
(Hyper)Property-Preserving
Compilers

summer semester 18-19, block

Marco Patrignani1,2

0/40

Properties and Hyperproperties

• Formalise any security property
• Established theory with practical
applications

Recommended reading:

• Schneider. 2000. Enforceable security policies.
• Alpern and Schneider. 1985. Defining liveness.
• Clarkson and Schneider. 2010. Hyperproperties.

1/40

Security Properties

• Property = set of traces that respect a
certain condition (or predicate)

• trace t = sequence of (formalised as sth)
• program states Θ

• component-context interactions α?α!⋯
• code-environment interaction read v ;write v

We use t abstractly now, though mostly:
t = Θ

2/40

Security Properties

• Property = set of traces that respect a
certain condition (or predicate)

• trace t = sequence of (formalised as sth)

• program states Θ

• component-context interactions α?α!⋯
• code-environment interaction read v ;write v

We use t abstractly now, though mostly:
t = Θ

2/40

Security Properties

• Property = set of traces that respect a
certain condition (or predicate)

• trace t = sequence of (formalised as sth)
• program states Θ

• component-context interactions α?α!⋯
• code-environment interaction read v ;write v

We use t abstractly now, though mostly:
t = Θ

2/40

Security Properties

• Property = set of traces that respect a
certain condition (or predicate)

• trace t = sequence of (formalised as sth)
• program states Θ

• component-context interactions α?α!⋯

• code-environment interaction read v ;write v

We use t abstractly now, though mostly:
t = Θ

2/40

Security Properties

• Property = set of traces that respect a
certain condition (or predicate)

• trace t = sequence of (formalised as sth)
• program states Θ

• component-context interactions α?α!⋯
• code-environment interaction read v ;write v

We use t abstractly now, though mostly:
t = Θ

2/40

Security Properties

• A Trace captures a single run of a program

• A Set of traces captures all individual runs
of any program

This is unlike program equivalence:

• properties talk a single program

3/40

Security Properties

• A Trace captures a single run of a program
• A Set of traces captures all individual runs
of any program

This is unlike program equivalence:

• properties talk a single program

3/40

Security Properties

• A Trace captures a single run of a program
• A Set of traces captures all individual runs
of any program

This is unlike program equivalence:

• properties talk a single program

3/40

Examples

• NRW: {t ∣ ∄Θ < Θ′. ⊢ readΘ∧ ⊢ sendΘ′}
NRW: the program does not send on the network
after reading a file

⊢ readΘ and ⊢ sendΘ′ are abstract
predicates

• GS: {t ∣ ⊢ reqΘi⇒⊢ respΘj where j > i}
GS: the program eventually responds to the requests

4/40

Examples

• NRW: {t ∣ ∄Θ < Θ′. ⊢ readΘ∧ ⊢ sendΘ′}
NRW: the program does not send on the network
after reading a file
⊢ readΘ and ⊢ sendΘ′ are abstract
predicates

• GS: {t ∣ ⊢ reqΘi⇒⊢ respΘj where j > i}
GS: the program eventually responds to the requests

4/40

Examples

• NRW: {t ∣ ∄Θ < Θ′. ⊢ readΘ∧ ⊢ sendΘ′}
NRW: the program does not send on the network
after reading a file
⊢ readΘ and ⊢ sendΘ′ are abstract
predicates

• GS: {t ∣ ⊢ reqΘi⇒⊢ respΘj where j > i}
GS: the program eventually responds to the requests

4/40

Safety and Liveness

Properties are partitioned in

• Safety: something bad does not happen
(NRW)

• Liveness: something good eventually
happens (GS)

5/40

Safety and Liveness

Properties are partitioned in

• Safety: something bad does not happen
(NRW)

• Liveness: something good eventually
happens (GS)

5/40

Safety

• Safety = integrity

• Safety ≠ confidentiality
• but, Safety = weak secrecy: we don’t leak a
fresh k to C

6/40

Safety

• Safety = integrity
• Safety ≠ confidentiality

• but, Safety = weak secrecy: we don’t leak a
fresh k to C

6/40

Safety

• Safety = integrity
• Safety ≠ confidentiality
• but, Safety = weak secrecy: we don’t leak a
fresh k to C

6/40

Safety as a dual

• Take the traces that define a safety
property

• Describe safety by the so-called set of bad
prefixes

• In the following: m is a finite trace t (a finite
Θ) aka a prefix

• NRW-dual:
{m ∣ Θ < Θ′. ⊢ readΘ∧ ⊢ sendΘ′}

7/40

Safety as a dual

• Take the traces that define a safety
property

• Describe safety by the so-called set of bad
prefixes

• In the following: m is a finite trace t (a finite
Θ) aka a prefix

• NRW-dual:
{m ∣ Θ < Θ′. ⊢ readΘ∧ ⊢ sendΘ′}

7/40

Safety as a dual

• Take the traces that define a safety
property

• Describe safety by the so-called set of bad
prefixes

• In the following: m is a finite trace t (a finite
Θ) aka a prefix

• NRW-dual:
{m ∣ Θ < Θ′. ⊢ readΘ∧ ⊢ sendΘ′}

7/40

Safety as a dual

• Take the traces that define a safety
property

• Describe safety by the so-called set of bad
prefixes

• In the following: m is a finite trace t (a finite
Θ) aka a prefix

• NRW-dual:
{m ∣ Θ < Θ′. ⊢ readΘ∧ ⊢ sendΘ′}

7/40

Beyond Properties: Hyperproperties

• Properties = sets of traces

• capture a single run (the trace) of any
program (the set)
Hyperproperties = sets of sets of traces

• capture multiple runs (the sets of traces) of
any program (the sets)

8/40

Beyond Properties: Hyperproperties

• Properties = sets of traces
• capture a single run (the trace) of any
program (the set)

Hyperproperties = sets of sets of traces

• capture multiple runs (the sets of traces) of
any program (the sets)

8/40

Beyond Properties: Hyperproperties

• Properties = sets of traces
• capture a single run (the trace) of any
program (the set)
Hyperproperties = sets of sets of traces

• capture multiple runs (the sets of traces) of
any program (the sets)

8/40

Beyond Properties: Hyperproperties

• Properties = sets of traces
• capture a single run (the trace) of any
program (the set)
Hyperproperties = sets of sets of traces

• capture multiple runs (the sets of traces) of
any program (the sets)

8/40

Example: NonInterference

• NI: two different high inputs result in the
same low outputs

• high = secret, low = public
• a set of traces tells all the behaviours of the
same program with different high inputs

NI :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{t1, t2}

RRRRRRRRRRRRRRRRR

∀t1, t2 ∈ {t1, t2}.
if inputs (t1)=L inputs (t2)
then outputs (t1)=L outputs (t2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

9/40

Example: NonInterference

• NI: two different high inputs result in the
same low outputs

• high = secret, low = public

• a set of traces tells all the behaviours of the
same program with different high inputs

NI :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{t1, t2}

RRRRRRRRRRRRRRRRR

∀t1, t2 ∈ {t1, t2}.
if inputs (t1)=L inputs (t2)
then outputs (t1)=L outputs (t2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

9/40

Example: NonInterference

• NI: two different high inputs result in the
same low outputs

• high = secret, low = public
• a set of traces tells all the behaviours of the
same program with different high inputs

NI :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{t1, t2}

RRRRRRRRRRRRRRRRR

∀t1, t2 ∈ {t1, t2}.
if inputs (t1)=L inputs (t2)
then outputs (t1)=L outputs (t2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
9/40

Example: Average Response Time < 1

ART :

{{t⋯} ∣ mean(⋃
t∈{t⋯}

response_time (t)) < 1}

where response_time (⋅) looks in trace t and
checks time between req (⋅) and resp (⋅)

10/40

Hypersafety and Hyperliveness

Like Properties, Hyperproperties are partitioned
in

• Hypersafety: something bad does not
happen (NI)

• Hyperliveness: something good eventually
happens (ART)

11/40

Hypersafety and Hyperliveness

Like Properties, Hyperproperties are partitioned
in

• Hypersafety: something bad does not
happen (NI)

• Hyperliveness: something good eventually
happens (ART)

11/40

Hypersafety as a dual

• Take the sets of traces that define a
hypersafety property

• Describe hypersafety by the so-called sets
of sets of bad prefixes

NI-dual :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{t1, t2}

RRRRRRRRRRRRRRRRR

∀t1, t2 ∈ {t1, t2}.
if inputs (t1)=L inputs (t2)
then outputs (t1) /=L outputs (t2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

12/40

Hypersafety as a dual

• Take the sets of traces that define a
hypersafety property

• Describe hypersafety by the so-called sets
of sets of bad prefixes

NI-dual :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{t1, t2}

RRRRRRRRRRRRRRRRR

∀t1, t2 ∈ {t1, t2}.
if inputs (t1)=L inputs (t2)
then outputs (t1) /=L outputs (t2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

12/40

Hypersafety as a dual

• Take the sets of traces that define a
hypersafety property

• Describe hypersafety by the so-called sets
of sets of bad prefixes

NI-dual :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{t1, t2}

RRRRRRRRRRRRRRRRR

∀t1, t2 ∈ {t1, t2}.
if inputs (t1)=L inputs (t2)
then outputs (t1) /=L outputs (t2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
12/40

Property Satisfaction

How do we formalise a program having a
property?

• P generates trace t: P↝t
• Property π = {t}
• ⊢ P ∶ π def= if P↝t then t ∈ π

13/40

Property Satisfaction

How do we formalise a program having a
property?

• P generates trace t: P↝t

• Property π = {t}
• ⊢ P ∶ π def= if P↝t then t ∈ π

13/40

Property Satisfaction

How do we formalise a program having a
property?

• P generates trace t: P↝t
• Property π = {t}

• ⊢ P ∶ π def= if P↝t then t ∈ π

13/40

Property Satisfaction

How do we formalise a program having a
property?

• P generates trace t: P↝t
• Property π = {t}
• ⊢ P ∶ π def= if P↝t then t ∈ π

13/40

Hyperproperty Satisfaction

How do we formalise a program having a
hyperproperty?

• All traces generated by P :
Behav (P) = {t ∣ P↝t}.

• Hyperproperty H = {{t}}
• ⊢ P ∶H def= Behav (P) ∈H

14/40

Hyperproperty Satisfaction

How do we formalise a program having a
hyperproperty?

• All traces generated by P :
Behav (P) = {t ∣ P↝t}.

• Hyperproperty H = {{t}}
• ⊢ P ∶H def= Behav (P) ∈H

14/40

Hyperproperty Satisfaction

How do we formalise a program having a
hyperproperty?

• All traces generated by P :
Behav (P) = {t ∣ P↝t}.

• Hyperproperty H = {{t}}

• ⊢ P ∶H def= Behav (P) ∈H

14/40

Hyperproperty Satisfaction

How do we formalise a program having a
hyperproperty?

• All traces generated by P :
Behav (P) = {t ∣ P↝t}.

• Hyperproperty H = {{t}}
• ⊢ P ∶H def= Behav (P) ∈H

14/40

Robustness

(Hyper)Properties must hold robustly:

• property satisfaction for whole programs
protects against our bugs

• robust property satisfaction protects
against any active adversary

So we want our program P to satisfy NRW, GS,
NI or ART: ∀C.C [P], so Θ = C [P]

Reminiscent of contextual equivalence!

15/40

Robustness

(Hyper)Properties must hold robustly:

• property satisfaction for whole programs
protects against our bugs

• robust property satisfaction protects
against any active adversary

So we want our program P to satisfy NRW, GS,
NI or ART: ∀C.C [P], so Θ = C [P]

Reminiscent of contextual equivalence!

15/40

Robustness

(Hyper)Properties must hold robustly:

• property satisfaction for whole programs
protects against our bugs

• robust property satisfaction protects
against any active adversary

So we want our program P to satisfy NRW, GS,
NI or ART: ∀C.C [P], so Θ = C [P]

Reminiscent of contextual equivalence!

15/40

Robustness

(Hyper)Properties must hold robustly:

• property satisfaction for whole programs
protects against our bugs

• robust property satisfaction protects
against any active adversary

So we want our program P to satisfy NRW, GS,
NI or ART: ∀C.C [P], so Θ = C [P]

Reminiscent of contextual equivalence!
15/40

Robust (Hyper)Property Satisfaction

How do we formalise a program having a
hyperproperty robustly?

• P now is a partial program
• C is what P is linked against
• ⊢R P ∶ π def= ∀C. if C [P]↝t then t ∈ π
• ⊢R P ∶H def= ∀C.Behav (C [P]) ∈H

16/40

Robust (Hyper)Property Satisfaction

How do we formalise a program having a
hyperproperty robustly?

• P now is a partial program

• C is what P is linked against
• ⊢R P ∶ π def= ∀C. if C [P]↝t then t ∈ π
• ⊢R P ∶H def= ∀C.Behav (C [P]) ∈H

16/40

Robust (Hyper)Property Satisfaction

How do we formalise a program having a
hyperproperty robustly?

• P now is a partial program
• C is what P is linked against

• ⊢R P ∶ π def= ∀C. if C [P]↝t then t ∈ π
• ⊢R P ∶H def= ∀C.Behav (C [P]) ∈H

16/40

Robust (Hyper)Property Satisfaction

How do we formalise a program having a
hyperproperty robustly?

• P now is a partial program
• C is what P is linked against
• ⊢R P ∶ π def= ∀C. if C [P]↝t then t ∈ π

• ⊢R P ∶H def= ∀C.Behav (C [P]) ∈H

16/40

Robust (Hyper)Property Satisfaction

How do we formalise a program having a
hyperproperty robustly?

• P now is a partial program
• C is what P is linked against
• ⊢R P ∶ π def= ∀C. if C [P]↝t then t ∈ π
• ⊢R P ∶H def= ∀C.Behav (C [P]) ∈H

16/40

A Note on Robustness

• Contexts can generate property-relevant
events now

• so they can trivially invalidate any property
• we must filter events and consider only
those generated by P

17/40

A Note on Robustness

• Contexts can generate property-relevant
events now

• so they can trivially invalidate any property

• we must filter events and consider only
those generated by P

17/40

A Note on Robustness

• Contexts can generate property-relevant
events now

• so they can trivially invalidate any property
• we must filter events and consider only
those generated by P

17/40

Example: Robust Safety

• π ∈ Safety
• ⊢R P ∶ π def= ∀C. if C [P]↝t then t ∈ π

• dually: {m} ∶∶ π ∈ Safety
• m ≤ t = m is a prefix of t
• ⊢R P ∶ {m} def= ∀C. if C [P]↝t then /∃m ∈
{m}.m ≤ t

18/40

Example: Robust Safety

• π ∈ Safety
• ⊢R P ∶ π def= ∀C. if C [P]↝t then t ∈ π
• dually: {m} ∶∶ π ∈ Safety
• m ≤ t = m is a prefix of t
• ⊢R P ∶ {m} def= ∀C. if C [P]↝t then /∃m ∈
{m}.m ≤ t

18/40

Example: Robust Liveness . . . ?

• can this hold robustly?

• we need a fair context in our setup: a
context that will interact with us

• avoid DOS: the attacker wants to violate our
code, not starve it

19/40

Example: Robust Liveness . . . ?

• can this hold robustly?
• we need a fair context in our setup: a
context that will interact with us

• avoid DOS: the attacker wants to violate our
code, not starve it

19/40

Example: Robust Liveness . . . ?

• can this hold robustly?
• we need a fair context in our setup: a
context that will interact with us

• avoid DOS: the attacker wants to violate our
code, not starve it

19/40

Robust Compilation

1. specify (hyper)properties on programs
through traces

2. specify (hyper)properties robustly

Q: can we preserve them through compilation?

Yes!

20/40

Robust Compilation

1. specify (hyper)properties on programs
through traces

2. specify (hyper)properties robustly

Q: can we preserve them through compilation?

Yes!

20/40

Robust Compilation

1. specify (hyper)properties on programs
through traces

2. specify (hyper)properties robustly

Q: can we preserve them through compilation?

Yes!

20/40

Robust Compilation

1. specify (hyper)properties on programs
through traces

2. specify (hyper)properties robustly

Q: can we preserve them through compilation?

Yes!

20/40

Assumptions

• same alphabet of traces between S and T

(I/O or syscalls)
• we lift this (partially) later

21/40

Example: Robust Property Preservation

• Assume the source has a property robustly

• Prove the compiled program has the same
property robustly

RTP ∶ ∀π. ∀P. (∀C t.C[P]↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK]↝ t⇒ t ∈ π)

22/40

Example: Robust Property Preservation

• Assume the source has a property robustly
• Prove the compiled program has the same
property robustly

RTP ∶ ∀π. ∀P. (∀C t.C[P]↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK]↝ t⇒ t ∈ π)

22/40

Example: Robust Property Preservation

• Assume the source has a property robustly
• Prove the compiled program has the same
property robustly

RTP ∶ ∀π. ∀P. (∀C t.C[P]↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK]↝ t⇒ t ∈ π)

22/40

Example: Robust Safety Preservation

• Same as RTP , restrict to safety

RSP ∶∀π ∈ Safety . ∀P.
(∀C t.C[P] ↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK] ↝ t⇒ t ∈ π)

23/40

Example: Robust Safety Preservation

• Same as RTP , restrict to safety

RSP ∶∀π ∈ Safety . ∀P.
(∀C t.C[P] ↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK] ↝ t⇒ t ∈ π)

23/40

Evaluation

Correct definitions

Hard to use: no proof support

We want equivalent criteria that are easy to
prove

24/40

Evaluation

Correct definitions

Hard to use: no proof support

We want equivalent criteria that are easy to
prove

24/40

Evaluation

Correct definitions

Hard to use: no proof support

We want equivalent criteria that are easy to
prove

24/40

Example: Robust Property Preservation #2

RTP ∶∀π. ∀P. (∀C t.C[P]↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK]↝ t⇒ t ∈ π)

⇕

PFRTP ∶∀P. ∀C. ∀t. C[JPK]↝ t⇒
∃ C.C[P]↝ t

25/40

Example: Robust Property Preservation #2

RTP ∶∀π. ∀P. (∀C t.C[P]↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK]↝ t⇒ t ∈ π)

⇕

PFRTP ∶∀P. ∀C. ∀t. C[JPK]↝ t⇒
∃ C.C[P]↝ t

25/40

Example: Robust Property Preservation #2

RTP ∶∀π. ∀P. (∀C t.C[P]↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK]↝ t⇒ t ∈ π)

⇕

PFRTP ∶∀P. ∀C. ∀t. C[JPK]↝ t⇒
∃ C.C[P]↝ t

25/40

RTP Intuition

If any trace in the target is also done in the
source, and the source has the property, so
does the target.

26/40

Example: Robust Safety Preservation #2

RSP ∶∀π ∈ Safety . ∀P.
(∀C t.C[P] ↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK] ↝ t⇒ t ∈ π)

⇕

PFRSP ∶∀P. ∀C. ∀m.
C[JPK] ↝m⇒
∃C.C[P] ↝m

27/40

Example: Robust Safety Preservation #2

RSP ∶∀π ∈ Safety . ∀P.
(∀C t.C[P] ↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK] ↝ t⇒ t ∈ π)

⇕

PFRSP ∶∀P. ∀C. ∀m.
C[JPK] ↝m⇒
∃C.C[P] ↝m

27/40

Example: Robust Safety Preservation #2

RSP ∶∀π ∈ Safety . ∀P.
(∀C t.C[P] ↝ t⇒ t ∈ π) ⇒
(∀C t.C[JPK] ↝ t⇒ t ∈ π)

⇕

PFRSP ∶∀P. ∀C. ∀m.
C[JPK] ↝m⇒
∃C.C[P] ↝m 27/40

RSP Intuition

Safety is defined dually as a set of bad prefixes

If any prefix done in the target is also done in
the source and the source has the safety
property, that prefix is not bad, so the target
also has the safety property

28/40

Relating RTP and RSP

• RTP ⇐⇒ PFRTP

• RSP ⇐⇒ PFRSP

• RTP ⇒ RSP

RTP ⇐⇒ PFRTP
RSP ⇐⇒ PFRSPRLP (ish)

29/40

Relating RTP and RSP

• RTP ⇐⇒ PFRTP

• RSP ⇐⇒ PFRSP

• RTP ⇒ RSP

RTP ⇐⇒ PFRTP
RSP ⇐⇒ PFRSPRLP (ish)

29/40

Relating RTP and RSP

• RTP ⇐⇒ PFRTP

• RSP ⇐⇒ PFRSP

• RTP ⇒ RSP

RTP ⇐⇒ PFRTP
RSP ⇐⇒ PFRSPRLP (ish)

29/40

Relating RTP and RSP

• RTP ⇐⇒ PFRTP

• RSP ⇐⇒ PFRSP

• RTP ⇒ RSP

RTP ⇐⇒ PFRTP
RSP ⇐⇒ PFRSPRLP (ish)

29/40

Example: Robust HP Preservation

• as before: Assume the source has a
hyperproperty robustly

• Prove the compiled program has the same
hyperproperty robustly

RHP ∶ ∀H. ∀P. (∀C.Behav (C[P]) ∈H) ⇒
(∀C.Behav (C[JPK]) ∈H)

30/40

Example: Robust HP Preservation

• as before: Assume the source has a
hyperproperty robustly

• Prove the compiled program has the same
hyperproperty robustly

RHP ∶ ∀H. ∀P. (∀C.Behav (C[P]) ∈H) ⇒
(∀C.Behav (C[JPK]) ∈H)

30/40

Example: Robust HP Preservation

• as before: Assume the source has a
hyperproperty robustly

• Prove the compiled program has the same
hyperproperty robustly

RHP ∶ ∀H. ∀P. (∀C.Behav (C[P]) ∈H) ⇒
(∀C.Behav (C[JPK]) ∈H)

30/40

Example: Robust HP Preservation #2

RHP ∶ ∀H. ∀P. (∀C.Behav (C[P]) ∈H) ⇒
(∀C.Behav (C[JPK]) ∈H)

⇕

PFRHP ∶ ∀P. ∀C. ∃C. Behav (C[JPK]) = Behav (C[P])
PFRHP ∶ ∀P. ∀C. ∃C. ∀t. C[JPK]↝t ⇐⇒ C[P]↝t

31/40

Example: Robust HP Preservation #2

RHP ∶ ∀H. ∀P. (∀C.Behav (C[P]) ∈H) ⇒
(∀C.Behav (C[JPK]) ∈H)

⇕

PFRHP ∶ ∀P. ∀C. ∃C. Behav (C[JPK]) = Behav (C[P])
PFRHP ∶ ∀P. ∀C. ∃C. ∀t. C[JPK]↝t ⇐⇒ C[P]↝t

31/40

Example: Robust HP Preservation #2

RHP ∶ ∀H. ∀P. (∀C.Behav (C[P]) ∈H) ⇒
(∀C.Behav (C[JPK]) ∈H)

⇕

PFRHP ∶ ∀P. ∀C. ∃C. Behav (C[JPK]) = Behav (C[P])
PFRHP ∶ ∀P. ∀C. ∃C. ∀t. C[JPK]↝t ⇐⇒ C[P]↝t

31/40

Quiz: Spot the Differences

PFRTP ∶∀P. ∀C. ∀t. C[JPK]↝ t⇒ ∃ C.C[P]↝ t

PFRHP ∶ ∀P. ∀C. ∃C. ∀t. C[JPK]↝t ⇐⇒ C[P]↝t

32/40

Answers

• Quantifier ordering

• Implication

Intuition

• Quantifier ordering: lifts to sets of traces
since a C in PFRHP works for a set of traces

• Implication: a single implication means
refinement, so the target can have more
behaviours. Co-implicaiton means no
refinement, we need the exact same traces
to ensure inclusion in the H

33/40

Answers

• Quantifier ordering
• Implication

Intuition

• Quantifier ordering: lifts to sets of traces
since a C in PFRHP works for a set of traces

• Implication: a single implication means
refinement, so the target can have more
behaviours. Co-implicaiton means no
refinement, we need the exact same traces
to ensure inclusion in the H

33/40

Answers

• Quantifier ordering
• Implication

Intuition

• Quantifier ordering: lifts to sets of traces
since a C in PFRHP works for a set of traces

• Implication: a single implication means
refinement, so the target can have more
behaviours. Co-implicaiton means no
refinement, we need the exact same traces
to ensure inclusion in the H

33/40

Answers

• Quantifier ordering
• Implication

Intuition

• Quantifier ordering: lifts to sets of traces
since a C in PFRHP works for a set of traces

• Implication: a single implication means
refinement, so the target can have more
behaviours.

Co-implicaiton means no
refinement, we need the exact same traces
to ensure inclusion in the H

33/40

Answers

• Quantifier ordering
• Implication

Intuition

• Quantifier ordering: lifts to sets of traces
since a C in PFRHP works for a set of traces

• Implication: a single implication means
refinement, so the target can have more
behaviours. Co-implicaiton means no
refinement, we need the exact same traces
to ensure inclusion in the H 33/40

Example: RobustHypersafetyPreservation

PFRHSP ∶ ∀P. ∀C. ∀{m}.
{m} ≤ Behav (C[JPK]) ⇒ ∃C. {m} ≤ Behav (C[P])

Where ≤ means all prefixes of {m} are extended
by the behaviour of the (compiled) program

34/40

Example: RobustHypersafetyPreservation

PFRHSP ∶ ∀P. ∀C. ∀{m}.
{m} ≤ Behav (C[JPK]) ⇒ ∃C. {m} ≤ Behav (C[P])

Where ≤ means all prefixes of {m} are extended
by the behaviour of the (compiled) program

34/40

Subclasses of Hyperproperties

• K-Hypersafety: hypersafety for sets of
cardinality k (if k = 4, NMIF)

• 2-Hypersafety: hypersafety for sets of
cardinality 2: set of pairs of traces: NI

• Subset-closed HP: set of traces closed
under subsetting

• K-, 2- Subset-closed HP: as before, curtail
set cardinality to k, 2

• Hyperliveness: not present: RHLP collapses
with RHP

35/40

Subclasses of Hyperproperties

• K-Hypersafety: hypersafety for sets of
cardinality k (if k = 4, NMIF)

• 2-Hypersafety: hypersafety for sets of
cardinality 2: set of pairs of traces: NI

• Subset-closed HP: set of traces closed
under subsetting

• K-, 2- Subset-closed HP: as before, curtail
set cardinality to k, 2

• Hyperliveness: not present: RHLP collapses
with RHP

35/40

Subclasses of Hyperproperties

• K-Hypersafety: hypersafety for sets of
cardinality k (if k = 4, NMIF)

• 2-Hypersafety: hypersafety for sets of
cardinality 2: set of pairs of traces: NI

• Subset-closed HP: set of traces closed
under subsetting

• K-, 2- Subset-closed HP: as before, curtail
set cardinality to k, 2

• Hyperliveness: not present: RHLP collapses
with RHP

35/40

Subclasses of Hyperproperties

• K-Hypersafety: hypersafety for sets of
cardinality k (if k = 4, NMIF)

• 2-Hypersafety: hypersafety for sets of
cardinality 2: set of pairs of traces: NI

• Subset-closed HP: set of traces closed
under subsetting

• K-, 2- Subset-closed HP: as before, curtail
set cardinality to k, 2

• Hyperliveness: not present: RHLP collapses
with RHP

35/40

Subclasses of Hyperproperties

• K-Hypersafety: hypersafety for sets of
cardinality k (if k = 4, NMIF)

• 2-Hypersafety: hypersafety for sets of
cardinality 2: set of pairs of traces: NI

• Subset-closed HP: set of traces closed
under subsetting

• K-, 2- Subset-closed HP: as before, curtail
set cardinality to k, 2

• Hyperliveness: not present: RHLP collapses
with RHP

35/40

Robust Compilation (RC) Diagram

RHP ⇐⇒ PFRHP

RSCHP⇐⇒ PFRSCHP

Rk-SCHP⇐⇒ PFRk-SCHP

R2-SCHP⇐⇒ PFR2-SCHP

RHSP⇐⇒ PFRHSP

Rk-HSP⇐⇒ PFRk-HSP

R2-HSP⇐⇒ PFR2-HSP

RTP ⇐⇒ PFRTP
RSP ⇐⇒ PFRSPRLP (ish)

36/40

Robust Compilation (RC) Diagram

RHP ⇐⇒ PFRHP

RSCHP⇐⇒ PFRSCHP

Rk-SCHP⇐⇒ PFRk-SCHP

R2-SCHP⇐⇒ PFR2-SCHP

RHSP⇐⇒ PFRHSP

Rk-HSP⇐⇒ PFRk-HSP

R2-HSP⇐⇒ PFR2-HSP

RTP ⇐⇒ PFRTP
RSP ⇐⇒ PFRSPRLP (ish)

36/40

RC vs FAC

• (some) RC criteria are propositional

(some are relational but they are not presented
here)

• FAC is only relational
• both are robust
• FAC is only as precise as the equivalence
• RC do not preserve abstractions beyond
the related security (hyper)property

37/40

RC vs FAC

• (some) RC criteria are propositional
(some are relational but they are not presented
here)

• FAC is only relational

• both are robust
• FAC is only as precise as the equivalence
• RC do not preserve abstractions beyond
the related security (hyper)property

37/40

RC vs FAC

• (some) RC criteria are propositional
(some are relational but they are not presented
here)

• FAC is only relational
• both are robust

• FAC is only as precise as the equivalence
• RC do not preserve abstractions beyond
the related security (hyper)property

37/40

RC vs FAC

• (some) RC criteria are propositional
(some are relational but they are not presented
here)

• FAC is only relational
• both are robust
• FAC is only as precise as the equivalence
• RC do not preserve abstractions beyond
the related security (hyper)property

37/40

Proving RC

PFRTP ∶∀P. ∀C. ∀t.
C[JPK]↝ t⇒ ∃ C.C[P]↝ t

PFRSP ∶∀P. ∀C. ∀m.
C[JPK] ↝m⇒ ∃C.C[P] ↝m

Recall⇒ for FAC (contrapositive):

∀P1,P2

∃C.C[JP1K]⇑ /⇐⇒ C[JP2K] ⇒ ∃C.C[P1]⇑ /⇐⇒ C[P2]⇑

38/40

Proving RC

PFRTP ∶∀P. ∀C. ∀t.
C[JPK]↝ t⇒ ∃ C.C[P]↝ t

PFRSP ∶∀P. ∀C. ∀m.
C[JPK] ↝m⇒ ∃C.C[P] ↝m

Recall⇒ for FAC (contrapositive):

∀P1,P2

∃C.C[JP1K]⇑ /⇐⇒ C[JP2K] ⇒ ∃C.C[P1]⇑ /⇐⇒ C[P2]⇑

38/40

Proving RC

PFRTP ∶∀P. ∀C. ∀t.
C[JPK]↝ t⇒ ∃ C.C[P]↝ t

PFRSP ∶∀P. ∀C. ∀m.
C[JPK] ↝m⇒ ∃C.C[P] ↝m

Recall⇒ for FAC (contrapositive):

∀P1,P2

∃C.C[JP1K]⇑ /⇐⇒ C[JP2K] ⇒ ∃C.C[P1]⇑ /⇐⇒ C[P2]⇑
38/40

Backtranslation!

• generate a C starting from what we have

• C, t for PFRTP
• C, m for PFRSP
• C, only!! for PFRHP
• C, {m} for PFRHSP

39/40

Backtranslation!

• generate a C starting from what we have

• C, t for PFRTP
• C, m for PFRSP
• C, only!! for PFRHP
• C, {m} for PFRHSP

39/40

Backtranslation!

• generate a C starting from what we have
• C, t for PFRTP

• C, m for PFRSP
• C, only!! for PFRHP
• C, {m} for PFRHSP

39/40

Backtranslation!

• generate a C starting from what we have
• C, t for PFRTP
• C, m for PFRSP

• C, only!! for PFRHP
• C, {m} for PFRHSP

39/40

Backtranslation!

• generate a C starting from what we have
• C, t for PFRTP
• C, m for PFRSP
• C, only!! for PFRHP

• C, {m} for PFRHSP

39/40

Backtranslation!

• generate a C starting from what we have
• C, t for PFRTP
• C, m for PFRSP
• C, only!! for PFRHP
• C, {m} for PFRHSP

39/40

Backtranslation!

• m/{m} yields trace-based BT

• t is infinite, C is finite, so only use C there
• C yields context-based BT

• can be precise BT
• or approximate BT (intuitively analogous to
trace-based BT)

• BT is not the inverse of compilation

39/40

Backtranslation!

• m/{m} yields trace-based BT

• t is infinite, C is finite, so only use C there
• C yields context-based BT

• can be precise BT
• or approximate BT (intuitively analogous to
trace-based BT)

• BT is not the inverse of compilation

39/40

Backtranslation!

• m/{m} yields trace-based BT
• t is infinite, C is finite, so only use C there

• C yields context-based BT
• can be precise BT
• or approximate BT (intuitively analogous to
trace-based BT)

• BT is not the inverse of compilation

39/40

Backtranslation!

• m/{m} yields trace-based BT
• t is infinite, C is finite, so only use C there
• C yields context-based BT

• can be precise BT
• or approximate BT (intuitively analogous to
trace-based BT)

• BT is not the inverse of compilation

39/40

Backtranslation!

• m/{m} yields trace-based BT
• t is infinite, C is finite, so only use C there
• C yields context-based BT

• can be precise BT

• or approximate BT (intuitively analogous to
trace-based BT)

• BT is not the inverse of compilation

39/40

Backtranslation!

• m/{m} yields trace-based BT
• t is infinite, C is finite, so only use C there
• C yields context-based BT

• can be precise BT
• or approximate BT (intuitively analogous to
trace-based BT)

• BT is not the inverse of compilation

39/40

Backtranslation!

• m/{m} yields trace-based BT
• t is infinite, C is finite, so only use C there
• C yields context-based BT

• can be precise BT
• or approximate BT (intuitively analogous to
trace-based BT)

• BT is not the inverse of compilation

39/40

Conclusion

We have seen:

• Properties and Hyperproperties: to
formalise a program having a securty
property

• Robust compilation criteria, which preserve
classes of (hyper)properties

• Backtranslation-equivalent Robust
compilation criteria

40/40

