
Lecture 6: Proofs

Secure Compilation Seminar

Marco Patrignani

1



Why Proofs?

• large systems
• require a lot of time
• building and planning focus on two
different aspects

• proofs ensure that the building is doable

(also why we have design patterns for
coding)

2



Why Proofs?

• large systems
• require a lot of time
• building and planning focus on two
different aspects

• proofs ensure that the building is doable
(also why we have design patterns for
coding)

2



How to Prove?

P ⇒ Q

• IF we can assume something (P )
• THEN some other thing holds (Q)

3



How to Prove?

P ⇒ Q

• IF we can assume something (P )

• THEN some other thing holds (Q)

3



How to Prove?

P ⇒ Q

• IF we can assume something (P )
• THEN some other thing holds (Q)

3



Reduction ad Absurdum (or contradiction)

P ⇒ Q

• assume P
• assume ¬Q
• derive � i.e., any contradiction (R and ¬R)

4



Induction

P ⇒ Q

• assume P , prove Q(0) (base case)

• assume P and Q(n), prove Q(n + 1)

• generally Q has an infinite universal
quantification

5



Induction

P ⇒ Q

• assume P , prove Q(0) (base case)
• assume P and Q(n), prove Q(n + 1)

• generally Q has an infinite universal
quantification

5



Induction

P ⇒ Q

• assume P , prove Q(0) (base case)
• assume P and Q(n), prove Q(n + 1)

• generally Q has an infinite universal
quantification

5



Structural Induction

P → Q

• generally done when Q has a (finite)
structure

• e.g., reduction cases, typing cases, syntax

6



Contrapositive

P ⇒ Q

becomes

¬Q⇒ ¬P

and becomes oftentimes easier

7



What do we Prove?

• What are P and Q?

J⋅KST is FAC
def
= ∀P1,P2

P1 ≃ctx P2 ⇐⇒ JP1K
S
T ≃ctx JP2K

S
T

8



What do we Prove?

• What are P and Q?

J⋅KST is FAC
def
= ∀P1,P2

P1 ≃ctx P2 ⇐⇒ JP1K
S
T ≃ctx JP2K

S
T

8



Fully Abstract Compilation

• break the ⇐⇒ :
1. ⇒: ∀P1,P2. P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

2. ⇐: ∀P1,P2. JP1K
S
T ≃ctx JP2K

S
T⇒ P1 ≃ctx P2

• point 2 (should) follow from compiler
correctness

• point 1 is tricky, because of ≃ctx and its ∀C

9



Fully Abstract Compilation

• break the ⇐⇒ :
1. ⇒: ∀P1,P2. P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

2. ⇐: ∀P1,P2. JP1K
S
T ≃ctx JP2K

S
T⇒ P1 ≃ctx P2

• point 2 (should) follow from compiler
correctness

• point 1 is tricky, because of ≃ctx and its ∀C

9



Trace Semantics

• we replace ≃ctx with something equivalent

• but simpler to reason about
• a semantics that abstracts from the context
(observer)

• and still describes the behaviour of a
program precisely

• a trace semantics

10



Trace Semantics

• we replace ≃ctx with something equivalent
• but simpler to reason about

• a semantics that abstracts from the context
(observer)

• and still describes the behaviour of a
program precisely

• a trace semantics

10



Trace Semantics

• we replace ≃ctx with something equivalent
• but simpler to reason about
• a semantics that abstracts from the context
(observer)

• and still describes the behaviour of a
program precisely

• a trace semantics

10



Trace Semantics

• we replace ≃ctx with something equivalent
• but simpler to reason about
• a semantics that abstracts from the context
(observer)

• and still describes the behaviour of a
program precisely

• a trace semantics

10



Trace Semantics

• we replace ≃ctx with something equivalent
• but simpler to reason about
• a semantics that abstracts from the context
(observer)

• and still describes the behaviour of a
program precisely

• a trace semantics

10



Traces for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

• interest in the
behaviour of the
module

• need to consider the
rest

11



Traces for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

• interest in the
behaviour of the
module

• need to consider the
rest

11



Traces for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

• interest in the
behaviour of the
module

• need to consider the
rest

11



Trace Semantics for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

• disregard the rest

• abstract its
behaviour from the
module perspective:

1. jump to an
entry point ∎

• abstract the module
behaviour from the
rest perspective:

1. call/return
outside

2. read/write
outside

12



Trace Semantics for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

• disregard the rest

• abstract its
behaviour from the
module perspective:

1. jump to an
entry point ∎

• abstract the module
behaviour from the
rest perspective:

1. call/return
outside

2. read/write
outside

12



Trace Semantics for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

• disregard the rest

• abstract its
behaviour from the
module perspective:

1. jump to an
entry point ∎

• abstract the module
behaviour from the
rest perspective:

1. call/return
outside

2. read/write
outside

12



Trace Semantics for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

call
arg
s.

• disregard the rest

• abstract its
behaviour from the
module perspective:

1. jump to an
entry point ∎

• abstract the module
behaviour from the
rest perspective:

1. call/return
outside

2. read/write
outside

12



Trace Semantics for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

call
arg
s.

• disregard the rest

• abstract its
behaviour from the
module perspective:

1. jump to an
entry point ∎

• abstract the module
behaviour from the
rest perspective:

1. call/return
outside

2. read/write
outside

12



Trace Semantics for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

call
arg
s.

callargs.

• disregard the rest

• abstract its
behaviour from the
module perspective:

1. jump to an
entry point ∎

• abstract the module
behaviour from the
rest perspective:

1. call/return
outside

2. read/write
outside

12



Trace Semantics for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

call
arg
s.

callargs.

write
sth

• disregard the rest

• abstract its
behaviour from the
module perspective:

1. jump to an
entry point ∎

• abstract the module
behaviour from the
rest perspective:

1. call/return
outside

2. read/write
outside

12



Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics
• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer
• indicated as TR(C ) = {α ∣ C

α
Ô⇒ _}

13



Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics

• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer
• indicated as TR(C ) = {α ∣ C

α
Ô⇒ _}

13



Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics
• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer
• indicated as TR(C ) = {α ∣ C

α
Ô⇒ _}

13



Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics
• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer
• indicated as TR(C ) = {α ∣ C

α
Ô⇒ _}

13



Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics
• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer

• indicated as TR(C ) = {α ∣ C
α
Ô⇒ _}

13



Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics
• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer
• indicated as TR(C ) = {α ∣ C

α
Ô⇒ _}

13



Trace Actions

Labels L ∶∶= a ∣ ε

Observable actions α ∶∶=
√

∣ g? ∣ g!

Actions g ∶∶= call p (r) ∣ ret p r(r0)

14



Traces for PMA

We need to define:

• trace states (almost program states) Θ

• labels that make traces
• rules for generating labels and traces ⋯
• the traces of a component TR(C ) = ⋯

15



Trace Equivalence

• all semantics yield a notion of equivalence

• the operational semantics gives us
contextual equivalence

C1 ≃ctx C2

• trace semantics gives us trace equivalence
the traces of C1 are the same of those of C2

16



Trace Equivalence

• all semantics yield a notion of equivalence
• the operational semantics gives us
contextual equivalence

C1 ≃ctx C2

• trace semantics gives us trace equivalence
the traces of C1 are the same of those of C2

16



Trace Equivalence

• all semantics yield a notion of equivalence
• the operational semantics gives us
contextual equivalence

C1 ≃ctx C2

• trace semantics gives us trace equivalence

C1
T
=T2

the traces of C1 are the same of those of C2

16



Trace Equivalence

• all semantics yield a notion of equivalence
• the operational semantics gives us
contextual equivalence

C1 ≃ctx C2

• trace semantics gives us trace equivalence

TR(C1) = TR(C2)

the traces of C1 are the same of those of C2 16



Trace Equivalence

• all semantics yield a notion of equivalence
• the operational semantics gives us
contextual equivalence

C1 ≃ctx C2

• trace semantics gives us trace equivalence

{α ∣ C1
α
Ô⇒ _} = {α ∣ C2

α
Ô⇒ _}

the traces of C1 are the same of those of C2

16



Proofs about Trace Semantics

• any trace semantics won’t just work
• they need to be
correct and complete

(⇒)

C1 ≃ctx C2 ⇐⇒ C1
T
=C2

17



Proofs about Trace Semantics

• any trace semantics won’t just work
• they need to be
correct and complete

(⇒)

C1 ≃ctx C2 ⇐⇒ C1
T
=C2

17



Proofs about Trace Semantics

• any trace semantics won’t just work
• they need to be
correct (⇐) and complete (⇒)

C1 ≃ctx C2 ⇐⇒ C1
T
=C2

17



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• P1 ≃ctx P2⇒ ∀C. C [JC1K

S
T] ↓C [JC2K

S
T]

• unfold ≃ctx

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃C. C [JC1K

S
T] /↓C [JC2K

S
T] ⇒ P1 ≄ctx P2

• unfold ≃ctx

• contrapositive

• unfold ≃ctx

• backtranslation!

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃C. C [JC1K

S
T] /↓C [JC2K

S
T] ⇒ ∃C.C [C2] /↓ C [C2]

• unfold ≃ctx

• contrapositive
• unfold ≃ctx

• backtranslation!
• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃C. C [JC1K

S
T] /↓C [JC2K

S
T] ⇒ ∃C.C [C2] /↓ C [C2]

• unfold ≃ctx

• contrapositive
• unfold ≃ctx

• backtranslation!

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃C. C [JC1K

S
T] /↓C [JC2K

S
T] ⇒ ∃C.C [C2] /↓ C [C2]

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• JP1K

S
T ≄ctx JP2K

S
T⇒ ∃C.C [C2] /↓ C [C2]

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• JP1K

S
T
T
=/ JP2K

S
T⇒ ∃C.C [C2] /↓ C [C2]

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• TR(C1) ≠ TR(C2) ⇒ ∃C.C [C2] /↓ C [C2]

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• ∃α ∈ TR(C1), α ∉ TR(C2) ⇒ ∃C.C [C2] /↓ C [C2]

• generate C based on C

• if complex, apply Traces (folding ≃ctx )

18



Backtranslation at work

to the board

19


