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Why Proofs?

• large systems
• require a lot of time
• building and planning focus on two
different aspects

• proofs ensure that the building is doable

(also why we have design patterns for
coding)
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How to Prove?

P ⇒ Q

• IF we can assume something (P )
• THEN some other thing holds (Q)
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Reduction ad Absurdum (or contradiction)

P ⇒ Q

• assume P
• assume ¬Q
• derive � i.e., any contradiction (R and ¬R)
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Induction

P ⇒ Q

• assume P , prove Q(0) (base case)

• assume P and Q(n), prove Q(n + 1)

• generally Q has an infinite universal
quantification

5



Induction

P ⇒ Q

• assume P , prove Q(0) (base case)
• assume P and Q(n), prove Q(n + 1)

• generally Q has an infinite universal
quantification

5



Induction

P ⇒ Q

• assume P , prove Q(0) (base case)
• assume P and Q(n), prove Q(n + 1)

• generally Q has an infinite universal
quantification

5



Structural Induction

P → Q

• generally done when Q has a (finite)
structure

• e.g., reduction cases, typing cases, syntax
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Contrapositive

P ⇒ Q

becomes

¬Q⇒ ¬P

and becomes oftentimes easier
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What do we Prove?

• What are P and Q?

J⋅KST is FAC
def
= ∀P1,P2

P1 ≃ctx P2 ⇐⇒ JP1K
S
T ≃ctx JP2K

S
T
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Fully Abstract Compilation

• break the ⇐⇒ :
1. ⇒: ∀P1,P2. P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

2. ⇐: ∀P1,P2. JP1K
S
T ≃ctx JP2K

S
T⇒ P1 ≃ctx P2

• point 2 (should) follow from compiler
correctness

• point 1 is tricky, because of ≃ctx and its ∀C
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Trace Semantics

• we replace ≃ctx with something equivalent

• but simpler to reason about
• a semantics that abstracts from the context
(observer)

• and still describes the behaviour of a
program precisely

• a trace semantics
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Traces for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

• interest in the
behaviour of the
module

• need to consider the
rest
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Trace Semantics for PMA

0x0001 call func. at 0xb52
0x0002 write r0 at 0x0b55
⋮

0x0b52 write r0 at 0x0b55
0x0b53 write r0 at 0x0001
0x0b54 call 0x0002
0x0b55 ⋯

⋮

0xab00 jump to 0x0001

0xab01 return to 0x0b53
0xab02 ⋯

∎

• disregard the rest

• abstract its
behaviour from the
module perspective:

1. jump to an
entry point ∎

• abstract the module
behaviour from the
rest perspective:

1. call/return
outside

2. read/write
outside
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Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics
• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer
• indicated as TR(C ) = {α ∣ C

α
Ô⇒ _}
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Trace Actions

Labels L ∶∶= a ∣ ε

Observable actions α ∶∶=
√

∣ g? ∣ g!

Actions g ∶∶= call p (r) ∣ ret p r(r0)
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Traces for PMA

We need to define:

• trace states (almost program states) Θ

• labels that make traces
• rules for generating labels and traces ⋯
• the traces of a component TR(C ) = ⋯
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Trace Equivalence

• all semantics yield a notion of equivalence

• the operational semantics gives us
contextual equivalence

C1 ≃ctx C2

• trace semantics gives us trace equivalence
the traces of C1 are the same of those of C2
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Proofs about Trace Semantics

• any trace semantics won’t just work
• they need to be
correct and complete

(⇒)

C1 ≃ctx C2 ⇐⇒ C1
T
=C2
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Proofs about Trace Semantics

• any trace semantics won’t just work
• they need to be
correct (⇐) and complete (⇒)
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Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

• generate C based on C

• if complex, apply Traces (folding ≃ctx )
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Fully Abstract Compilation & Target Traces

• we have:
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Backtranslation at work

to the board
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