A separation logic for a promising semantics
(Technical appendix)

This is the technical appendix accompanying the article “A separation logic for a promising semantics”. It contains a soundness proof for the SLR logic. The programming language and logic presented in this appendix extends the programming language and logic presented in the paper with plain accesses. The programming language has further been extended with compare-and-swap operations and the logic has been proven sound under the additional memory reduction rules required to support compare-and-swap.

Contents

1 Operational semantics 2
 1.1 Simplified operational semantics 6

2 Program logic 7
 2.1 Assertion logic ... 7
 2.2 Specification logic .. 7

3 Semantics of the program logic 9
 3.1 Semantic domains .. 9
 3.2 Acquirable resources ... 12
 3.3 Non-promising safety implies promising safety 17
 3.4 Adequacy of promising safety 21

4 Soundness 23
 4.1 Structural rules ... 23
 4.2 View-shift rules ... 26
 4.3 Rules for release/acquire accesses 28
 4.4 Rules for relaxed accesses .. 32
 4.5 Rules for plain accesses ... 34

5 Examples 36
 5.1 Random number generator .. 36
 5.2 Separation .. 36
 5.3 Non-deterministic write ... 37
 5.3.1 Example using non-deterministic choice 37
 5.3.2 Example within the language 37
 5.4 Coherence .. 37
 5.4.1 CoRW .. 37
 5.4.2 CoWR .. 38
 5.5 Release/acquire ... 38
 5.5.1 Split permission message passing example 38
 5.5.2 WRC .. 39
1 Operational semantics

Programming Language Let \(\text{Loc} \) be the set of memory locations, \(\text{Val} \) be the set of values, \(\text{Tid} \) be the set of thread identifiers, and \(\text{Reg} \) be the set of register identifiers.

We assume \(\text{Loc} \) is the union of two disjoint sets of plain and non-plain memory locations, \(\text{PLoc} \) and \(\text{NPLoc} \), respectively. Throughout the rest of the document we implicitly assume that all plain accesses are performed on plain locations and all non-plain accesses on non-plain locations.

\[
e \in \text{Expr} ::= r \mid e_1 + e_2 \mid \ldots
\]

\[
s \in \text{Stm} ::= r \triangleq e
\]

\[
\begin{align*}
\text{pln} & \rightarrow \text{rlx} \\
\text{rel} & \rightarrow \text{pln} \\
\text{acq} & \rightarrow \text{acqrel}
\end{align*}
\]

The modes for accesses are partially ordered by \(\sqsubseteq \) as follows:

\[
\begin{align*}
\text{rel} & \rightarrow \text{pln} \\
\text{pln} & \rightarrow \text{rlx} \\
\text{rlx} & \rightarrow \text{rel} \\
\text{acq} & \rightarrow \text{acqrel} \\
\text{acqrel} & \rightarrow \text{acq}
\end{align*}
\]

Thread store

A thread store, \(\mu \), is a function assigning a value to every register identifiers.

\[
\mu \in \text{TStore} = \text{Reg} \rightarrow \text{Val}
\]

Thread local state

A thread local state, \(\sigma = (\mu, s) \), consists of a thread store and a statement (to be executed by the thread).

Memory actions

Transitions are labelled with memory actions:

\[
a \in \text{MO} ::= \tau \mid W_0 x v \mid R_0 x v \mid U_0 x v_1 v_2
\]

\(\tau \), which stands for a silent action (as opposed to a proper memory action), is elided.
Thread-local state reduction

\[
\begin{align*}
\sigma & \xrightarrow{\alpha} \sigma' \\
(\mu, \text{if } c \text{ then } s_1 \text{ else } s_2) & \rightarrow (\mu, s_1) \\
(\mu, \text{if } c \text{ then } s_1 \text{ else } s_2) & \rightarrow (\mu, s_2) \\
(\mu, \text{while } c \text{ do } s) & \rightarrow (\mu, \text{skip}) \\
[\epsilon](\mu) & = \top \\
[\epsilon](\mu) & = \bot \\
[\epsilon](\mu) & = \bot \\
(\mu, \text{skip}; s) & \rightarrow (\mu, s) \\
(\mu, s_1) & \xrightarrow{\alpha} (\mu', s_1) \\
(\mu, s_1; s_2) & \rightarrow (\mu', s_1; s_2) \\
[\epsilon](\mu) & = \nu \\
(\mu, r = e) & \rightarrow (\mu[r \mapsto v], \text{skip}) \\
\end{align*}
\]

Timestamp

Time is an infinite set of timestamps, densely totally ordered by \(\leq\), with 0 being the minimum element.

Timemap

A timemap is a function \(T: \text{Loc} \rightarrow \text{Time}\). The order \(\leq\) is extended pointwise to timemaps.

View

\(V \in \text{View} \subseteq \text{Timemap} \times \text{Timemap}\)

A view is a pair \(V = \langle T_{\text{pln}}, T_{\text{rlx}} \rangle\) of timemaps satisfying \(T_{\text{pln}} \leq T_{\text{rlx}}\). We denote by \(V.\text{pln}\) and \(V.\text{rlx}\) the components of \(V\).

Additional notations for timemaps and views

\(\bot\) and \(\sqcup\) denote the natural bottom elements and join operations for timemaps and for views (pointwise extensions of the initial timestamp 0 and the \(\sqcup\) i.e., max—operation on timestamps); \(\{x@t\}\) denotes the timemap assigning \(t\) to \(x\) and 0 to other locations. We write \(T_{\bot}\) for the least timemap that maps every location to 0 and \(V_{\bot}\) for the view \(\langle T_{\bot}, T_{\bot} \rangle\).

Message

\(m \in \text{Msg} \subseteq \text{Loc} \times \text{Val} \times \text{Time} \times \text{Time} \times \text{View} \times \text{Tid} \times \text{Mod}\)

A message is a tuple \(m = \langle x : s \circ v, R@\langle f, t \rangle \rangle\), where \(x \in \text{Loc}, v \in \text{Val}, f, t \in \text{Time}, R \in \text{View}, i \in \text{Tid}, \) and \(o \in \text{Mod}\), such that (i) \(f < t\) or \(f = t = 0\); (ii) \(R.\text{rlx}(x) = R.\text{pln}(x) = t\); and (iii) \(o = \text{pln}\) iff \(x \in \text{PLoc}\). We denote by \(m.\text{loc}, m.\text{val}, m.\text{from}, m.\text{time}, m.\text{view}, \) and \(m.\text{mod}\) the components of \(m\). Two messages \(m = \langle x : s \circ v, R@\langle f, t \rangle \rangle\) and \(m' = \langle x' : s' \circ v', R'@\langle f', t' \rangle \rangle\) are called disjoint, denoted \(m \neq m'\), if either \(x \neq x'\), \(t \leq f' < t\), or \(t' \leq f < t\).

Memory

\(M \in \text{Mem} \subseteq \text{P}_{\text{fin}}(\text{Msg})\)

A memory is a (nonempty) pairwise disjoint finite set of messages. A memory \(M\) supports the following insertions of a message \(m = \langle x : s \circ v, R@\langle f, t \rangle \rangle\):

- The additive insertion, denoted by \(M + m\), is only defined if \(\{m\} \neq M\), in which case it is given by \(\{m\} \cup M\).
- The splitting insertion, denoted by \(M \leftarrow m\), is only defined if there exists \(m' = \langle x : s' \circ v', R'@\langle f, t' \rangle \rangle\) with \(t < t'\) in \(M\), in which case it is given by \(M \setminus \{m'\} \cup \{m, \langle x : s' \circ v', R'@\langle t, t' \rangle \rangle\}\).
• The lowering insertion, denoted by \(M \leftarrow m \), is only defined if there exists \(m' = \langle x : ? v, R' @ (f,t) \rangle \) with \(R \leq R' \) in \(M \), in which case it is given by \(M \setminus \{m'\} \cup \{m\} \).

Notation for restricting a memory:

\[
M(i) \overset{def}{=} \{m \in M \mid m.\text{tid} = i\} \\
M(x) \overset{def}{=} \{m \in M \mid m.\text{loc} = x\} \\
M(i,x) \overset{def}{=} M(i) \cap M(x) \\
M(\text{rel}) \overset{def}{=} \{m \in M \mid m.\text{mod} = \text{rel}\} \\
M(\text{rlx}) \overset{def}{=} \{m \in M \mid m.\text{mod} = \text{rlx}\} \\
M(\text{rel},x) \overset{def}{=} M(\text{rel}) \cap M(x) \\
M(\text{rlx},x) \overset{def}{=} M(\text{rlx}) \cap M(x)
\]

Memory reduction

\[
\begin{array}{c}
\text{MEMORY: NEW} \\
\langle M, P \rangle \xrightarrow{m} \langle M \leftarrow m, P \rangle
\end{array}
\quad
\begin{array}{c}
\text{MEMORY: FULFILL} \\
P' = P \leftarrow m \quad M' = M \leftarrow m \\
\langle M, P \rangle \xrightarrow{m} \langle M', P' \setminus \{m\} \rangle
\end{array}
\]

Closed memory

Given a timemap \(T \) and a memory \(M \), we write \(T \in M \) if, for every \(x \in \text{Loc} \), we have \(T(x) = m.\text{time} \) for some \(m \in M \) with \(m.\text{loc} = x \). For a view \(V \), we write \(V \in M \) if \(T \in M \) for each component timemap \(T \) of \(V \). A memory \(M \) is closed if \(m.\text{view} \in M \) for every \(m \in M \).

Future memory

For memories \(M, M' \), we write \(M \rightarrow M' \) if \(M' \in \{M \leftarrow a m, M \leftarrow s m, M \leftarrow u m\} \) for some message \(m \), and \(M' \) is closed. We say that \(M' \) is a future memory of \(M \) w.r.t. a memory \(P \), if \(P \subseteq M' \) and \(M \rightarrow^* M' \).

Global Configuration

A global configuration is a tuple \(gconf = \langle M, P \rangle \), where \(M \) is a memory and \(P \subseteq M \) is a memory called promise memory. We denote by \(gconf.M \) and \(gconf.P \) the components of \(gconf \). We write \(gconf.\bot \) to denote the empty global configuration, \(\langle \emptyset, \emptyset \rangle \).

Thread state

A thread state is a pair \(TS = \langle \sigma, V \rangle \), where \(\sigma \) is a thread local state and \(V \) is a view. We denote by \(TS.\sigma \) and \(TS.V \) the components of \(TS \).

Thread configuration

A thread configuration is a tuple \(\langle TS, \langle M, P \rangle \rangle \), where \(TS \) is a thread state, and \(\langle M, P \rangle \) is a global configuration.

Transition mode

\[
\beta \in TM \quad ::= \quad \text{NP} \mid \text{promise}
\]

Given a \(\beta \)-labelled relation \(\rightarrow \), \(a \rightarrow b \) stands for \(\exists \beta. \ a ^{\beta} \rightarrow b \).
Thread configuration reduction

\[(\langle\sigma, V, (M, P)\rangle, (\langle\sigma', V, (M, P')\rangle)\]

Thread: Read

\[\sigma \xrightarrow{\text{Read}} \sigma'\]

\[\langle\sigma, V, (M, P)\rangle \xrightarrow{\text{NP}} \langle\sigma', V, (M, P)\rangle\]

\[\langle\sigma, V, (M, P)\rangle \xrightarrow{\beta_i} \langle\sigma', (M', P')\rangle\]

Thread: Silent

\[\sigma \xrightarrow{} \sigma'\]

\[\langle\sigma, V, (M, P)\rangle \xrightarrow{\text{NP}} \langle\sigma', V, (M, P)\rangle\]

Thread: Write

\[\sigma \xrightarrow{w} \sigma'\]

\[\langle\sigma, V, (M, P)\rangle \xrightarrow{\text{NP}} \langle\sigma', V, (M', P')\rangle\]

Consistency A thread configuration \(\langle TS, (M, P)\rangle\) is called consistent w.r.t. \(i \in Tid\) if for every future memory \(M_{\text{future}}\) of \(M\) w.r.t. \(P(i)\) we have \(\langle TS, (M_{\text{future}}, P)\rangle \xrightarrow{\text{NP}} \langle TS', (M', P')\rangle\) for some \(TS', M', P'\) such that \(P'(i) = \emptyset\).

Thread certified reduction

\[\langle TS, (M, P)\rangle \xrightarrow{\text{NP}} \langle TS', (M', P')\rangle\]

\[\langle TS', (M', P')\rangle\]

Machine state

A machine state is a tuple \(MS = \langle TS, (M, P)\rangle\), where \(TS\) is a function assigning a thread state to every thread, and \((M, P)\) is a global configuration. The initial state \(MS^0\) (for a given program) consists of the function \(TS^0\) mapping each thread \(i\) to its initial state \(\sigma^0_i\) (where \(\sigma^0_i\) is the thread’s initial local state, and \(\bot\) is the zero view (all timestamps in timemaps are 0), the empty set of promises; the initial memory \(M^0\) consisting of one message \(\langle x;\, 0, \bot, 0, 0, 0\rangle\) for each location \(x\).
Machine reduction

\[
\begin{align*}
\langle TS(i), (M, P) \rangle \xrightarrow{\text{promise}} & i \langle TS(i), (M', P') \rangle \\
\langle TS, (M, P) \rangle \xrightarrow{\text{promise}} & i \langle TS, (M', P') \rangle
\end{align*}
\]

Promise certifications satisfy the following basic property: making a promise and then certifying it leads to a state that is reachable without performing any promises.

Lemma 1. Whenever \(\langle\sigma, V\rangle, (M, P) \xrightarrow{\text{promise}} i \langle\sigma, V\rangle, (M', P')\) and \(P''(i) = \emptyset\), then \(\langle\sigma, V\rangle, (M, P) \xrightarrow{\text{NP}} i \langle\sigma', V'\rangle, (M'', P'')\).

1.1 Simplified operational semantics

Memory reduction

\[
\begin{align*}
\langle M, P \rangle \xrightarrow{m} & \langle M \hat{\leftarrow} m, P \rangle \\
\langle M, P \rangle \xrightarrow{m} & \langle M \leftarrow \langle \right. a \rangle m, P \rangle \quad m \in P
\end{align*}
\]

Thread: Silent

\[
\sigma \rightarrow \sigma'
\]

\(\langle\sigma, V\rangle, (M, P) \xrightarrow{\text{NP}} i \langle\sigma, V\rangle, (M, P)\)

Thread: Read

\[
\begin{align*}
\sigma \xrightarrow{R_{x:v}} & \sigma' \quad \langle x; \hat{\leftarrow} v, R @ t \rangle \in M \\
V(x) & \leq t \\
o = rlx & \Rightarrow V' = V[x \rightarrow t] \\
o = acq & \Rightarrow V' = V[x \rightarrow t] \sqcup R
\end{align*}
\]

\(\langle\sigma, V\rangle, (M, P) \xrightarrow{\text{NP}} i \langle\sigma', V\rangle, (M, P)\)

Thread: Write

\[
\begin{align*}
\sigma \xrightarrow{w_{x:v}} & \sigma' \quad \langle M, P \rangle \xrightarrow{\{x; \hat{\leftarrow} v, R @ t\}} (M', P') \\
V(x) & < t \\
o = rlx & \Rightarrow R = \{x @ t\} \\
o = rel & \Rightarrow R = V' \land P(i, x) = \emptyset
\end{align*}
\]

\(\langle\sigma, V\rangle, (M, P) \xrightarrow{\text{NP}} i \langle\sigma', V'\rangle, (M', P')\)

Thread: Promise

\[
\begin{align*}
m & = \{x; \hat{\leftarrow} x, v, R @ t\} \\
M' & = M \hat{\leftarrow} m \\
P' & = P \hat{\leftarrow} m \\
\langle TS, (M, P) \rangle \xrightarrow{\text{prom}} i \langle TS, (M', P') \rangle
\end{align*}
\]
2 Program logic

The SLR assertion language is generated by the following grammar.

\[P, Q \in \text{Assn} \quad ::= \quad \bot \mid T \mid P \lor Q \mid P \land Q \mid P \Rightarrow Q \mid \forall x. P \mid \exists x. P \mid N_1 = N_2 \mid \phi(N) \mid \top \mid P \ast Q \mid \text{Rel}(\ell, \phi) \mid \text{Acq}(\ell, \phi) \mid \text{O}(\ell, v, t) \mid W^\ell(\ell, X) \mid \ell \overset{\pi}{\rightarrow} v \mid \nabla P \mid \text{pure}(P) \]

\[\phi \in \text{Pred} \quad ::= \quad \lambda x. P \]

Here \(M, \ell, v, t, \pi \) and \(X \) all range over a simply-typed term language which we assume includes booleans, locations, values and expressions of the programming language, fractional permissions, and timestamps, and is closed under pairing, finite sets and sequences. By convention we assume that \(\ell, v, t, \pi \) and \(X \) range over terms of type location, value, timestamp, permission and sets of pairs of values and timestamps, respectively.

2.1 Assertion logic

The judgments of the assertion logic include an entailment judgment, \(\vdash Q \), a view shift judgment, \(\vdash P \Rightarrow Q \). The entailment judgment includes all the usual rules of first-order separation logic, which we elide. In addition it includes a number of axioms about SLR assertions, which are given below.

\[\text{Acq}(x, \lambda v. \phi_1(v) \ast \phi_2(v)) \iff \text{Acq}(x, \phi_1) \ast \text{Acq}(x, \phi_2) \]

\[\text{Rel}(x, \phi) \iff \text{Rel}(x, \phi) \ast \text{Rel}(x, \phi) \]

\[W^\ell(x, X) \ast (v, t) \in X \Rightarrow W^\ell(x, X) \ast \text{O}(x, v, t) \]

\[W^1(x, X) \ast \text{O}(x, a, t) \Rightarrow W^1(x, X) \ast \text{O}(x, a, t) \ast (a, t) \in X \]

\[W^\ell(x, X) \ast (v, t) \in X \ast (v', t') \in X \ast v \neq v' \Rightarrow W^\ell(x, X) \ast t
eq t' \]

\[W^\ell(x, X) \ast (-, t) \in X \ast (-, t') \in X \Rightarrow W^\ell(x, X) \ast t < t' \lor t = t' \lor t' < t \]

\[W_{\pi_1 + \pi_2}(x, X_1 \cup X_2) \iff W_{\pi_1}(x, X_1) \ast W_{\pi_2}(x, X_2) \]

\[x \overset{\pi_1}{\rightarrow}^{\pi_2} v \iff x \overset{\pi_1}{\rightarrow}^{\pi_2} v \ast x \overset{\pi_3}{\rightarrow} v \]

\[x \overset{\pi_1}{\rightarrow} v_1 \ast x \overset{\pi_2}{\rightarrow} v_2 \Rightarrow x \overset{\pi_1}{\rightarrow} v_1 \ast x \overset{\pi_2}{\rightarrow} v_2 \ast v_1 = v_2 \]

For all assertions \(P \) expressible in the first-order logic fragment of our assertion logic, we have \(\vdash \text{pure}(P) \).

2.2 Specification logic

The judgment of the specification logic is \(\vdash \{ P \} s \{ Q \} \).

\[
\begin{array}{ccc}
\vdash P \Rightarrow P' & \vdash \{ P' \} s \{ Q' \} & \vdash Q' \Rightarrow Q \\
\vdash \{ P \} s \{ Q \} & \vdash \{ P \} s \{ Q \} & \vdash \{ P \} s \{ Q \} \quad \text{mod}(s) \cap \text{FRV}(R) = \emptyset \\
\{ P \} s_1 \{ Q \} & \{ Q \} s_2 \{ R \} & \{ P \} s_1; s_2 \{ R \} \\
\{ P \} \{ P \} s \{ Q \} & \{ P \} \{ P \} s \{ Q \} & \{ P \} \{ P \} \text{while } e \text{ do } s \{ P \}
\end{array}
\]

\[
\begin{array}{c}
\{ P \} \{ P \} \text{if } e \text{ then } s_1 \text{ else } s_2 \{ Q \} \\
\{ P \} \{ P \} \{ P \} \{ P \} \quad \{ P \} \{ P \}
\end{array}
\]

\[\{ P \} \{ \exists x. P \} s \{ \exists x. Q \} \]
⊢ \(P \Rightarrow Q \) \hspace{1cm} \vdash P \Rightarrow Q \hspace{1cm} \vdash P \Rightarrow Q \quad \vdash P \Rightarrow Q \quad \vdash Q \Rightarrow R \quad \vdash P \Rightarrow R

Plain accesses

\[\vdash \{ x = e, x \mapsto a \} \{ e \}_{pln} := a \{ x \mapsto a \} \]
\[\vdash \{ x = e, x \mapsto v \} a := [e]_{pln} \{ x \mapsto v \ast a = v \} \]

where \(x \) is a specification variable.

Release and acquire accesses

\[\vdash \{ x = e, \text{Acq}(x, \phi) \ast O(x, _ , t) \} \]
\[a := [e]_{\text{acq}} \]
\[\{ \exists t' \geq t. \text{Acq}(x, \phi[a \mapsto \top]) \ast \phi(a) \ast O(x, a, t') \} \]
\[\vdash \{ x = e, \text{Acq}(x, \phi) \ast W^1(x, X) \} \]
\[a := [e]_{\text{acq}} \]
\[\{ \text{Acq}(x, \phi[a \mapsto \top]) \ast \phi(a) \ast W^1(x, X) \ast O(x, a, \text{snd}(\max(X))) \ast a = \text{fst}(\max(X)) \} \]
\[\vdash \{ x = e_1 \ast v = e_2 \ast \text{Rel}(x, \phi) \ast W^\pi(x, X) \ast \phi(v) \} \]
\[[e_1]_{\text{rel}} := e_2 \]
\[\{ \exists t. W^\pi(x, X \cup \{(v, t)\}) \ast \text{snd}(\max(X)) < t \} \]

where \(x, t, v, \pi \) and \(X \) are specification variables.

Relaxed accesses

\[\vdash \{ x = e, \text{Acq}(x, \phi) \ast O(x, _ , t) \} \]
\[a := [e]_{\text{rlx}} \]
\[\{ \exists t' \geq t. \nabla(\phi(a)) \ast O(x, a, t') \} \]
\[\vdash \{ x = e, \text{Acq}(x, \phi) \ast W^1(x, X) \} \]
\[a := [e]_{\text{rlx}} \]
\[\{ \text{Acq}(x, \phi) \ast W^1(x, X) \ast (\nabla \phi(a)) \ast O(x, a, \text{snd}(\max(X))) \ast a = \text{fst}(\max(X)) \} \]
\[\vdash \{ x = e_1 \ast v = e_2 \ast \text{Rel}(x, \phi) \ast W^\pi(x, X) \ast \phi(v) \ast \text{pure}(\phi(v)) \} \]
\[[e_1]_{\text{rlx}} := e_2 \]
\[\{ \exists t. W^\pi(x, X \cup \{(v, t)\}) \ast \text{snd}(\max(X)) < t \} \]

where \(x, t, v, \pi \) and \(X \) are specification variables.
3 Semantics of the program logic

3.1 Semantic domains

\[\text{PredId} \overset{def}{=} N \]
\[\text{Perm} \overset{def}{=} \{ x \in \mathbb{Q} \mid 0 \leq x \leq 1 \} \]
\[\text{Perm}^{+} \overset{def}{=} \{ x \in \mathbb{Q} \mid 0 < x \leq 1 \} \]
\[\text{PlnPerm} \overset{def}{=} \text{PLoc} \rightarrow 1 \text{ + (Perm}^{+} \times \text{Val} \times \text{Time)} \]
\[\text{WrPerm} \overset{def}{=} \text{NPLoc} \rightarrow \{ (\pi, X) \in \text{Perm} \times \mathcal{P}(\text{Val} \times \text{Time}) \mid \pi = 0 \Rightarrow X = \emptyset \} \]
\[\text{AcqPerm} \overset{def}{=} \text{NPLoc} \rightarrow \mathcal{P}(\text{PredId}) \]
\[r \in \mathcal{M} \overset{def}{=} \text{PlnPerm} \times \text{WrPerm} \times \text{AcqPerm} \]
\[u \in \text{MsgRes} \overset{def}{=} \text{Msg} \rightarrow_{\text{fin}} (\text{PredId} \rightarrow_{\text{fin}} \mathcal{M}) \]
\[\mathcal{W} \in \text{World} \overset{def}{=} (\text{PLoc} \rightarrow \text{Pred}) \times (\text{PredId} \rightarrow_{\text{fin}} \text{Pred}) \]
\[p \in \text{Prop} \overset{def}{=} \text{World} \rightarrow_{\text{mon}} \mathcal{P}^{1}(\text{GConf} \times \text{View} \times \mathcal{M}) \]
\[\text{TRes} \overset{def}{=} \text{TId} \rightarrow \mathcal{M} \]

We use \(r.\text{pln} \), \(r.\text{wr} \) and \(r.\text{acq} \) to refer to the first, second and third projection of a resource \(r \), respectively.

Resource monoid

\[
\begin{array}{c}
\bullet : \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M} \\
\varepsilon : \mathcal{M}
\end{array}
\]

The set of resources, \(\mathcal{M} \) is a partial commutative monoid with the following composition operator and monoid unit.

\[r_1 \bullet r_2 \overset{def}{=} (r_1.\text{pln} \bullet_{\text{pln}} r_2.\text{pln}, r_1.\text{wr} \bullet_{\text{wr}} r_2.\text{wr}, r_1.\text{acq} \bullet_{\text{acq}} r_2.\text{acq}) \]
\[\varepsilon \overset{def}{=} (\lambda_. \cdot \text{inj}_1(*), \lambda_. \cdot (0, \emptyset), \lambda_. \cdot \emptyset) \]

where

\[h_1 \bullet_{\text{pln}} h_2 \overset{def}{=} \begin{cases}
\lambda x. \ h_1(x) \bullet_{\text{pl}} h_2(x) & \text{if } h_1(x) \# h_2(x) \text{ for all } x \in \text{Loc} \\
\text{undefined} & \text{otherwise}
\end{cases} \]
\[\text{inj}_1(*) \bullet_{\text{pl}} x \overset{def}{=} x \]
\[x \bullet_{\text{pl}} \text{inj}_1(*) \overset{def}{=} x \]
\[\text{inj}_2(\pi_1, v_1) \bullet_{\text{pl}} \text{inj}_2(\pi_2, v_2) \overset{def}{=} \begin{cases}
\text{inj}_2(\pi_1 + \pi_2, v_1) & \text{if } \pi_1 + \pi_2 \leq 0 \text{ and } v_1 = v_2 \\
\bot & \text{otherwise}
\end{cases} \]
\[f_1 \bullet_{\text{wr}} f_2 \overset{def}{=} \begin{cases}
\lambda x. \ f_1(x) \bullet_{\text{wr}} f_2(x) & \text{if } f_1(x) \# f_2(x) \text{ for all } x \\
\text{undefined} & \text{otherwise}
\end{cases} \]
\[(\pi_1, X_1) \bullet (\pi_2, X_2) \overset{def}{=} \begin{cases}
(\pi_1 + \pi_2, X_1 \cup X_2) & \text{if } \pi_1 + \pi_2 \leq 0 \\
\text{undefined} & \text{otherwise}
\end{cases} \]
\[g_1 \bullet_{\text{acq}} g_2 \overset{def}{=} \begin{cases}
\lambda x. \ g_1(x) \cup g_2(x) & \text{if } \forall x. \ g_1(x) \cap g_2(x) = \emptyset \\
\text{undefined} & \text{otherwise}
\end{cases} \]

The monotonicity of propositions is with respect to the following ordering on worlds, and subset inclusion on \(\mathcal{P}^{1}(\text{GConf} \times \text{View} \times \mathcal{M}) \).
World ordering

\[\mathcal{W}_1 \leq \mathcal{W}_2 \equiv \mathcal{W}_1.\text{rel} = \mathcal{W}_2.\text{rel} \land \text{dom}(\mathcal{W}_1.\text{acq}) \subseteq \text{dom}(\mathcal{W}_2.\text{acq}) \land \forall i \in \text{dom}(\mathcal{W}_1.\text{acq}). \mathcal{W}_1.\text{acq}(i) = \mathcal{W}_2.\text{acq}(i) \]

The upwards-closure on \(GConf \times View \times M \) is with respect to the point-wise extension of the following orders on resources and global configurations and the previously defined ordering on views.

Resource ordering

\[r_1 \leq r_2 \equiv \exists r_3. \ r_2 = r_1 \cdot r_3 \]

Configuration ordering

\[gconf_1 \leq gconf_2 \equiv gconf'.M \text{ is a future memory of } gconf.M \text{ w.r.t. } gconf'.P \]

Lemma 2.

\[gconf.M \text{ is closed } \land (\Sigma, gconf) \implies (\Sigma', gconf') \implies gconf \leq gconf' \]

Well-formed configuration

\[\text{wf}_{\text{conf}}(i, gconf, V) \equiv \forall m \in gconf.P.m.\text{tid} = i \implies V.\text{rlx}(m.\text{loc}) < m.\text{time} \]

Lemma 3.

\[\langle\sigma, \langle M, P \rangle\rangle \xrightarrow{\text{NP}^*} \langle\sigma', \langle M', P' \rangle\rangle \land P'(i) = \emptyset \implies \text{wf}_{\text{conf}}(i, \langle M, P \rangle, V) \]

Read assertion

\[O(\ell, v, t) \equiv \lambda W. \{ (gconf, V, r) | \exists m \in gconf.M. m.\text{loc} = \ell \land m.\text{val} = v \land m.\text{time} = t \land t \leq V.\text{rlx}(\ell) \} \]

Write assertion

\[W_\pi(\ell, X) \equiv \lambda W. \{ (gconf, V, r) | \exists \pi' \geq \pi. r.\text{wr}(\ell) = (\pi', X) \land \text{snd}(\text{max}(X)) \leq V.\text{rlx}(\ell) \} \]

Acq assertion

\[\text{acq}(\ell, \phi) \equiv \lambda W. \{ (gconf, V, r) | \exists u \in \text{dom}(W.\text{acq}) \cap r.\text{acq}(\ell). W.\text{acq}(u) = \phi \} \]

Rel assertion

\[\text{rel}(\ell, \phi) \equiv \lambda W. \{ (gconf, V, r) | \vdash \forall v. \phi(v) \Rightarrow W.\text{rel}(\ell)(v) \} \]
Points-to assertion

$$\ell \rightarrow v \triangleq \lambda W. \{(gconf, V, r) \mid \exists \pi' \geq \pi. \exists t. r. pln(\ell) = inj_2(\pi', v, t) \land t \leq V. pln(x)\}$$

Assertion interpretation

$$\llbracket \cdot \rrbracket^\mu_0(W) \triangleq \emptyset$$
$$\llbracket \top \rrbracket^\mu_0(W) \triangleq GConf \times View \times M$$
$$\llbracket P \land Q \rrbracket^\mu_0(W) \triangleq \llbracket P \rrbracket^\mu_0(W) \cap \llbracket Q \rrbracket^\mu_0(W)$$
$$\llbracket P \lor Q \rrbracket^\mu_0(W) \triangleq \llbracket P \rrbracket^\mu_0(W) \cup \llbracket Q \rrbracket^\mu_0(W)$$
$$\llbracket P \rightarrow Q \rrbracket^\mu_0(W) \triangleq \{(gconf, V, r) \mid \forall gconf' \geq gconf. \forall W' \geq V. \forall r' \geq r. \forall \pi W'. (gconf', V', r') \in \llbracket P \rrbracket^\mu_0(W) \rightarrow (gconf', V', r') \in \llbracket Q \rrbracket^\mu_0(W')\}$$
$$\llbracket P \land Q \rrbracket^\mu_0(W) \triangleq \{(gconf, V, r_1 \bullet r_2) \mid (gconf, V, r_1) \in \llbracket P \rrbracket^\mu_0(W) \land (gconf, V, r_2) \in \llbracket Q \rrbracket^\mu_0(W)\}$$
$$\llbracket \forall x. P \rrbracket^\mu_0(W) \triangleq \bigcap_{v \in Val} \llbracket P \rrbracket^\mu_0(\llbracket x \mapsto v \rrbracket(W))$$
$$\llbracket \exists x. P \rrbracket^\mu_0(W) \triangleq \bigcup_{v \in Val} \llbracket P \rrbracket^\mu_0(\llbracket x \mapsto v \rrbracket(W))$$
$$\llbracket N_1 = N_2 \rrbracket^\mu_0(W) \triangleq \{x \mid \llbracket N_1 \rrbracket^\mu_0 = \llbracket N_2 \rrbracket^\mu_0\}$$
$$\llbracket (\lambda x. P)(N) \rrbracket^\mu_0(W) \triangleq \llbracket P \rrbracket^\mu_0(\llbracket x \mapsto \llbracket N \rrbracket^\mu_0 \rrbracket(W))$$
$$\llbracket O(\ell, v, t) \rrbracket^\mu_0(W) \triangleq O(\llbracket \ell \rrbracket^\mu_0, \llbracket v \rrbracket^\mu_0, \llbracket t \rrbracket^\mu_0(W))$$
$$\llbracket W_{\pi}(\ell, X) \rrbracket^\mu_0(W) \triangleq W_{\pi}(\ell, X)\llbracket \ell \rrbracket^\mu_0, \llbracket X \rrbracket^\mu_0(W)$$
$$\llbracket \text{Acq}(\ell, \phi) \rrbracket^\mu_0(W) \triangleq \text{acq}(\llbracket \ell \rrbracket^\mu_0, \phi(W))$$
$$\llbracket \text{Rel}(\ell, \phi) \rrbracket^\mu_0(W) \triangleq \text{rel}(\llbracket \ell \rrbracket^\mu_0, \phi(W))$$
$$\llbracket \ell \rightarrow v \rrbracket^\mu_0(W) \triangleq (\llbracket \ell \rrbracket^\mu_0 \rightarrow \llbracket v \rrbracket^\mu_0(W))$$
$$\llbracket \text{pure}(P) \rrbracket^\mu_0(W) \triangleq \{x \mid \forall W' \geq W. \forall x_1, x_2. x_1 \in \llbracket P \rrbracket^\mu_0(W') \Rightarrow x_2 \in \llbracket P \rrbracket^\mu_0(W')\}$$
3.2 Acquirable resources

Acquirable messages

\[\text{canAcq} : \text{AcqPerm} \times \text{MsgRes} \to \mathcal{P}(\text{Msg} \times \text{PredId}) \]

The \(\text{canAcq}(A, u) \) function recursively computes the set of messages whose resources we are currently allowed to acquire from message resource assignment \(u \).

\[
\text{canAcq}(A, u) \overset{\text{def}}{=} \begin{cases}
 I \cup \text{canAcq}(\Pi_{(m,i) \in I} u(m)(i).\text{acq}, u[I \mapsto \bot]) & \text{if } I = \text{canAcq}_0(A, u) \neq \emptyset \\
\emptyset & \text{otherwise}
\end{cases}
\]

\[
\text{canAcq}_0(A, u) \overset{\text{def}}{=} \{(m, i) \mid m \in \text{dom}(u) \land i \in A(m.\text{loc}) \cap \text{dom}(u(m))\}
\]

The \(\text{canAcq}(A, u) \) function is defined by recursion using \(\Sigma_{m \in \text{dom}(u)}|\text{dom}(u(m))| \) as the size function.

Acquirable resources

\[\text{canAcq} : \mathcal{M} \times \text{MsgRes} \to \mathcal{M} \]

The \(\text{canAcq}(r, u) \) function computes the composition of the resources we are currently allowed to acquire from message resource assignment \(u \).

\[
\text{canAcq}(r, u) \overset{\text{def}}{=} \Pi_{(m,i) \in \text{canAcq}(r.\text{acq}, u)} u(m)(i)
\]

Throughout the rest of the document whenever we write \(\text{canAcq}(r, u) \) we will implicitly assume that \(r \bullet \Pi_{m \in \text{dom}(u)} \Pi_{i \in \text{dom}(u(m))} u(m)(i).\text{acq} \) is defined whenever we write \(\text{canAcq}(A, u) \) that \(A \bullet \Pi_{m \in \text{dom}(u)} \Pi_{i \in \text{dom}(u(m))} u(m)(i).\text{acq} \) is defined.

Lemma 4. \(\text{canAcq}_0(A \bullet B, u) = \text{canAcq}_0(A, u) \cup \text{canAcq}(B, u) \)

Lemma 5. \(\text{canAcq}(A \bullet B, u) = \text{canAcq}(A, u) \cup \text{canAcq}(B, u) \)

Lemma 6. For \(m \in \text{dom}(u) \) and \(i \in A(m.\text{loc}) \cap \text{dom}(u(m)) \), we have \(\text{canAcq}(A, u) = \text{canAcq}(A', u') \) where \(A' = A \bullet u(m)(i).A \) and \(u' = u[m,i \mapsto \varepsilon] \).

Proof.

\[
\text{canAcq}(A', u') = \text{canAcq}(A, u') \cup \text{canAcq}(u(m)(i).A, u')
\]

\[
= (\text{canAcq}(A, u) \setminus \text{canAcq}(u(m)(i).A, u)) \cup \text{canAcq}(u(m)(i).A, u)
\]

\[= \text{canAcq}(A, u) \]

Lemma 7.

\[m \in \text{dom}(u) \land i \in r.\text{acq}(m.\text{loc}) \cap \text{dom}(u(m)) \Rightarrow \]

\[\text{canAcq}(r, u) = u(m)(i) \bullet \text{canAcq}(r \bullet u(m)(i), u[m,i \mapsto \varepsilon]) \]

Proof. By Lemma 6

\[
u(m)(i) \bullet \text{canAcq}(r \bullet u(m)(i), u[m,i \mapsto \varepsilon])
\]

\[= u(m)(i) \bullet \Pi_{(m',i') \in \text{canAcq}(r \bullet u(m)(i), \text{acq}, u[m,i \mapsto \varepsilon])} u[m,i \mapsto \varepsilon](m')(i')
\]

\[= u(m)(i) \bullet \Pi_{(m',i') \in \text{canAcq}(r.\text{acq}, u)} u[m,i \mapsto \varepsilon](m')(i')
\]

\[= u(m)(i) \bullet \Pi_{(m',i') \in \text{canAcq}(r.\text{acq}, u) \setminus \{(m,i)\}} u(m')(i')
\]

\[= \Pi_{(m',i') \in \text{canAcq}(r.\text{acq}, u)} u(m')(i')
\]

\[= \text{canAcq}(r, u) \]

\[\square\]
Lemma 8.

\[m \in \text{dom}(u) \land \iota \in A(m.\text{loc}) \cap \text{dom}(u(m)) \Rightarrow \]
\[\text{canAcq}(A, u) \setminus \{(m, \iota)\} = \text{canAcq}(A', u') \]

where \(A' = A \cdot u(m)(\iota).\text{acq} \) and \(u' = u[m, \iota \mapsto \bot] \).

Proof.
\[
\text{canAcq}(A', u') = \text{canAcq}(A, u') \cup \text{canAcq}(u(m)(\iota).\text{acq}, u')
\]
\[
= (\text{canAcq}(A, u) \setminus \{(m, \iota)\} \cup \text{canAcq}(u(m)(\iota).\text{acq}, u)) \cup \text{canAcq}(u(m)(\iota).\text{acq}, u)
\]
\[
= \text{canAcq}(A, u) \setminus \{(m, \iota)\}
\]

\[\square \]

Lemma 9.

\[\iota \in A(x) \land \iota' \text{ fresh for } A \text{ and } u \Rightarrow \]
\[\text{canAcq}_0(A', u') = (\text{canAcq}_0(A, u) \setminus \{(m, \iota)\mid m.\text{loc} = x\}) \cup \{(m, \iota')\mid m.\text{loc} = x \land \iota \in \text{dom}(u(m))\} \]

where \(u' = u[\iota \mapsto_x \iota'] \) and \(A' = A[x \mapsto A(x)[\iota \mapsto \iota']] \).

Lemma 10.

\[\iota \in A(x) \land \iota' \text{ fresh for } A \text{ and } u \Rightarrow \]
\[\text{canAcq}(A', u') = (\text{canAcq}(A, u) \setminus \{(m, \iota)\mid m.\text{loc} = x\}) \cup \{(m, \iota')\mid m.\text{loc} = x \land \iota \in \text{dom}(u(m))\} \]

where \(u' = u[\iota \mapsto_x \iota'] \) and \(A' = A[x \mapsto A(x)[\iota \mapsto \iota']] \).

Lemma 11.

\[\iota \not\in r.\text{acq}(x) \land \iota' \text{ fresh for } u \text{ and } r \land \]
\[(\forall m \in \text{dom}(u). \forall \iota'' \in \text{dom}(u(m)), \iota \not\in u(m)(\iota'').A(x)) \Rightarrow \]
\[\text{canAcq}(r[\iota \mapsto_x \iota'], u[\iota \mapsto_x \iota']) = \text{canAcq}(r, u) \]

Proof. It follows from the \(\iota \not\in u(m)(\iota'').A(x) \) assumption that \(r = r[\iota \mapsto_x \iota'] \). Furthermore, since \(\iota \not\in u(m)(\iota'').A(x) \) for any \(m \in \text{dom}(m) \) and \(\iota'' \in \text{dom}(u(m)) \) it follows that the acquirable resources should be independent of the current resources associated with the predicate named \(\iota \), since these resources currently cannot be acquired. \[\square \]

Predicate renaming

\[
\begin{align*}
\text{PredId} & \triangleq - \text{MsgRes} \\
\text{Pred} & \triangleq - \text{PredId} \\
\text{Pred} & \triangleq \lambda t \in \text{TId}. \text{Pred}(t)[\iota \mapsto \iota']
\end{align*}
\]
Lemma 12.

\[\iota \in A(x) \land \iota' \text{ fresh for } A \text{ and } u \Rightarrow \]
\[\text{canAcq}(A', u') = (\text{canAcq}(A, u) \setminus \{(m, \iota) \mid m \in \text{dom}(u) \land m.\text{loc} = x\}) \cup \]
\[\{(m, \iota') \mid (m, \iota) \in \text{canAcq}(A, u) \land m.\text{loc} = x\} \]

where \(u' = u[\iota \leadsto x \iota'] \) and \(A' = A[x \mapsto A(x)[\iota \leadsto \iota']] \).

Lemma 13.

\[\iota \in r.\text{acq}(x) \land \iota' \text{ fresh for } u \text{ and } r \Rightarrow \]
\[\text{canAcq}(r, u) = \text{canAcq}(r[\iota \leadsto x \iota'], u[\iota \leadsto x \iota']) \]

Proof. Follows from Lemma 12. \(\square \)

Lemma 14.

\[\text{dom}(u) = \text{dom}(u') = M(\text{rel}) \land x \in \text{dom}(r.\text{acq}) \land \iota \in r.\text{acq}(x) \land \]
\[r' = r[A(x) \mapsto (r.\text{acq}(x) \setminus \{\iota\}) \cup \{t_1, t_2\}] \land \]
\[u' = u|m \in M(\text{rel}, x) \mapsto u(m)[\iota \mapsto \bot, t_1 \mapsto r_1^1, t_2 \mapsto r_2^1] | \]
\[\forall m \in M(\text{rel}, x), u(m)(\iota) = r_m^1 \bullet r_m^2 \]
\[\iota \in \text{dom}(u(m)) \land t_1, t_2 \notin \text{dom}(u(m)) \cup \text{dom}(u'(m)) \land \]
\[\Rightarrow \text{canAcq}(r, u) = \text{canAcq}(r', u') \]
Write restrictions

\[\text{writeAllowed} : \mathcal{P}(M \times \text{Msg}) \]
\[\text{writesAllowed} : \mathcal{P}(M \times \mathcal{P}(\text{Msg})) \]

\[\text{writeAllowed}(r, m) \overset{\text{def}}{=} (\text{pln}(m) \land r.\text{pln}(m.\text{loc}) = (1, _)) \lor \\
(\text{npln}(m) \land \pi_1(r.\text{wr}(m.\text{loc})) > 0) \]

\[\text{writesAllowed}(r, M) \overset{\text{def}}{=} \forall m \in M. \text{writeAllowed}(r, m) \]

Ownership ordering

\[r_1 \leq_o r_2 \overset{\text{def}}{=} \forall x. \pi_1(r_1.\text{wr}(x)) \leq \pi_1(r_2.\text{wr}(x)) \land \\
\forall x. r_2.\text{pln}(x) = \text{inj}_1(*) \Rightarrow r_1.\text{pln}(x) = \text{inj}_1(*) \land \\
\forall x. r_1.\text{pln}(x) \neq \text{inj}_1(*) \Rightarrow \pi_1(r_1.\text{pln}(x)) \leq \pi_1(r_2.\text{pln}(x)) \]

Lemma 15.

\[r_1 \leq_o r_1' \land r_2 \leq_o r_2' \Rightarrow r_1 \bullet r_2 \leq_o r_1' \bullet r_2' \]

Lemma 16.

\[\text{writeAllowed}(r_1, m) \land r_1 \leq_o r_2 \Rightarrow \text{writeAllowed}(r_2, m) \]

Lemma 17.

\[\begin{array}{l}
\varepsilon \notin \text{dom}(u(m)) \land \text{def}(r, u[m \mapsto u(m)[\varepsilon \mapsto r_2]]) \\
\Rightarrow \text{canAcq}(r_1, u[m \mapsto u(m)[\varepsilon \mapsto r_2]]) \leq_o \text{canAcq}(r_1 \bullet r_2, u)
\end{array} \]

World erasure

\[|W| \overset{\text{def}}{=} (\pi_1(W), []) \]

Erasure

\[[=1, =2, =3] \in_4 : \mathcal{M} \times \text{MsgRes} \times \text{World} \times \mathcal{P}(\text{TId}) \rightarrow \mathcal{P}(\text{GConf}) \]

\[\begin{array}{l}
[r, u, W]_T \overset{\text{def}}{=} \{(M, P) \mid \text{closed}(M) \land \\
\text{let } t = \Pi_{t \in \text{TId}}(t) \bullet \Pi_{m \in M} \Pi_{\varepsilon \in \text{dom}(u(m))} u(m)[\varepsilon] \text{ in} \\
\text{wf}(W, u, t.A) \land \\
\forall x \in \text{locs}(\text{pln}(M)). t.\text{pln}(x) \neq \text{inj}_1(*) \Rightarrow \\
\text{last}(M(x) \setminus P).\text{val} = t.\text{pln}(x).\text{val} \land \\
\text{last}(M(x) \setminus P).\text{time} = t.\text{pln}(x).\text{time} \land \\
\forall x \in \text{locs}(\text{npln}(M)). \\
\text{let } \{m.\text{val}, m.\text{time} \mid m \in M(x) \setminus P = \text{snd}(t.\text{wr}(x)) \land \\
\forall M(rlx). \\
\text{let } (\text{gconf}_1, V_\bot, \varepsilon) \in \text{rel}(m.\text{loc})(m.\text{val}) \text{ in} \\
\forall m \in M(\text{rel}). t.\text{acq}(m.\text{loc}) = \text{dom}(u(m)) \land \forall \varepsilon \in \text{dom}(u(m)). \\
(gconf, m.\text{view}, u(m)[\varepsilon]) \in \text{acq}(i)(m.\text{val}) \land \\
\text{validPromises}_T(r, u, P) \}
\end{array} \]
where

\[\text{wf}(W, u, A) \overset{\text{def}}{=} \text{dom}(u) = \text{M}(\text{rel}) \land\]
\[
\{ i \mid m \in \text{dom}(u) \land i \in \text{dom}(u(m))\} \subseteq \text{dom}(W)\text{.acq} \land
\]
\[\forall x \in \text{NPLoc}. \forall u . \vdash W.\text{rel}(x)(v) \Rightarrow \oplus_{i \in A(x)} W.\text{acq}(i)(v)\]

Valid promises

\[
\text{validPromises}_p (r, u, P) \overset{\text{def}}{=} \forall m \in P . m.\text{tid} \not\in T \Rightarrow \text{validPromise}(r, u, m)
\]

\[
\text{validPromises}_p (r, u, m) \overset{\text{def}}{=} \text{writeAllowed}(r(m.\text{tid}) \cdot \text{canAcq}(r.m.\text{tid}), u, m)
\]

Non-promising safety assertion

\[
\text{npsafe}_p (\overset{\text{def}}{=} \omega^2 \times T\text{LState} \times \text{Prop} \rightarrow \text{Prop})
\]

\[
\text{npsafe}_{(0,m)}(\sigma, B)(W) \overset{\text{def}}{=} \text{GConf} \times \text{View} \times \text{M}
\]

\[
\text{npsafe}_{(n+1,0)}(\sigma, B)(W) \overset{\text{def}}{=} \{(\text{gconf}, V, r) \mid \forall m . (\text{gconf}, V, r) \in \text{npsafe}_{(n,m)}(\sigma, B)(W)\}
\]

\[
\text{npsafe}_{(n+1,m+1)}(\sigma, B)(W) \overset{\text{def}}{=} \{(\text{gconf}_1, V_1, r_1) \mid \forall (\text{gconf}, V, r) \geq (\text{gconf}_1, V_1, r_1).
\]
\[
(\sigma.s = \text{skip} \Rightarrow (\text{gconf}, V, r) \in \text{vs}(B(\sigma, m))(W))
\]
\[
\land (\forall r_f, f, \sigma', \text{gconf'}, V', u, i, W' \geq W . \text{gconf} \in [r_F[i \mapsto r \cdot f], u, W']_{(i)} \land
\]
\[
(\sigma, V, \text{gconf}) \overset{\text{def}}{=} \{(\sigma', V'), \text{gconf'}, \text{wfconf}(i, \text{gconf}, V) \land \text{wfconf}(i, \text{gconf'}, V') \Rightarrow
\]
\[
\exists r', u', W'' \geq W'. \text{gconf}' \in [r_F[i \mapsto r' \cdot f], u', W''']_{(i)} \land
\]
\[
(\text{gconf}', V', r') \in \text{npsafe}_{(n+1,m)}(\sigma, B)(W''') \land
\]
\[
r' \cdot \text{canAcq}(r', u') \leq_o r \cdot \text{canAcq}(r, u) \land
\]
\[
\text{writesAllowed}(r, \text{written}(\text{gconf}, \text{gconf}'))\}\}
\]

Lemma 18 (npsafe is downwards-closed.)

\[
\forall n, n', m, m', \sigma, B, W .
\]
\[
(n', m') \leq (n, m) \land \text{npsafe}_{(n,m)}(\sigma, B)(W) \subseteq \text{npsafe}_{(n', m')}(\sigma, B)(W)
\]

Written messages

\[
\text{written}(\text{gconf}, \text{gconf}) \overset{\text{def}}{=} \{ m \in \text{gconf}'.M \mid (m \not\in \text{gconf}.M \lor m \in \text{gconf}.P) \land m \not\in \text{gconf}'.P\}
\]

View-shift assertion

\[
\text{vs}(B)(W) \overset{\text{def}}{=} \{(\text{gconf}_1, V_1, r_1) \mid \forall (\text{gconf}, V, r) \geq (\text{gconf}_1, V_1, r_1). \forall i, f, u, T, W' \geq W .
\]
\[
\text{gconf} \in [r_F[i \mapsto r \cdot f], u, W']_T \land \text{wfconf}(i, \text{gconf}, V) \Rightarrow
\]
\[
\exists r', u', W'' \geq W'.
\]
\[
(\text{gconf}, V, r') \in B(W'') \land \text{gconf} \in [r_F[i \mapsto r' \cdot f], u', W''']_T \land
\]
\[
r' \leq_o r \land r' \cdot \text{canAcq}(r', u') \leq_o r \cdot \text{canAcq}(r, u)\}
\]
Promising safety assertion

\[
\text{safe}_0(\sigma, B)(W) \overset{\text{def}}{=} GConf \times \text{View} \times \mathcal{M}
\]

\[
\text{safe}_{n+1}(\sigma, B)(W) \overset{\text{def}}{=} \{(gconf_1, V_1, r_1) \mid \forall (gconf, V, r) \geq (gconf_1, V_1, r_1).
\]

\[
(\sigma.s = \text{skip} \Rightarrow (gconf, V, r) \in vs(B(\sigma, \mu))(W)) \wedge (\forall r_F, \sigma', gconf', V', u, W' \mid gconf' \in [r_F[i \mapsto r], u, W]_0 \wedge
\]

\[
\langle(\sigma, V), gconf\rangle \implies_i \langle(\sigma', V'), gconf'\rangle \wedge n > 0
\]

\[
\Rightarrow \exists r', u', W'' \geq W'.
\]

\[
gconf' \in [r_F[i \mapsto r'], u', W'']_0 \wedge
\]

\[
(gconf', V', r') \in \text{safe}_n(\sigma', B)(W''))
\]

Lemma 19 (safe is downwards-closed.).

\[
\forall n, n', \sigma, B, W.\quad n' \leq n \wedge \text{safe}_n(\sigma, B)(W) \subseteq \text{safe}_{n'}(\sigma, B)(W)
\]

Interpretation of triples

\[
\models_{\text{np}} \{A\} s \{B\}, \models_{p} \{A\} s \{B\}, \models A \Rightarrow B
\]

\[
\models_{\text{np}} \{A\} s \{B\} \triangleq \forall n, m, \mu, W.\quad A(\mu)(W) \subseteq \text{unsafe}_{(n, m)}((\mu, s), B)(W)
\]

\[
\models_{p} \{A\} s \{B\} \triangleq \forall n, m, \mu, W.\quad A(\mu)(W) \subseteq \text{safe}_n((\mu, s), B)(W).
\]

\[
\models A \Rightarrow B \overset{\text{def}}{=} \forall \mu, W.\quad A(\mu)(W) \subseteq vs(B(\mu))(W)
\]

\[
\llbracket \models \{P\} s \{Q\} \rrbracket \overset{\text{def}}{=} \forall \eta.\quad \models_{\text{np}} \{\lambda \mu.\ \lambda W.\ [P]_{\eta}^{p}(W)\} s \{\lambda \mu.\ \lambda W.\ [Q]_{\eta}^{p}(W)\}
\]

\[
\llbracket \models \{P\} s \{Q\}\rrbracket_{\text{np}} \overset{\text{def}}{=} \forall \eta.\quad \models_{\text{np}} \{\lambda \mu.\ \lambda W.\ [P]_{\eta}^{p}(W)\} s \{\lambda \mu.\ \lambda W.\ [Q]_{\eta}^{p}(W)\}
\]

\[
\llbracket \models P \Rightarrow Q \rrbracket \overset{\text{def}}{=} \forall \eta.\quad (\lambda \mu.\ \lambda W.\ [P]_{\eta}^{p}(W)) \Rightarrow (\lambda \mu.\ \lambda W.\ [Q]_{\eta}^{p}(W))
\]

3.3 Non-promising safety implies promising safety

Lemma 20.

\[
\langle(\sigma_1, V_1), gconf_1\rangle \overset{\text{np}_*}{\rightarrow_i} \langle(\sigma_2, V_2), gconf_2\rangle \overset{\text{np}_*}{\rightarrow_i} \langle(\sigma_3, V_3), gconf_3\rangle \land gconf_1, P \subseteq gconf_1.M
\]

\[
\Rightarrow \text{written}(gconf_1, gconf_3) \subseteq \text{written}(gconf_1, gconf_2) \cup \text{written}(gconf_2, gconf_3)
\]

Lemma 21.

\[
gconf \in [r_F[i \mapsto r \bullet f], u, W]_{(i)} \land (gconf, V, r) \in \text{unsafe}_{(n+1, k)}(\sigma, B)(W) \land
\]

\[
m \in \text{written}(gconf, gconf') \land \langle(\sigma, V), gconf\rangle \overset{\text{np}_k}{\rightarrow_i} \langle(\sigma', V'), gconf'\rangle
\]

\[
\Rightarrow \text{writerAllowed}(r \bullet \text{canAcq}(r, u), m)
\]

Proof. By induction on \(k\).

- Case \(k = 0\): by assumption \(gconf'.M \neq gconf.M\) or \(gconf'.P \neq gconf.P\) which contradicts \(gconf = gconf'\).
• Case $k > 0$: then there exists σ'', V'', and gconf'' such that

\[
\langle \langle \sigma, V \rangle, \text{gconf} \rangle \xrightarrow{\text{NP}, i} \langle \langle \sigma'', V'' \rangle, \text{gconf}'' \rangle \xrightarrow{\text{NP}, k-1} \langle \langle \sigma', V' \rangle, \text{gconf}' \rangle
\]

From the npsafe assumption there exists r'', u'', and $W'' \geq W$ such that

\[
\text{gconf}'' \in \{ r_F[i \mapsto r''] \cdot f \} \cup u'' \cdot W'' \}
\]

\[
(g\text{conf}''', V'', r'') \in \text{npsafe}_{\sigma''} \cdot \text{canAcq}(\sigma'', B)(W'')
\]

\[
\text{r''} \cdot \text{canAcq}(r'', u'') \leq_{\sigma} r \cdot \text{canAcq}(r, u), \text{writesAllowed}(r, \text{written}(\text{gconf}, \text{gconf}''))
\]

- Case $m \in \text{written}(\text{gconf}, \text{gconf}'')$: Then it follows from the

\[
\text{writesAllowed}(r, \text{written}(\text{gconf}, \text{gconf}''))
\]

assumption that writeAllowed(r, m) and thus, by upwards-closure that writeAllowed$(r \cdot \text{canAcq}(r, u), m)$.

- Case $m \notin \text{written}(\text{gconf}, \text{gconf}'')$: Then by Lemma 20, $m \in \text{written}(\text{gconf}'', \text{gconf}')$. By Lemma 16 it suffices to prove that

\[
\text{writeAllowed}(r'' \cdot \text{canAcq}(r'', u''), m)
\]

which follows from the induction hypothesis.

\[\square\]

Lemma 22.

\[
\text{pln}(m) \Rightarrow \forall x \in \text{PLoc. } \text{last}(M(x) \setminus P) = \text{last}((M \leftrightarrow m)(x) \setminus (P \leftrightarrow m))
\]

where $\leftrightarrow \in \{ \phi^\leftarrow, \phi^\leftrightarrow, \phi^\rightarrow \}$.

Proof.

- Case ϕ^\leftarrow: then $M' = M \leftarrow m = M \cup \{ m \}$, $P' = P \leftarrow m = P \cup \{ m \}$ and $\{ m \}$\# M and $\{ m \}$\# P. Hence, $\text{last}(M'_{x} \setminus P') = \text{last}(M_{x} \setminus M)$.

- Case ϕ^\leftrightarrow: then there exists m', m'' such that $M' = M \leftarrow m = (M \setminus \{ m' \}) \cup \{ m, m'' \}$, $P' = P \leftarrow m = (P \setminus \{ m'' \}) \cup \{ m, m'' \}$. where $m' \in M \cap P$ and $m'.\text{loc} = m''.\text{loc} = m''.\text{loc}$. Hence, $\text{last}(M'_{x} \setminus P') = \text{last}(M_{x} \setminus M)$.

- Case ϕ^\rightarrow: then there exists m' such that $M' = M \leftarrow m = (M \setminus \{ m' \}) \cup \{ m \}$, $P' = P \leftarrow m = (P \setminus \{ m' \}) \cup \{ m \}$, where $m' \in M \cap P$ and $m'.\text{loc} = m''.\text{loc}$. Hence, $\text{last}(M'_{x} \setminus P') = \text{last}(M_{x} \setminus M)$.

\[\square\]

Lemma 23.

\[
(M, P) \in [r_F, u, W]_{\emptyset} \land \text{pln}(m) \Rightarrow (M \leftrightarrow m, P \leftrightarrow m) \in [r_F, u, W]_{\emptyset}
\]

where $\leftrightarrow \in \{ \phi^\leftarrow, \phi^\leftrightarrow, \phi^\rightarrow \}$.

Proof. Follows from 22.

\[\square\]

Lemma 24.

\[
(M, P) \in [r_F, u, W]_{\emptyset} \land m.\text{mod} = r != r \land \text{validPromise}(r_F, u, m) \land \\
(g\text{conf}_\perp, V_\perp, \varepsilon) \in [W.\text{rel}(m.\text{loc})(m.\text{val})]_{\emptyset}(W)
\]

\[
\Rightarrow (M', P') \in [r_F, u, W]_{\emptyset}
\]

where $\leftrightarrow \in \{ \phi^\leftarrow, \phi^\leftrightarrow, \phi^\rightarrow \}$, $M' = M \leftarrow m$ and $P' = P \leftarrow m$.

18
Proof. By case-analysis of \leftrightarrow.

- Case \nLeftarrow: then $M' = M \leftarrow m = M \cup \{m\}, P' = P \leftarrow m = P \cup \{m\}$, $\{m\} \# M$ and $\{m\} \# P$. From the validPromise assumption it follows that validPromises$\eta(r_F, u, P')$. It follows by upwards-closure in the observations component that all existing relaxed messages satisfy the required predicate. It thus remains to prove that newly promised message does as well and that the corresponding predicate is pure, which follows directly from the assumptions.

- Case \nRightarrow: then there exists m', m'' such that $M' = M \leftarrow m = (M \setminus \{m'\}) \cup \{m, m''\}, P' = P \leftarrow m = (P \setminus \{m'\}) \cup \{m, m''\}$, where $m' \in M \cap P$, $m.\text{loc} = m'.\text{loc} = m''.\text{loc}$, $m'.\text{val} = m''.\text{val}$, $m'.\text{view} = m''.\text{view}$, $m.\text{tid} = m'.\text{tid} = m''.\text{tid}$, and $m.\text{mod} = m'.\text{mod} = m''.\text{mod} = \text{r}$. It follows from the erasure assumption that
 \[(gconf_i, V, \varepsilon) \in \langle W.\text{rel}(m'.\text{loc})(m'.\text{val}) \rangle \]
from which it follows that
\[(gconf_i, V, \varepsilon) \in \langle W.\text{rel}(m''.\text{loc})(m''.\text{val}) \rangle \]
It follows that all the assertions associated with relaxed messages hold.

It thus remains to prove that all outstanding promises are valid. Validity for m follows from the lemma assumptions and validity of m'' follows from validity of m' which follows from the erasure assumption.

- Case \nLeftarrow: then there exists m' such that $M' = M \leftarrow m = (M \setminus \{m'\}) \cup \{m\}, P' = P \leftarrow m = (P \setminus \{m'\}) \cup \{m\}$, where $m' \in M \cap P$, $m.\text{loc} = m'.\text{loc} = m'.\text{val} = m'.\text{val}$, $m.\text{view} = m'.\text{view}$ and $m.\text{tid} = m'.\text{tid}$.

It follows directly from the lemma assumptions that the m promise is valid and that the assertion associated with m holds.

\(\square\)

Lemma 25 (Non-promising safety implies safety).

\[\forall n, \sigma, B, W. \text{npsafe}_{n+1,0}(\sigma, B)(W) \subseteq \text{safe}_n(\sigma, B)(W)\]

Proof. By induction on n. The $n = 0$ case holds by definition. Suppose that the claim holds for n, and let σ, r such that $(gconf, V, r) \in \text{npsafe}_{n+2,0}(\sigma, B)(W)$. We show that $(gconf, V, r) \in \text{safe}_{n+1}(\sigma, B)(W)$ holds. The first conjunct holds since $(gconf, V, r) \in \text{npsafe}_{n+1,1}(\sigma, B)(W)$.

For the second conjunct, assume $gconf' \in [r_F[i \mapsto r], u, W]_\emptyset$, $gconf \leq gconf'$ and

\[\langle \sigma, V, gconf \rangle \beta \rightarrow_1 \langle \sigma', V', gconf' \rangle\]

- Case $\beta = \text{promise}$: then there exists an m such that $\sigma' = \sigma$, $V' = V$, $\langle \sigma', V', gconf' \rangle$ is consistent w.r.t. i and σ and σ'' such that $gconf''.M = gconf'.M \leftarrow m$ and $gconf''.P = gconf'.P \leftarrow m$ and $m.\text{tid} = i$

Hence, by the definition of consistency there exists σ'', V'', and $gconf'''$ such that $gconf'''.P(i) = \emptyset$ and

\[\langle \sigma', V', gconf'' \rangle \overset{\text{NP}}{\rightarrow}_i \langle \sigma'', V''', gconf''' \rangle\]

It follows by Corollary 1 that there exists a k such that

\[\langle \sigma, V, gconf' \rangle \overset{\text{NP}}{\rightarrow}_i \langle \sigma'', V''', gconf''' \rangle\]

19
Since $m \in gconf^\prime M$, $gconf^\prime M P(i) = \emptyset$ and $m.tid = i$ it follows that $m \in \text{written}(gconf^\prime, gconf^{\prime \prime})$. By downwards-closure in the step-index and upwards-closure in $gconf$ it follows that

$$(gconf^\prime, V, r) \in \text{npsafe}_{\{n+1,k+1\}}(\sigma, B)(W)$$

and by promise weakening it follows that $gconf^\prime \in [r_F[i \mapsto r], u, W]_{\{i\}}$. Hence, by Lemma 21, writeAllowed($r \bullet \text{canAcq}(r, u), m$).

Pick $u' = u$, $W' = W$ and $r' = r$. It remains to prove that

$$gconf^{\prime \prime} \in [r_F[i \mapsto r'], u, W']_\emptyset \quad (gconf^{\prime \prime}, V, r) \in \text{safe}_n(\sigma, B)(W)$$

The second proof obligation follows from the induction hypothesis.

- Case $m.mod = \text{rtx}$: we proceed using Lemma 24, which requires us to prove that the promise is allowed: validPromise($r_F[i \mapsto r], u, m$) and that the assertion associated with the write holds:

$$(gconf, V_1, \varepsilon) \in \mathbb{W}.\text{rel}(m.\text{loc})(m.\text{val})_m^i(|W|).$$

We have already shown that the promise is allowed.

Applying the npsafe assumption k-times it follows that there exists $r', u' \ W' \geq W$ such that $gconf^{\prime \prime} \in [r_F[i \mapsto r'], u', W']_{\{i\}}$. Thus,

$$(gconf, V_1, \varepsilon) \in \mathbb{W}.\text{rel}(m.\text{loc})(m.\text{val})_m^i(|W|)$$

By world ordering it follows that $W.\text{rel}(\text{loc}) = W'.\text{rel}(\text{loc})$ and $|W| = |W'|$ and thus

$$(gconf, V_1, \varepsilon) \in W.\text{rel}(m.\text{loc})(m.\text{val})_m^i(|W|)$$

as required.

- Case $m.mod = \text{pln}$: by Lemma 23 and the fact that writeAllowed($r \bullet \text{canAcq}(r, u), m$).

- Case $m.mod = \text{rel}$: contradiction, as release write promises cannot be fulfilled.

• Case $\beta = \text{NP}$: then there exists a $gconf^{\prime \prime}$ such that $\langle \langle \sigma', V' \rangle, gconf^{\prime \prime} \rangle$ is consistent w.r.t. i, such that $\text{gconf}^{\prime \prime} \cdot M = \text{gconf}^{\prime \prime} \cdot M$, $\text{gconf}^{\prime \prime} \cdot P = \text{gconf}^{\prime \prime} \cdot P$, and

$$\langle \langle \sigma, V, \text{gconf}^{\prime \prime} \rangle \xrightarrow{\text{NP}^+ i} \langle \langle \sigma', V' \rangle, \text{gconf}^{\prime \prime} \rangle \rangle$$

By the definition of consistency it follows that there exists $\sigma'', V'', gconf^{\prime \prime \prime}$, k_1, and k_2 such that $gconf^{\prime \prime \prime} \cdot P(i) = \emptyset$ and

$$\langle \langle \sigma, V, \text{gconf}^{\prime \prime} \rangle \xrightarrow{\text{NP} \ k_1+1 \ i} \langle \langle \sigma', V' \rangle, \text{gconf}^{\prime \prime \prime} \rangle \xrightarrow{\text{NP} \ k_2 \ i} \langle \langle \sigma'', V'' \rangle, gconf^{\prime \prime \prime} \rangle \rangle$$

By downwards-closure of npsafe it follows that

$$(gconf^\prime, V, r) \in \text{npsafe}_{\{n+1,k_1+k_2+1\}}(\sigma, B)(W)$$

It follows by $k_1 + 1$ applications of npsafe that there exists r', u' and $W' \geq W$ such that

$$gconf^{\prime \prime \prime} \in [r_F[i \mapsto r'], u', W']_{\{i\}} \quad (gconf^{\prime \prime \prime}, V', r') \in \text{npsafe}_{\{n+1,k_1+k_2+1\}}(\sigma', B)(W')$$

By downwards-closure of npsafe and the induction hypothesis, it thus follows that $(gconf^{\prime \prime \prime}, V', r') \in \text{safe}_n(\sigma', B)$. It thus remains to show that promisesAllowed$_0(r_F[i \mapsto r'], u', gconf^{\prime \prime \prime} \cdot P)$. Let $m \in gconf^{\prime \prime \prime} \cdot P$. 20
Case \(m.\text{tid} = i \): then we have to prove that
\[
\text{validPromise}(r', u', m)
\]
This follows from Lemma 21, since \(m \in \text{written}(gconf'''', gconf'''''). \)

Case \(m.\text{tid} \neq i \): then the conclusion follows from
\[
\text{promisesAllowed}_{(i)}(r_F[i \mapsto r'], u', gconf''''P).
\]

3.4 Adequacy of promising safety

Lemma 26.

\[
\forall I \in \mathcal{P}_{\text{fin}}(TId). \forall r, V, B. \\
gconf \in [r_F[i \mapsto r_i], u, W]_{\emptyset} \land \\
\forall i \in I. (gconf, V_i, r_i) \in vs(B_i)(W) \\
\Rightarrow \exists r', u', W' \geq W. \\
gconf \in [r_F[i \mapsto r_i'], u', W']_{\emptyset} \land \\
\forall i \in I. (gconf, V_i, r_i') \in B_i(W')
\]

Proof. By induction on \(|I| \).

- Case \(|I| = 0 \): follows trivially by picking \(r' = r, u' = u \) and \(W' = W \).
- Case \(|I| > 0 \): pick a \(j \in I \). From the assumption that \((gconf, V_j, r_j) \in vs(B_j)(W) \) it follows that there exists \(r_j', u' \) and \(W' \geq W \) such that

\[
gconf \in [(r_F[j \mapsto r_j'])[i \in I \setminus \{j\} \mapsto r_i], u', W']_{\emptyset} \land \\
(gconf, V_j, r_j') \in B_j(W')
\]

Furthermore, by upwards-closure in the world component we have that
\[
\forall i \in I \setminus \{j\}. (gconf, V_i, r_i) \in vs(B_i)(W')
\]

From the induction hypothesis it thus follows that there exists \(r'', u'' \) and \(W'' \geq W \) such that
\[
gconf \in [(r_F[j \mapsto r_j'])[i \in I \setminus \{j\} \mapsto r_i'], u'', W'']_{\emptyset}
\]

and
\[
\forall i \in I \setminus \{j\}. (gconf, V_i, r_i'') \in B_i(W'')
\]

The conclusion now follows by picking \(u' = u'', W' = W'' \), and
\[
r' = [j \mapsto r_j', i \in I \setminus \{j\} \mapsto r_i']
\]
since \((gconf, V_k, r_j') \in B_j(W'') \) by upwards-closure.

Lemma 27 (Adequacy). If

1. \((gconf, \Sigma(i).V, r(i)) \in \text{safe}_{n+1}(\Sigma(i).\sigma, B_i)(W) \) for all \(i \in \text{dom}(\Sigma) \),
2. \(gconf \in [r, u, W]_{\emptyset} \),
3. \((\Sigma, gconf) \implies^n (\Sigma', gconf')\),

4. \(\forall i \in \text{dom}(\Sigma'). \Sigma'(i).s = \text{skip}\)

then there exists \(r', u'\) and \(W' \geq W\) such that

1. \(gconf' \in [r', u', W']_0\),

2. and \((gconf', \Sigma'.V(i), r'(i)) \in \llbracket B_i \rrbracket_{\Sigma'(i).\sigma}(W')\) for all \(i \in \text{dom}(\Sigma').\)

Proof. By induction on \(n\).

- Case \(n = 0\): then \((\Sigma, gconf) = (\Sigma', gconf')\) and we can simply pick \(r' = r, u' = u\) and \(W' = W\). Since \(\Sigma(i).s = \text{skip}\) for every \(i \in \text{dom}(\Sigma)\) it follows from the assumed safety that \((gconf', \Sigma(i).V.r(i)) \in \text{vs}(B_i)(W)\) for all \(i \in \text{dom}(\Sigma)\). The conclusion now follows from Lemma 26.

- Case \(n > 0\): then there exists \(\Sigma''\) and \(gconf''\) such that

\[
(\Sigma, gconf) \implies_1 (\Sigma'', gconf'') \implies^{n-1} (\Sigma', gconf')
\]

From the safety assumption it follows that there exists \(r', u'\) and \(W' \geq W\) such that \(gconf'' \in [r[i \mapsto r'], u', W']_0\) and

\[
(gconf'', \Sigma''(i).V.r') \in \text{safe}_{n-1}(\Sigma''(i).\sigma, B_i)(W')
\]

The conclusion follows by the induction hypothesis and upwards-closure of safety and erasure in the world component and upwards-closure of safety in \(gconf\).

\[\square\]
4 Soundness

In this section we prove soundness of the syntactic proof system with respect to the non-promising semantics.

4.1 Structural rules

Lemma 28 (Soundness of sequential composition).

\[\forall n, m. P(n, m) \]

where \(P(n, m) \) is defined as follows

\[\forall r_1, \mu_1, s_1, s_2, W_1. \]

\[(\forall \mu_2, W_2 \geq W_1. B(\mu_2)(W_2) \subseteq \text{npsafe}_{(n,m)}((\mu_2, s_2), C)(W_2)) \]

\[\Rightarrow \text{npsafe}_{(n,m)}((\mu_1, s_1), B)(W_1) \subseteq \text{npsafe}_{(n,m)}((\mu_1, s_1; s_2), C)(W_1) \]

Proof. By induction on \((n, m)\).

Assume \(P(n', m') \) holds for all \((n', m') < (n, m)\).

- Case \(n = 0 \): then \(P(n, m) \) holds vacuously.
- Case \(n > 0 \) and \(m = 0 \): then we can assume that
 \[\forall k. (gconf, V, r) \in \text{npsafe}_{(n-1,k)}((\mu_1, s_1), B)(W_1) \]
 and
 \[\forall \mu_2. \forall W_2 \geq W_1. \forall k. B(\mu_2)(W_2) \subseteq \text{npsafe}_{(n-1,k)}((\mu_2, s_2), C)(W_2) \]
 and must prove \(\forall k. (gconf, V, r) \in \text{npsafe}_{(n-1,k)}((\mu_1, s_1; s_2), C). \) This follows easily by the induction hypothesis.

- Case \(n > 0 \) and \(m > 0 \): Assume
 \[(gconf, V, r) \in \text{npsafe}_{(n,m)}((\mu_1, s_1), B)(W_1) \]
 and
 \[\forall \mu_2, W_2 \geq W_1. B(\mu_2)(W_2) \subseteq \text{npsafe}_{(n,m)}((\mu_2, s_2), C)(W_2). \]

Since \(s_1; s_2 \neq \text{skip} \) it suffices to consider the case where \(gconf \in [r_E[i \mapsto r \bullet f], u, W]_{(i)} \), \(W \geq W_1 \), \(\text{wconf}_{(i, gconf, V)}, \text{wconf}_{(i, gconf', V')} \) and

\[(\langle \langle \mu_1, s_1; s_2 \rangle, V \rangle, gconf) \overset{\text{NP}}{\rightarrow}_i (\langle \langle \mu', s' \rangle, V' \rangle, gconf') \]

- Case \(s_1 = \text{skip} \): Then \(\mu' = \mu_1, s' = s_2, V' = V \) and \(gconf' = gconf \). Hence, \((gconf, V, r) \in \text{vs}(B(\mu_1))(W) \). There thus exists \(r', u' \) and \(W' \geq W \) such that

\[(gconf, V, r') \in B(\mu_1)(W') \]

\[gconf \in [r_E[i \mapsto r' \bullet f], u', W']_{(i)} \]

\[r' \leq_o r \]

\[r' \bullet \text{canAcq}(r', u') \leq_o r \bullet \text{canAcq}(r, u) \]

and thus \((gconf, V, r') \in \text{npsafe}_{(n,m)}((\mu', s'), C)(W') \). The conclusion now follows by picking \(r', u' \) and \(W' \), since written\((gconf, gconf') = \emptyset \).
Proof. Assume Lemma 29 holds for \(s_1 \) and \(s' \). Hence, by the assumed safety for \(s_1 \) there exists an \(r', u' \) and \(W' \) such that
\[
\text{safe}_{(n,m-1)}((\mu', s_1'), s_2) \quad (gconf', V', r') \in \text{npsafe}_{(n,m-1)}((\mu', s_1'), B)(W')
\]
and
\[
r' \cdot \text{canAcq}(r', u') \leq L \cdot \text{canAcq}(r, u) \quad \text{writesAllowed}(r, \text{written}(gconf, gconf'))
\]
By downwards-closure and the induction hypothesis, it follows that
\[
(gconf', V', r') \in \text{npsafe}_{(n,m-1)}((\mu', s_1', s_2), C)(W').
\]
Now the conclusion follows easily by picking \(r', u' \) and \(W' \).

\[\square\]

Lemma 29 (Soundness of while-rule).
\[
[- \{ P \land e = \top \} s \{ P \}]^{\text{np}} \Rightarrow [- \{ P \} \text{while } e \text{ do } s \{ P \land e = \bot \}]^{\text{np}}
\]

Proof. Assume \([- \{ P \land e = \top \} s \{ P \}]^{\text{np}} \). We will prove that \(\forall n, m. P(n, m) \) holds by induction on \((n, m) \), where \(P(n, m) \) is defined as follows.

\[
P(n, m) \overset{def}{=} \forall \mu, \eta, W. \ [P]_\mu^n(W) \subseteq \text{npsafe}_{(n,m)}((\mu, \text{while } e \text{ do } s), \lambda \mu. \lambda W. [P \land e = \bot]_\mu^n(W))(W)
\]

Assume \(P(n', m') \) holds for all \((n', m') < (n, m) \). To show that \(P(n, m) \) holds, assume \(gconf, V, r \in [P]_\mu^n(W) \).

- Case \(n = 0 \): trivial.
- Case \(n > 0 \) and \(m = 0 \): follows directly from the induction hypothesis.
- Case \(n > 0 \) and \(m > 0 \): assume \(gconf \in [r_{e}[i \mapsto r \cdot f], u, W]_{\{i\}} \) and
\[
((-\{\mu, \text{while } e \text{ do } s\}, V), gconf) \overset{\text{np}_{n}}{\rightarrow} (-\{(\mu', s'), V'\}, gconf')
\]

Then \(\mu = \mu', V' = V \), and \(gconf' = gconf \).

- Case \([e]_\mu = \top \): then \(s' = s \); \text{while } e \text{ do } s \). By assumption, \(P(n, m - 1) \) and thus, by Lemma 28,
\[
\text{npsafe}_{(n,m-1)}((\mu, s), \lambda \mu. \lambda W. [P]_\mu^n(W))(W) \subseteq \text{npsafe}_{(n,m-1)}((\mu, s; \text{while } e \text{ do } s), \lambda \mu. \lambda W. [P \land e = \bot]_\mu^n(W))(W)
\]

Furthermore, from the assumed triple for the loop body it follows that
\[
(gconf, V, r) \in \text{npsafe}_{(n,m-1)}((\mu, s), \lambda \mu. \lambda W. [P]_\mu^n(W))(W).
\]

Now the conclusion follows easily by picking \(r, u \) and \(W \).

- Case \([e]_\mu = \bot \): then \(s' = \text{skip} \) and the conclusion follows easily as \(gconf, V, r) \in [P \land e = \bot]_\mu^n(W) \subseteq \text{vs}(\lambda \mu. [P \land e = \bot]_\mu^n(W))(W) \).

\[\square\]
Lemma 30 (Soundness of precondition strengthening).

\[\models A \Rightarrow A' \land \models_{np} \{ A' \} s \{ B \} \Rightarrow \models_{np} \{ A \} s \{ B \} \]

Proof. Assume

\[(gconf, V, r) \in A(\mu)(W) \quad gconf \in [r_F[i \mapsto r] \cdot u, \{ i \}]_W \quad \langle (\mu, s), V, gconf \rangle \xrightarrow{NP, \langle \langle \sigma', V' \rangle, gconf' \rangle} \]

From the assumed view-shift it follows that there exists \(r', u' \) and \(W' \geq W \) such that \(r' \leq_o r, (gconf, V, r') \in \llbracket A' \rrbracket_\mu(W') \), and

\[gconf' \in [r_F[i \mapsto r' \bullet f], u', W']_{\{i\}} \quad r' \bullet canAcq(r', u') \leq_o r \bullet canAcq(r, u) \]

Hence, from the assumed triple it follows that there exists \(r'', u'' \) and \(W'' \geq W' \) such that \((gconf', V', r'') \in \text{npsafe}_{(n,m)}(\sigma', B)(W'') \),

\[gconf'' \in [r_F[i \mapsto r'' \bullet f], u'', W''']_{\{i\}} \quad r'' \bullet canAcq(r'', u'') \leq_o r' \bullet canAcq(r', u') \]

and \(\text{writesAllowed}(r'', \text{written}(gconf, gconf')) \). Since \(\leq_o \) is transitive it follows that

\[r'' \bullet canAcq(r'', u'') \leq_o r \bullet canAcq(r, u) \]

It thus remains to prove that \(\text{writesAllowed}(r, \text{written}(gconf, gconf')) \). This follows from \(r' \leq_o r \) by Lemma 16 and the fact that \(\text{writesAllowed}(r', \text{written}(gconf, gconf')) \). \qed

Lemma 31.

\[\forall W. \iff (vs(B))(W) \subseteq vs(B)(W) \]

Proof. Follows from transitivity of \(\leq_o \) and the order on worlds. \qed

Lemma 32.

\[\forall W. \iff (nsafe_{(n,m)}(\sigma, \lambda \mu. \iff (B(\mu)))(W) \subseteq \iff (nsafe_{(n,m)}(\sigma, B)(W) \]

Proof. By well-founded induction, using the induction hypothesis for reduction steps and Lemma 31 for the skip case. \qed

Lemma 33.

\[(\forall \mu, W. p(\mu)(W) \subseteq q(\mu)(W)) \Rightarrow \forall n, m, \sigma, W. \iff (nsafe_{(n,m)}(\sigma, \mu. \iff (B(\mu)))(W) \subseteq \iff (nsafe_{(n,m)}(\sigma, q)(W) \]

Lemma 34 (Soundness of postcondition weakening).

\[\forall B, B'. \models B' \Rightarrow B \Rightarrow \forall n, m, \sigma, W. \iff (nsafe_{(n,m)}(\sigma, B')(W) \subseteq \iff (nsafe_{(n,m)}(\sigma, B)(W) \]

Proof. By Lemmas 33 and 32 and the definition of viewshifts it follows that

\[\iff (nsafe_{(n,m)}(\sigma, B')(W) \subseteq \iff (nsafe_{(n,m)}(\sigma, \lambda \mu. \iff (B(\mu)))(W) \]

\[\subseteq \iff (nsafe_{(n,m)}(\sigma, B)(W) \]

as required. \qed

Lemma 35.

\[(\forall W. p(W) \subseteq q(W)) \Rightarrow \forall W. \iff (p(W) \subseteq \iff (q(W) \]

25
4.2 View-shift rules

Lemma 36 (Splitting of acquire permissions).

\[\forall x. \phi_1(v) * \phi_2(v) \Rightarrow Acq(x, \phi_1) * Acq(x, \phi_2) \]

Proof. Assume \((gconf, V, r_1) \leq (gconf, V, r)\) and
\((gconf, V, r_1) \in \llbracket Acq(x, \lambda v. \phi_1(v) * \phi_2(v)) \rrbracket^\mu(W)\)
\(gconf \in \{r_F[i \mapsto r \bullet f], u, W\}_T\)

Then there exists an \(i \in dom(W).acq \cap r.acq([x]_\mu^\nu)\) such that

\[W.acq(i) = \lambda v. \phi_1(v) * \phi_2(v). \]

Hence, for every \(m \in gconf.M(\{x\}_\mu^\nu)\) we have that
\((gconf, m.view, u(m)(i)) \in \llbracket W.acq(i)(m.val) \rrbracket(W) = \llbracket \phi_1(m.val) * \phi_2(m.val) \rrbracket(W)\)

Hence, there exists \((r_1, m) \in gconf.M(\{x\}_\mu^\nu)\) and \((r_2, m) \in gconf.M(\{x\}_\mu^\nu)\) such that

\((m.view, r_1) \in \llbracket \phi_1(m.val) \rrbracket(W)\)
\((m.view, r_2) \in \llbracket \phi_2(m.val) \rrbracket(W)\)

and \(u(m)(i) = r_1 \bullet r_2\) for all \(m \in npln(gconf.M(x))\).

Pick fresh \(\nu_1, \nu_2 \not\in dom(W.acq)\) and let

\[W' = W[\nu_1 \mapsto \phi_1, \nu_2 \mapsto \phi_2] \]
\(u' = u(m \in npln(gconf.M(x)) \mapsto u(m)[\nu_1 \mapsto \bot, \nu_1 \mapsto r_1, \nu_2 \mapsto r_2]\) \(r' = r[acq(x) \mapsto (r.acq(x) \setminus \{\nu_1\}) \cup \{\nu_1, \nu_2\}]\)

It remains to show that
\((gconf, V, r') \in \llbracket Acq(x, \phi_1) * Acq(x, \phi_2) \rrbracket(W')\)
\(\forall m \in gconf.P. m.\text{tid} = i \land i \not\in T \Rightarrow \forall m \in gconf.P. m.\text{tid} = i \land i \not\in T \Rightarrow \) writeAllowed\((r' \bullet \text{canAcq}(r', u'), m)\)

The first proof obligation is easily seen to hold. The second proof obligation reduces to proving that promisesAllowed\(_T\)(r\(_F[i \mapsto r' \bullet f], u', gconf.P)\) since \(\nu \not\in r_F(j).acq\) for all \(j \neq i\) this reduces to proving that

\[\forall m \in gconf.P, m.\text{tid} = i \land i \not\in T \Rightarrow \text{writeAllowed}(r' \bullet \text{canAcq}(r', u'), m) \]

This follows from the promisesAllowed\(_T\)(r\(_F[i \mapsto r \bullet f], u, gconf.P)\) assumption since canAcq\((r', u') = \text{canAcq}(r, u), u\) by Lemma 14.

From canAcq\((r', u') = \text{canAcq}(r, u)\) it also follows that \(r' \bullet \text{canAcq}(r, u) \leq o r \bullet \text{canAcq}(r, u)\).

It thus remains to prove that \(r' \leq o r\). This follows easily as \(r.pln = r'.pln\) and \(r.wr = r'.wr\). □

Lemma 37.

\[\llbracket \llbracket W(x, X) \ast O(x, a, t) \Rightarrow W(x, X) \ast O(x, a, t) \ast (a, t) \in X \rrbracket \]

Proof. Assume \((gconf, V, r_1) \in \llbracket W(x, X) \ast O(x, a, t) \rrbracket^\mu(W), (gconf, V, r) \geq (gconf, V, r_1), W' \geq W, gconf \in \{r_F[i \mapsto r \bullet f], u, W', f(i)\} \) and \(\text{wf}_\text{conf}(i, gconf, V)\).

Hence, there exists an \(m \in gconf.M\) such that \(m.val = [a]_\mu^\nu, m.time = [r]_\mu^\nu, m.loc = [x]_\mu^\nu, r.wr([[X]_\mu^\nu]) = (1, [X]_\mu^\nu), r.V.conf([[X]_\mu^\nu]) \leq V.r.x.([x]_\mu^\nu)\). Hence, by erasure, \([m.val, m.time] \in \text{seq}(gconf.M([[x]_\mu^\nu])\rrbracket(gconf.P)\) \(X\) it thus suffices to prove that \(m \not\in gconf.P\).

If \(m \in gconf.P\) and \(m.\text{tid} \neq i\) then it follows by erasure that validPromise\((r_F, u, m)\). Hence, \(\text{snd}(r_F(m.\text{tid}) \bullet \text{canAcq}(r_F(m.\text{tid}, u)) \bullet \text{writeAllowed}(r_F(m.\text{tid}, u))) > 0\), which is a contradiction since \(\text{snd}(r.F.wr([[x]_\mu^\nu]) = 1\). If \(m \in gconf.P\) and \(m.\text{tid} = i\) then it follows by the \(\text{wf}_\text{conf}\) assumption that \(V.r.x.([x]_\mu^\nu) < m.time\), which is a contradiction. □
Lemma 38.
\[
\forall \pi_1, \pi_2, X_1, X_2. \pi_1 + \pi_2 \leq 1 \land 0 < \pi_1 \leq 1 \land 0 < \pi_2 \leq 1 \Rightarrow \\
[W_{\pi_1}(x, X_1) \cdot W_{\pi_2}(x, X_2) \vdash W_{\pi_1+\pi_2}(x, X_1 \cup X_2)] \land \\
[W_{\pi_1+\pi_2}(x, X_1 \cup X_2) \vdash W_{\pi_1}(x, X_1) \cdot W_{\pi_2}(x, X_2)]
\]

Proof. Follow directly from the monoid definition. \(\square\)

Lemma 39.
\[
[W^\pi(x, X) \cdot (v, t) \in X \cdot (v', t') \in X \land v \neq v' \Rightarrow W^\pi(x, X) \cdot t \neq t']
\]

Proof. Assume \((gconf_1, V_1, r_1) \in [W^\pi(x, X) \cdot (v, t) \in X \cdot (v', t') \in X \land v \neq v']^\mu(W), (gconf, V, r) \geq (gconf_1, V_1, r_1), W' \geq W, gconf \in [r_F[i \mapsto r \cdot f], u, W']_{\mu} and \text{wf}_{conf}(i, gconf, V).\)

By erasure, \([X]_{\mu}^\pi \subseteq gconf.M([x]_{\mu}^\pi)\) and the conclusion now follows from the definition of a memory. \(\square\)

Lemma 40.
\[
[W^\pi(x, X) \cdot (_, t) \in X \cdot (_, t') \in X \Rightarrow W^\pi(x, X) \cdot t < t' \lor t = t' \lor t' < t]
\]

Proof. Follows from the assumption that the timestamp order is total. \(\square\)

Lemma 41.
\[
[W^\pi(x, X) \cdot (v, t) \in X \Rightarrow W^\pi(x, X) \cdot O(x, v, t)]
\]

Proof. Assume \((gconf_1, V_1, r_1) \in [W^\pi(x, X) \cdot (v, t) \in X]^\mu(W), (gconf, V, r) \geq (gconf_1, V_1, r_1), W' \geq W, gconf \in [r_F[i \mapsto r \cdot f], u, W']_\mu and \text{wf}_{conf}(i, gconf, V).\) By erasure, \([X]_{\mu}^\pi \subseteq gconf.M([x]_{\mu}^\pi).\) \(\square\)
4.3 Rules for release/acquire accesses

Lemma 42.

\[\forall i \in r_F(t).A(x) \cap \text{dom}(W) \land gconf \in [r_F, u, W]_T \land \prime \text{ fresh for } u \text{ and } r_F \Rightarrow gconf \in [r_F[t \mapsto x \prime], u[t \mapsto x \prime], W[\prime \mapsto W(i)[a \mapsto \top]]]_T \]

Proof. Should follow from Lemmas 13 and 11. \qed

Lemma 43.

\[m \in \text{dom}(u) \land \iota \in r_F(t).A(x) \cap \text{dom}(u(m)) \land W(\iota)(m.val) = \top \land gconf \in [r_F, u, W]_T \land \prime \text{ fresh for } u \text{ and } r_F \Rightarrow gconf \in [r_F[t \mapsto r_F(t) \bullet u(m)(\iota)], u[m, t \mapsto \varepsilon], W]_T \]

Lemma 44 (Soundness of acquire read).

\[[\{ x = e * \text{Acq}(x, \phi) * \text{O}(x, _ , t) \}] \ a := [e]_{\text{acq}} \{ \exists \eta' \geq t. \text{Acq}(x, \phi[a \mapsto \top]) * \phi(a) * \text{O}(x, a, t') \}] \]

where \(x \) and \(t \) are assumed to be specification variables.

Proof. Let \((gconf, V, r) \in [x = e * \text{Acq}(x, \phi) * \text{O}(x, _ , t)]_W^n(W) \). Since \(a := [e]_{\text{acq}} \neq \text{skip} \) it suffices to consider the case where

\[\langle (\mu, a := [e]_{\text{acq}}, V), gconf \rangle \xrightarrow{\text{NP}_t} \langle (\sigma', V'), gconf' \rangle, \]

and \(gconf \in [r_F[i \mapsto r \bullet f], u, W']_{(t)} \) \(, W' \geq W \).

By the THREAD: READ rule it follows that there exists an \(m = \langle \eta(x) : \sigma_j v, V_m @ (_ , t_m) \rangle \in M \) such that \(V.rlx(\eta(x)) \leq t_m, gconf'.P = gconf.P, gconf'.M = gconf.M, V' = V \cup \{ p_{ln} : \{ \eta(x) @ t_m \}, rlx : \{ \eta(x) @ t_m \} \} \cup V_m \text{ and } \sigma' = (\mu[a \mapsto v], \text{skip}). \)

From the \((gconf, V, r) \in [x = e * \text{Acq}(x, \phi) * \text{O}(x, _ , t)]_W^n(W) \) assumption it follows that there exists an \(\iota \in \text{dom}(W.acq) \cap \text{r.acq}(\eta(x)) \) such that \(W.acq(\iota) = \phi \) and \(\eta(\iota) \leq V.rlx(\eta(x)) \). Hence, \(\eta(t) \leq t_m \).

- Case \(o = rlx: \) it follows from the definition of erasure that \((gconf_\bot, V_\bot, \varepsilon) \in [W.\text{rel}(m.loc)(m.val)]_{(W')} \).

 Pick an \(\iota' \) that is fresh for \(u \) and \(W' \). Pick \(u' = u[t \mapsto \eta(x) \iota'], r' = r[t \mapsto \eta(x) \iota'] \) and \(W'' = W'[\iota' \mapsto \phi[v \mapsto \top]] \). Then it remains to prove that \(gconf' \in [r_F[i \mapsto r' \bullet f], u', W''[\iota')]_{(t)} \)

\[(gconf', V', r') \in \exists \eta' \geq t. \text{Rel}(x, \phi[a \mapsto \top]) * \phi(a) * \text{O}(x, a, t') \]

and \(r' \bullet \text{canAcq}(r', u') \leq_o r \bullet \text{canAcq}(r, u) \) and \(\text{writesAllowed}(gconf, gconf') \).

The erasure obligation follows by upwards-closure and Lemma 42. The two last obligations follow easily as \(r' \bullet \text{canAcq}(r', u') = r' \bullet \text{canAcq}(r, u) \leq_o r \bullet \text{canAcq}(r, u) \) by Lemma 13 and \(\text{written}(gconf, gconf') = \emptyset \).

It thus remains to prove that

\[(gconf', V', r') \in \exists \eta' \geq t. \text{Rel}(x, \phi[a \mapsto \top]) * \phi(a) * \text{O}(x, a, t') \]

It follows from the erasure assumption that

\[\forall v \vdash W.\text{rel}(\eta(x))(v) \Rightarrow \bigcirc_{t \in t.acq(\eta(x))} W.acq(t)(v) \]
Lemma 45.

Proof. Since t is the composition of $r_F[i \rightarrow r \bullet f]$ and the resources from u. So, in particular, $t \in r.acq(\eta(x))$ since by assumption $t \in r.acq(\eta(x))$ and thus,

$$\vdash W.rel(\eta(x))(v) \Rightarrow \phi(v)$$

It follows that $(gconf, V, \varepsilon) \in \llbracket \phi(m.val) \rrbracket_\sigma(W')$. By upwards-closure and the definition of the interpretation it follows easily that

$$(gconf', V', r') \in \exists \exists t' \geq t. \text{Rel}(x, \phi[a \mapsto \top]) * \phi(a) * O(x, a, t'))_{\sigma, \mu}(W'')$$

• Case $o = \text{rel}$: from the definition of erasure it follows that

$$(gconf, V_m, u(m)(i)) \in \llbracket \phi(v) \rrbracket_\sigma(W')$$

since $\text{W.acq}(i) = \phi$, $m.view = V_m$ and $m.val = v$.

Pick an i' that is fresh for u and W'. Pick $u' = (u[i \mapsto \eta(x) i'])\llbracket m, i' \mapsto \varepsilon \rrbracket$, $r' = r[i \mapsto \eta(x) i'] \bullet u(m)(i)$ and $W'' = W'[i' \mapsto \phi[v \mapsto \top]]$. Then it remains to prove that $gconf' \in r_F[i \mapsto r' \bullet f], u', W''_{\llbracket i \rrbracket}$,

$$(gconf', V', r') \in \exists \exists t' \geq t. \text{Rel}(x, \phi[a \mapsto \top]) * \phi(a) * O(x, a, t'))_{\sigma, \mu}(W'')$$

and $r' \bullet \text{canAcq}(r', u') \leq_o r \bullet \text{canAcq}(r, u)$ and writesAllowed$(r, \text{written}(gconf', gconf'))$.

The writesAllowed obligation follows trivially as written$(gconf', gconf') = \emptyset$ and the

$$(gconf', V', r') \in \exists \exists t' \geq t. \text{Rel}(x, \phi[a \mapsto \top]) * \phi(a) * O(x, a, t'))_{\sigma, \mu}(W'')$$

obligation follows by upwards-closure and the definition of the interpretation.

By Lemmas 7 and 11,

$$r' \bullet \text{canAcq}(r', u') = r[i \mapsto x i'] \bullet \text{canAcq}(r[i \mapsto x i'], u[i \mapsto x i']) = r[i \mapsto x i'] \bullet \text{canAcq}(r, u) \leq_o r \bullet \text{canAcq}(r, u)$$

It remains to prove that $gconf'$ is in the erasure: $gconf' \in r_F[i \mapsto r' \bullet f], u', W''_{\llbracket i \rrbracket}$. By Lemma 42 it follows that $gconf' \in r_F[i \mapsto (r \bullet f)[i \mapsto x i']], u[i \mapsto x i'], W''_{\llbracket i \rrbracket}$ and by Lemma 43, $gconf' \in r_F[i \mapsto r' \bullet f], u', W''_{\llbracket i \rrbracket}$ as required.

Lemma 45.

$$gconf \in r_F[i \mapsto r \bullet f], u, W_{\llbracket i \rrbracket} \land r.wr(m.loc) = (1, X) \land \pi_1(\max(X)) \leq V.r[Ix(m.loc) \leq m.time \land m \in gconf.M \land w_{\text{conf}}(i, gconf, V) \cup [r[Ix \subseteq \{m.loc \cap m.time\}]] \Rightarrow m.val = \pi_1(\max(X))$$

Proof. Since $(1, X)$ is only composable with $(0, \emptyset)$ it follows by the definition of erasure that $gconf.M(m.loc) \setminus gconf.P = X$. If $m \notin gconf.P$ it follows from the assumptions that $m \in X$ and thus $\max(X) = (m.val, m.time)$. Otherwise, $m \in gconf.P$. If $m.tid \neq i$ it follows from erasure that validPromise(r_F, u, m). Hence, $\pi_1(r_F(m.tid) \bullet \text{canAcq}(r_F(m.tid, u)), \text{wr}(x) \neq 0$, which is a contradiction since $r.wr(x) = (1, X)$. If $m.tid = i$ then it follows by the w_{conf} assumption that $m.time < m.time$ which is a contradiction.

29
Lemma 46 (Soundness of acquire read for an exclusive writer).

$$\models_{np} \{ x = e \ast \text{Acq}(x, \varphi) \ast W^i(x, X) \} a := \lbrack e \rbrack_{\text{acq}} \{ B \}$$

where \(x \) and \(X \) are specification variables and \(B \) is the assertion

$$\text{Acq}(x, \varphi(a \rightarrow \top)) \ast \varphi(a) \ast W^i(x, X) \ast O(x, a, \text{snd}(\max(X))) \ast a = \text{fst}(\max(X)) \cdot$$

Proof: The same as Lemma 44, but using Lemma 45 to conclude that we read the last fulfilled write as specified by the write permission.

Lemma 47.

$$r = r_1 \ast \Pi_{a \in A} r^n_m \land u' = u[m \mapsto [a \mapsto r^n_m]] \land m \not\in dom(u)$$

$$\Rightarrow r_1 \ast \text{canAcq}(r_1, u') \leq_a r \ast \text{canAcq}(r, u)$$

Lemma 48.

$$(P, M) \xrightarrow{m} (P', M') \land (P.m.tid, m.loc) = \emptyset \Rightarrow P' = P \land M' = M \leftarrow m$$

Lemma 49 (Soundness of release write).

$$\models \{ x = e_1 \ast v = e_2 \ast \text{Rel}(x, \varphi) \ast W^o(x, X) \ast \varphi(v) \ast O(x, v_0, t_0) \} [e_1]_{\text{rel}} := e_2 \{ \exists t. W^o(x, X \cup \{ (v, t) \}) \ast t_0 < t \}$$

where \(x, v, \pi, X \) and \(A \) are assumed to be specification variables.

Proof. Let \((gconf, V, r) \in [x = e_1 \ast v = e_2 \ast \text{Rel}(x, \varphi) \ast W^o(x, X) \ast \varphi(v) \ast O(x, v_0, t_0)]^n(W)\). Since \([e_1]_{\text{rel}} := e_2 \neq \text{skip}\) it suffices to consider the case where

$$(\langle (\mu, [e_1]_{\text{rel}} := e_2), V \rangle, gconf) \xrightarrow{NP} \langle (\sigma', V'), gconf' \rangle,$$

and \(gconf' \in [r_F[i \mapsto r \ast f], u, V]_{\{1\}}\).

By THREAD: Write it follows that \(gconf' = (P', M')\), \(\sigma' = (\mu, \text{skip})\), and

$$(P, M) \xrightarrow{m} (P', M') \quad V.rtx(\eta(x)) < t \quad V' = V \cup \{ \text{pln}_1 : \{ \eta(x) \rbrack_1 \}, r.lx : \{ \eta(x) \rbrack_0 \}$$

and \(V' = R, P(i, \eta(x)) = \emptyset\) where \(gconf = (P, M)\) and \(m = (\eta(x), \mu \ast r_1 \ast \eta(v), R @ (_, t))\). It follows by Lemma 48 that \(P' = P \land M' = M \leftarrow m\).

From the definition of separating conjunction there exists \(r_1 \) and \(r_2\) such that \(r = r_1 \ast r_2\) with \((gconf, V, r_1) \in [\text{Rel}(x, \varphi) \ast W^o(x, X)]_m(W)\) and \((gconf, V, r_2) \in [\varphi(a)]_m(W)\). It follows that there exists an \(i \in \text{dom}(W.r1)\) and \(\pi'\) such that \(\vdash \phi \Rightarrow W.\text{rel}(i)\) and \(r_1.\text{wr}(\eta(x)) = (\pi', \eta(X))\) with \(\pi \leq \pi'\).

Let \(t\) denote \(r \ast \Pi_{i \in \text{Thread}(i)} r_F(t) \ast \Pi_{m \in M} \Pi_{i \in \text{dom}(m)} u(m)(i)\). From the definition of erasure it follows that \(\vdash W.\text{rel}(i)(\eta(v)) \Rightarrow \bigotimes_{i \in t.\text{acq}(\eta(x))} W.\text{acq}(i)(\eta(v))\) and thus that there exists \((r_i)_{i \in t.\text{acq}(\eta(x))}\) such that \(r_2 = \Pi_{i \in t.\text{acq}(\eta(x))} r_i\) and \((gconf, V, r_i) \in [W.\text{acq}(i)(\eta(v))]_m(W)\) for all \(i \in t.\text{acq}(\eta(x))\).

Pick \(u' = u[m \mapsto (\lambda i \in t.\text{acq}(\eta(x))), r_i]\), \(r' = r_1.\text{wr}(\eta(x)) \Rightarrow (\pi', \{ (\eta(v), t) \}) \cup \eta(X)\) and \(W' = W\). Then it remains to show that

1. \(gconf' \in [r_F[i \mapsto r' \ast f], u', W']_{\{1\}}\),
2. \((gconf', V', r') \in \exists t \cdot W^o(x, X \cup \{ (v, t) \}) \ast t_0 < t \}_{(\sigma', \mu)}(W')\),
3. \(r' \ast \text{canAcq}(r', u') \leq_a r \ast \text{canAcq}(r, u)\),
4. and \(\text{writesAllowed}(r, \text{written}(gconf, gconf'))\).
Starting with the last proof obligation, \(\text{writesAllowed}(r, \text{written}(gconf, gconf')) \): since \(\text{written}(gconf, gconf') = \{m\} \), the \(\text{writesAllowed}(r, \text{written}(gconf, gconf')) \) proof obligation reduces to proving that \(\text{writeAllowed}(r, m) \).

This is easily seen to hold since \(\pi_1 (r.\text{wr}(\eta(x))) > 0 \).

The second-to-last proof obligation, \(r' \cdot \text{canAcq}(r', u') \leq_\alpha r \cdot \text{canAcq}(r, u) \) follows from Lemma 47.

The second proof obligation follows easily by the assertion semantics since \(t_0 \leq V.\text{r1x}(\eta(x)) < t \).

It remains to prove that \(gconf' \in [r_F[i \mapsto r' \cdot f], u', W']_{\{i\}} \): Since \(M' = M \triangleright m \) it follows that \(M'(\eta(x)) \setminus P = (M(\eta(x)) \setminus P) \cup \{m\} \). Furthermore, since \(V \leq R \) and \(gconf \leq gconf' \) it also follows that

\[
\forall i \in \text{dom}(u'(m)). \ (gconf', R, u'(m)(i)) \in \llbracket W.\text{acq}(i)(m.\text{val}) \rrbracket (W')
\]

as required, by upwards-closure.
4.4 Rules for relaxed accesses

Lemma 50.
\[\nu \in dom(W.acq) \cap r.acq(m.loc) \land gconf \in [r_F[i \mapsto r \cdot f], u, W]_{(i)} \land m \in gconf.M \Rightarrow \]
\[(gconf_{L}, V_{L}, \varepsilon) \in \|\|W空调(i)(m.val)\|\|_{i}(W) \]

Lemma 51 (Soundness of relaxed read).
\[\llbracket \{ x = e \ast Acq(x, \phi) \ast O(x, _, t) \} a := [e]_{Rlx} \{ Acq(x, \phi) \ast \exists t'. \nabla (\phi(a)) \ast O(x, a, t') \} \rrbracket_{\nu}^{\mathbb{N}}(W) \]
where \(x \) and \(t \) are specification variables.

Proof. Let \((gconf, V, r) \in \|x = e \ast Acq(x, \phi) \ast O(x, _, t)\|_{\nu}^{\mathbb{N}}(W)\). It suffices to consider the case where
\[((\mu, a := [e]_{Rlx}, V), gconf) \xrightarrow{NP} ((\sigma', V'), gconf'), \]
and \(gconf \in [r_F[i \mapsto r \cdot f], u, W']_{(i)}, W' \geq W\).

By the Thread: Read rule it follows that there exists an \(m = (\eta(x) \vdash v, V_m @ (_, t_m)) \in M\) such that
\(V_{rlx}(\eta(x)) \leq t_m, gconf'.P = gconf.P, gconf'.M = gconf.M, V' = V \cup \{pln : \{\eta(x) @ t_m\}, r_{lx} : \{\eta(x) @ t_m\}\}\) and \(\sigma' = (\mu[a \mapsto v], \text{skip})\).

From the \((gconf, V, r) \in \|Acq(x, \phi) \ast O(x, _, t)\|_{\nu}^{\mathbb{N}}(W)\) assumption it follows that there exists an \(\nu \in dom(W.acq) \cap r.acq(\eta(x))\) such that \(W.acq(\nu) = \phi\) and \(\eta(t) \leq V_{rlx}(\eta(x)) \leq t_m\). Hence, by Lemma 50,
\[\nu \in dom(W.acq) \cap r.acq(\eta(x)) \Rightarrow (gconf_{L}, V_{L}, \varepsilon) \in \|\|W_{\nu}^{\mathbb{N}}(W) \]
Pick \(r' = r, u' = u \) and \(W'' = W'\). It thus remains to prove that
\[(gconf', V', r') \in \|Acq(x, \phi) \ast \exists t'. \nabla (\phi(a)) \ast O(x, a, t')\|_{\nu', \mu}^{\mathbb{N}}(W'') \]
which follows easily from the definition of the interpretation. \[\square \]

Lemma 52 (Soundness of relaxed read for an exclusive writer).
\[\llbracket \{ x = e \ast Acq(x, \phi) \ast W^{1}(x, X) \} a := [e]_{Rlx} \{ B \} \rrbracket_{\nu}^{\mathbb{N}}(W) \]
where \(x \) and \(X \) are specification variables and \(B \) is the following assertion
\[Acq(x, \phi) \ast W^{1}(x, X) \ast (\nabla (\phi(a)) \ast O(x, a, \text{snd}(\text{max}(X)))) \ast a = \text{fst}(\text{max}(X)) \).

Proof. Similar to the proof of Lemma 51, but using Lemma 45 to prove properties about the value read. \[\square \]

Lemma 53.
\[m.mod = r_{lx} \land \langle P, M \rangle \xrightarrow{m} \langle P', M' \rangle \Rightarrow \]
\[\text{values}(M'(r_{lx})) = \text{values}(M(r_{lx})) \cup \{(m.loc, m.val)\} \]
where \(\text{values}(M) = \{(m.loc, m.val) \mid m \in M\} \).

Lemma 54.
\[(M, P) \in [r_F[i \mapsto r \cdot f], u, W]_{(i)} \land (P, M) \xrightarrow{m} (P', M') \land m.time > \text{snd}(\text{max}(X)) \land \]
\[m.mod = r_{lx} \land r.wr(m.loc) = (\pi, X) \land r' = r.wr[m.loc \mapsto (\pi, X \cup \{(m.val, m.time)\})] \land \]
\[(gconf_{L}, V_{L}, \varepsilon) \in \|W.rel(m.loc)(m.val)\|_{\nu}^{\mathbb{N}}(W) \Rightarrow \]
\[(M', P') \in [r_F[i \mapsto r' \cdot f], u, W]_{(i)} \]
Lemma 55 (Soundness of relaxed write).

\[\vdash \{e_1\}_r \llbracket x \rrbracket := e_2 \{t. W^N(x, X \cup \{(v, t)\}) * t_0 < t\} \]\n
where \(x, v, X\) and \(\pi\) are specification variables and \(A\) is the following assertion

\[x = e_1 \ast v = e_2 \ast \text{Rel}(x, \phi) \ast W^N(x, X) \ast \phi(v) \ast \text{pure}(\phi(v)) \ast O(x, v_0, t_0). \]

Proof. Let \((gconf, V, r) \in \llbracket A\rrbracket^\mu_N(W)\). It suffices to consider the case where

\[\langle ((\mu, e_1)_r \llbracket x \rrbracket := e_2), V, gconf \rangle \xrightarrow{\text{NP}} \langle (\sigma', V'), gconf' \rangle, \]

and \(gconf \in [r_F[i \mapsto r \ast f], u, W']_{(i)}, W' \geq W\).

By Thread: Write it follows that \(gconf' = (P', M', O), \sigma' = (\mu, \text{skip})\), and

\[\langle (P, M) \xrightarrow{m} \langle P', M' \rangle \quad V.rlx(\eta(x)) < t \quad V' = V \cup [\text{pln} : \{\eta(x) \ast \text{at}\}, rlx : \{\eta(x) \ast \text{at}\}] \]

and \(R = [\text{pln} : \{\eta(x) \ast \text{at}\}, rlx : \{\eta(x) \ast \text{at}\}]\), where \(gconf = (P, M, O)\) and \(m = \langle \eta(x) ; rlx, \eta(v), R \ast (_ , t) \rangle\).

Pick \(r' = r[\text{wr}(\eta(x)) \mapsto (\pi, \{(\eta(v), t)\} \cup \eta(X))]\), \(u' = u\) and \(W' = W'\). Then we need to prove that \(r' \ast \text{canAcq}(r', u) \leq_o r \ast \text{canAcq}(r, u), \)

\[gconf' \in [r_F[i \mapsto r' \ast f], u, W']_{(i)} \quad (gconf', V', r') \in \llbracket W^N(x, X \cup \{(v, t)\}) \ast \text{snd}(\text{max}(X)) < t\rrbracket^\mu_N(W') \]

and \(\text{writesAllowed}(r, \text{written}(gconf, gconf'))\).

Firstly, \(r' \ast \text{canAcq}(r', u) \leq_o r \ast \text{canAcq}(r, u)\) holds trivially since \(r' \leq_o r\) and \(r'.\text{acq} = r.\text{acq}\). Furthermore, \(\text{writesAllowed}(r, \text{written}(gconf, gconf'))\) follows from \(\text{writeAllowed}(r, m)\), which itself follows from the assumption that

\[(gconf, V, r) \in \llbracket A\rrbracket^\mu_N(W). \]

The third proof obligation, \((gconf', V', r') \in \llbracket W^N(x, X \cup \{(v, t)\}) * t_0 < t\rrbracket^\mu_N(W')\), is easily seen to hold by the definition of the interpretation.

It remains to prove that \(gconf' \in [r_F[i \mapsto r' \ast f], u, W']_{(i)}\), which reduces to proving that

\[(gconf_{\bot}, V_{\bot}, \varepsilon) \in \llbracket W.\text{rel}(m.\text{loc})(m.\text{val})\rrbracket_{\llbracket W \rrbracket} \]

by Lemma 54. This in turn follows from the fact that \(\phi(m.\text{val})\) is pure. \(\square\)
4.5 Rules for plain accesses

Lemma 56 (Soundness of plain read).

\[\models \{ x = e \ast x \overset{\pi}{\to} v \} \ a := [e]_{\text{pln}} \{ x \overset{\pi}{\to} v \ast a = a \}^{\text{np}} \]

where \(x \) and \(v \) are specification variables.

Proof. Let \((gconf, V, r) \in \models \bigl(x = e \ast x \overset{\pi}{\to} v \bigr)^{\mu}_{\mu} (W)\). It suffices to consider the case where

\[\langle \langle \mu, a := [e]_{\text{pln}}, V \rangle, gconf \rangle \overset{\text{NP}_r}{\rightarrow} \langle \langle \sigma', V', gconf' \rangle, \]

and \(gconf \in [r_{F[i \mapsto r \bullet f]} \cdot u, W']_{(i)}, W' \geq W \).

By the **Thread: Read** rule it follows that there exists an \(m = (\eta(x) :_{\text{pln}} v', V_{m(_, t)}) \in M \) such that \(V_{\text{pln}(\eta(x))} \leq t \), \(gconf'.P = gconf'.P \), \(gconf'.M = gconf.M \), \(V' = V \sqcup \{ \text{pln} : \bot \}, \text{rlx} : \{ \eta(x)@t \} \) and \(\sigma' = (\mu[a \mapsto v'], \text{skip}) \).

From the \((gconf, V, r) \in \models \bigl(x \overset{\pi}{\to} v \bigr)^{\eta}_{\eta} (W)\) assumption it follows that there exists a \(\pi' \geq \pi \) and \(t' \leq V(\eta(x)).\text{pln} \) such that \(r_{\text{pln}(\eta(x))} = \text{inj}_2(\pi', \eta(v), t') \) and \(\pi' > 0 \). Hence, \(t' \leq t \).

From the erasure assumption it follows that \(\text{last}(M(\eta(x)) \setminus P).\text{val} = v \) and \(\text{last}(M(\eta(x)) \setminus P).\text{time} = t' \).

If \(m \in P \) it follows that \(m.\text{tid} \neq i \) since otherwise, \(V'.r_{\text{lx}(\eta(x))} = V.\text{rlx}(\eta(x)) \sqcup t < t \) which is a contradiction. Hence, by erasure,

\[\text{writeAllowed}(r_{F(m.\text{tid})} \cdot \text{canAcq}(r_{F(m.\text{tid})}, u, m)) \]

This is a contradiction, since \(\text{canAcq}(r_{F(m.\text{tid})}, u, \text{pln}(\eta(x))) = (1, \bot), r_{\text{pln}(\eta(x))) = (\pi, \bot) \) and \(r^{#} \text{canAcq}(r_{F(m.\text{tid})}, u) \).

Otherwise, if \(m \notin P \) it follows that \(m \in (M(\eta(x)) \setminus P) \) and since \(t' \leq t \) it must be the case that \(\text{last}(M(\eta(x)) \setminus P) = m \). It follows that \(v = v' \).

Pick \(r' = r, u' = u \) and \(W'' = W' \). Now the remain proof obligations are easy. \(\Box \)

Lemma 57.

\[x \in \text{PLoc} \land m = (x :_{\text{pln}} v, R_{\bot}(_, t)) \land (P, M) \overset{m}{\rightarrow} (P', M') \land \text{last}(M(x) \setminus P).\text{time} < t \Rightarrow \text{last}(M'(x) \setminus P') = m \]

Lemma 58 (Soundness of plain write).

\[\models \{ x = e \ast x \overset{\pi}{\to} _ \} [e]_{\text{pln}} := a \{ x \overset{\pi}{\to} a \}^{\text{np}} \]

where \(x \) is a specification variable.

Proof. Let \((gconf, V, r) \in \models \bigl(x = e \ast x \overset{\pi}{\to} _ \bigr)^{\eta}_{\eta} (W)\). It suffices to consider the case where

\[\langle \langle \mu, a := [e]_{\text{pln}}, V \rangle, gconf \rangle \overset{\text{NP}_r}{\rightarrow} \langle \langle \sigma', V', gconf' \rangle, \]

and \(gconf \in [r_{F[i \mapsto r \bullet f]} \cdot u, W']_{(i)}, W' \geq W \).

By the **Thread: Write** rule it follows that there exists a \(t \) such that

\[(gconf.P, gconf.M) \overset{(\eta(x) :_{\text{pln}} \mu(a), R_{\bot}(_, t))}{\rightarrow} (gconf'.P, gconf'.M) \]

\[V' = V \sqcup \{ \text{pln} : \{ \eta(x)@t \}, \text{rlx} : \{ \eta(x)@t \} \} \]

\[V(\eta(x)).r_{\text{lx}} < t \] and \(\sigma' = (\mu, \text{skip}) \).
From the \((gconf, V, r) \in \left[x \mapsto \begin{array}{c} 1 \\ \mu \end{array} \right]_\eta(W)\) assumption it follows that there exists a \(t' \leq V.\text{pln}(\eta(x))\) such that \(r.\text{pln}(\eta(x)) = \text{inj}_2(1, _, t').\)

By definition of a timemap, \(V.\text{pln}(\eta(x)) \leq V.\text{rlx}(\eta(x))\) and thus \(t' < t\).

Pick \(r' = r[\text{pln}(x) \mapsto \text{inj}_2(1, \mu(a), t)], W' = W\) and \(u' = u\). By Lemma 57 it follows that \(\text{last}(gconf' . M(\eta(x)) \setminus gconf'.P) = \langle \eta(x) . i_\text{pln} v, R@\text{rlx} \rangle\) and thus, \(gconf' \in [r_F[i \mapsto r' \circ f], u', W']_i\). It remains to prove that \((gconf', V', r') \in \left[x \mapsto a \right]_\eta(W'), r' \circ \text{canAcq}(r', u') \leq_o r \circ \text{canAcq}(r, u)\), and \(\text{writeAllowed}(r, \text{written}(gconf, gconf'))\).

The first obligation follows easily from the definition of the interpretation. The second obligation follows easily from the fact that \(r' \leq_o r\) and \(r'.\text{acq} = r.\text{acq}\). For the last obligation, it suffices to prove that \(\text{writeAllowed}(r, \langle \eta(x) . i_\text{pln} v, R@\text{rlx} \rangle)\), which holds since \(r.\text{pln}(\eta(x)) = \text{inj}_2(1, _)\) by assumption. \(\Box\)
5 Examples

5.1 Random number generator

We do not need to transfer any information, so we can pick $\lambda v. \top$ as the predicate for x and y.

$$x = y = 0$$

$$\{W^1(y, [0]) \ast \text{Rel}(y, \lambda v. \top) \ast \text{Acq}(x, \lambda v. \top) \ast O(x, 0, 0)\}$$

$$\{x = x \ast \text{Acq}(x, \lambda v. \top) \ast O(x, 0, 0)\}$$

$r_1 := [x]_{rlx}$:

$$\{\text{Acq}(x, \lambda v. \top) \ast (\exists t_1. O(x, r_1, t_1) \ast 0 \leq t_1) \ast \nabla \top\}$$

$$\{O(x, r_1, __)\}$$

$$\{W^1(y, [0]) \ast \text{Rel}(y, \lambda v. \top) \ast O(x, r_1, __)\}$$

$$\{W^1(y, [0]) \ast \text{Rel}(y, \lambda v. \top) \ast \top \ast \text{pure}(\top)\}$$

$$[y]_{rlx} := r_1 + 1$$

$$\{W^1(y, [r_1 + 1; 0]) \ast \text{Rel}(y, \lambda v. \top)\}$$

$$\{W^1(y, [r_1 + 1; 0])\}$$

$$\{W^1(y, [r_1 + 1; 0]) \ast O(x, r_1, __)\}$$

$$\{W^1(y, [r_1 + 1; 0]) \ast O(x, r_1, __)\}$$

$r_1 \in \{r_2, 0\} \land r_2 \in \{r_1 + 1, 0\}$

$$\{r_1 = 0 \land (r_2 = 0 \lor r_2 = 1)\}$$

$$r_2 := [y]_{rlx}$$:

$$\{\text{Acq}(y, \lambda v. \top) \ast (\exists t_1. O(x, r_2, t_1) \ast 0 \leq t_1) \ast \nabla \top\}$$

$$\{O(y, r_2, __)\}$$

$$\{W^1(x, [0]) \ast \text{Rel}(x, \lambda v. \top) \ast O(y, r_2, __)\}$$

$$\{W^1(x, [0]) \ast \text{Rel}(x, \lambda v. \top) \ast \top \ast \text{pure}(\top)\}$$

$$[x]_{rlx} := r_2$$

$$\{W^1(x, [r_2; 0]) \ast \text{Rel}(x, \lambda v. \top)\}$$

$$\{W^1(x, [r_2; 0])\}$$

$$\{W^1(x, [r_2; 0]) \ast O(y, r_2, __)\}$$

$$\{W^1(x, [r_2; 0]) \ast O(y, r_2, __)\}$$

5.2 Separation

We can define a self-looping list by having a location hold the address of the next element, and using an address already in the list to mark the end the list:

$$\text{is-list}(v) \overset{def}{=} \exists s_2. \text{finite}(s_2) \ast v \notin s_2 \ast \text{is-list}'(v, \{v\}, s_2)$$

$$\text{is-list}'(v, s_1, s_2) \overset{def}{=} \exists v', W^1(v, v' :: \ell) \ast \text{Rel}(v, \lambda v. \top) \ast$$

$$(v' \in s_1 \lor (v' \in s_2 \ast \text{is-list}'(v', s_1 \cup \{v'\}, s_2 \setminus \{v'\}))$$

Because we do not transfer anything between threads (we are trying to show the threads do not interact!), we can use $\lambda v. \top$ as the predicate for the locations of the list. To avoid clutter, we elide $\text{Rel}(_, \lambda v. \top)$ and the associated assertions below.

We then have the following proof outline for the first thread (the second thread is entirely symmetric):

$$\{\text{is-list}(a)\}$$

$$\exists a. W^1(a, a' :: __) \ast (a' \in \{a\} \lor (a' \notin \{a\} \ast \text{is-list}'(a', \{a\} \cup \{v'\}, s \setminus \{a'\})))$$

$$\{a = a \ast \ldots \ast W^1(a, a' :: __)\}$$

$r_1 := [a]_{rlx}$:

$$\{\ldots \ast W^1(a, a' :: __) \ast \ldots \ast O(a, r_1, __) \ast r_1 = a'\}$$

$$\exists a'. W^1(a, a' :: __) \ast r_1 = a' \ast a' \in \{a\} \lor (a' \notin \{a\} \ast \text{is-list}'(a', \{a\} \cup \{a'\}, s \setminus \{a'\})))$$

$$\exists a'. W^1(a, a' :: __) \ast r_1 = a' \ast a' \in \{a\} \lor (a' \notin \{a\} \ast \exists a'' . W^1(a', a'' :: __) \ldots \})$$

$$\{r_1 = a' \ast a := a \ast W^1(a', a'' :: __) \ldots \}$$

$$[r_1]_{rlx} := a$$

$$\{W^1(a', a :: __) \ast \ldots \}$$

$$\exists a'. W^1(a, a' :: __) \ast ((a' \in \{a\}) \lor (a' \notin \{a\} \ast W^1(a', a :: __)))$$

$$W^1(a, a' :: __) \lor (\exists a'. W^1(a, a' :: __) \ast a' \notin \{a\} \ast W^1(a', a :: __)))$$

$$\{\text{is-list}'(a, \{a\}, \emptyset) \lor (\exists a'. a' \notin \{a\} \ast \text{is-list}'(a, \{a\}, \{a'\}))\}$$

$$\{\text{is-list}(a)\}$$
5.3 Non-deterministic write

5.3.1 Example using non-deterministic choice

Invariant-based methods cannot be used to prove that \(\neg (r_1 = r_2 = 1) \) in the following program where all locations initially hold 0, and where the \(*\) stands for a non-deterministic choice.

\[
\begin{align*}
\text{if } * &\rightarrow [x]_{rlx} := 1 \quad \text{then} \quad r_1 := [x]_{rlx}; \\
\text{else } &\rightarrow [y]_{rlx} := 1 \quad \text{then} \quad r_2 := [y]_{rlx}; \\
\end{align*}
\]

We elide most things.

\[
\begin{align*}
\{W^1(x, [0]) \ast W^1(y, [0])\} \\
\text{if } * \\
\{W^1(x, [1; 0]) \ast W^1(y, [0])\} \\
\text{else} \\
\{W^1(x, [0]) \ast W^1(y, [1; 0])\} \\
\{ (W^1(x, [1; 0]) \ast W^1(y, [0])) \lor (W^1(x, [0]) \ast W^1(y, [1; 0])) \}
\end{align*}
\]

We can conclude, by case analysis on the disjunction, and by using lemma 37, that \((r_1 \in \{0, 1\} \land r_2 \in \{0\}) \lor (r_1 \in \{0\} \land r_2 \in \{0, 1\}) \), and therefore \(\neg(r_1 = r_2 = 1) \).

5.3.2 Example within the language

Invariant-based methods cannot be used to prove that \(\neg (r_1 = r_2 = 1) \) in the following program where all locations initially hold 0.

\[
\begin{align*}
[t]_{rlx} &:= 1 \quad \text{r_3 := [t]_{rlx};} \\
\text{if } r_3 &\rightarrow [x]_{rlx} := 1 \\
\text{else } &\rightarrow [y]_{rlx} := 1 \quad \text{r_1 := [x]_{rlx};} \\
\text{r_2 := [y]_{rlx}}
\end{align*}
\]

5.4 Coherence

5.4.1 CoRW

The following program, where location \(x \) initially holds 0, cannot have the following outcome:

\[
\begin{align*}
1. \quad r_1 := [x]_{rlx}; \quad \text{// reads 2} \\
2. \quad [x]_{rlx} := 2 \\
3. \quad r_2 := [x]_{rlx}; \quad \text{// reads 1} \\
4. \quad r_3 := [x]_{rlx} \quad \text{// reads 2} \\
\end{align*}
\]

(CoRW)

The proof outline for the first thread crucially records that the value it reads has a smaller timestamp than the value it writes:

\[
\begin{align*}
&\{W^\downarrow(x, \{0, 0\}) \ast \text{Acq}(x, \lambda v. \top)\} \\
&\text{r_1 := [x]_{rlx};} \\
&\{\exists t. W^\downarrow(x, \{0, 0\}) \ast \text{O}(x, r_1, t)\} \\
&[x]_{rlx} := 1 \\
&\{\exists t_1. W^\downarrow(x, \{0, 0, (1, t_1)\}) \ast \text{O}(x, r_1, t) \ast t < t_1\}
\end{align*}
\]

The proof outline for the second thread just records it writes 2:

\[
\begin{align*}
&\{W^\downarrow(x, \{0, 0\})\} \\
&[x]_{rlx} := 2 \\
&\{\exists t_2. W^\downarrow(x, \{0, 0, (2, t_2)\}) \ast 0 < t_2\}
\end{align*}
\]
The proof outline for the third thread just records the order of the timestamps of 1 and 2:

\[
\begin{align*}
\{\text{Acq}(x, \lambda v. \top)\} \\
r_2 := [x]_{rlx}; \\
\{\text{Acq}(x, \lambda v. \top) \land \exists t_a. \text{O}(x, r_1, t_a)\} \\
r_3 := [x]_{rlx}; \\
\{\exists t_a, t_b. \text{O}(x, r_2, t_a) \land \text{O}(x, r_3, t_b) \land t_a \leq t_b\}
\end{align*}
\]

We can then combine the write permissions to obtain \(W^1(x, \{(0, 0), (1, t_1), (2, t_2)\})\). If moreover we assume that \(r_2 = 1 \ast r_3 = 2\), from the postcondition of the third thread, we have that \(t_1 \leq t_2\) by Lemmas 37 and 39. Also, if moreover we assume that \(r_1 = 2\), we have that \(t_2 < t_1\) by Lemma 37. Therefore, we can conclude \(\neg(r_1 = 2 \ast r_2 = 1 \ast r_3 = 2)\).

5.4.2 CoWR

The following program, where location \(x\) initially holds 0, cannot have the following outcome:

\[
\begin{align*}
[x]_{rlx} &:= 1; \\
r_1 &:= [x]_{rlx} \quad \text{// reads 2} \\
r_2 &:= [x]_{rlx}; \\
r_3 &:= [x]_{rlx} \quad \text{// reads 1}
\end{align*}
\]

(CoWR)

The proof outline for the first thread records that the read reads a timestamp no older than that of the write:

\[
\begin{align*}
\{W^{1/2}(x, \{(0, 0)\}) \ast \text{Acq}(x, \lambda v. \top)\} \\
[x]_{rlx} &:= 1 \\
\{\exists t_1. W^{1/2}(x, \{(0, 0), (1, t_1)\}) \ast \text{Acq}(x, \lambda v. \top)\} \\
r_1 &:= [x]_{rlx}; \\
\{\exists t, t_1. W^{1/2}(x, \{(0, 0), (1, t_1)\}) \ast \text{O}(x, r_1, t) \land t_1 \leq t\}
\end{align*}
\]

The proof outline for the second and the third threads are identical to that of CoRW. As for CoRW, we can combine the write permissions to obtain \(W^1(x, \{(0, 0), (1, t_1), (2, t_2)\})\). If moreover we assume that \(r_2 = 2 \ast r_3 = 1\), symmetrically to CoRW, from the postcondition of the third thread, we have that \(t_2 < t_1\) by Lemmas 37 and 39. Also, if moreover we assume that \(r_1 = 2\), we have that \(t_1 \leq t_2\) by Lemma 37, and thus \(t_1 < t_2\) by Lemma 39. Therefore, we can conclude \(\neg(r_1 = 2 \ast r_2 = 2 \ast r_3 = 1)\).

5.5 Release/acquire

5.5.1 Split permission message passing example

The following program, where locations \(x, y,\) and \(z\) initially hold 0, cannot have the following outcome: \((r_1 = 1 \ast r_2 = 0) \land (r_3 = 1 \ast r_4 = 0)\):

\[
\begin{align*}
[x]_{rlx} &:= 1; \\
[y]_{rlx} &:= 1; \\
[z]_{rlx} &:= 1; \\
r_1 &:= [z]_{acq}; \\
r_2 &:= [x]_{rlx}; \\
r_3 &:= [z]_{acq}; \\
r_4 &:= [y]_{rlx} \quad \text{(Split-MP)}
\end{align*}
\]

We pick

\[
\phi_z = \lambda v. \left(\text{if } v = 1 \text{ then } W^1(x, [1; 0]) \text{ else } \top\right) \ast \left(\text{if } v = 1 \text{ then } W^1(y, [1; 0]) \text{ else } \top\right)
\]

for \(z\). This ought to be \(\lambda v. \left(\text{if } v = 1 \text{ then } W^1(x, [1; 0]) \ast W^1(y, [1; 0]) \text{ else } \top\right)\), but the \(\phi\) are stored and treated as syntactic assertions.
The proof outline for the writer transfers the write permissions for x and y away on z using φ₂:

\[\{ W^1(x, [0]) \ast \text{Rel}(x, \lambda v. \top) \ast W^1(y, [0]) \ast \text{Rel}(y, \lambda v. \top) \ast W^1(z, [0]) \ast \text{Rel}(z, \phi_z) \} \]

\[[x]_{rlx} := 1; \]
\[\{ W^1(x, [1; 0]) \ast W^1(y, [0]) \ast \text{Rel}(y, \lambda v. \top) \ast W^1(z, [0]) \ast \text{Rel}(z, \phi_z) \} \]

\[[y]_{rlx} := 1; \]
\[\{ W^1(x, [1; 0]) \ast W^1(y, [1; 0]) \ast W^1(z, [0]) \ast \text{Rel}(z, \phi_z) \} \]

\[\{ z = z \ast 1 = 1 \ast W^1(z, \{(0, 0)\}) \ast \text{Rel}(z, \phi_z) \ast \phi_z(1) \ast O(z, 0, 0) \} \]

\[[z]_{rel} := 1; \]
\[\{ \exists t_1. W^1(z, \{(1, t_1)\} \cup \{(0, 0)\}) \ast 0 < t_1 \} \]
\[\{ W^1(z, [1; 0]) \ast \text{Rel}(z, \phi_z) \} \]

The proof outline for the first reader starts with an acquire permission for first half of φ₂ for z, obtained by splitting φ₂ from the initial Acq(z, φ₂) using lemma 36, and uses it to obtain W₁(x, [1; 0]), which it then uses to know that it reads 1 from x.

\[\{ \text{Acq}(z, \lambda v. \text{if } v = 1 \text{ then } W^1(x, [1; 0]) \text{ else } \top) \ast O(z, 0, 0) \ast \text{Acq}(x, \lambda v. \top) \} \]

\[\{ z = z \ast \text{Acq}(z, \lambda v. \text{if } v = 1 \text{ then } W^1(x, [1; 0]) \text{ else } \top) \ast O(z, 0, 0) \} \]

\[r_1 := [z]_{acq}; \]
\[\{ \text{Acq}(z, \lambda v. \text{if } v = 1 \text{ then } W^1(x, [1; 0]) \text{ else } \top)[r_1 \mapsto \top] \ast \} \]
\[\{ (\exists t_1. O(z, r_1, t_1) \ast 0 < t_1) \ast (\lambda v. \text{if } v = 1 \text{ then } W^1(x, [1; 0]) \text{ else } \top)(r_1) \} \]

\[\{ (\lambda v. \text{if } v = 1 \text{ then } W^1(x, [1; 0]) \text{ else } \top)(r_1) \ast \text{Acq}(x, \lambda v. \top) \} \]

\[\text{if } r_1 = 1 \]
\[\{ W^1(x, [1; 0]) \ast \text{Acq}(x, \lambda v. \top) \} \]

\[r_2 := [x]_{rlx}; \]
\[\{ \text{Acq}(x, \lambda v. \top) \ast W^1(x, [1; 0]) \ast (\forall (\lambda v. \top)(r_2)) \ast O(x, r_2, \text{snd}(\max([1; 0]))) \ast r_2 = \text{fst}(\max([1; 0])) \} \]
\[r_2 = 1 \]
\[\{ r_1 = 1 \implies r_2 = 1 \} \]

The proof outline for the second reader is symmetric.

5.5.2 WRC

The following program, where locations x and y initially hold 0, cannot have the following outcome: r₂ = 1 \ast r₃ = 0:

\[[x]_{rlx} := 1; \boxdot r_1 := [x]_{acq}; \]
\[r_2 := [y]_{acq}; \]
\[[y]_{rel} := 1; \]
\[r_3 := [x]_{rlx}; \]
\[\text{(WRC)} \]

We pick φₙ = λ v. \text{if } v = 1 \text{ then } \exists t. O(x, 1, t) \text{ else } \top. \] The proof outline for the first thread just records the write of 1 to x:

\[\{ W^2(x, \{(0, 0)\}) \ast \text{Rel}(x, \lambda v. \top) \} \]
\[[x]_{rlx} := 1; \]
\[\{ \exists t. W^1(x, \{(0, 0), (1, t)\}) \ast 0 < t \} \]

The proof outline for the second thread feeds the O(x, 1, t) it obtains in the ‘if’ branch in the release write to y:

\[\{ \text{Acq}(x, \lambda v. \top) \ast O(x, 0, 0) \ast W^1(y, \{(0, 0)\}) \ast \text{Rel}(y, \phi_y) \} \]
\[r_1 := [x]_{rlx}; \]
\[\text{if } r_1 = 1 \]
\[\{ \exists t. O(x, 1, t) \ast W^1(y, \{(0, 0)\}) \ast \text{Rel}(y, \phi_y) \} \]
\[\{ y = y \ast 1 = 1 \ast \text{Rel}(y, \phi_y) \ast W^1(y, \{(0, 0)\}) \ast (\exists t. O(x, 1, t)) \ast O(y, 0, 0) \} \]
\[[y]_{rel} := 1; \]
\[\{ \exists t'. W^3(y, \{(0, 0)\} \cup \{(1, t')\}) \ast 0 < t' \} \]
\[\{ \top \} \]

39
The proof outline for the third thread relates the timestamp of the value it reads from x with what it learns using ϕ_y from the acquire read from y:

\[
\begin{align*}
\{ \text{Acq}(y, \phi_y) \ast \text{O}(y, 0, 0) \ast \text{Acq}(x, \lambda v. \top) \} \\
\{ y = y \ast \text{Acq}(y, \phi_y) \ast \text{O}(y, 0, 0) \} \\
r_2 := [y]_{\text{acq}};
\{ \exists t' \geq 0. \text{Acq}(y, \phi_y[r_2 \mapsto \top]) \ast \phi(r_2) \ast \text{O}(y, r_2, t') \} \\
\{ \text{Acq}(x, \lambda v. \top) \ast \phi(r_2) \}
\end{align*}
\]

if $r_2 = 1$

\[
\begin{align*}
\{ \exists t. \text{Acq}(x, \lambda v. \top) \ast \text{O}(x, 1, t) \} \\
r_3 := [x]_{\text{rlx}}
\{ \exists t, t'. \text{O}(x, 1, t) \ast \text{O}(x, r_3, t') \ast t \leq t' \}
\end{align*}
\]

At the end of the execution, assuming $r_2 = 1$, we can confront $W^1(x, \{(0, 0), (1, t)\})$ with $\exists t, t'. \text{O}(x, 1, t) \ast \text{O}(x, r_3, t') \ast t \leq t'$ to conclude that $r_3 = 1$, as desired.