi-
cally remains constant. In addition, even thoughGENMCnaive is usually
slightly faster thanGENMC,whenever an exploration becomesmemory-
bound (e.g., seqlock), GENMC outperforms GENMCnaive in terms of
both memory and time.

In order to stress the importance of polynomial memory consump-
tion, we alsomention in passing that there are cases165 whereGENMCnaive
consumed all available RAM,whileGENMCmanaged to terminatewith
more or less constant memory consumption.

144 EVALUAT ION

10.2.3 Synchronization Barriers Optimization

We now change gears and we compare the optimizations of §7 against
a baseline version of GENMC without them.

We do not include other tools in our comparison as 1) a compre-
hensive comparison has been presented in the previous sections, and
2) most other tools do not offer built-in support for such optimizations
anyway (and would thus yield similar results to the baseline GENMC
encoding).

Instead, asmentioned in §10.2, we set out to show thatGENMC’s opti-
mizations yield exponential benefits compared to the baseline GENMC
implementation, while at the same time impose zero overhead.

We do so by evaluating the effectiveness of BAM on a variety of syn-
thetic benchmarks, ranging from simple benchmarks containing a sin-
gle rendezvous round with no additional computation to benchmarks
that involve multiple rendezvous rounds.

The results are reported in tables 10.9 and 10.10. As expected, BAM
achieves exponential gains over GENMC for all these benchmarks, and
scales very well to larger programs. By contrast, the baseline GENMC
implementation frequently times out, especially on benchmarks with
multiple rendezvous rounds.

Let us first focus on table 10.9. Starting with barrier, we see that
GENMC explores exponentially more executions than BAM, most of
which correspond to blocked executions. Indeed, as explained in §7.1.1,
since the barrier_wait operations are considered conflicting, GENMC
explores an exponential number of executions for this benchmark. In
fact, GENMCexplores (𝑁!)2 executions for barrier(N), ofwhich (𝑁!)2−
𝑁! are blocked.

These numbers might come off as a surprise at first, since it would
suffice for GENMC to explore precisely (𝑁!) executions, and no blocked
executions. The discrepancy is due to the modeling of barrier_wait
calls. As described in §7.1.1 and Fig. 7.1, each barrier_wait comprises
an RMW operation followed by a read of the barrier value, which is
later used in an assume statement. This second read, however, has an-
other 𝑁! consistent rf options, which GENMC subsequently has to ex-
plore. And at this point, one may wonder: isn’t it possible to pack
the assume statement into the atomic block, and use the value already
read for 𝑏 for the assume? Unfortunately, the answer is no. The second
read statement is necessary under most weak memory models to en-
sure synchronization between the events before and after the barrier
rendezvous.

The differences between the unoptimized and the BAM version are
magnified once we consider benchmarks with multiple rendezvous
rounds. Starting with 4 threads, The unoptimized explores 5 orders
of magnitude more executions than BAM for barrier2, and 6 orders
of magnitude more for barrier3. As the number of threads increases,

10.2 GENMC 145

Table 10.9: Synthetic benchmarks with only barrier operations

Unoptimized Barriers BAM

Executions Blocked Time Executions Blocked Time

barrier(4) 24 552 0.06 1 0 0.04
barrier(5) 120 14 280 0.29 1 0 0.04
barrier(6) 720 517 680 9.32 1 0 0.05

barrier2(4) 576 36 816 0.65 1 0 0.04
barrier2(5) 14 400 5 156 880 87.43 1 0 0.05
barrier2(6) � � � 1 0 0.06

barrier3(4) 13 824 907 152 18.99 1 0 0.04
barrier3(5) � � � 1 0 0.04
barrier3(6) � � � 1 0 0.04

barrier(n): 𝑁 threads rendezvous at a barrier.
barrier2(n): 𝑁 threads rendezvous twice at a barrier.
barrier3(n): 𝑁 threads rendezvous thrice at a barrier.

the performance gap between unoptimized and BAM increases even
more, despite the fact that most of the executions that the unoptimized
version explores are blocked; as it turns out, the cost of enumerating
blocked executions quickly becomes exorbitant.

We move on to table 10.10, which contains some typical use cases
of barriers. The observations here are similar to the ones made for ta-
ble 10.9. The simplest case is that of barrier-det that includes a single
rendezvous round and only local computations. The unoptimized ver-
sion scales similarly to the barrier benchmark, but takes much more
time because of the higher cost per execution. By contrast, the number
of threads has a negligible effect to BAM’s execution time.

The other three benchmarks use multiple rendezvous rounds to syn-
chronize some computations, while still maintaining a high cost per ex-
ecution. As expected, thismakes the unoptimized version quickly time
out. In addition, observe that in the case of barrier-lock and barrier-
count barriers are used to synchronize computations that have addi-
tional sources for an exponential number of executions. As the state
space of these benchmarks is large to begin with (even disregarding
barriers), The unoptimizedversion quickly exceeds the time limit, while
BAM is able to scale to a larger number of threads. We note that the
blocked executions that BAM explores in barrier-lock are not due to
barriers, but rather due to spinloops that can block in the lock imple-
mentation under test.

We end this section with a remark on scalability. While it can be
argued that scaling up to a large number of threads is unimportant
(since e.g., these benchmarks are symmetric), this is not always the
case. Often, concurrent implementations tune their behavior depend-

146 EVALUAT ION

Table 10.10: Benchmarks with realistic barrier use cases

Unoptimized Barriers BAM

Executions Blocked Time Executions Blocked Time

barrier-det(3) 6 30 1.88 1 0 0.81
barrier-det(4) 24 552 8.46 1 0 0.81
barrier-det(5) 120 14 280 97.46 1 0 0.81

barrier-transc(3) � � � 1 0 0.13
barrier-transc(4) � � � 1 0 0.13
barrier-transc(5) � � � 1 0 0.13

barrier-lock(3) 1296 4383 0.94 36 54 0.10
barrier-lock(4) 331 776 2 165 299 479.07 576 966 3.00
barrier-lock(5) � � � 14 400 29 342 55.79

barrier-count(3) 55 296 715 878 100.08 64 0 0.08
barrier-count(4) � � � 4992 0 2.57
barrier-count(5) � � � 2 276 352 0 28min

barrier-det(n): Given amatrix𝑀, calculates the determinant of𝑀4. The calculation
of 𝑀4 is split among 𝑁 threads, which rendezvous after calculating 𝑀2.

barrier-transc(n): 𝑁 threads calculate the transitive closure of a matrix via a fix-
point. They rendezvous twice per fixpoint iteration.

barrier-lock(n): 𝑁 threads test a simple lock implementation: after they rendezvous
at a barrier, the threads concurrently attempt to enter their critical section, and
mutual exclusion is checked.

barrier-count(n): Contains 𝑁 threads, with each thread 𝑖 waiting at barriers 𝑏𝑘,
where 𝑖 ≤ 𝑘 ≤ 𝑁. Counts the number of threads getting through at each round.

166 As with BAM, we
only compare against
a baseline GENMC
implementation; see

§10.2.3.

ing on the number of threads spawned, and concurrency bugs cannot
be manifested with a few threads. Being able to verify programs that
employ a large number of threads can therefore be crucial.

10.2.4 Spinloop Optimization

We continue by evaluating the effectiveness of SAVER’s optimizations
on a variety of benchmarks166. The evaluation comprises two distinct
parts, with the first part concerning the overall performance of SAVER
in a real-world setting, and the second part evaluating the effectiveness
of employing individual transformations.

We observe that enabling SAVER typically leads to exponential gains in
real-world benchmarks with spinloops. Key to these gains are SAVER’s
dynamic checks for spinloop purity and/or validity of ZNE spinloops,
aswell as the bisimilarity-based reduction ofCFGs,which enablesmore
spinloops to be bounded.

OVERALL P ER FORMANCE We start by applying SAVER on some chal-
lenging data structures utilizing weak-memory atomics that we har-

10.2 GENMC 147

vested from the literature, including all data-structure benchmarks from
GENMC’s test suite. The results can be seen in table 10.11.

Table 10.11: Real-world benchmarks
Unoptimized Spinloops SAVER

Executions Blocked Time Executions Blocked Time Trans

mcslock(3) 7128 0 0.56 66 124 0.06 S

mcslock(4) 4 055 612 0 411.60 1080 2261 0.32 S

qspinlock(3) 12 0 0.05 6 0 0.04 S

qspinlock(3) 13 764 0 2.18 258 427 0.17 S

seqlock(3) 430 456 0.22 9 54 0.06 S

seqlock(4) � � � 88 1393 0.21 S

mpmc-queue(3) 1 232 884 268 476 234.31 166 679 0.21 S, D
mpmc-queue(4) � � � 39 706 795 718 104.78 S, D

linuxrwlock(3) � � � 24 59 0.06 B, S, Z
linuxrwlock(4) � � � 1060 5518 0.81 B, S, Z

chase-lev(5) 41 816 0 1.86 12 916 10 264 0.88 S

chase-lev(6) 1 341 250 0 66.03 115 134 219 640 12.03 S

treiber-stack(3) 22 0 0.05 8 8 0.05 S, D
treiber-stack(4) 34 968 0 5.98 236 1463 0.26 S, D

mutex(2) 18 0 0.07 12 1 0.04 S, D
mutex(3) 59 760 0 6.57 7086 483 0.79 S, D

ttaslock(3) 11 031 0 0.81 36 58 0.06 S, D
ttaslock(4) � � � 576 1590 0.16 S, D

twalock(3) 1338 0 0.43 96 31 0.34 S

twalock(4) 1 018 872 0 130.74 6144 2877 1.29 S

ms-queue(3) 1389 0 0.50 75 274 0.13 L, S, D
ms-queue(4) � � � 10 662 159 374 36.73 L, S, D

sc-gather(3 7560 11 340 4.71 90 181 0.08 Z

sc-gather(4) 1 247 400 1 995 840 1210.08 2520 4845 0.77 Z

The benchmarks of table 10.11 demonstrate that SAVER is effective
in a real-world setting, and that SAVER’s extensions combined lead to
exponential gains. For all these benchmarks, we have used an unroll
value of 𝑁 + 1 (where 𝑁 is the number of threads, shown in parenthe-
ses) for both GENMC versions to avoid manually unrolling any loops
that spawn threads or initialize thread-local variables. The transforma-
tions that SAVER applies are shown on the rightmost column, where S,
D, Z, L, and B stand for spin-assume, dynamic-spin-assume, zne-assume,
loop-rotation, and bisimilarity, respectively.

SAVER is able to employ its transformations (even if only partially)
on all the benchmarks andthis leads to a huge reduction in verifica-
tion time over the unoptimized version. That is, even if in some cases,
SAVER only applies spin-assume/zne-assume in someof the data-structure’s
methods, or even in somepaths of a particularmethod, SAVER is still or-
ders of magnitude faster than GENMC. Concretely, for all benchmarks,

148 EVALUAT ION

167 If e.g., all nodes
are statically

allocated in a pool,
and not at each push

invocation.

SAVER is able to transform at least one of the spinloops completely
into an assume statement. For seqlock, SAVER reduces the read paths;
for mpmc-queue, it reduces both the enqueue and dequeue methods;
for linuxrwlocks, the read_lock and write_lock methods, for chase-
lev, the steal method; for treiber-stack, the pop method; for mutex,
ttaslock, and twalock, various spinloops in the lock and unlock paths;
for ms-queue, the enqueue anddequeuemethods; and for scgather the
check method.

DYNAM IC PUR I T Y/UNOB S ERVAB I L I T Y CHECK S As it can be seen
from table 10.11, in more than half of the benchmarks, SAVER checked
the purity of a spinloop or the non-observability of its intermediate
effects dynamically. Dynamic checking proves useful for three cases.

First, in cases like ms-queue, plain spin-assume is not enough to fully
transform some spinloop iterations into assume statements because they
contain possibly succeeding CAS operations. Recall from Fig. 7.8 that
the second loopy path of the simplified dequeue implementation is
not effect-free. By adding a dynamic check to the relevant backedge,
SAVER only considers iterations where the CAS actually succeeds, thus
greatly reducing the state space of the program.

Second, in other cases (e.g., mutex and ttaslock), dynamic-spin-
assume is necessary as spinloops contain function calls possibly con-
taining side-effects. As it is difficult to determine statically whether
these side-effects will actually take place in the particular calling con-
text, the check is deferred to runtime.

Third, the unobservability checks both for initialization writes in
failedCAS loops (e.g., treiber-stack)167) and forZNE loops (linuxrwlocks
and scgather) cannot always be easily performed statically with suf-
ficient precision. As such, performing them dynamically is the only
viable option.

LOOP ROTAT ION AND B I S IM I LAR I T Y R EDUCT ION Loop rotation
and bisimilarity reduction are similarly important in some real-world
test cases. Even though they do not yield any performance improve-
ments on their own, they are instrumental in making the spin-assume
and zne-assume transformations applicable tomore complex cases. Specif-
ically, in benchmarks like ms-queue and linuxrwlocks, spin-assume
and zne-assume are not applicablewithout loop rotation and bisimilar-
ity respectively. And, in fact, these are not the only cases that we have
encountered; there are many ways to rewrite the same benchmarks so
that they also require bisimilarity and/or loop rotation, thus rendering
these transformations a necessity, as opposed to an enhancement.

As a further demonstration of their usefulness, we consider two syn-
thetic test cases inspired by the LOOP-PEEL example. In these tests, some
threads repeatedly write to a shared variable, which is read by readers
that employ schemes similar to LOOP-PEEL’s thread II. As explained in

10.2 GENMC 149

Table 10.12: Benefits of bisimilarity

SAVER\B SAVER

Executions Blocked Time Blocked Time

ws+r-peeled(3) 6720 10 080 0.82 2345 0.44
ws+r-peeled(4) 1 848 000 2 956 800 293.30 667 595 133.85

w+rs-peeled(3) 1 1848 0.36 3 0.06
w+rs-peeled(4) 1 79 506 13.00 7 0.05

168 GENMC does not
perform loop rotation
by default.

§7.2.4, spin-assume is not directly applicable in such cases because the
live variables of the header are redefined within the loop. Thus, we
used an unroll value of 3, and manually unrolled any loops utilized
by the writer threads. For these benchmarks, we used two SAVER ver-
sions: the default version that employs both bisimilarity and loop rota-
tion (SAVER), and a versionwhere bisimilarity is disabled (SAVER\B)168.
The results can be seen in table 10.12.

With bisimilarity reduction, SAVER transforms the spinloops into as-
sume statements and only explores very few executions, since only a
handful of value combinations satisfy the assumes. . On the other
hand, SAVER\B explores a much larger number of executions, which
affects the verification time. These results highlight the necessity of be-
ing resilient against small syntactic variations as, even if a single read
is not taken into account when transforming a spinloop into an assume,
the state space might grow exponentially.

10.2.5 Blocking Prevention

Next, we show that load annotations and the detection of futile explo-
rations can be effective in practice by ruling out blocked executions,
though they may not always offer exponential benefits.

Concretely, we run GENMC against a version that does not rule out
blocked executions with annotations/futile executions (henceforth No
BlockingPrevention), andmeasure the number of encountered blocked
executions on a variety of benchmarks.

In table 10.13, we distinguish two types of benchmarks: (synthetic)
benchmarks like IRIW-iter and assume-exp represent cases where the
difference in the number of blocked executions between the two ver-
sions explored is exponential (e.g., three orders of magnitude in IRIW-
iter), while synchronization algorithms (without RMWs) like szy-
manski and lamport-sc represent cases where the number of blocked
executions does not reduce significantly (yet the difference is still no-
ticeable).

150 EVALUAT ION

Table 10.13: Benefits of blocking prevention

No Blocking Prevention GENMC

Executions Blocked Time Blocked Time

IRIW-iter 1 7224 0.10 3 0.04

assume-exp(2) 6561 275 562 7.54 0 0.22
assume-exp(3) 65 536 2 752 512 75.65 0 1.73
assume-exp(4) 390 625 16 406 250 444.64 0 10.11

lamport-sc(2) 16 16 0.05 7 0.04
lamport-sc(3) 9216 11 525 1.78 4368 1.70

szymanski(2) 78 1913 0.28 1205 0.25
szymanski(3) 1068 26 883 4.99 16 935 4.51

The ratio between the total number of executions explored, however,
does not always translate to an equal ratio in verification time, since
the cost of exploring a blocked execution depends very much on the
program structure and the exploration order. For assume statements
encountered near the end of a graph (meaning that the model checker
does not have to executemany instructions after the assume), exploring
blocked executions incurs negligible overhead, especially sinceGENMC
avoids rerunning any blocked or terminated threads. If, however,many
accesses are encountered after a thread blocks due to an assume (or
many effect-free accesses mediate between the annotated load and the
assume), then the model checker will have to pay the penalty of explor-
ing these accesses (and possible subexplorations they induce).

Following the above, for the benchmarks we used, the time differ-
ence between the two GENMC versions is proportional to the explo-
ration cost per failed assume. As far as the synthetic benchmarks are
concerned, for IRIW-iter the difference in running time isminor as the
overhead per failed assume is low, while for assume-exp the time differ-
ence is substantial, as each failed assume leads to an exponential num-
ber of (also blocked) subexplorations. In fact, for assume-exp, the only
assume of the program has only 42 possible reads-from options, from
which only 1 is of interest. However, each time this assume fails, other
threads can be scheduled, and these threads yield additional subexplo-
rations, leading to a significant increase in the unoptimized version’s
running time. As far as the synchronization algorithms are concerned,
the time difference between the two versions is not significant (approx-
imately 7% difference for lamport-sc and 16% difference for szyman-
ski), as all threads of these programs contain assume statements, and
thus none of them can induce exponentially many subexplorations.

10.2 GENMC 151

10−1 100 10110−1

100

101

GENMC/RC111 time (s)

G
EN

M
C/

IM
M

tim
e
(s
)

Dep.tracking
geo-mean: 1.78
max: 4.64

Algorithm
geo-mean: 1.05
max: 1.23

Total
geo-mean: 1.89
max: 4.57

Figure 10.1: Overhead of dependency tracking

10.2.6 Tracking Dependencies

In all the previous comparisons, we only saw how GENMC performs
under RC11, a non-dependency-tracking model. To measure the over-
head of dependency tracking, we ran GENMC both under RC11 and un-
der IMM on the tool’s default test suite (containing over 200 synthetic
and non-synthetic tests), as well as on the benchmarks of §10.2.1.1. We
used a threshold value of (0.1s) to exclude benchmarks that terminate
almost instantly.

The results are shown in Fig. 10.1. As can be seen, GENMC/IMM has
a standard overhead over GENMC/RC11, which is acceptable given the
coverage of more behaviors.

Note, however, that this overhead is not due to the difference in com-
plexity among the two models, but should rather be attributed to the
dynamic calculation of dependencies. Indeed, to measure the over-
head of calculating dependencies, we also replaced the interpreter of
GENMC/RC11 with the dependency-tracking one. Of the average 89%
overhead of GENMC/IMM over GENMC/RC11, 78% is due to the cal-
culation of dependencies. The model itself has only 5% average (23%
max) overhead over the instrumented version of GENMC that need-
lessly calculates dependencies.

10.2.7 Parallelization

In §6.3.3, we saw howGENMC equipped with TRUST is embarrassingly
parallelizable. To demonstrate this point, let us now see how GENMC
scales in practice aswe increase the number of threads on themulticore
architecture of 16 physical cores (32 logical coreswith hyperthreading)
of §10.2.

Figure 10.2 plots the speedupobtained by runningGENMCover single-
threaded performance (y-axis) against the number of worker threads

152 EVALUAT ION

1 2 4 8 16 321

2

4

8

16

32

of threads

Sp
ee

du
p

lastzero(19)
lastzero(20)
lastzero(21)

1 2 4 8 16 321

2

4

8

16

32

of threads

Sp
ee

du
p

exp-mem(8)
exp-mem(9)
exp-mem(10)

1 2 4 8 16 321

2

4

8

16

32

of threads

Sp
ee

du
p

indexer(16)
indexer(17)
indexer(18)

1 2 4 8 16 321

2

4

8

16

32

of threads

Sp
ee

du
p

mcs-spinlock(4)
mcs-spinlock(5)

1 2 4 8 16 321

2

4

8

16

32

of threads

Sp
ee

du
p

ttaslock(4)
ttaslock(5)

1 2 4 8 16 321

2

4

8

16

32

of threads

Sp
ee

du
p

seqlock-atomic(6)
seqlock-atomic(7)

Figure 10.2: GENMC scalability on 16 physical (32 logical) cores

employed (x-axis). Both axes are in logarithmic scale, so that perfect
scaling would correspond to the diagonal line.

As can be seen, GENMC achieves an almost linear speedup when
scaling up to 16 threads, and then its performance flattens out and even
deteriorates as we addmore worker threads than physical cores on the
machine. The speedup obtained by using up to 16 worker threads dra-
matically decreases the running time for some very intensive bench-
marks. As an example, consider the seqlock-atomic benchmark: while
the sequential version of GENMC needs more than 2.5 hours to termi-
nate for this benchmark, with 16 cores it terminates in 10 minutes.

There are three additional takeaways from Fig. 10.2. First, GENMC’s
speedup is almost, but not exactly, linear, up to 16 cores. This is ex-
pected and in line with most results of parallel algorithms. Indeed,
even though the design of GENMC allows for explorations to proceed
completely in parallel, there is no guarantee that all different subexplo-
rations will have the same “depth”. Specifically, each thread necessar-
ily has some small “idling” period where it tries to pick up work from
other threads, thus limiting the scalability of GENMC.

Second, scalability flattens at 16 worker threads even though our
machine does support hyperthreading and thus is deemed to have
32 logical cores. Again, this is expected because our computations
are CPU/memory-bound (as opposed to I/O-bound) and thus hyper-
threading does not succeed in running more tasks in parallel.

Third, GENMC scales better when either the state space of a bench-
mark or the cost per execution becomes larger. For instance, GENMC
scales generally better for the last four benchmarks of Fig. 10.2 than
for the first two of the same figure: this is because the per-execution
cost of the weak-memory benchmarks is larger, which in turn means
that the different threads have more work to do before trying to pick
up their next tasks. In addition, observe that GENMC scales better

10.3 THE INT ERACT ION BE TWEEN KATER AND GENMC 153

169 Usually this is
not the case.

170 Recall that
RC11’s consistency
predicate is mostly
concerned with SC
accesses.

for each benchmark as we increase the parameter controlling its state
space. Again, this is expected as a larger state space entails more ex-
ecutions, which in turn implies that each of GENMC’s worker threads
will have more work to do.

10.3 THE INT ERACT ION BE TWEEN KATER AND GENMC

Finally, let us evaluate the performance of KATER-generated consistency
checks against the (previously) default ones.

In order to do so, we subsequently answer the following questions:

• How well do the KATER-generated consistency checks perform
against the baseline GENMC implementation?

• How do the KATER-generated checks scale as the memory model
becomes more complex?

As our evaluationdemonstrates, KATER-generated consistency checks
induce an average overhead of 30-40% over the (previous) default
GENMC implementation (that in many cases skips consistency checks
altogether), but greatly outperform thedefault implementation in cases
where GENMC has to check full consistency.

As expected, checking consistency becomes more expensive as the
memory model becomes more complex.

In all our tests below, we ran the default GENMC implementation
under the RC11 memory model.

G ENMC ’ S DE FAULT CONS I S T ENCY CHECK S It is worthwhile to dis-
cuss the default consistency checking routines previously employed by
GENMC, as they encompass a few optimizations.

A first optimization example is that the default infrastructure does
not check full consistency at each step. Indeed, precisely because check-
ing consistency can be expensive, it only checks for full consistency
when an error is detected, even though not checking for full consis-
tency at every step means that in certain cases orders of magnitude
more executions than necessary might be explored169.

As another example, if there are only a handful of SC accesses, the
default infrastructure only checks for consistency violations caused by
these accesses, and does not take into account the full graph170. If there
are no such accesses, full consistency does not need to be checked. This
last optimization can have a large impact given that the complexity of
the default consistency checking routines is 𝒪(𝑛3).

10.3.1 Default Checks vs KATER-generated

To answer the first question we ran both versions on GENMC’s test
suite, excluding tests for which either version finished in less than 0.10

154 EVALUAT ION

10−1 100 101 102 103

10−1

100

101

102

103

Default/partial time (s)

K
AT

ER
tim

e
(s
)

10−1 100 101 102 103

10−1

100

101

102

103

Default/full time (s)

K
AT

ER
tim

e
(s
)

Figure 10.3: Default vs kater-generated consistency checks

seconds. The results can be seen in Fig. 10.3 (left). KATER-generated
checks are on average 30-40% slower than the default ones, though in
certain cases they outperform the default ones by a large factor.

While this may come off as a surprise at first, the reason (as ex-
plained above) is that GENMC does not check full consistency at each
step, and is therefore generally faster. Of course, not checking for full
consistency at every stepmeans that in certain cases the default checks
can explore orders of magnitude more executions than necessary, and
therefore run slower than the KATER-generated ones.

Now, if we force the default implementation to check full consistency
at each program step, the results change dramatically (cf. Fig. 10.3,
right). KATER-generated checks are rarely slower than the default ones
(on average it is two times faster), while in many cases it is an order
of magnitude faster, thereby demonstrating the efficiency of the auto-
matically generated code.

Still, one may wonder why KATER-generated checks are not always
orders ofmagnitude faster than the default ones given that KATER’s con-
sistency checks are linear in the size of the product automaton of the
memory model and the graph. The answer is twofold. First, most of
the test-suite benchmarks solely utilize weakly ordered accesses, and
thus do not even require checking full RC11 consistency. The default
(handwritten) consistency checking mechanism is able to leverage the
non-existence of SC accesses andoptimize away the checks, whileKATER-
generated checks always performs certain calculations. Second, many
of these tests have small graphs and so the worse complexity of the
default implementation does not show.

To better evaluate how efficient the KATER-generated checks are, we
conducted another case study in benchmarks containing many SC ac-
cesses. Such benchmarks do require extensive consistency checks un-
der RC11, and give us a clearer picture of how KATER’s checks compare
against the built-in ones.

The results are summarized in table 10.14 (columns Default/partial,
Default/full, and KATER-RC11). In the first four benchmarks, not check-

10.3 THE INT ERACT ION BE TWEEN KATER AND GENMC 155

Table 10.14: SC benchmarks
Default/partial Default/full KATER/SC KATER/TSO KATER/RC11

Executions Time Executions Time Time Time Time

szymanski(1) 384 0.07 6 0.01 0.01 0.01 0.02
szymanski(2) 1 115 118 266.79 78 0.94 0.09 0.11 0.17
szymanski(3) � � 1068 37.86 1.36 1.89 3.34

peterson(2) 1848 0.11 48 0.04 0.02 0.02 0.03
peterson(3) 222 956 13.20 588 0.62 0.08 0.10 0.18
peterson(4) � � 7360 12.63 0.97 1.40 2.80

parker(1) 232 0.04 54 0.05 0.02 0.02 0.04
parker(2) 139 425 19.11 6701 10.93 2.30 2.76 4.13

dekker_f(2) 242 0.04 71 0.10 0.02 0.03 0.04
dekker_f(3) 13 789 1.77 1344 4.71 0.26 0.29 0.76
dekker_f(4) 906 142 147.89 26 797 216.61 5.59 6.61 19.41

fib_bench(4) 34 205 0.29 19 605 1.22 0.19 0.24 0.36
fib_bench(5) 525 630 3.67 218 243 16.92 1.97 2.56 4.08
fib_bench(6) 8 149 079 56.49 2 363 803 220.18 21.01 24.62 52.94

lamport(2) 28 0.03 16 0.02 0.01 0.02 0.02
lamport(3) 54 851 6.26 9216 12.57 1.06 1.27 3.26

ing for full consistency leads Default/partial to perform poorly com-
pared to Default/full and KATER-RC11, as it explores orders of magni-
tude more executions than necessary. In the last two benchmarks, on
the other hand, where Default/partial does not explore a lot of redun-
dant executions, Default/full and KATER-RC11 are slower due to the
complexity induced by the consistency checks. In all cases, however,
KATER-RC11 outperforms Default/full, and is also competitive against
Default/partial, even when the latter is faster than Default/full.

We end this part of our evaluation with two observations. First, in
dekker_f, Default/full has comparable performance to Default/par-
tial, even though it explores two orders of magnitude fewer execu-
tions. KATER-RC11, on the other hand, outperforms Default/partial by
amuch largermargin, thereby allowing us to observe first-hand the dif-
ference in the computational complexity between the checks of the two
tools. Second, in lamport, something similar happens for KATER-RC11,
which has comparable performance to Default/partial even though it
explores fewer executions. In this case, however, KATER-RC11 does not
explore exponentially fewer executions than Default/partial. In addi-
tion, when the cost per execution is small (which is the case for lam-
port), the difference in the running times becomes less pronounced.

10.3.2 Consistency Checking under Different Models

To evaluate how well KATER scales when the memory model becomes
more complex, we added support for twomodels thatGENMCdoes not
have a specialized (handcrafted) consistency checker (SC and TSO),
and compared KATER-RC11 against KATER-SC and KATER-TSO in the

156 EVALUAT ION

computationally expensive benchmarks of table 10.14 (columns KATER-
SC, KATER-TSO and KATER-RC11).

As expected, as the memory model becomes more complex, KATER
becomes slower. Both KATER-SC and KATER-TSO are much faster than
KATER-RC11, since the generated automata for these models comprise
just one state, in contrast to the one for RC11, which comprises twelve
states. However, even though the automata for SC and TSO have the
same number of states, checking for SC is faster than TSO since the
transitions in the TSO automaton are composite (i.e., they contain both
predicates and relations; see Fig. 9.8 and §9.3.2).

Part IV

CONCLUS ION

11

171 To name a few:
[Bat+12; Flu+17;
Pul+19; PLV19;
Lah+17; LV16;
LGV16; DSM18;
Vaf+15].
172 “Synchronising
C/C++ and
POWER” [Sar+12]
173 “Generating
Litmus Tests for
Contrasting Memory
Consistency Models”
[MAM10]
174 “Litmus tests for
comparing memory
consistency models:
how long do they
need to be?”
[MAM11]
175 “Automatically
Comparing Memory
Consistency Models”
[Wic+17]
176 “Synthesizing
memory models from
framework sketches
and Litmus tests”
[BT17]

RELATED WORK

In this chapter, we position KATER (§11.1) and GENMC (§11.2) rela-
tive to other verification techniques that support weak memory con-
sistency. As both KATER and GENMC are automated tools, we only
compare against other automated reasoning tools.

11.1 METATHEORY

As far as metatheoretic properties are concerned, most existing works
proved such properties for specific (pairs of) memory models with
manual proof efforts171. Many of these results were not even mecha-
nized, which led to the publication of some incorrect results172.

There do exist a handful of approaches for automatically checking
metatheoretic properties of weak memory models. To the best of our
knowledge,Mador-Haim,Alur, andMartin173 first considered the prob-
lem of comparing memory models automatically, but used the rather
naive technique of exhaustively generating all litmus tests up to a bounded
size. Mador-Haim, Alur, and Martin174 later showed that a fairly re-
stricted class of memory models enjoyed a small model property and
thus checking for whether a memory model is weaker than another is
decidable if both models belong to that very restricted class, which is
sufficient for expressing SC and TSO, but not Power, Arm or C11.

More recently, Wickerson et al.175 developed MemAlloy, a tool that
performs an incomplete bounded search through possible litmus test
skeletons to distinguish between memory models and to validate cor-
rectness of compiler mappings and optimizations. MemSynth176 is a
synthesis-based tool that uses SMT-solvers in its backend to answer
similar queries about memory models as MemAlloy does, and addi-
tionally can generate memorymodel definitions that match a given set
of litmus test outcomes and a sketch of the model.

Note that these two techniquesare not sound. When, for example,
checking for inclusion between weak memory model definitions, they
search for counterexamples up to a given bounded size, and can thus
provide no formal guarantees about whether the property holds.

11.2 V ER I F I CAT ION

We can broadly classify verification approaches into three categories:
(a) explicit-state model checkers, (b) enumerative approaches (e.g.,
SMC, DPOR), and (c) SMT-based approaches, with the latter two cat-

159

160 RE LAT ED WORK

177 “Automatic
verification of

finite-state
concurrent systems

Using temporal
logics specification:

A practical
approach” [CES83];
“Specification and

verification of
concurrent systems
in CESAR” [QS82]

178 “The model
checker SPIN”

[Hol97]
179 “Lazy

Abstraction”
[Hen+02]

180 “SLAM and
Static Driver

Verifier: Technology
Transfer of Formal

Methods inside
Microsoft”
[Bal+04]

181 “Model Checking
JAVA Programs

using JAVA
PathFinder” [HP00]

182 “LTSmin:
High-Performance

Language-
Independent Model

Checking”
[Kan+15]

183 “Model Checking
of C and C++ with

DIVINE 4”
[Bar+17]

184 Depending on the
technique, the bound
may or may not need

to be known in
advance.

185 “Herding cats:
Modelling,

simulation, testing,
and data mining for

weak memory”
[AMT14]

egories falling into bounded verification. In what follows, we briefly
review some representative techniques from each category.

11.2.0.1 Explicit-State Model Checkers

Given a program 𝑃, explicit-state model checking177 explores the set
of states of that are reachable from the initial state, and determines
whether it includes any “bad” state (i.e., one violating a provided speci-
fication). To avoid exploring the same state over andover again, explicit-
state techniques straightforwardly just record the set of already visited
states. The biggest advantage of doing so is that such techniques do not
require the executions of the input program to be of bounded length.

Despite thismajor advantage, there are twomaindownsides in explicit-
statemodel checking. First, even though such techniques employ some
(static) partial order reduction to reduce the number of states to be
visited, saving visited states is often impractical due to the memory re-
quired to record this set. Second, they do not provide algorithmic sup-
port for weak memory. So while it is possible to encode a weak mem-
ory model in an operational semantics that records execution graphs,
such an encoding blows up the state space.

Prominent explicit-state model checkers include SPIN 178, BLAST 179,
SLAM 180, JAVA PATHFINDER 181, LTSMIN 182, and DIVINE 183.

11.2.1 Enumerative Approaches

Enumerative techniques assume that the programunder test has only a
finite number of executions, and that all of its executions are of bounded
length184 Depending on their focus, we can categorize these into mem-
orymodel simulators, which aim formemory-model parametricity (with-
outmuch focus on the algorithmic component), andDPORapproaches,
which aim to reduce the number of executions explored by partitioning
them into equivalence classes, and exploring one execution per equiv-
alence class.

11.2.1.1 Memory Model Simulators

As far as simulators are concerned, the only tools providing roughly
similar functionality to GENMC (in terms of supportingmultiple mem-
ory models) are HERD 185 and RMEM 186.

HERD is a memory model simulator that takes the memory model
definition as an argument and allows users to experiment with dif-
ferent consistency predicates on small “litmus test” programs. Un-
like GENMC, HERD does not require models to satisfy conditions well-
formedness, prefix-closedness and extensibility, and so accepts awider
range of models than GENMC.

11.2 VER I F I CAT ION 161

186 “Promising-
ARM/RISC-V: A
simpler and faster
operational
concurrency model”
[Pul+19]

187 “Software Model
Checking: The
VeriSoft Approach”
[God05]
188 “Finding and
reproducing
Heisenbugs in
concurrent
programs”
[Mus+08]
189 “Dynamic
partial-order
reduction for model
checking software”
[FG05]
190 “Optimal
dynamic partial
order reduction”
[Abd+14]
191 To some degree,
the combination
between optimality
and maintaining
polynomial memory
consumption has
been explored by
QUASI-OPTIMAL-
DPOR; see §11.2.3
192 “CDSChecker:
Checking concurrent
data structures
written with C/C++
atomics” [ND13]
193 “Stateless model
checking for TSO
and PSO”
[Abd+15]
194 “Dynamic partial
order reduction for
relaxed memory
models” [ZKW15]
195 “Stateless model
checking for
POWER” [Abd+16]

Nevertheless, it follows the simple approach of enumerating all pos-
sible executions and filtering them according to the user-supplied con-
sistency predicate, and thus does not scale to larger programs.

RMEM is a memory model simulator that, while not fully paramet-
ric, supports operational definitions of ARMv8 and RISC-V. Pulte et
al. claim that RMEM ’s current operational definitions are suitable for
model checking, as they aremuch faster than the previous ones [Pul+18],
and tools like HERD. That said, RMEM does not employ any DPOR tech-
niques, and thus enjoys limited scalability (see §10.2.1).

11.2.1.2 Dynamic Partial Order Reduction

After seminal works like VERISOFT 187 and CHESS 188 paved the way for
stateless model checking, there has been a large body of work on SMC
and DPOR 189. A major breakthrough in this line of work was made
with OPTIMAL-DPOR by Abdulla et al.190, who developed the first op-
timal DPOR algorithm for the Shasha-Snir equivalence under SC (at
the cost of exponential memory).

We can broadly classify the more recent works in this area into two
main categories depending on their primary focus: (1) techniques that
focus on extending DPOR to weak memory consistency (be it in an
ad-hoc or a parametric fashion), and (2) techniques that aim to com-
bat the state-space explosion problem by introducing coarser equiva-
lence partitionings. In contrast to GENMC, however, no proposed tech-
nique manages to combine (a) being parametric w.r.t. the memory
model, (b) operating under both Shasha-Snir and reads-from equiv-
alence, (c) being optimal, and (d) maintaining polynomial memory
consumption 191.

D POR & WEAK MEMORY CONS I S T ENCY The first attempt to extend
DPOR to weak memory consistency was that of CDSCHECKER 192, a
tool that targets the (original) C/C++11 memory model. Albeit non-
optimal, CDSCHECKER was also the first tool to introduce a constraints-
based coherence order similar to wb, effectively creating a reads-from
equivalence partitioning.

Soon after OPTIMAL-DPOR was presented, Abdulla et al. extended
SOURCE-DPOR (a non-optimal version of OPTIMAL-DPOR with polyno-
mial memory consumption) for TSO and PSO193. At about the same
time, Zhang, Kusano, andWangdeveloped RINSPECT 194, a (non-optimal)
DPOR algorithm for TSO and PSO.

Abdulla et al. also developed RSMC a stateless model checking al-
gorithm for a part of the POWER/ARM model195. Their algorithm is
non-optimal, but includes a scheme for systematically deriving opera-
tional execution models from declarative ones.

More recently, Abdulla et al. developedTRACER 196, an optimalDPOR

162 RE LAT ED WORK

196 “Optimal
stateless model

checking under the
release-acquire

semantics”
[Abd+18]

197 “Effective
stateless model

checking for C/C++
concurrency”

[Kok+17]

198 “Optimal
stateless model

checking for
reads-from

equivalence under
sequential

consistency”
[Abd+19]

199 “The Reads-from
Equivalence for the

TSO and PSO
Memory Models”

[Bui+21]
200 “Maximal Causal

Models for
Sequentially

Consistent Systems”
[ŞCR13]

201 “Stateless Model
Checking Under a
Reads-Value-From

Equivalence”
[Aga+21]

202 “Value-Centric
Dynamic Partial

Order Reduction”
[CPT19]

algorithm for the RA model. TRACER is optimal (by sacrificing mem-
ory), and operates under the reads-from equivalence.

Using adifferent approach, Kokologiannakis et al.197 developedRCMC,
a DPOR algorithm for the RC11 model.RCMC is only optimal for a lim-
ited fragment of the model (excluding RMWs and SC accesses).

D POR & EQU IVALENCE PART I T I ON INGS SinceOPTIMAL-DPOR, a lot
of work has been devoted into coarsening the equivalence partitioning
under which DPOR operates. In what follows, we attempt to provide
a brief (informal) overview of the different equivalence partitionings
that have been proposed in the literature.

causal rvf

vc

rf

dc obs ss naive⊏
⊏ ⊏

⊏ ⊏
⊏ ⊏ ⊏

Figure 11.1: A partial order of proposed equivalence partitionings

A graphical overview of these partitionings can be seen in Fig. 11.1,
where ⊏ is read as “is-coarser-than”. In Fig. 11.1, naive corresponds to
plain SMC techniques (i.e., no partitioning is performed), ss to Shasha-
Snir equivalence, and rf to reads-from equivalence. For SC, Abdulla et
al. presented OPTIMAL-RFSC 198, a version of OPTIMAL-DPOR that pro-
vides an optimized consistency checking mechanism under rf. Bui et
al. present a similarly optimized mechanism for TSO and PSO199.
causal, rvf, vc, dc and obs have all been defined in the context of SC

and are not straightforwardly sound under weak memory, as they fun-
damentally assume “multi-copy atomicity” (i.e., that writes propagate
simultaneously to all other processors).
causal was proposed by Şerbănuţă, Chen, and Roşu200, and effec-

tively distinguishes executions based on the values read by the reads.
Under causal, two (consistent) executions 𝐺1 and 𝐺2 are equivalent if

(1) 𝐺1.E = 𝐺2.E (up to permutation), and

(2) for all 𝑟 ∈ 𝐺1.E it is 𝐺1.val(𝑟) = 𝐺2.val(𝑟)

causal is the coarsest equivalence proposed, but has not been used
directly in DPOR, but rather only in hybrid approaches (see §11.2.3).
rvf is a read-value-from partitioning proposed by Agarwal et al.201.

It can be a refinement of causalwhere, in addition to reading the same
values, reads also have the same causal orderings. Under rvf, two ex-
ecutions 𝐺1 and 𝐺2 are deemed equivalent if

(1) they are considered equivalent under causal, and

(2) 𝐺1.porf|R = 𝐺2.porf|R

11.2 VER I F I CAT ION 163

203 “Data-centric
dynamic partial
order reduction”
[Cha+17]

204 “Optimal
dynamic partial
order reduction with
observers” [Aro+18]

205 At least in a
shared-memory
setting.

206 Improperly
synchronized
programs are buggy
by definition.

207 “Constrained
dynamic partial
order reduction”
[Alb+18]
208

“Context-sensitive
dynamic partial
order reduction”
[Alb+17]

vc corresponds to a value-centric partitioning202 which, similarly to
rvf, distinguishes executions based on the values read. Two executions
𝐺1 and𝐺2 are equivalent under vc if they are equivalent under rvf, and
further, given a pre-selected thread t:

(1) for all reads 𝑟 in 𝐺1.Rt, either 𝑟 ∈ rng(𝐺1.rf𝑖) ∧ 𝑟 ∈ rng(𝐺2.rf𝑖),
or 𝑟 ∈ rng(𝐺1.rf𝑒) ∨ 𝑟 ∈ rng(𝐺2.rf𝑒), and

(2) 𝐺1.hb≠t = 𝐺2.hb≠t

where 𝐺.hb≠t
△= {⟨𝑒1, 𝑒2⟩ | ⟨𝑒1, 𝑒2⟩ ∈ 𝐺.hb∧ tid(𝑒1) ≠ t∧ tid(𝑒2) ≠ t}

dc corresponds to a data-centric partitioning203, a coarser version of
the reads-from partitioning. Two executions 𝐺1 and 𝐺2 are equivalent
under dc if

(1) they are equivalent under rf, and

(2) given a pre-selected thread t, 𝐺1.hb≠t = 𝐺2.hb≠t

Finally, obs corresponds to a coarsening of ss204, whichdistinguishes
executions based on a notion of observability In contrast to rf, which
defines two executions to be equivalent if each read reads from the
same write in both executions, obs is based on observing interference
of operations (i.e., whether some write is hb-before a given read 𝑟).

There are two things worth noting regarding the different partition-
ings. First, even though operating under a coarser equivalence parti-
tioning can yield exponential benefits in theory, in practice the precise
partitioning used is typically irrelevant205: observe that coarser parti-
tionings yield better results if either (a) there are unordered, concur-
rent writes, or (b) there are multiple (unordered) writes writing the
same value, conditions that typically do not manifest in properly syn-
chronized programs206. Second, even when the difference does mat-
ter, there only exist optimal DPOR algorithms for ss and rf. In turn,
a given DPOR algorithm that is non-optimal for a coarse partitioning
may be less effective than an optimal algorithm for a finer one.

In a rather different line of work, algorithms like CDPOR 207 and
CSDPOR 208 operate under the ss partitioning, but try to reduce the
number of explored executions by leveraging conditional independence.
Under conditional independence, certain revisits will not be consid-
ered, depending on the current execution state. To check for such in-
dependence, CDPOR uses checks based on pre-generated constraints,
which may result in (potentially expensive) state-equivalence checks.

To see this, consider the following program:

𝑟 ∶= 𝑥 𝑥 ∶= 𝑣1 … 𝑥 ∶= 𝑣𝑁

If 𝑣1 = 𝑣2 = … = 𝑣𝑁 , then CDPOR detects that reading from any of
the 𝑁 writes leads to an equivalent state, and hence explores 2 execu-
tions (one reading the initial value, and one reading from one of the

164 RE LAT ED WORK

209 “A tool for
checking ANSI-C

programs” [CKL04]
210 “Partial orders

for efficient bounded
model checking of

concurrent software”
[AKT13]

211 “CheckFence:
Checking

consistency of
concurrent data
types on relaxed
memory models”

[BAM07]
212 “Consistency-

Preserving
Propagation for
SMT Solving of

Concurrent Program
Verification”

[SFH22]
213 “MemSAT:

checking axiomatic
specifications of

memory models”
[TVD10]

214 “BMC for weak
memory models:

Relation analysis for
compact SMT

encodings”
[Gav+19]

writes). On the other hand, GENMC explores 𝑁 + 1 executions (one
for each possible value the read can read, assuming rf), as it does not
take conditional independence into account. However, if 𝑣1, 𝑣2,… , 𝑣𝑁
are pairwise distinct (and non-zero), CDPOR explores (𝑁 + 1)! execu-
tions (as the 𝑁 writes all lead to different states), while GENMC still
explores 𝑁 + 1 executions.

11.2.2 SMT-Based Approaches

In contrast to enumerative approaches, SMT-based approaches encode
all executions of a program (together with the memory model) in a
SAT/SMT formula, and query a dedicated solver for its satisfiability.
In order to generate the SAT/SMT encoding, SMT-based approaches
unroll every loop of the program a fixed number of times.

One such approach is CBMC 209, which currently supports the SC,
TSO and PSO models. For weak memory, CBMC makes use of the
fact210 that an execution of a program under a weak memory model
can be viewed as a partially ordered set, which results in an algorithm
aware of the underlyingmemorymodelwhen constructing the SMT/SAT
formula.

CHECKFENCE 211, focuses on verifying concurrent data structure im-
plementations under SC and a (custom) Relaxed model. CHECKFENCE
encodes the memory model along with entire abstract program execu-
tions in SAT, and lazily unrolls loops when the solver indicates that a
given loop may exceed the current unroll bound.

DEAGLE 212 is another SMT-based approach that supports the SC, TSO
and PSO models. Unlike CBMC, however, DEAGLE equips the under-
lying solver with a dedicated consistency theory for multi-threaded
program verification that results in a more efficient encoding, and gen-
erally better runtimes.

Other tools like MEMSAT 213 and DARTAGNAN 214 take the memory
model as an input along with the given program. Specifically, given a
small bounded program and a memory model, MEMSAT constructs a
formula representing the possible executions of the program according
to the model and queries a SAT/SMT solver to see whether a given
programoutcome is possible. In terms of scalability, MEMSATwas only
meant to be used for small litmus tests, and so does not scale to larger
examples like the ones used in §10.2.1. DARTAGNAN, on the other hand,
uses cleverer encodings into SAT and various optimizations and is thus
able to scale reasonably well. We compare the performance of GENMC
against that of DARTAGNAN in §10.2.

11.2.3 Hybrid Approaches

Apart from the techniques described above, a lot of work has been de-
voted into creating hybrid techniques, e.g., by combining DPOR and

11.2 VER I F I CAT ION 165

215 “Stateless model
checking concurrent
programs with
maximal causality
reduction” [Hua15];
“Maximal Causality
Reduction for TSO
and PSO” [HH16]

216 “SATCheck:
SAT-directed
stateless model
checking for SC and
TSO” [DL15]

217 “A Technique of a
State Space Search
Based on Unfolding”
[McM95]

218 “Quasi-optimal
partial order
reduction”
[Ngu+18]

SMT-based approaches. Below we survey some representative exam-
ples.

Startingwith a SAT-driven statelessmodel checking approach, Huang
has proposed Maximal Causality Reduction (MCR)215 to improve on
DPOR, and also extended it to also handle TSO and PSO through a re-
laxed happens-before modeling. The key insight behind MCR is that
a thread’s behavior does not depend on the specific stores that the
thread’s loads take its values from, but rather on the values that these
loads read. MCR uses an SMT solver to generate executions in which
the loads of a thread read different combinations of values than previ-
ously explored executions (effectively operating under causal). MCR
also assumes multi-copy atomicity.

In a similar spirit to MCR, Demsky and Lam proposed SATCHECK
216, a branch-driven stateless model checking approach that aims to
cover all branches and all the unknown behaviors of the uninterpreted
functions by systematically exploring thread schedules under SC and
TSO. In contrast to MCR, SATCHECK does not try to generate execu-
tions where reads read a different value, but rather where a new (un-
explored) direction on a branch is taken, a novel interleaving is visited,
or a new input-output relation for an uninterpreted function is learned.

On adifferent level, unfolding techniques like the proposed byKähkö-
nen, Saarikivi, and Heljanko and Rodríguez et al. can be considered
combinations of explicit-state model checking and DPOR. Such tech-
niques use unfoldings217 to cache certain visited states, can deal with
programs that have infinite traces, and can obtain an even better reduc-
tion than optimal DPOR approaches. That said, unfolding-based tech-
niques typically have significantly larger cost per test execution than
vanilla DPOR techniques.

Along this line of work, QUASI-OPTIMAL-DPOR 218 explores the trade-
off between optimality and polynomial memory consumption. QUASI-
OPTIMAL-DPOR is able to approximate an optimal DPOR with a user-
provided constant 𝑘. As the value of 𝑘 increases, memory consump-
tion also increases in an exponential manner. Although Quasi-optimal
DPOR theoretically achieves optimality only with 𝑘 = ∞, it has been
shown to practically be optimal, for small values of 𝑘.

11.2.4 The Bounded Verification Landscape

In table 11.1 we try to give a comprehensive summary of the bounded
verification techniques described above. To that end, we compare the
various techniques on several fronts:

• the memory models supported

• the equivalence partitioning used

• optimality (i.e., whether each behavior is explored exactly once,
and no fruitless exploration is performed)

166 RE LAT ED WORK

219 “Stateless model
checking for
POWER”

[Abd+16]; “HMC:
Model checking for
hardware memory
models” [KV20];
“Stateless model

checking of the Linux
kernel’s read–copy
update (RCU)”

[KS19]

• polynomial memory consumption

• whether the technique can be parallelized with no data sharing
(not considering parallelization of a possible underlying solver)

• whether data-non-determinism is supported

Wewrite “-” when somemetric is inapplicable. Enumerative tools that
employ declarative semantics in some form or another are highlighted.
(Tools that use SAT/SMT solvers use declarative semantics by defini-
tion.)

In principle, whether a SAT-based or stateless model checking ap-
proach works best depends largely on the program to be verified. SAT-
based tools tend to scale better for programs with a large state space
and no local computation, while stateless model checkers work best
for programs with a relatively small number of distinct program ex-
ecutions, but which may include a lot of arithmetic computations219
(also see §10.2).

11.2 VER I F I CAT ION 167

M
od
els

Eq
ui
va
len

ce

O
pt
im

al

Po
ly

M
em

N
oS

ha
rin

g

N
on

de
tD

at
a

Simulators
⎧{
⎨{⎩

RMEM ARM,POWER naive 7 7 3† 7

HERD parametric naive 7 7 3† 7

DPOR

⎧{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{⎩

SOURCE-DPOR SC/TSO/PSO ss 7 3 7* 7

DC-DPOR SC rf 7 3 7* 7

VC-DPOR SC vc 7 3 7* 7

RVF-DPOR SC rvf 7 3 7* 7

OPTIMAL-DPOR SC/TSO/PSO ss 3 7 7 7

OPTIMAL-OBSERVERS SC/TSO/PSO ss,obs 3 7 7 7

OPTIMAL-RFSC SC rf 3 7 7 7

TRACER RA rf 3 7 7 7

RSMC ARM‡/POWER‡ ss 7 3 7* 7

CDSCHECKER C11 rf 7 3 7* 7

RCMC RC11 ss 7 3 7* 7

SMT/SAT

⎧{{{{
⎨{{{{⎩

CBMC SC/TSO/PSO - - 7 7 3

DEAGLE SC/TSO/PSO - - 7 7 3

CHECKFENCE SC/Relaxed - - 7 7 3

DARTAGNAN parametric - - 7 7 3

Hybrid
⎧{
⎨{⎩

MCR SC/TSO/PSO causal 7 7 3 3†

SATCHECK SC/TSO - 3 7 7 3†

GENMC parametric ss,rf 3 3 3 7

Table 11.1: An overview of the bounded verification landscape
* Can be parallelized with no sharing by exploring more duplicates.
† In principle, yes; not explicitly addressed in the paper.
‡ Partial support.

12

220 As a few
examples, consider
arbitrary fixpoint
calculations,
restrictions of a
relation to a given
location, etc.

SUMMARY

This thesis revolved around automation of weak memory consistency:

• KATER provides a decision procedure able to automate proofs that
were previously only done manually. Leveraging the fact that
most memorymodels are expressible in KAT, it reduces metathe-
oretic queries aboutmemorymodels to a language-inclusionprob-
lem between regular languages.

• GENMCprovides a new foundation forDPORbased on execution
graphs. It is the first DPOR framework that is parametric in the
choice of thememorymodel, while also maintaining polynomial
memory consumption.

The thesis is also a testament to the elegance of declarative semantics.
Being able to (a) specify a variety of models using a single framework,
and (b) model each program behavior as an execution graph was cru-
cial in enabling the contributions above.

Besides declarative semantics, key in achieving the contributions above
was tool development. Apart from having a real-world impact, build-
ing andmaintaining tools alongside algorithmswas pivotal in locating
the strengths and weaknesses of each approach, and instrumental in
driving research from a practical perspective.

12.1 FU TURE WORK

There are various ways the results of this thesis could be built upon.

METATHEORY One drawback in the presentation of KATER so far is
that users might be required to rewrite a given model so that it falls
within the (decidable) KAT fragment. Even though alternative formu-
lations of the same model can be checked for equivalence by the tool
itself, rewriting models might sometimes be impossible220. As such,
it would be interesting to investigate extensions of KAT that would in-
crease the expressiveness of the tool, while still providing a decidable
procedure.

As far as fragments for which language inclusion cannot be decided
are concerned, itwould be interesting to seewhetherKATER can be used
in a semi-interactive mode. Specifically, whenever a given expression
does not fall within the decidable fragment of the tool, the users should
be responsible to provide all information required to complete the in-
clusion checks. Such an interactive mode would be more meaningful
in case KATER is implemented as a library for a proof assistant.

169

170 SUMMARY

221 “Satisfiability
modulo Ordering

Consistency Theory
for Multi-Threaded

Program
Verification”

[HSF21]

222 “Dynamic Partial
Order Reduction for

Checking
Correctness against

Transaction Isolation
Levels” [BER23]

223 “Reconciling
Preemption

Bounding with
DPOR” [MKV23];
“Optimal Bounded

Partial Order
Reduction” [MV23]

224 “VSync:
Push-Button

Verification and
Optimization for
Synchronization

Primitives on Weak
Memory Models”

[Obe+21b]

In terms of tool support, it would be worth investigating whether it
is possible to incorporate KATER’s decision procedures into proof assis-
tants likeCoq (that have been traditionally used to provemetatheoretic
properties of weak memory models), and whether KATER’s infrastruc-
ture for generating consistency checks can be leveraged by SMT solver
theories (as, e.g., in the work of He, Sun, and Fan221).

V ER I F I CAT ION In terms of verification, it would certainly be helpful
to address one of the major weaknesses of DPOR, namely the lack of
support for data-non-determinism. To that end, it should be straight-
forward to combineDPORwith concolic testing, treating symbolic vari-
able definitions and branching decisions as extra backtracking points
when constructing execution graphs in DPOR, and offloading path-
feasibility constraints to an SMT solver. To a large extent, constraints
on symbolic variables and path feasibility are thread-local, and should
not induce a lot of changes in the underlying DPOR framework.

Another feature that would greatly improve the applicability of a
framework like GENMC is support for arbitrary atomic sections, by lift-
ing DPOR so that orderings of sections with no conflicting accesses
are not explored. Such support would have to redefine what revisiting
means and how it is performed, but would allow for much greater re-
ductions as well. DPOR could then potentially be applied to handle
transactions, mixed-size accesses (where multiple byte-level accesses
can be performed in a single atomic step), or even interrupts in systems
code (where an interrupt handler may run atomically, at any point of
the program). The work of Bouajjani, Enea, and Román-Calvo222 is a
promising step in that direction, though the extent of DPOR’s applica-
bility is yet to be discovered.

On a more practical level, it would be interesting to investigate the
integration of DPOR with techniques that check bounded correctness
(e.g., preemption bounding). One could try to come up with algo-
rithms that optimally combine the two techniques (a problem that is
quite challenging223), or come up with novel bound notions that carry
over to weak memory and enable effective verification.

Finally, as far as tool support is concerned, integrating interpreters
or runtime environments for different languages into GENMC would
enable the verification of a much broader class of programs, and there-
fore the potential discovery of more bugs. Another possibility would
be to use GENMC in other contexts, e.g., fence insertion and program
synthesis224.

B I B L IOGRAPHY

[Abd+15] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi
Atig, Bengt Jonsson, Carl Leonardsson, andKonstantinos
Sagonas. “Stateless model checking for TSO and PSO.”
In: TACAS 2015. DOI: 10.1007/978-3-662-46681-0_28.
URL: http://dx.doi.org/10.1007/978-3-662-46681-
0_28.

[Abd+14] ParoshAziz Abdulla, Stavros Aronis, Bengt Jonsson, and
Konstantinos Sagonas. “Optimal dynamic partial order
reduction.” In:POPL 2014. DOI: 10.1145/2535838.2535845.
URL: http://doi.acm.org/10.1145/2535838.2535845.

[Abd+17] ParoshAziz Abdulla, Stavros Aronis, Bengt Jonsson, and
Konstantinos Sagonas. “Source sets: A foundation for op-
timal dynamic partial order reduction.” In: J. ACM 64.4
(2017). DOI: 10.1145/3073408. URL: http://doi.acm.
org/10.1145/3073408.

[Abd+19] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jon-
sson, Magnus Lång, Tuan Phong Ngo, and Konstantinos
Sagonas. “Optimal stateless model checking for reads-
from equivalence under sequential consistency.” In: Proc.
ACM Program. Lang. 3 (OOPSLA 10, 2019). DOI: 10.1145/
3360576. URL: https://doi.org/10.1145/3360576 (vis-
ited on 01/18/2021).

[Abd+16] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jon-
sson, and Carl Leonardsson. “Stateless model checking
for POWER.” In: CAV 2016. DOI: 10.1007/978-3-319-
41540-6_8. URL: https://doi.org/10.1007/978-3-319-
41540-6_8.

[Abd+18] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jons-
son, andTuanPhongNgo. “Optimal statelessmodel check-
ing under the release-acquire semantics.” In: Proc. ACM
Program. Lang. 2.OOPSLA (2018). DOI: 10.1145/3276505.
URL: http://doi.acm.org/10.1145/3276505.

[Aga+21] PratyushAgarwal, KrishnenduChatterjee, ShreyaPathak,
Andreas Pavlogiannis, andViktor Toman. “StatelessModel
Checking Under a Reads-Value-From Equivalence.” In:
CAV 2021. DOI: 10.1007/978-3-030-81685-8_16.

[Alb+17] ElviraAlbert, PuriArenas,MaríaGarcía de la Banda,Miguel
Gómez-Zamalloa, andPeter J. Stuckey. “Context-sensitive
dynamic partial order reduction.” In: CAV 2017. DOI: 10.
1007/978-3-319-63387-9_26.

171

https://doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/2535838.2535845
http://doi.acm.org/10.1145/2535838.2535845
https://doi.org/10.1145/3073408
http://doi.acm.org/10.1145/3073408
http://doi.acm.org/10.1145/3073408
https://doi.org/10.1145/3360576
https://doi.org/10.1145/3360576
https://doi.org/10.1145/3360576
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
http://doi.acm.org/10.1145/3276505
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-63387-9_26

172 B I B L IOGRAPHY

[Alb+18] Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel,
and Albert Rubio. “Constrained dynamic partial order
reduction.” In: CAV 2018. DOI: 10 . 1007 / 978 - 3 - 319 -
96142-2_24.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig.
“Partial orders for efficient bounded model checking of
concurrent software.” In: CAV 2013. DOI: 10.1007/978-3-
642-39799-8_9.

[Alg+18] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea
Parri, and Alan Stern. “Frightening small children and
disconcerting grown-ups: Concurrency in the Linux ker-
nel.” In: ASPLOS 2018. DOI: 10.1145/3173162.3177156.
URL: http://doi.acm.org/10.1145/3173162.3177156.

[AMT14] JadeAlglave, LucMaranget, andMichael Tautschnig. “Herd-
ing cats: Modelling, simulation, testing, and data mining
for weak memory.” In: ACM Trans. Program. Lang. Syst.
36.2 (2014). DOI: 10.1145/2627752. URL: http://doi.
acm.org/10.1145/2627752.

[Aro+18] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Kon-
stantinos Sagonas. “Optimal dynamic partial order re-
duction with observers.” In: TACAS 2018. DOI: 10.1007/
978-3-319-89963-3_14.

[Bal+04] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K.
Rajamani. “SLAM and Static Driver Verifier: Technology
Transfer of Formal Methods inside Microsoft.” In: IFM
2004. DOI: 10.1007/978-3-540-24756-2_1.

[Bar+17] Zuzana Baranová, Jiří Barnat, Katarína Kejstová, Tadeáš
Kučera,Henrich Lauko, JanMrázek, Petr Ročkai, andVladimír
Štill. “Model Checking of C and C++ with DIVINE 4.”
In: ATVA 2017. DOI: 10.1007/978-3-319-68167-2_14.

[Bat+12] MarkBatty, KayvanMemarian, ScottOwens, Susmit Sarkar,
and Peter Sewell. “Clarifying and compiling C/C++ con-
currency: From C++11 to POWER.” In: POPL 2012. DOI:
10.1145/2103656.2103717. URL: http://doi.acm.org/
10.1145/2103656.2103717.

[Bat+11] MarkBatty, ScottOwens, Susmit Sarkar, Peter Sewell, and
TjarkWeber. “MathematizingC++concurrency.” In:POPL
2011. DOI: 10.1145/1926385.1926394. URL: http://doi.
acm.org/10.1145/1926385.1926394.

[BE19] Ranadeep Biswas and Constantin Enea. “On the Com-
plexity of Checking Transactional Consistency.” In: Proc.
ACM Program. Lang. 3.OOPSLA (2019). DOI: 10.1145/
3360591. URL: https://doi.org/10.1145/3360591.

https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/3173162.3177156
http://doi.acm.org/10.1145/3173162.3177156
https://doi.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1145/2103656.2103717
http://doi.acm.org/10.1145/2103656.2103717
http://doi.acm.org/10.1145/2103656.2103717
https://doi.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360591
https://doi.org/10.1145/3360591
https://doi.org/10.1145/3360591

B I B L IOGRAPHY 173

[BD14] Hans-JuergenBoehmandBrianDemsky. “Outlawing ghosts:
Avoiding out-of-thin-air results.” In:MSPC 2014. DOI: 10.
1145/2618128.2618134. URL: http://doi.acm.org/10.
1145/2618128.2618134.

[BP13] Filippo Bonchi and Damien Pous. “Checking NFA equiv-
alence with bisimulations up to congruence.” In: POPL
2013. DOI: 10.1145/2429069.2429124. URL: https://doi.
org/10.1145/2429069.2429124.

[BT17] James Bornholt and Emina Torlak. “Synthesizing mem-
ory models from framework sketches and Litmus tests.”
In: PLDI 2017. DOI: 10.1145/3062341.3062353. URL: http
s://doi.org/10.1145/3062341.3062353.

[BER23] Ahmed Bouajjani, Constantin Enea, and Enrique Román-
Calvo. “Dynamic Partial Order Reduction for Checking
Correctness against Transaction IsolationLevels.” In:Proc.
ACMProgram. Lang. 7.PLDI (2023). DOI: 10.1145/3591243.
URL: https://doi.org/10.1145/3591243.

[Bui+21] Truc Lam Bui, Krishnendu Chatterjee, Tushar Gautam,
Andreas Pavlogiannis, and Viktor Toman. “The Reads-
from Equivalence for the TSO and PSO Memory Mod-
els.” In: Proc. ACMProgram. Lang. 5.OOPSLA (2021). DOI:
10.1145/3485541. URL: https://doi.org/10.1145/
3485541.

[BAM07] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Mar-
tin. “CheckFence: Checking consistency of concurrent data
types on relaxed memory models.” In: PLDI 2007. DOI:
10.1145/1250734.1250737.

[CV19] Soham Chakraborty and Viktor Vafeiadis. “Grounding
thin-air reads with event structures.” In: Proc. ACM Pro-
gram. Lang. 3.POPL (2019). DOI: 10.1145/3290383.

[Cha+17] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlo-
giannis, Nishant Sinha, and Kapil Vaidya. “Data-centric
dynamic partial order reduction.” In: Proc. ACMProgram.
Lang. 2.POPL (2017). DOI: 10.1145/3158119. URL: http:
//doi.acm.org/10.1145/3158119.

[CPT19] Krishnendu Chatterjee, Andreas Pavlogiannis, and Vik-
tor Toman. “Value-Centric Dynamic Partial Order Reduc-
tion.” In: Proc. ACM Program. Lang. 3.OOPSLA (2019).
DOI: 10.1145/3360550. URL: https://doi.org/10.1145/
3360550.

https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/2618128.2618134
http://doi.acm.org/10.1145/2618128.2618134
http://doi.acm.org/10.1145/2618128.2618134
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3591243
https://doi.org/10.1145/3591243
https://doi.org/10.1145/3485541
https://doi.org/10.1145/3485541
https://doi.org/10.1145/3485541
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3158119
http://doi.acm.org/10.1145/3158119
http://doi.acm.org/10.1145/3158119
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550

174 B I B L IOGRAPHY

[CES83] Edmund M. Clarke, E. Allen Emerson, and A. Prasad
Sistla. “Automatic verification of finite-state concurrent
systems Using temporal logics specification: A practical
approach.” In: POPL 1983. DOI: 10.1145/567067.567080.
URL: http://doi.acm.org/10.1145/567067.567080.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda.
“A tool for checking ANSI-C programs.” In: TACAS 2004.
DOI: 10.1007/978-3-540-24730-2_15. URL: http://dx.
doi.org/10.1007/978-3-540-24730-2_15.

[Con63] Melvin E. Conway. “Design of a separable transition-diagram
compiler.” In: Commun. ACM 6.7 (1963). DOI: 10.1145/
366663.366704. URL: https://doi.org/10.1145/366663.
366704.

[Cor+09] ThomasH.Cormen,Charles E. Leiserson, RonaldL. Rivest,
and Clifford Stein. Introduction to Algorithms, 3rd Edition.
MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

[Sch16] Samuel Schetterer.Crossbeam: Flat combining #63. 2016. URL:
https://github.com/crossbeam-rs/crossbeam/issues
/63 (visited on 01/29/2021).

[DL15] BrianDemsky andPatrick Lam. “SATCheck: SAT-directed
stateless model checking for SC and TSO.” In: OOPSLA
2015. DOI: 10.1145/2814270.2814297. URL: http://doi.
acm.org/10.1145/2814270.2814297.

[DSM18] StephenDolan,KCSivaramakrishnan, andAnilMadhavapeddy.
“Bounding Data Races in Space and Time.” In: PLDI 2018.
DOI: 10.1145/3192366.3192421. URL: https://doi.org/
10.1145/3192366.3192421.

[23] DOT (graph description language). 2023. URL: https://en.
wikipedia.org/wiki/DOT_(graph_description_langua
ge) (visited on 06/16/2023).

[daa] daanx. fix memory order for weak CAS. URL: https://githu
b.com/microsoft/mimalloc/commit/444afa934ff8d53b
f8c53602246bfc65828dc1d9 (visited on 10/16/2022).

[FG05] Cormac Flanagan andPatriceGodefroid. “Dynamic partial-
order reduction for model checking software.” In: POPL
2005. DOI: 10.1145/1040305.1040315. URL: http://doi.
acm.org/10.1145/1040305.1040315.

[Flu+17] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndy-
lanNienhuis, LucMaranget, Kathryn E. Gray, Ali Sezgin,
Mark Batty, and Peter Sewell. “Mixed-size concurrency:
ARM, POWER, C/C++11, and SC.” In: POPL 2017. DOI:
10.1145/3009837.3009839. URL: https://doi.org/10.
1145/3009837.3009839.

https://doi.org/10.1145/567067.567080
http://doi.acm.org/10.1145/567067.567080
https://doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/366663.366704
https://doi.org/10.1145/366663.366704
https://doi.org/10.1145/366663.366704
https://doi.org/10.1145/366663.366704
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://github.com/crossbeam-rs/crossbeam/issues/63
https://github.com/crossbeam-rs/crossbeam/issues/63
https://doi.org/10.1145/2814270.2814297
http://doi.acm.org/10.1145/2814270.2814297
http://doi.acm.org/10.1145/2814270.2814297
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3192366.3192421
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://github.com/microsoft/mimalloc/commit/444afa934ff8d53bf8c53602246bfc65828dc1d9
https://github.com/microsoft/mimalloc/commit/444afa934ff8d53bf8c53602246bfc65828dc1d9
https://github.com/microsoft/mimalloc/commit/444afa934ff8d53bf8c53602246bfc65828dc1d9
https://doi.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/1040305.1040315
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/3009837.3009839

B I B L IOGRAPHY 175

[Gav+19] Natalia Gavrilenko, Hernán Ponce-de-León, Florian Fur-
bach, Keijo Heljanko, and RolandMeyer. “BMC for weak
memory models: Relation analysis for compact SMT en-
codings.” In: CAV 2019. DOI: 10.1007/978-3-030-25540-
4_19.

[Kok] Michalis Kokologiannakis. GenMC: Generic model check-
ing for C programs. URL: https://github.com/MPI-SWS/
genmc.

[GK97] Phillip B. Gibbons and Ephraim Korach. “Testing shared
memories.” In: SIAM J. Comput. 26.4 (1997). DOI: 10.1137/
S0097539794279614. URL: http://dx.doi.org/10.1137/
S0097539794279614.

[God05] PatriceGodefroid. “SoftwareModelChecking: TheVeriSoft
Approach.” In: Form. Meth. Syst. Des. 26.2 (2005). DOI: 10.
1007/s10703-005-1489-x. URL: http://dx.doi.org/10.
1007/s10703-005-1489-x.

[HP00] KlausHavelund andThomasPressburger. “ModelCheck-
ing JAVA Programs using JAVA PathFinder.” In: Int. J.
Soft. Tool. Tech. Transf. 2.4 (2000). DOI: 10.1007/S100090050043.
URL: https://doi.org/10.1007/s100090050043.

[HSF21] FeiHe, Zhihang Sun, andHongyuFan. “Satisfiabilitymod-
uloOrderingConsistencyTheory forMulti-ThreadedPro-
gram Verification.” In: PLDI 2021. DOI: 10.1145/3453483.
3454108. URL: https : / / doi . org / 10 . 1145 / 3453483 .
3454108.

[Hen+02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar,
and Grégoire Sutre. “Lazy Abstraction.” In: POPL 2002.
DOI: 10.1145/503272.503279. URL: https://doi.org/10.
1145/503272.503279.

[Hol97] G.J.Holzmann. “Themodel checker SPIN.” In: IEEETrans.
Software Eng. 23.5 (1997). DOI: 10.1109/32.588521.

[Hua15] Jeff Huang. “Stateless model checking concurrent pro-
grams with maximal causality reduction.” In: PLDI 2015.
DOI: 10.1145/2737924.2737975. URL: http://doi.acm.
org/10.1145/2737924.2737975.

[HH16] Shiyou Huang and Jeff Huang. “Maximal Causality Re-
duction for TSO and PSO.” In: OOPSLA 2016. DOI: 10 .
1145/2983990.2984025. URL: http://doi.acm.org/10.
1145/2983990.2984025.

[KSH15] Kari Kähkönen, Olli Saarikivi, and Keijo Heljanko. “Un-
folding Based Automated Testing of Multithreaded Pro-
grams.” In: Autom. Softw. Eng. 22.4 (2015). DOI: 10.1007/
s10515-014-0150-6. URL: http://dx.doi.org/10.1007/
s10515-014-0150-6.

https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://github.com/MPI-SWS/genmc
https://github.com/MPI-SWS/genmc
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1137/S0097539794279614
http://dx.doi.org/10.1137/S0097539794279614
http://dx.doi.org/10.1137/S0097539794279614
https://doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1007/s10703-005-1489-x
http://dx.doi.org/10.1007/s10703-005-1489-x
http://dx.doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1007/S100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/2737924.2737975
http://doi.acm.org/10.1145/2737924.2737975
http://doi.acm.org/10.1145/2737924.2737975
https://doi.org/10.1145/2983990.2984025
https://doi.org/10.1145/2983990.2984025
http://doi.acm.org/10.1145/2983990.2984025
http://doi.acm.org/10.1145/2983990.2984025
https://doi.org/10.1007/s10515-014-0150-6
https://doi.org/10.1007/s10515-014-0150-6
http://dx.doi.org/10.1007/s10515-014-0150-6
http://dx.doi.org/10.1007/s10515-014-0150-6

176 B I B L IOGRAPHY

[Kan+17] JeehoonKang,Chung-KilHur,Ori Lahav,ViktorVafeiadis,
and Derek Dreyer. “A promising semantics for relaxed-
memory concurrency.” In:POPL 2017. DOI: 10.1145/3009837.
3009850.

[Kan+15] Gijs Kant, Alfons Laarman, JeroenMeijer, Jaco van de Pol,
StefanBlom, andTomvanDijk. “LTSmin:High-Performance
Language-IndependentModelChecking.” In:TACAS2015.
DOI: 10.1007/978-3-662-46681-0_61.

[KLV23a] MichalisKokologiannakis,Ori Lahav, andViktorVafeiadis.
Kater: AutomatingWeakMemoryModelMetatheory andCon-
sistency Checking (Project page). 2023. URL: https://plv.
mpi-sws.org/kater (visited on 01/22/2024).

[Kok23] MichalisKokologiannakis. “AutomatedReasoningunder
WeakMemoryConsistency (replication package).” In: (2023).
DOI: 10.5281/zenodo.10575926.

[Kok+21] Michalis Kokologiannakis, IlyaKaysin, Azalea Raad, and
Viktor Vafeiadis. “PerSeVerE: Persistency semantics for
verificationunder ext4.” In:Proc. ACMProgram. Lang. 5.POPL
(2021). DOI: 10.1145/3434324. URL: https://doi.org/
10.1145/3434324.

[Kok+17] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sag-
onas, andViktorVafeiadis. “Effective statelessmodel check-
ing forC/C++concurrency.” In:Proc. ACMProgram. Lang.
2.POPL (2017). DOI: 10.1145/3158105. URL: http://doi.
acm.org/10.1145/3158105.

[KLV23b] MichalisKokologiannakis,Ori Lahav, andViktorVafeiadis.
“Kater: Automating Weak Memory Model Metatheory
andConsistencyChecking.” In:Proc. ACMProgram. Lang.
7.POPL (2023). DOI: 10.1145/3571212. URL: https://doi.
org/10.1145/3571212.

[Kok+22a] MichalisKokologiannakis, IasonMarmanis, VladimirGlad-
stein, and Viktor Vafeiadis. “Truly stateless, optimal dy-
namic partial order reduction.” In: Proc. ACM Program.
Lang. 6.POPL (2022). DOI: 10.1145/3498711. URL: https:
//doi.org/10.1145/3498711.

[Kok+22b] MichalisKokologiannakis, IasonMarmanis, VladimirGlad-
stein, and Viktor Vafeiadis. “Truly Stateless, Optimal Dy-
namic PartialOrderReduction (supplementarymaterial).”
In: (2022). URL: https://plv.mpi-sws.org/genmc.

[KMV23] Michalis Kokologiannakis, Iason Marmanis, and Viktor
Vafeiadis. “UnblockingDynamic PartialOrderReduction.”
In: CAV 2023. DOI: 10.1007/978-3-031-37706-8_12.
URL: https://doi.org/10.1007/978- 3- 031- 37706-
8%5C_12.

https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-662-46681-0_61
https://plv.mpi-sws.org/kater
https://plv.mpi-sws.org/kater
https://doi.org/10.5281/zenodo.10575926
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3158105
http://doi.acm.org/10.1145/3158105
http://doi.acm.org/10.1145/3158105
https://doi.org/10.1145/3571212
https://doi.org/10.1145/3571212
https://doi.org/10.1145/3571212
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711
https://plv.mpi-sws.org/genmc
https://doi.org/10.1007/978-3-031-37706-8_12
https://doi.org/10.1007/978-3-031-37706-8%5C_12
https://doi.org/10.1007/978-3-031-37706-8%5C_12

B I B L IOGRAPHY 177

[KRV19] MichalisKokologiannakis,AzaleaRaad, andViktorVafeiadis.
“Model checking forweakly consistent libraries.” In:PLDI
2019. DOI: 10.1145/3314221.3314609.

[KRV21] MichalisKokologiannakis, Xiaowei Ren, andViktorVafeiadis.
“Dynamic Partial Order Reductions for Spinloops.” In:
FMCAD 2021. DOI: 10.34727/2021/isbn.978-3-85448-
046-4_25. URL: https://doi.org/10.34727/2021/isbn.
978-3-85448-046-4%5C_25.

[KS19] MichalisKokologiannakis andKonstantinos Sagonas. “State-
less model checking of the Linux kernel’s read–copy up-
date (RCU).” In: Int. J. Soft. Tool. Tech. Transf. (2019). DOI:
10.1007/s10009-019-00514-6. URL: https://doi.org/
10.1007/s10009-019-00514-6.

[KV20] Michalis Kokologiannakis and Viktor Vafeiadis. “HMC:
Model checking for hardware memory models.” In: AS-
PLOS 2020. DOI: 10.1145/3373376.3378480. URL: https:
//doi.org/10.1145/3373376.3378480.

[KV21a] Michalis Kokologiannakis and Viktor Vafeiadis. “BAM:
Efficient Model Checking for Barriers.” In: NETYS 2021.
DOI: 10.1007/978-3-030-91014-3_16. URL: https://plv.
mpi-sws.org/genmc.

[KV21b] MichalisKokologiannakis andViktorVafeiadis. “GenMC:
Amodel checker forweakmemorymodels.” In:CAV2021.
DOI: 10.1007/978-3-030-81685-8_20.

[Koz97] DexterKozen. “KleeneAlgebrawith Tests.” In:ACMTrans.
Program. Lang. Syst. 19.3 (1997). DOI: 10.1145/256167.
256195. URL: https://doi.org/10.1145/256167.256195.

[KS96] DexterKozen andFrederick Smith. “KleeneAlgebrawith
Tests: Completeness and Decidability.” In: CSL 1996. DOI:
10.1007/3-540-63172-0_43. URL: https://doi.org/
10.1007/3-540-63172-0%5C_43.

[LGV16] Ori Lahav,NickGiannarakis, andViktor Vafeiadis. “Tam-
ing Release-acquire Consistency.” In: POPL 2016. DOI: 10.
1145/2837614.2837643. URL: http://doi.acm.org/10.
1145/2837614.2837643.

[LV16] Ori Lahav andViktorVafeiadis. “ExplainingRelaxedMem-
oryModelswith ProgramTransformations.” In: FM2016.
DOI: 10.1007/978-3-319-48989-6_29. URL: http://dx.
doi.org/10.1007/978-3-319-48989-6_29.

[Lah+17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil
Hur, andDerekDreyer. “Repairing sequential consistency
inC/C++11.” In:PLDI 2017. DOI: 10.1145/3062341.3062352.
URL: http://doi.acm.org/10.1145/3062341.3062352.

https://doi.org/10.1145/3314221.3314609
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4%5C_25
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4%5C_25
https://doi.org/10.1007/s10009-019-00514-6
https://doi.org/10.1007/s10009-019-00514-6
https://doi.org/10.1007/s10009-019-00514-6
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1007/978-3-030-91014-3_16
https://plv.mpi-sws.org/genmc
https://plv.mpi-sws.org/genmc
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/3-540-63172-0%5C_43
https://doi.org/10.1007/3-540-63172-0%5C_43
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
http://doi.acm.org/10.1145/3062341.3062352

178 B I B L IOGRAPHY

[Lam79] Leslie Lamport. “How to Make a Multiprocessor Com-
puter that Correctly Executes Multiprocess Programs.”
In: IEEE Trans. Computers 28.9 (1979). DOI: 10.1109/TC.
1979.1675439. URL: http://dx.doi.org/10.1109/TC.
1979.1675439.

[LS20] MagnusLång andKonstantinos Sagonas. “ParallelGraph-
Based StatelessModel Checking.” In:ATVA 2020. DOI: 10.
1007/978-3-030-59152-6_21.

[03a] lli - directly execute programs from LLVM bitcode. 2003. URL:
https://llvm.org/docs/CommandGuide/lli.html (vis-
ited on 01/29/2021).

[03b] Writing an LLVM Pass. 2003. URL: https://llvm.org/
docs/WritingAnLLVMPass.html#introduction- what-
is-a-pass (visited on 06/16/2023).

[MAM10] Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin.
“Generating Litmus Tests for Contrasting Memory Con-
sistency Models.” In: CAV 2010. DOI: 10.1007/978- 3-
642-14295-6_26. URL: https://doi.org/10.1007/978-
3-642-14295-6%5C_26.

[MAM11] Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin.
“Litmus tests for comparing memory consistency mod-
els: how long do they need to be?” In: DAC 2011. DOI:
10 . 1145 / 2024724 . 2024842. URL: https : / / doi . org /
10.1145/2024724.2024842.

[MPA05] JeremyManson, William Pugh, and Sarita V. Adve. “The
Javamemorymodel.” In:POPL 2005. DOI: 10.1145/1040305.
1040336. URL: https : / / doi . org / 10 . 1145 / 1040305 .
1040336.

[MKV23] Iason Marmanis, Michalis Kokologiannakis, and Viktor
Vafeiadis. “ReconcilingPreemptionBoundingwithDPOR.”
In: TACAS 2023.

[MV23] IasonMarmanis andViktorVafeiadis. “Optimal Bounded
PartialOrderReduction.” In: FMCAD2023. DOI: 10.34727/
2023/ISBN.978-3-85448-060-0_16. URL: https://doi.
org/10.34727/2023/isbn.978-3-85448-060-0%5C_16.

[Maz87] Antoni Mazurkiewicz. “Trace Theory.” In: PNAROMC
1987. DOI: 10.1007/3-540-17906-2_30. URL: http://
dx.doi.org/10.1007/3-540-17906-2_30.

[McM95] KennethL.McMillan. “ATechnique of a State Space Search
Based onUnfolding.” In: Form.Meth. Syst. Des. 6.1 (1995).
DOI: 10.1007/BF01384314. URL: http://dx.doi.org/10.
1007/BF01384314.

https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/978-3-030-59152-6_21
https://doi.org/10.1007/978-3-030-59152-6_21
https://llvm.org/docs/CommandGuide/lli.html
https://llvm.org/docs/WritingAnLLVMPass.html#introduction-what-is-a-pass
https://llvm.org/docs/WritingAnLLVMPass.html#introduction-what-is-a-pass
https://llvm.org/docs/WritingAnLLVMPass.html#introduction-what-is-a-pass
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/978-3-642-14295-6%5C_26
https://doi.org/10.1007/978-3-642-14295-6%5C_26
https://doi.org/10.1145/2024724.2024842
https://doi.org/10.1145/2024724.2024842
https://doi.org/10.1145/2024724.2024842
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_16
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_16
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0%5C_16
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0%5C_16
https://doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/BF01384314
http://dx.doi.org/10.1007/BF01384314
http://dx.doi.org/10.1007/BF01384314

B I B L IOGRAPHY 179

[MKV22] Evgenii Moiseenko, Michalis Kokologiannakis, and Vik-
torVafeiadis. “ModelChecking on aMulti-executionMem-
ory Model.” In: Proc. ACM Program. Lang. 6.OOPSLA2
(2022). DOI: 10.1145/3563315. URL: https://doi.org/
10.1145/3563315.

[Mus+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard
Basler, PiramanayagamArumugaNainar, and IulianNeamtiu.
“Finding and reproducingHeisenbugs in concurrent pro-
grams.” In: OSDI 2008. URL: https://www.usenix.org/
legacy/events/osdi08/tech/full_papers/musuvathi/
musuvathi.pdf (visited on 11/16/2020).

[Ngu+18] Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa,
Camille Coti, and Laure Petrucci. “Quasi-optimal partial
order reduction.” In:CAV 2018. DOI: 10.1007/978-3-319-
96142-2_22.

[ND13] Brian Norris and Brian Demsky. “CDSChecker: Check-
ing concurrent data structureswrittenwithC/C++atom-
ics.” In: OOPSLA 2013. DOI: 10.1145/2509136.2509514.
URL: https://doi.org/10.1145/2509136.2509514.

[Obe+21a] Jonas Oberhauser, Lilith Oberhauser, Antonio Paolillo,
Diogo Behrens, Ming Fu, and Viktor Vafeiadis. “Verify-
ing and Optimizing the HMCS Lock for Arm Servers.”
In: NETYS 2021. DOI: 10.1007/978-3-030-91014-3_17.
URL: https://doi.org/10.1007/978- 3- 030- 91014-
3_17.

[Obe+21b] JonasOberhauser et al. “VSync: Push-ButtonVerification
andOptimization for SynchronizationPrimitives onWeak
MemoryModels.” In:ASPLOS2021. DOI: 10.1145/3445814.
3446748. URL: https : / / doi . org / 10 . 1145 / 3445814 .
3446748.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. “A better
x86 memory model: x86-TSO.” In: TPHOLs 2009. DOI: 10.
1007/978-3-642-03359-9_27. URL: http://dx.doi.org/
10.1007/978-3-642-03359-9_27.

[mar] mary3000. Play nice with thread sanitizer #130. URL: https:
//github.com/microsoft/mimalloc/issues/130#issue
comment-662666849 (visited on 10/16/2022).

[PLV19] AntonPodkopaev,Ori Lahav, andViktorVafeiadis. “Bridg-
ing the gap between programming languages and hard-
wareweakmemorymodels.” In:Proc. ACMProgram. Lang.
3.POPL (2019). DOI: 10.1145/3290382. URL: http://doi.
acm.org/10.1145/3290382.

https://doi.org/10.1145/3563315
https://doi.org/10.1145/3563315
https://doi.org/10.1145/3563315
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/978-3-030-91014-3_17
https://doi.org/10.1007/978-3-030-91014-3_17
https://doi.org/10.1007/978-3-030-91014-3_17
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-642-03359-9_27
https://github.com/microsoft/mimalloc/issues/130#issuecomment-662666849
https://github.com/microsoft/mimalloc/issues/130#issuecomment-662666849
https://github.com/microsoft/mimalloc/issues/130#issuecomment-662666849
https://doi.org/10.1145/3290382
http://doi.acm.org/10.1145/3290382
http://doi.acm.org/10.1145/3290382

180 B I B L IOGRAPHY

[Fil] Yuval Filmus. Is the power of a regular language regular? Is
the root of a regular language regular? Computer Science
StackExchange.URL:https://cs.stackexchange.com/q/99371
(version: 2018-10-31). URL: https://cs.stackexchange.
com/q/99371 (visited on 10/20/2022).

[17] pthread.h man page. 2017. URL: https://man7.org/lin
ux/man-pages/man0/pthread.h.0p.html (visited on
03/19/2021).

[Pul+18] Christopher Pulte, Shaked Flur, Will Deacon, Jon French,
Susmit Sarkar, and Peter Sewell. “Simplifying ARM con-
currency:Multicopy-atomic axiomatic and operationalmod-
els for ARMv8.” In: Proc. ACM Program. Lang. 2.POPL
(2018). DOI: 10.1145/3158107. URL: https://doi.org/
10.1145/3158107.

[Pul+19] Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang,
Sung-HwanLee, andChung-KilHur. “Promising-ARM/RISC-
V: A simpler and faster operational concurrency model.”
In: PLDI 2019. DOI: 10.1145/3314221.3314624. URL: http:
//doi.acm.org/10.1145/3314221.3314624.

[QS82] Jean-PierreQueille and Joseph Sifakis. “Specification and
verification of concurrent systems inCESAR.” In: ISP 1982.
DOI: 10.1007/3-540-11494-7_22. URL: http://dx.doi.
org/10.1007/3-540-11494-7_22.

[RV18] Azalea Raad and Viktor Vafeiadis. “Persistence seman-
tics forweakmemory: Integrating epochpersistencywith
the TSO memory model.” In: Proc. ACM Program. Lang.
2.OOPSLA (2018). DOI: 10.1145/3276507. URL: https:
//doi.org/10.1145/3276507.

[Raa+19] AzaleaRaad, JohnWickerson,GilNeiger, andViktorVafeiadis.
“Persistency semantics of the Intel-x86 architecture.” In:
Proc. ACM Program. Lang. 4 (POPL 20, 2019). DOI: 10 .
1145/3371079. URL: https://doi.org/10.1145/3371079
(visited on 06/17/2020).

[RWV19] AzaleaRaad, JohnWickerson, andViktorVafeiadis. “Weak
persistency semantics from the groundup.” In:Proc. ACM
Program. Lang. 3 (OOPSLA10, 2019). DOI: 10.1145/3360561.
URL: https://doi.org/10.1145/3360561 (visited on
02/07/2020).

[rme09] rmem. rmem: Executable concurrencymodels forARMv8, RISC-
V, Power, and x86. 2009. URL: https://github.com/rems-
project/rmem (visited on 08/24/2019).

https://cs.stackexchange.com/q/99371
https://cs.stackexchange.com/q/99371
https://man7.org/linux/man-pages/man0/pthread.h.0p.html
https://man7.org/linux/man-pages/man0/pthread.h.0p.html
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
http://doi.acm.org/10.1145/3314221.3314624
http://doi.acm.org/10.1145/3314221.3314624
https://doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1145/3360561
https://github.com/rems-project/rmem
https://github.com/rems-project/rmem

B I B L IOGRAPHY 181

[Rod+15] César Rodríguez, Marcelo Sousa, Subodh Sharma, and
Daniel Kroening. “Unfolding-based Partial Order Reduc-
tion.” In: CONCUR 2015. DOI: 10.4230/LIPIcs.CONCUR.
2015.456. URL: http://dx.doi.org/10.4230/LIPIcs.
CONCUR.2015.456.

[Sar+12] Susmit Sarkar, KayvanMemarian, ScottOwens,MarkBatty,
Peter Sewell, LucMaranget, JadeAlglave, andDerekWilliams.
“Synchronising C/C++ and POWER.” In: PLDI 2012. DOI:
10.1145/2254064.2254102.

[ŞCR13] Traian Florin Şerbănuţă, Feng Chen, and Grigore Roşu.
“MaximalCausalModels for SequentiallyConsistent Sys-
tems.” In: RV 2012. DOI: 10.1007/978- 3- 642- 35632-
2_16.

[SS88] Dennis Shasha and Marc Snir. “Efficient and correct exe-
cution of parallel programs that sharememory.” In:ACM
Trans. Program. Lang. Syst. 10.2 (1988). DOI: 10.1145/42190.
42277. URL: http://doi.acm.org/10.1145/42190.42277.

[SPA94] SPARC International Inc. The SPARC architecture manual
(version 9). Prentice-Hall, 1994.

[SFH22] Zhihang Sun,HongyuFan, andFeiHe. “Consistency-Preserving
Propagation for SMTSolving ofConcurrent ProgramVer-
ification.” In:Proc. ACMProgram. Lang. 6.OOPSLA2 (2022).
DOI: 10.1145/3563321. URL: https://doi.org/10.1145/
3563321.

[SV-19] SV-COMP.Competition on SoftwareVerification (SV-COMP).
2019. URL: https://sv-comp.sosy-lab.org/2019/ (vis-
ited on 03/27/2019).

[TVD10] Emina Torlak, Mandana Vaziri, and Julian Dolby. “Mem-
SAT: checking axiomatic specifications of memory mod-
els.” In: PLDI 2010. DOI: 10.1145/1806596.1806635. URL:
https://doi.org/10.1145/1806596.1806635.

[Vaf+15] ViktorVafeiadis, Thibaut Balabonski, SohamChakraborty,
Robin Morisset, and Francesco Zappa Nardelli. “Com-
mon compiler optimisations are invalid in the C11 mem-
ory model and what we can do about it.” In: POPL 2015.
DOI: 10.1145/2676726.2676995. URL: http://doi.acm.
org/10.1145/2676726.2676995.

[Wic+17] JohnWickerson, Mark Batty, Tyler Sorensen, and George
A. Constantinides. “Automatically Comparing Memory
ConsistencyModels.” In:POPL 2017. DOI: 10.1145/3009837.
3009838. URL: https : / / doi . org / 10 . 1145 / 3009837 .
3009838.

https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.456
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/42190.42277
http://doi.acm.org/10.1145/42190.42277
https://doi.org/10.1145/3563321
https://doi.org/10.1145/3563321
https://doi.org/10.1145/3563321
https://sv-comp.sosy-lab.org/2019/
https://doi.org/10.1145/1806596.1806635
https://doi.org/10.1145/1806596.1806635
https://doi.org/10.1145/2676726.2676995
http://doi.acm.org/10.1145/2676726.2676995
http://doi.acm.org/10.1145/2676726.2676995
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838

182 B I B L IOGRAPHY

[ZKW15] Naling Zhang, Markus Kusano, and Chao Wang. “Dy-
namic partial order reduction for relaxed memory mod-
els.” In: PLDI 2015. DOI: 10.1145/2737924.2737956. URL:
http://doi.acm.org/10.1145/2737924.2737956.

https://doi.org/10.1145/2737924.2737956
http://doi.acm.org/10.1145/2737924.2737956

MPI-SWS

NTUA

CURR ICULUM V I TAE

RE S EARCH INT ER E ST S
Programming languages, compilers, weak memory models, and software
verification. I am mainly interested in concurrent software verification with
emphasis on the effects induced by the weak memory models employed by
modern microprocessors.

EDUCAT ION

2018–2023 PhD student in Computer Science
MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS — KL, Germany
Thesis: Automated Reasoning under Weak Memory Concurrency
Advisor: Viktor VAFEIADIS

2011–2016 MEng in Computer Engineering
NATIONAL TECHNICAL UNIVERSITY OF ATHENS — Athens, Greece
Thesis: Systematic Concurrency Testing of Read-Copy-Update under
Sequentially Consistent and Weak Memory Models
Advisor: Kostis SAGONAS

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Challenges of Weak Memory Consistency
	1.2 Contributions
	1.3 Structure
	1.4 Publications and Impact

	2 Background
	2.1 Programming Language
	2.2 Execution Graphs
	2.3 Weak Memory Consistency Models
	2.4 From Programs to Execution Graphs
	2.4.1 Dependency-Tracking Models

	 Metatheory
	3 Kater: Automating Weak Memory Model Metatheory
	3.1 Regular Languages and Finite State Automata
	3.2 Kleene Algebra with Tests (KAT)
	3.3 Memory Models as KAT Constraints
	3.4 Adding Domain-specific Assumptions
	3.4.1 Extended Coherence Order
	3.4.2 Release-Acquire Consistency

	3.5 Irreflexivity Implications
	3.6 Proving Memory-Model Equivalence
	3.6.1 Coherence
	3.6.2 Total Store Ordering (TSO)

	3.7 C11 Compilation Results
	3.8 Other Metatheoretic Properties

	4 Checking Execution Graph Consistency
	4.1 Optimized Consistency Checks for SC
	4.2 Arbitrary Acyclicity Checks with Kater
	4.2.1 Checking Consistency in Linear Time
	4.2.2 Checking Consistency Incrementally

	4.3 Approximating Coherence with Writes-Before

	 Verification
	5 GenMC: Model Checking under Weak Memory Consistency
	5.1 Requirement #1: No ``Out of Thin Air''
	5.2 Requirement #2: Prefix-closedness
	5.3 A First Example
	5.4 Requirement #3: Extensibility
	5.4.1 Defining the Extensibility Oracle

	5.5 Read-Modify-Write Operations
	5.6 Shasha-Snir and Reads-From Equivalence
	5.7 Dependency-Tracking Models
	5.8 Algorithm
	5.8.1 Overview
	5.8.2 Adaptation for a Reads-From Equivalence

	6 TruSt: Polynomial Memory Requirements for GenMC
	6.1 Maximal Extensions
	6.2 Examples
	6.3 Algorithm
	6.3.1 Overview
	6.3.2 Memory Requirements
	6.3.3 Parallelization

	6.4 Linear Memory Requirements
	6.5 Correctness Proofs
	6.5.1 Termination
	6.5.2 Soundness
	6.5.3 Completeness
	6.5.4 Optimality

	7 Optimizing GenMC for Programming Patterns
	7.1 BAM: DPOR for Synchronization Barriers
	7.1.1 Barriers and DPOR
	7.1.2 Keeping Barriers Unordered
	7.1.3 Algorithm

	7.2 SAVer: DPOR for Spinloops
	7.2.1 Spinloops and DPOR
	7.2.2 Control Flow Graphs
	7.2.3 Effect-Free Spinloops
	7.2.4 Transforming Loops into Effect-Free Spinloops
	7.2.5 Potentially Effect-Free Spinloops
	7.2.6 Zero-Net-Effect Spinloops
	7.2.7 Algorithm

	7.3 Preventing Blocking in DPOR
	7.3.1 Assume Annotations
	7.3.2 Futile Explorations
	7.3.3 Algorithm

	8 Persevere: Model Checking for Persistency
	8.1 Persistency Semantics
	8.2 A Naive Approach
	8.3 Recovery Observer
	8.4 Example

	 Tools & Evaluation
	9 Tools
	9.1 Kater
	9.2 GenMC
	9.2.1 Compilation and Supported Libraries
	9.2.2 Static Transformations
	9.2.3 Verification Infrastructure

	9.3 The Interaction Between Kater and GenMC
	9.3.1 Integrating Kater with GenMC
	9.3.2 Optimizing Consistency Checking for GenMC
	9.3.3 Checking GenMC's Memory-Model Requirements

	10 Evaluation
	10.1 Kater
	10.1.1 Metatheoretic Properties

	10.2 GenMC
	10.2.1 DPOR vs Other Approaches
	10.2.2 Optimality and Memory Consumption
	10.2.3 Synchronization Barriers Optimization
	10.2.4 Spinloop Optimization
	10.2.5 Blocking Prevention
	10.2.6 Tracking Dependencies
	10.2.7 Parallelization

	10.3 The Interaction Between Kater and GenMC
	10.3.1 Default Checks vs Kater-generated
	10.3.2 Consistency Checking under Different Models

	 Conclusion
	11 Related Work
	11.1 Metatheory
	11.2 Verification
	11.2.1 Enumerative Approaches
	11.2.2 SMT-Based Approaches
	11.2.3 Hybrid Approaches
	11.2.4 The Bounded Verification Landscape

	12 Summary
	12.1 Future Work

	 Bibliography
	 Curriculum Vitae

