Lecture 6: Proofs

Secure Compilation Seminar

Marco Patrignani
(") CISPA

Why Proofs?

- large systems
- require a lot of time
- building and planning focus on two different aspects
- proofs ensure that the building is doable

Why Proofs?

- large systems
- require a lot of time
- building and planning focus on two different aspects
- proofs ensure that the building is doable (also why we have design patterns for coding)

How to Prove?

$$
P \Rightarrow Q
$$

How to Prove?

$$
P \Rightarrow Q
$$

- IF we can assume something (P)

How to Prove?

$$
P \Rightarrow Q
$$

- IF we can assume something (P)
- THEN some other thing holds (Q)

Reduction ad Absurdum (or contradiction)

$$
P \Rightarrow Q
$$

- assume P
- assume $\neg Q$
- derive \perp i.e., any contradiction (R and $\neg R$)

Induction

$$
P \Rightarrow Q
$$

- assume P, prove $Q(0)$ (base case)

Induction

$$
P \Rightarrow Q
$$

- assume P, prove $Q(0)$ (base case)
- assume P and $Q(n)$, prove $Q(n+1)$

Induction

$$
P \Rightarrow Q
$$

- assume P, prove $Q(0)$ (base case)
- assume P and $Q(n)$, prove $Q(n+1)$
- generally Q has an infinite universal quantification

Structural Induction

$$
P \rightarrow Q
$$

- generally done when Q has a (finite) structure
- e.g., reduction cases, typing cases, syntax

Contrapositive

$$
P \Rightarrow Q
$$

becomes

$$
\neg Q \Rightarrow \neg P
$$

and becomes oftentimes easier

What do we Prove?

- What are P and Q ?

What do we Prove?

- What are P and Q ?

$$
\begin{aligned}
\llbracket \cdot \rrbracket_{\mathrm{T}}^{\mathrm{S}} \text { is } \mathrm{FAC} & \stackrel{\text { def }}{=} \forall \mathrm{P}_{1}, \mathrm{P}_{2} \\
& \mathrm{P}_{1} \simeq_{c t x} \mathrm{P}_{2} \Longleftrightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}
\end{aligned}
$$

Fully Abstract Compilation

- break the \Longleftrightarrow :

$$
\begin{aligned}
& \text { 1. } \Rightarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \mathrm{P}_{1} \simeq c t x \mathrm{P}_{2} \Rightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \sim_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \\
& \text { 2. } \Leftrightarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq c t x\left[\mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \Rightarrow \mathrm{P}_{1} \simeq c t x\right.
\end{aligned}
$$

- point 2 (should) follow from compiler correctness

Fully Abstract Compilation

- break the \Longleftrightarrow :

$$
\begin{aligned}
& \text { 1. } \Rightarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \mathrm{P}_{1} \simeq c t x \mathrm{P}_{2} \Rightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \sim_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \\
& \text { 2. } \Leftrightarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq c t x\left[\mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \Rightarrow \mathrm{P}_{1} \simeq c t x\right.
\end{aligned}
$$

- point 2 (should) follow from compiler correctness
- point 1 is tricky, because of $\simeq_{c t x}$ and its $\forall \mathfrak{C}$

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent
- but simpler to reason about

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)
- and still describes the behaviour of a program precisely

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)
- and still describes the behaviour of a program precisely
- a trace semantics

Traces for PMA

$0 x 0001$ call func. at $0 x b 52$ $0 x 0002$ write r_{0} at $0 x 0 b 55$

$0 x 0 b 52$	write r_{0} at 0x0b55
$0 x 0 b 53$	write r_{0} at 0x0001
$0 x 0 b 54$	call $0 x 0002$
$0 x 0 b 55$	\cdots

- interest in the behaviour of the module

Traces for PMA

0×0001 call func. at $0 \times b 52$
$0 x 0002$ write r_{0} at 0x0b55

0x0b52	write r_{0} at $0 x 0 b 55$
$0 x 0 b 53$	write r_{0} at $0 x 0001$
$0 x 0 b 54$	call $0 x 0002$
$0 x 0 b 55$	\ldots

- interest in the behaviour of the module
- need to consider the rest

Traces for PMA

$0 x 0001$ call func. at $0 x b 52$ $0 x 0002$ write r_{0} at $0 x 0 b 55$

$0 \times 0 b 52$	write r_{0} at $0 x 0 b 55$
$0 x 0 b 53$	write r_{0} at $0 x 0001$
$0 x 0 b 54$	call $0 x 0002$
$0 x 0 b 55$	\cdots

- interest in the behaviour of the module
- need to consider the rest

Trace Semantics for PMA

$0 x 0001$	call func. at $0 \times b 52$
$0 x 0002$	write r_{0} at $0 x 0 b 55$
\vdots	
$0 x 0 b 52$ write r_{0} at $0 \times 0 b 55$ $0 x 0 b 53$ write r_{0} at $0 x 0001$ $0 x 0 b 54$ call $0 x 0002$ $0 x 0 b 55$ \cdots	

$$
\begin{array}{ll}
0 x a b 00 & \text { jump to } 0 x 0001 \\
0 x a b 01 & \text { return to } 0 x 0 b 53
\end{array}
$$

0xab02 ...

- disregard the rest

Trace Semantics for PMA

- disregard the rest
$0 x 0001$ call func. at $0 x b 52$ $0 x 0002$ write r_{0} at 0x0b55

0x0b52 write r_{0} at 0x0b55 $0 x 0 b 53$ write r_{0} at $0 x 0001$ 0x0b54 call 0x0002
0x0b55
...

$$
\begin{array}{ll}
0 \times a b 00 & \text { jump to } 0 x 0001 \\
0 \times a b 01 & \text { return to } 0 x 0 b 53 \\
0 \times a b 02 & \ldots
\end{array}
$$

Trace Semantics for PMA

0×0001 call func. at $0 \times b 52$ $0 x 0002$ write r_{0} at $0 x 0 b 55$

- disregard the rest
- abstract its behaviour from the module perspective:
$0 x a b 00$ jump to 0×0001
$0 x a b 01$ return to $0 x 0 b 53$
0xab02 ...

Trace Semantics for PMA

- disregard the rest
- abstract its behaviour from the module perspective:

1. jump to an entry point ■

Trace Semantics for PMA

- disregard the rest
- abstract its behaviour from the module perspective:

1. jump to an entry point ■

- abstract the module behaviour from the rest perspective:

Trace Semantics for PMA

- disregard the rest
- abstract its behaviour from the module perspective:

1. jump to an entry point ■

- abstract the module behaviour from the rest perspective:

1. call/return outside

Trace Semantics for PMA

- disregard the rest
- abstract its behaviour from the module perspective:

1. jump to an entry point ■

- abstract the module behaviour from the rest perspective:

1. call/return outside
2. read/write

Trace Semantics

- semantics for partial programs (component)

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer
- without needing to specify the observer

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer
- without needing to specify the observer
- indicated as $\operatorname{TR}(C)=\{\bar{\alpha} \mid C \stackrel{\bar{\alpha}}{\Longrightarrow}-\}$

Trace Actions

Labels $L::=a \mid \epsilon$
Observable actions $\alpha::=\sqrt{ } \mid g$? $\mid g$!

$$
\text { Actions } g::=\operatorname{call} p(r) \mid \text { ret } p r\left(\mathrm{r}_{0}\right)
$$

Traces for PMA

We need to define:

- trace states (almost program states) Θ
- labels that make traces
- rules for generating labels and traces ...
- the traces of a component $\operatorname{TR}(C)=\cdots$

Trace Equivalence

- all semantics yield a notion of equivalence

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$
C_{1} \simeq{ }_{c t x} C_{2}
$$

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$
C_{1} \simeq c t x C_{2}
$$

- trace semantics gives us trace equivalence

$$
C_{1} \xlongequal{\cong} T_{2}
$$

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$
C_{1} \simeq_{c t x} C_{2}
$$

- trace semantics gives us trace equivalence

$$
\operatorname{TR}\left(C_{1}\right)=\operatorname{TR}\left(C_{2}\right)
$$

the traces of C_{1} are the same of those of C_{2}

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$
C_{1} \simeq_{c t x} C_{2}
$$

- trace semantics gives us trace equivalence

$$
\left\{\bar{\alpha} \mid C_{1} \xlongequal{\bar{\alpha}}-\right\}=\left\{\bar{\alpha} \mid C_{2} \xlongequal{\bar{\alpha}}-\right\}
$$

the traces of C_{1} are the same of those of C_{2}

Proofs about Trace Semantics

- any trace semantics won't just work
- they need to be correct and complete

Proofs about Trace Semantics

- any trace semantics won't just work
- they need to be correct and complete

$$
C_{1} \simeq_{c t x} C_{2} \Longleftrightarrow C_{1} \stackrel{I}{=} C_{2}
$$

Proofs about Trace Semantics

- any trace semantics won't just work
- they need to be correct (\Leftarrow) and complete (\Rightarrow)

$$
C_{1} \simeq_{c t x} C_{2} \Longleftrightarrow C_{1} \xlongequal{\beth} C_{2}
$$

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

Fully Abstract Compilation \& Target Traces

- we have:
- $\mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)$
- we need to prove
- $\mathrm{P}_{1} \simeq_{c t x} \mathrm{P}_{2} \Rightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}$

Fully Abstract Compilation \& Target Traces

- we have:
- $\mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)$
- we need to prove

$$
\text { - } \mathrm{P}_{1} \simeq_{c t x} \mathrm{P}_{2} \Rightarrow \forall \mathrm{C} \cdot \mathrm{C}\left[\llbracket \mathrm{C}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \mathrm{C}\left[\llbracket \mathrm{C}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right]
$$

- unfold $\simeq_{c t x}$

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove
- $\left.\exists \mathrm{C} \cdot \mathrm{C}\left[\llbracket \mathrm{C}_{1}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \nmid \mathrm{C}\left[\llbracket \mathrm{C}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \Rightarrow \mathrm{P}_{1} \not{ }_{c t x} \mathrm{P}_{2}$
- unfold $\simeq_{c t x}$
- contrapositive

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\cdot \exists \mathrm{C} \cdot \mathrm{C}\left[\llbracket \mathrm{C}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \nVdash \mathrm{C}\left[\llbracket \mathrm{C}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \Rightarrow \exists \mathrm{C} \cdot \mathrm{C}\left[\mathrm{C}_{2}\right] \nVdash \mathrm{C}\left[\mathrm{C}_{2}\right]
$$

- unfold $\simeq_{c t x}$
- contrapositive
- unfold $\simeq_{c t x}$

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\left.\left.\cdot \exists \mathrm{C} \cdot \mathrm{C}\left[\llbracket \mathrm{C}_{1}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \nVdash \mathrm{C}\left[\llbracket \mathrm{C}_{2}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \Rightarrow \exists \mathrm{C} \cdot \mathrm{C}\left[\mathrm{C}_{2}\right] \nVdash \mathrm{C}\left[\mathrm{C}_{2}\right]
$$

- unfold $\simeq c t x$
- contrapositive
- unfold $\simeq_{c t x}$
- backtranslation!

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\cdot \exists \mathrm{C} \cdot \mathrm{C}\left[\llbracket \mathrm{C}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \nVdash \mathrm{C}\left[\llbracket \mathrm{C}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \Rightarrow \exists \mathrm{C} \cdot \mathrm{C}\left[\mathrm{C}_{2}\right] \nVdash \mathrm{C}\left[\mathrm{C}_{2}\right]
$$

- generate C based on C

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\cdot \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \not \psi_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \Rightarrow \exists \mathrm{C} . \mathrm{C}\left[\mathrm{C}_{2}\right] \nVdash \mathrm{C}\left[\mathrm{C}_{2}\right]
$$

- generate C based on C
- if complex, apply Traces (folding $\simeq c t x$)

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\cdot \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \mathbb{\#} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \Rightarrow \exists \mathrm{C} \cdot \mathrm{C}\left[\mathrm{C}_{2}\right] \not \Perp \mathrm{C}\left[\mathrm{C}_{2}\right]
$$

- generate C based on C
- if complex, apply Traces (folding $\simeq c t x$)

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\text { - } \operatorname{TR}\left(\mathrm{C}_{1}\right) \neq \operatorname{TR}\left(\mathrm{C}_{2}\right) \Rightarrow \exists \mathrm{C} . \mathrm{C}\left[\mathrm{C}_{2}\right] \nLeftarrow \mathrm{C}\left[\mathrm{C}_{2}\right]
$$

- generate C based on C
- if complex, apply Traces (folding $\simeq_{c t x}$)

Fully Abstract Compilation \& Target Traces

- we have:
- $\mathrm{C}_{1} \simeq c t x \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)$
- we need to prove
- $\exists \alpha \in \operatorname{TR}\left(\mathrm{C}_{1}\right), \alpha \notin \operatorname{TR}\left(\mathrm{C}_{2}\right) \Rightarrow \exists \mathrm{C} . \mathrm{C}\left[\mathrm{C}_{2}\right] \nVdash \mathrm{C}\left[\mathrm{C}_{2}\right]$
- generate C based on C
- if complex, apply Traces (folding $\simeq{ }_{c t x}$)

Backtranslation at work

to the board

