Lecture 6: Proofs

Secure Compilation Seminar

Marco Patrignani

S CISPA

%4\ | HELMHOLTZ-ZENTRUM i.G.

« large systems
- require a lot of time

« building and planning focus on two
different aspects

- proofs ensure that the building is doable

« large systems
- require a lot of time

« building and planning focus on two
different aspects

- proofs ensure that the building is doable
(also why we have design patterns for
coding)

P=qQ

P=qQ

- IF we can assume something (P)

P=qQ

- IF we can assume something (P)
« THEN some other thing holds (Q)

Reduction ad Absurdum (or contradiction)

P=qQ

- assume P
 assume -Q
- derive 1 i.e., any contradiction (R and -R)

P=qQ

- assume P, prove Q(0) (base case)

P=qQ

- assume P, prove Q(0) (base case)
- assume P and Q(n), prove Q(n + 1)

P=qQ

- assume P, prove Q(0) (base case)
- assume P and Q(n), prove Q(n + 1)

- generally @ has an infinite universal
quantification

Structural Induction

P—-qQ

- generally done when @ has a (finite)
structure

- e.g., reduction cases, typing cases, syntax

Contrapositive

P=qQ
becomes
—|Q — ﬁP

and becomes oftentimes easier

What do we Prove?

« What are P and Q?

What do we Prove?

« What are P and Q?

[is FACE vPy, P,

Pl =t P2 — [[Pl]]ST =ctz [[PZHST

Fully Abstract Compilation

« break the < :
1. =1 YPy, Py Py, Py = [Pi]o 2o [P2]
2. «<: VP, Py [P1]5 2 [Po] = P12 Po
- point 2 (should) follow from compiler
correctness

Fully Abstract Compilation

* break the <—:
1. = VPl, P2. Pl thz I:)2 = [[Psl]]ST =ctx [[PZ]]ST
2. <. VPl, P2. [[Pl]]T oot [[P2]]T 4 I:)1 Eetr P2

- point 2 (should) follow from compiler
correctness

- point 1is tricky, because of ~,, and its V¢

Trace Semantics

- we replace ~.;, with something equivalent

10

Trace Semantics

- we replace ~.;, with something equivalent
« but simpler to reason about

10

Trace Semantics

- we replace ~.;, with something equivalent
« but simpler to reason about

+ a semantics that abstracts from the context
(observer)

10

Trace Semantics

- we replace ~.;, with something equivalent
« but simpler to reason about

+ a semantics that abstracts from the context
(observer)

« and still describes the behaviour of a
program precisely

10

Trace Semantics

- we replace ~.;, with something equivalent
« but simpler to reason about

+ a semantics that abstracts from the context
(observer)

« and still describes the behaviour of a
program precisely

« a trace semantics

10

Traces for PMA

0x0001 call func. at Oxb52
0x0002 write rp at 0x0b55
: * interest in the

behaviour of the
module

0x0b52 write rp at 0x0b55
0x0b53 write ry at 0x0001
0x0b54 call 0x0002

0x0b55

Oxab01l return to 0x0b53

. 0xab00® jump to 0x0001
. Oxab02

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1

Traces for PMA

* interest in the
behaviour of the
module

0x0b52 write rp at 0x0b55
0x0b53 write ry at 0x0001
0x0b54 call 0x0002

0x0b55

« need to consider the
rest

1

Traces for PMA

0x0001 call func. at Oxb52
0x0002 write rg at Ox0b55
: * interest in the

behaviour of the
module

0x0b52 write rp at 0x0b55
0x0b53 write ry at 0x0001
0x0b54 call 0x0002

0x0b55

« need to consider the
rest

Oxab01 return to 0x0b53
Oxab02

. 0xab0® jump to 0x0001

________________________________ 7

Trace Semantics for PMA

******************************* > - disregard the rest

0x0001 call func. at Oxb52
0x0002 write rg at 0x0bs55

0x0b52 write ry at Ox0b55 |
0x0b53 write rp at Ox0001 |
0x0b54 call 0x0002 ;

0x0b55

Oxabo jump to 0x0001
Oxab01 return to 0x0b53
Oxab02

12

Trace Semantics for PMA

- disregard the rest

0x0b52 write rg at 0x0b55
0x0b53 write rp at 0x0001

0x0b54 call 0x0002
0x0b55

12

Trace Semantics for PMA

- disregard the rest
- abstract its

behaviour

0x0b52 write rg at 0x0b55
0x0b53 write rp at 0x0001

0x0b54 call 0x0002
0x0b55 -

12

Trace Semantics for PMA

- disregard the rest

 abstract its
behaviour

0x0b52 write ry at ©x@b55 1. jump to an
0x0b53 write rg at 0x0001 entry point m

0x0b54 call 0x0002
0x0b55 -

12

Trace Semantics for PMA

- disregard the rest

 abstract its
behaviour

0x0b52 write ry at ©x@b55 1. jump to an
0x0b53 write rg at 0x0001

entry point m
0x0b54 call 0x0002

0x0b55 - + abstract the module
behaviour

12

Trace Semantics for PMA

- disregard the rest

 abstract its
behaviour

1. jump to an
entry point m

0x0b52 write rg at 0x0b55
0x0b53 write rg at 0x0001
0x0b54 call 0x0002

0x0b55

+ abstract the module
behaviour

'sdJe]1ed

1. call/return

outside
12

Trace Semantics for PMA

- disregard the rest

 abstract its
behaviour

1. jump to an
entry point m

0x0b52 write rg at 0x0b55
0x0b53 write rg at 0x0001
0x0b54 call 0xe€

0x0b55

+ abstract the module
behaviour

'sdJe]1ed

1. call/return
outside
2. read/write

12

Trace Semantics

- semantics for partial programs
(component)

13

Trace Semantics

- semantics for partial programs
(component)
- relies on the operational semantics

13

Trace Semantics

- semantics for partial programs
(component)

- relies on the operational semantics

- denotational: describes the behaviour of a
component as sets of traces

13

Trace Semantics

- semantics for partial programs
(component)

- relies on the operational semantics

- denotational: describes the behaviour of a
component as sets of traces

- a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

13

Trace Semantics

semantics for partial programs
(component)

relies on the operational semantics
denotational: describes the behaviour of a
component as sets of traces

a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

without needing to specify the observer

13

Trace Semantics

- semantics for partial programs
(component)

- relies on the operational semantics

- denotational: describes the behaviour of a
component as sets of traces

- a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

- without needing to specify the observer

- indicated as TR(C) = {a ‘ C = _}

13

Labels L:=ale
Observable actions «a:=:=/|g?|g!
Actions g:=callp (r)|retpr(xo)

14

Traces for PMA

We need to define:

- trace states (almost program states) ©
« labels that make traces

- rules for generating labels and traces -
* the traces of a component TR(C) =---

15

Trace Equivalence

- all semantics yield a notion of equivalence

16

Trace Equivalence

- all semantics yield a notion of equivalence

- the operational semantics gives us
contextual equivalence

Cvl Zetx CQ

16

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us
contextual equivalence

Cl Stz C2

- trace semantics gives us trace equivalence

C1 175

16

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us
contextual equivalence

Cl Stz C2

- trace semantics gives us trace equivalence
TR(C1) =TR(C?)

the traces of C; are the same of those of Cy +

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us
contextual equivalence

Cl Stz C2

- trace semantics gives us trace equivalence

@lasf-{w]e=
the traces of C; are the same of those of C,

16

Proofs about Trace Semantics

- any trace semantics won't just work

+ they need to be
correct and complete

17

Proofs about Trace Semantics

- any trace semantics won't just work
+ they need to be
correct and complete

Ci2u Oy = C110

17

Proofs about Trace Semantics

- any trace semantics won't just work
+ they need to be
correct (<) and complete (=)

Ci2u Oy = C110

17

Fully Abstract Compilation & Target Traces

« we have:
> Cl X otr Cg L— TR(Cl) :TR(CQ)

18

Fully Abstract Compilation & Target Traces

« we have:

« Cyzy4, Cy < TR(C;) = TR(Cy)
« we need to prove

* P12 P2 = [Pi5 ~ew [Paly

18

Fully Abstract Compilation & Target Traces

« we have:

« C1yy Cy <= TR(Cq) = TR(C2)
« we need to prove

+ Przg, Po = VC. C[[GI5] | C[[C]3]
« unfold ~,,

18

Fully Abstract Compilation & Target Traces

« we have:
* Ci2; Gy = TR(C1> :TR(C2)
« we need to prove
-« 3C. C [[[Cl]]ST:| | C [[[Cz]]rsf] = P % P2
- unfold ~,
- contrapositive

18

Fully Abstract Compilation & Target Traces

« we have:
¢« C1~y; Cy < TR(Cy) =TR(Cy)
« we need to prove
- 1C.C [[[Cl]]ﬂ 1C [[[Cﬂ]%] = 3C.C[C,] J C[Cy]
- unfold ~_.,
- contrapositive
- unfold ~..,

18

Fully Abstract Compilation & Target Traces

« we have:
¢« C1~y; Cy < TR(Cy) =TR(Cy)
« we need to prove
- 1C.C [[[Cl]]ﬂ 1C [[[Cﬂ]%] = 3C.C[C,] J C[Cy]
- unfold ~_.,
- contrapositive
- unfold ~..,

+ backtranslation!

18

Fully Abstract Compilation & Target Traces

« we have:

» Cyy Cy < TR(Cy) = TR(Cy)
« we need to prove

+ 3C. C[[aly]) o[[lh] = 3c.clca f Clcl]
« generate C based on C

18

Fully Abstract Compilation & Target Traces

« we have:

» Cyy Cy < TR(Cy) = TR(Cy)
« we need to prove

* [Pay %o [P = 3C.C[Co] C[Co]

« generate C based on C
- if complex, apply Traces (folding ~.,,)

18

Fully Abstract Compilation & Target Traces

+ we have:
« Cyzy4, Cy < TR(C;) = TR(Cy)
« we need to prove
» [Pa% 2 [P2]3 = 3C.C[C] § C[Co]
« generate C based on C
- if complex, apply Traces (folding ~.,,)

18

Fully Abstract Compilation & Target Traces

« we have:
» Cyy Cy < TR(Cy) = TR(Cy)
« we need to prove
. TR(C:) # TR(C3) = 3C.C[C,] J C[Ca]

« generate C based on C
- if complex, apply Traces (folding ~.,,)

18

Fully Abstract Compilation & Target Traces

« we have:
» Cyy Cy < TR(Cy) = TR(Cy)
« we need to prove
*« Jae TR(Cy),a ¢ TR(Cy) = IC.C[C,] 4 C[C,]

« generate C based on C
- if complex, apply Traces (folding ~.,,)

18

Backtranslation at work

to the board

19

