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What is a Compiler

https://en.wikipedia.org/wiki/Compiler

In this course:

• only care about the code generation phase
• takes programs written in a
source language S

• output programs written in a
target language T

• it is a function from S to T: J⋅KST

Gross simplification:
• PL perspective on this subject
(will remain for the whole course)
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Example: Insecure Compilation
1 public class Account
2 private int balance = 0;
3

4 public void deposit( int amount )
5 this.balance += amount;

No access to balance from outside
Account

enforced by the language

Java
sourc

e
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Example: Insecure Compilation
1 public class Account
2 private int balance = 0;
3

4 public void deposit( int amount )
5 this.balance += amount;

1 typedef struct account_t {
2 int balance = 0;
3 void ( ∗deposit ) ( struct Account∗, int ) =

deposit_f;
4 } Account;
5

6 void deposit_f( Account∗ a, int amount ) {
7 a→balance += amount;
8 return;
9 }

Java
sourc

e

C
targ

et

Pointer arithmetic in C leads to
security violation: undesired access to

balance

Security is not preserved.

1/32



Example: Insecure Compilation
1 public class Account
2 private int balance = 0;
3

4 public void deposit( int amount )
5 this.balance += amount;

1 typedef struct account_t {
2 int balance = 0;
3 void ( ∗deposit ) ( struct Account∗, int ) =

deposit_f;
4 } Account;
5

6 void deposit_f( Account∗ a, int amount ) {
7 a→balance += amount;
8 return;
9 }

Pointer arithmetic in C leads to
security violation: undesired access to

balance

Security is not preserved.

1/32



Secure Compilation

• Q: what does it mean to preserve security
properties across compilation?

• long standing question
• many anwers have been given, we focus on
the formal ones

• conceptually:
“take what was secure in the source and

make it as secure in the target”

Even more questions!
• how do we identify (or specify)
what is secure in the source?

• how do we preserve the meaning
of a security property?
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Example: Confidentiality

Confidential: adjective

spoken, written, acted on, etc., in strict
privacy or secrecy; secret:

1 private secret : Int = 0;
2

3 public setSecret( ) : Int {
4 secret = 0;
5 return 0;
6 }

Java
sourc

e

• Q: how do we know that secret is
confidential?

• Type annotations
• Program verification
• . . .
• Behaviour analysis
• Program equivalences

3/32



Example: Confidentiality

Confidential: adjective

spoken, written, acted on, etc., in strict
privacy or secrecy; secret:

1 private secret : Int = 0;
2

3 public setSecret( ) : Int {
4 secret = 0;
5 return 0;
6 }

Java
sourc

e

• Q: how do we know that secret is
confidential?

• Type annotations
• Program verification
• . . .
• Behaviour analysis
• Program equivalences

3/32



Example: Confidentiality

Confidential: adjective

spoken, written, acted on, etc., in strict
privacy or secrecy; secret:

1 private secret : Int = 0;
2

3 public setSecret( ) : Int {
4 secret = 0;
5 return 0;
6 }

Java
sourc

e

• Q: how do we know that secret is
confidential?

• Type annotations
• Program verification
• . . .
• Behaviour analysis
• Program equivalences

3/32



Example: Confidentiality

Confidential: adjective

spoken, written, acted on, etc., in strict
privacy or secrecy; secret:

1 private secret : Int = 0;
2

3 public setSecret( ) : Int {
4 secret = 0;
5 return 0;
6 }

Java
sourc

e

• Q: how do we know that secret is
confidential?

• Type annotations
• Program verification
• . . .
• Behaviour analysis
• Program equivalences

3/32



Program Equivalence

• a possible way to know what is secure in a
program

• useful tool to answer many questions
posed about programming languages

4/32



Program Equivalence

• a possible way to know what is secure in a
program

• useful tool to answer many questions
posed about programming languages

4/32



Quiz: Are these Equivalent Programs?

1 public Bool getTrue( x : Bool )
2 return true;

1 public Bool getTrue( x : Bool )
2 return x or true;

1 public Bool getTrue( x : Bool )
2 return x and false;

1 public Bool getTrue( x : Bool )
2 return false;

1 public Bool getFalse( x : Bool )
2 return x and true;

• P1

• P2

• P3

• P4

• P5

=

=

Program equivalences (generally) are:
• reflexive
• transitive
• symmetric

aka: relations
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Program Equivalence

• Q: When are two programs equivalent?

• When they behave the same even if they
are different

• Semantics (behaviour) VS Syntax (outlook)
• we care about the former, not the latter!

Defining a security property using
program equivalence:

to find two programs that, albeit
syntactically different, both behave in
a way that respects the property, no

matter how they are used.
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Example: Confidentiality as P.Eq.

1 private secret : Int = 0;
2

3 public setSecret( ) : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2

3 public setSecret( ) : Int {
4 secret = 1;
5 return 0;
6 }

With a Java-like semantics, secret is
never accessed from outside.

With a C-like semantics, secret can be
accessed from outisde.

The Language defines how to reason
(it’s what programmers already do!)
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Example: Integrity as P.Eq.
1 public proxy( callback : Unit → Unit ) : Int {
2 var secret = 0;
3 callback();
4 if ( secret == 0 ) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy( callback : Unit → Unit ) : Int {
2 var secret = 0;
3 callback();
4 return 0;
5 }

Integrity: internal consistency or lack
of corruption in data.

Maintenance of invariants
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Example: Memory Allocation as P.Eq.

1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Guessing addresses in memory leads
to common exploits: ROP, return to

libc, violation of ASLR . . .
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Example: Memory Size as P.Eq.
1 public kernel( n : Int, callback : Unit → Unit ) :

Int {
2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 return 0;
7 }

1 public kernel( n : Int, callback : Unit → Unit ) :
Int {

2

3

4

5 callback();
6 return 0;
7 }
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Expressing Program Equivalence

Contextual Equivalence

(also, observational equivalence)
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Contextual Equivalence (CEQ)

Two programs are equivalent if no matter what
external observer interacts with them that
observer cannot distinguish the programs.

P1 ≃ctx P2
def= ∀C. C [P1]↓ ⇐⇒ C [P2]↓

• the external observer C is
generally called context

• it is a program, written in the
same language as P1 and P2

• it is the same program C

interacting with both P1 and P2 in
two different runs

• so it cannot express out of
language attacks (e.g., side
channels)

• interaction means link and run
together (like a library)

• distinguishing means: terminate
with different values

• the observer basically asks the
question: is this program P1?

• if the observer can find a way to
distinguish P1 from P2, it will
return true, otherwise false

• often we use divergence and
termination as opposed to this
boolean termination
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Example: CEQ
1 private secret : Int = 0; //P1
2 public setSecret( ) : Int {
3 secret = 0;
4 return 0;
5 }

1 private secret : Int = 0; //P2
2 public setSecret( ) : Int {
3 secret = 1;
4 return 0;
5 }

1 // Observer P in Java
2 public static isItP1( ) : Bool {
3 Secret.getSecret();
4 ...
5 }

Java

Java

Java
13/32



Example: CEQ
1 typedef struct secret { // P1
2 int secret = 0;
3 void ( ∗setSec ) ( struct Secret∗ ) = setSec;
4 } Secret;
5 void setSec( Secret∗ s ) { s→secret = 0; return; }

1 typedef struct secret { // P2
2 int secret = 0;
3 void ( ∗setSec ) ( struct Secret∗ ) = setSec;
4 } Secret;
5 void setSec( Secret∗ s ) { s→secret = 1; return; }

1 // Observer P in C
2 int isItP1( ){
3 struct Secret x;
4 sec = &x + sizeof(int);
5 if ∗sec == 0 then return true else return false
6 }

C

C

C

14/32



Inequivalences as Security Violations

• if the target programs are not equivalent
(/≃ctx ) then the intended security property is
violated

When does inequivalences escape the
(compiler) programmer’s reasoning?

1. if languages have complex features
2. if there are more languages involved (e.g.,
multiple target languages)
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Preserving Equivalences in Compilation

Back to our question . . .

• Q: what does it mean to preserve security
properties across compilation?

A possible answer:

• Given source equivalent programs (which
have a security property), compile them
into equivalent target programs

• Assumption 1: the security
property is captured in the source
by program equivalence

• Crucial: being equivalent in the
target means contextual
equivalence w.r.t. target
observers (i.e., target programs)

• These are the attackers in the
secure compilation setting
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Fully Abstract Compilation

A compiler is secure if, given source equivalent
programs, it compiles them into equivalent
target programs

J⋅KST is FAC#1 def= ∀P1,P2

if P1 ≃ctx P2

then JP1K
S
T≃ctxJP2K

S
T

Right?
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Fully Abstract Compilation

Wrong.

An empty translation would fit FAC#1!

We need the compiler also to be correct.
Roughly, turn⇒ into a ⇐⇒ :

J⋅KST is FAC def= ∀P1,P2

P1 ≃ctx P2 ⇐⇒ JP1K
S
T≃ctxJP2K

S
T

Note: ⇐ does not mean compiler correctness in
the general sense, but it’s a consequence

Criteria need to be precise and
general.
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Remarks on Fully Abstract Compilation

• widely adopted since 1999

• intuition that was circulating for 10 years
• only preserves security property expressed
as program equivalence

• not the silver bullet: we will see
shortcomings of fully abstract compilation
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Fully Abstract Compilation

J⋅KST is FAC def= ∀P1,P2

P1 ≃ctx P2 ⇐⇒ JP1K
S
T ≃ctx JP2K

S
T

• break the ⇐⇒ :
1. ⇒: ∀P1,P2. P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

2. ⇐: ∀P1,P2. JP1K
S
T ≃ctx JP2K

S
T⇒ P1 ≃ctx P2

• point 2 (should) follow from compiler
correctness

• point 1 is tricky, because of ≃ctx and its ∀C
This structure is called a backtranslation
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Backtranslations

• Context-based: relies on the structure of
the context

when source and target contexts are similar

• Trace-based: relies on trace semantics

when there is a large abstraction gap
between source and target
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Trace Semantics

• we replace ≃ctx with something equivalent

• but simpler to reason about
• a semantics that abstracts from the context
(observer)

• and still describes the behaviour of a
program precisely

• a trace semantics
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Traces for a program

main method
this is code written by
the attacker

function definition
of our code

private data of our program

other code
written by the attacker

(this is the context C!)

∎
• interest in the
behaviour of our
code (component)

• need to consider the
rest

23/32



Traces for a program

main method
this is code written by
the attacker

function definition
of our code

private data of our program

other code
written by the attacker

(this is the context C!)

∎
• interest in the
behaviour of our
code (component)

• need to consider the
rest

23/32



Traces for a program

main method
this is code written by
the attacker

function definition
of our code

private data of our program

other code
written by the attacker

(this is the context C!)

∎
• interest in the
behaviour of our
code (component)

• need to consider the
rest

23/32



Trace Semantics for Our Program

main method
this is code written by
the attacker

function definition
of our code

private data of our program

other code
written by the attacker

(this is the context C!)

∎

• disregard the rest

• abstract its
behaviour from the
component
perspective:

1. jump to an
entry point ∎

• abstract the
component
behaviour from the
rest perspective:

1. call/return
outside
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Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics
• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer
• indicated as TR(C ) = {α ∣ C αÔ⇒ _}
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Trace Actions

Labels L ∶∶= a ∣ ε
Observable actions α ∶∶= √ ∣ g? ∣ g!

Actions g ∶∶= call f (v) ∣ ret v
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Traces for a program

We need to define:

• trace states (almost program states)
• labels that make traces
• rules for generating labels and traces ⋯
• the traces of a component TR(C ) = ⋯
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Trace Equivalence

• all semantics yield a notion of equivalence

• the operational semantics gives us
contextual equivalence

C1 ≃ctx C2

• trace semantics gives us trace equivalence
the traces of C1 are the same of those of C2
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Proofs about Trace Semantics

• any trace semantics won’t just work
• it needs to be
correct and complete

(⇒)

C1 ≃ctx C2 ⇐⇒ C1
T=C2
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Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• P1 ≃ctx P2⇒ ∀C. C[JC1K

S
T]↓ ⇐⇒ C[JC2K

S
T]↓

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃C. C[JC1K

S
T]↓ /⇐⇒ C[JC2K

S
T]↓ ⇒ P1 /≃ctx P2

• unfold ≃ctx
• contrapositive

• unfold ≃ctx

• backtranslation!

30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃C. C[JC1K

S
T]↓ /⇐⇒ C[JC2K

S
T]↓ ⇒

∃C.C[C2]↓ /⇐⇒ C[C2]↓
• unfold ≃ctx
• contrapositive
• unfold ≃ctx

• backtranslation!

30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃C. C[JC1K

S
T]↓ /⇐⇒ C[JC2K

S
T]↓ ⇒

∃C.C[C2]↓ /⇐⇒ C[C2]↓
• unfold ≃ctx
• contrapositive
• unfold ≃ctx
• backtranslation!

30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃C. C[JC1K

S
T]↓ /⇐⇒ C[JC2K

S
T]↓ ⇒

∃C.C[C2]↓ /⇐⇒ C[C2]↓

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

• generate C based on C

30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• JP1K

S
T /≃ctx JP2K

S
T ⇒ ∃C.C[C2]↓ /⇐⇒ C[C2]↓

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

• generate C based on C

• if complex, apply Traces (folding ≃ctx )
30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• JP1K

S
T
T=/ JP2K

S
T⇒ ∃C.C[C2]↓ /⇐⇒ C[C2]↓

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

• generate C based on C

• if complex, apply Traces (folding ≃ctx )
30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• TR(C1) ≠ TR(C2)⇒ ∃C.C[C2]↓ /⇐⇒ C[C2]↓

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

• generate C based on C

• if complex, apply Traces (folding ≃ctx )
30/32



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃α ∈ TR(C1), α ∉ TR(C2)⇒
∃C.C[C2]↓ /⇐⇒ C[C2]↓

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

• generate C based on C

• if complex, apply Traces (folding ≃ctx )
30/32



Conclusion

• program equivalences can be used to
define security properties

• preserving (and reflecting) equivalences
can be used to define a secure compiler
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