Lecture 6: Proofs

Secure Compilation Seminar

Marco Patrignani

Why Proofs?

- large systems
- require a lot of time
- building and planning focus on two different aspects
- proofs ensure that the building is doable

Why Proofs?

- large systems
- require a lot of time
- building and planning focus on two different aspects
- proofs ensure that the building is doable (also why we have design patterns for coding)

How to Prove?

$$P \Rightarrow Q$$

How to Prove?

$$P \Rightarrow Q$$

• IF we can assume something (P)

How to Prove?

$$P \Rightarrow Q$$

- IF we can assume something (P)
- THEN some other thing holds (Q)

Reduction ad Absurdum (or contradiction)

$$P \Rightarrow Q$$

- assume P
- assume $\neg Q$
- derive \perp i.e., any contradiction (*R* and $\neg R$)

Induction

$$P \Rightarrow Q$$

• assume P, prove Q(0) (base case)

Induction

$$P \Rightarrow Q$$

- assume P, prove Q(0) (base case)
- assume P and Q(n), prove Q(n+1)

Induction

$$P \Rightarrow Q$$

- assume P, prove Q(0) (base case)
- assume P and Q(n), prove Q(n+1)
- generally Q has an infinite universal quantification

Structural Induction

$$P \to Q$$

- generally done when Q has a (finite) structure
- e.g., reduction cases, typing cases, syntax

Contrapositive

$$P \Rightarrow Q$$

becomes

$$\neg Q \Rightarrow \neg P$$

and becomes oftentimes easier

What do we Prove?

• What are *P* and *Q*?

• What are *P* and *Q*?

$$\begin{bmatrix} \cdot \end{bmatrix}_{\mathbf{T}}^{\mathsf{S}} \text{ is FAC} \stackrel{\text{\tiny def}}{=} \forall \mathsf{P}_{1}, \mathsf{P}_{2} \\ \mathsf{P}_{1} \simeq_{ctx} \mathsf{P}_{2} \iff \llbracket \mathsf{P}_{1} \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_{2} \rrbracket_{\mathbf{T}}^{\mathsf{S}}$$

Fully Abstract Compilation

- break the \iff :
 - 1. $\Rightarrow: \forall \mathsf{P}_1, \mathsf{P}_2, \mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \Rightarrow \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}}$ 2. $\Leftarrow: \forall \mathsf{P}_1, \mathsf{P}_2, \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \Rightarrow \mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2$
- point 2 (should) follow from compiler correctness

Fully Abstract Compilation

- break the \iff :
 - 1. $\Rightarrow: \forall \mathsf{P}_1, \mathsf{P}_2, \mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \Rightarrow \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}}$ 2. $\Leftarrow: \forall \mathsf{P}_1, \mathsf{P}_2, \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \Rightarrow \mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2$
- point 2 (should) follow from compiler correctness
- point 1 is tricky, because of \simeq_{ctx} and its $\forall \mathfrak{C}$

• we replace \simeq_{ctx} with something equivalent

- we replace \simeq_{ctx} with something equivalent
- but simpler to reason about

- we replace \simeq_{ctx} with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)

- we replace \simeq_{ctx} with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)
- and still describes the behaviour of a program precisely

- we replace \simeq_{ctx} with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)
- and still describes the behaviour of a program precisely
- a trace semantics

Traces for PMA

0x0001 call func. at 0xb52 0×0002 write r₀ at 0×0055 0x0b52 write r_0 at 0x0b55 write r_0 at 0x0001 0x0b53 0x0b54 call 0x0002 0x0b55 . . . 0xab00 jump to 0x0001 0xab01 return to 0x0b53 0xab02 . . .

 interest in the behaviour of the module

Traces for PMA

0x0001 call func. at 0xb52 0x0002 write r_0 at 0x0b55 :

0x0b52	write r_0 at 0x0b55
0x0b53	write r_0 at 0x0001
0x0b54	call 0x0002
0x0b55	

0xab00	jump to 0x0001
0xab01	return to 0x0b53
0xab02	

- interest in the behaviour of the module
- need to consider the rest

Traces for PMA

0x0001 0x0002 :	call func. at 0xb52 write r_0 at 0x0b55
0x0b52 0x0b53 0x0b54 0x0b55	write r_0 at 0x0b55 write r_0 at 0x0001 call 0x0002
: 0xab00 0xab01 0xab02	jump to 0x0001 return to 0x0b53

- interest in the behaviour of the module
- need to consider the rest

 0×0001 0×0002	call func. at $0xb52$ write r_0 at $0x0b55$
0x0b52 0x0b53 0x0b54	write r_0 at 0x0b55 write r_0 at 0x0001 call 0x0002
0x0b55	
0xab00 0xab01	jump to 0x0001 return to 0x0b53
0xab02	

• disregard the rest

0×0001 0×0002 :	call func. at 0xb52 write r ₀ at 0x0b55
0x0b52 0x0b53 0x0b54	write r_0 at 0x0b55 write r_0 at 0x0001 call 0x0002
0x0b55	
: 0xab00 0xab01 0xab02	jump to 0x0001 return to 0x0b53

disregard the rest

call func. at 0xb52 write r_0 at 0x055
write r_0 at 0x0b55 write r_0 at 0x0001 call 0x0002
jump to 0x0001
return to 0x0b53

- disregard the rest
- abstract its behaviour from the module perspective:

call args	call func. at 0xb52 write r ₀ at 0x0b55
0x0b52 0x0b53 0x0b54 0x0b55	write r_0 at 0x0b55 write r_0 at 0x0001 call 0x0002
: 0xab00 0xab01 0xab02	jump to 0x0001 return to 0x0b53

- disregard the rest
- abstract its behaviour from the module perspective:
 - jump to an entry point ■

call args	call func. at 0×52 write r_0 at $0 \times 0 \times 55$
0x0b52 0x0b53 0x0b54	write r_0 at 0x0b55 write r_0 at 0x0001 call 0x0002
0x0b55	
0xab00	jump to 0x0001
0xab01	return to 0x0b53
0xab02	

- disregard the rest
- abstract its behaviour from the module perspective:

 jump to an entry point ■

 abstract the module behaviour from the rest perspective:

- disregard the rest
- abstract its behaviour from the module perspective:

 jump to an entry point ■

- abstract the module behaviour from the rest perspective:
 - 1. call/return outside

- disregard the rest
- abstract its behaviour from the module perspective:
 - jump to an entry point ■
- abstract the module behaviour from the rest perspective:
 - 1. call/return outside
 - 2. read/write

 semantics for partial programs (component)

- semantics for partial programs (component)
- relies on the operational semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer
- without needing to specify the observer

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer
- without needing to specify the observer
- indicated as $TR(C) = \left\{ \overline{\alpha} \mid C \stackrel{\overline{\alpha}}{\Longrightarrow} \right\}$

$$Labels \quad L ::= a \mid \epsilon$$

$$Observable \ actions \quad \alpha ::= \sqrt{\mid g? \mid g!}$$

$$Actions \quad g ::= call \ p \ (r) \mid ret \ p \ r(r_0)$$

We need to define:

- trace states (almost program states) Θ
- labels that make traces
- rules for generating labels and traces …
- the traces of a component $TR(C) = \cdots$

• all semantics yield a notion of equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$C_1 \simeq_{ctx} C_2$$

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$C_1 \simeq_{ctx} C_2$$

trace semantics gives us trace equivalence

$$C_1 \, \underline{\mathrm{I}} \, T_2$$

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$C_1 \simeq_{ctx} C_2$$

• trace semantics gives us trace equivalence

$$\mathsf{TR}(C_1) = \mathsf{TR}(C_2)$$

the traces of C_1 are the same of those of C_2 16

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$C_1 \simeq_{ctx} C_2$$

trace semantics gives us trace equivalence

$$\left\{ \overline{\alpha} \mid C_1 \stackrel{\overline{\alpha}}{\Longrightarrow} _ \right\} = \left\{ \overline{\alpha} \mid C_2 \stackrel{\overline{\alpha}}{\Longrightarrow} _ \right\}$$

ne traces of C_1 are the same of those of C_2

Proofs about Trace Semantics

- any trace semantics won't just work
- they need to be correct and complete

Proofs about Trace Semantics

- any trace semantics won't just work
- they need to be correct and complete

$$C_1 \simeq_{ctx} C_2 \iff C_1 \stackrel{\mathrm{I}}{=} C_2$$

Proofs about Trace Semantics

- any trace semantics won't just work
- they need to be correct (⇐) and complete (⇒)

$$C_1 \simeq_{ctx} C_2 \iff C_1 \stackrel{!}{=} C_2$$

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \Rightarrow \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}}$

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- · we need to prove
 - $\mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \Rightarrow \forall \mathbf{C}. \ \mathbf{C} \left[\left[\mathsf{C}_1 \right]_{\mathbf{T}}^{\mathsf{S}} \right] \downarrow \mathbf{C} \left[\left[\mathsf{C}_2 \right]_{\mathbf{T}}^{\mathsf{S}} \right]$
- unfold \simeq_{ctx}

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \mathbf{C}. \mathbf{C} \left[\left[\begin{bmatrix} \mathbf{C}_1 \end{bmatrix} \end{bmatrix}_{\mathbf{T}}^{\mathsf{S}} \right] \not \mathbf{C} \left[\left[\begin{bmatrix} \mathbf{C}_2 \end{bmatrix} \end{bmatrix}_{\mathbf{T}}^{\mathsf{S}} \right] \Rightarrow \mathsf{P}_1 \not\simeq_{ctx} \mathsf{P}_2$
- unfold \simeq_{ctx}
- contrapositive

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \mathbf{C}. \mathbf{C} \left[\begin{bmatrix} \mathbf{C}_1 \end{bmatrix}_{\mathbf{T}}^{\mathsf{S}} \right] \not = \mathbf{C} \left[\begin{bmatrix} \mathbf{C}_2 \end{bmatrix}_{\mathbf{T}}^{\mathsf{S}} \right] \Rightarrow \exists \mathbf{C}. \mathbf{C} \left[\mathbf{C}_2 \right] \not = \mathbf{C} \left[\mathbf{C}_2 \right]$
- unfold \simeq_{ctx}
- contrapositive
- unfold \simeq_{ctx}

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \mathbf{C}. \mathbf{C} \left[\llbracket \mathbf{C}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \right] \not = \mathbf{C} \left[\llbracket \mathbf{C}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \right] \Rightarrow \exists \mathbf{C}. \mathbf{C} \left[\mathbf{C}_2 \right] \not = \mathbf{C} \left[\mathbf{C}_2 \right]$
- unfold \simeq_{ctx}
- contrapositive
- unfold \simeq_{ctx}
- backtranslation!

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \mathbf{C}. \mathbf{C} \left[\left[\mathbb{C}_1 \right]_{\mathbf{T}}^{\mathsf{S}} \right] \not = \mathbf{C} \left[\left[\mathbb{C}_2 \right]_{\mathbf{T}}^{\mathsf{S}} \right] \Rightarrow \exists \mathsf{C}.\mathsf{C} \left[\mathsf{C}_2 \right] \not = \mathsf{C} \left[\mathsf{C}_2 \right]$
- generate C based on C

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \not\simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \Rightarrow \exists \mathsf{C}.\mathsf{C} \llbracket \mathsf{C}_2 \rrbracket \not\downarrow \mathsf{C} \llbracket \mathsf{C}_2 \rrbracket$
- generate C based on C
- if complex, apply Traces (folding \simeq_{ctx})

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \not\sqsubseteq \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \Rightarrow \exists \mathsf{C}.\mathsf{C} \llbracket \mathsf{C}_2 \rrbracket \not\downarrow \mathsf{C} \llbracket \mathsf{C}_2 \rrbracket$
- generate C based on C
- if complex, apply Traces (folding \simeq_{ctx})

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\mathsf{TR}(\mathbf{C_1}) \neq \mathsf{TR}(\mathbf{C_2}) \Rightarrow \exists \mathsf{C}.\mathsf{C}[\mathsf{C_2}] \notin \mathsf{C}[\mathsf{C_2}]$
- generate C based on C
- if complex, apply Traces (folding \simeq_{ctx})

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \alpha \in \mathsf{TR}(\mathbf{C}_1), \alpha \notin \mathsf{TR}(\mathbf{C}_2) \Rightarrow \exists \mathsf{C}.\mathsf{C}[\mathsf{C}_2] \not\downarrow \mathsf{C}[\mathsf{C}_2]$
- generate C based on C
- if complex, apply Traces (folding \simeq_{ctx})

Backtranslation at work

to the board