
Erlang Assignment for CPL 2014-15

Abstract

This document describes the Erlang assignment to be completed as
part of the CPL course for the 2014-15 academic year. The assignment is
to be completed individually; working in groups is not allowed (copying
and plagiarising are not allowed either).

This document describes what the assignment consists of (Section 1)
and how you have to deliver the assignment (Section 2).

1 Outline
This assignment is about implementing a fault-resistant, concurrent version of
the popular game 2048 (Figure 1). For those who do not know 2048, these are

Figure 1: A screenshot from the online version of 2048.

some useful links, read them in order to familiarise yourself with the game:

• The game itself. Try not to play it too much, you have to implement it as
well. http://gabrielecirulli.github.io/2048/

1

http://gabrielecirulli.github.io/2048/

• A wikipedia description. http://en.wikipedia.org/wiki/2048_(video_game)

2048 is played on a 4×4 grid, with numbered tiles that slide when a player moves
them. Every turn, a new tile will randomly appear in an empty spot on the
board with a value of either 2 or 4. Tiles slide as far as possible in the chosen
direction until they are stopped by either another tile or the edge of the grid.
If two tiles of the same number collide while moving, they will merge into a
tile with the total value of the two tiles that collided. The resulting tile cannot
merge with another tile again in the same move. The game is won when a tile
with a value of 2048 appears on the board.

Intuitively, each of the sixteen tiles that constitute the game grid must be
implemented by an Erlang process called a tile process. Instead of sliding, the
tiles will communicate and update their values based on each other’s values.
Moreover, tile processes will be randomly killed by a blaster process. Thus
there must be a mechanism that identifies when these processes are killed so that
another tile process is spawned to replace the killed one so that the game can
continue seamlessly. You do not have to implement the whole game by yourself.
A number of files are given to you, providing a starting point as described in
Section 1.1. Your implementation duties are described in Section 1.2.

1.1 Starting Material
In Toledo, download the Erlang-2048-assignment.zip archive. Inside, you will
find a number of files, here is a brief description of their functionalities:

main.erl This file contains two functions:

• play/0 is used to run the game;

• playnoblaster/0 is used to run the game without the blaster in
order to test the correct implementation of tiles behaviour.

blaster.erl This file is not to be modified; it contains the blaster that kills
tile processes.

gui.erl This file is not to be modified; it contains the implementation of a
primitive, terminal-based GUI for basic interaction with the game (Fig-
ure 2). Instead of playing with arrows, the game is played either with w a
s d or with i j k l keys. Each keystroke must be followed by the return
key in order to be sent to the gui so that it is processed by the program.
The gui itself is a process.

manager.erl This file can be modified; it provides a basic receive loop that
forwards commands from the gui to the tiles. These modifications can
be made to this file, as described in Section 1.2. Firstly, you should modify
it to account for a process that monitors for killed tiles and respawns
them. Secondly, you should change instruction timer:sleep(700), for
more advanced concurrent functionalities. The manager itself is a process.

2

http://en.wikipedia.org/wiki/2048_(video_game)

Figure 2: A screenshot from the Erlang GUI for 2048.

glob.erl This file is not to be modified; it contains global functions of general
interest:

• regformat/0 is the function to call to obtain the name to register a
process with, given a number (the tile Id).

• registerName/2 uses the register/2 BIF to register a pid($2) with
a name($1) but it ensures that that name is not registered yet.

• indexof/2 returns the index of an element($1) in a list($2).

• zeroesintuple/1 returns the number of 0es in a tuple($1).

debug.erl This file can be modified at will. Currently, the debugging flag is
set to false. If that is set to true, the debug/2 function can be used.
This function is centralised so that if instead of writing to the console (the
current debug method) you decide to write to a log, you have to modify
a single line for that.

tile.erl This file provides a skeleton of the functionalities of a tile; it must be
modified. These processes are not spawned by the code provided to you,
you must edit it to account for tile spawning at the right place.

You can also add additional files to the code base.

1.2 Your Tasks
Your tasks for this assignment are subdivided in three points. Alongside the
task description is how much it is worth in terms of the whole assignment.

Task 1: tile behaviour (40%). The goal of this task is to test your under-
standing of: (i) functional programming and (ii) some basics of the actor
model. To test the correctness of this task, you can use the main:playnoblaster/0
function.

3

You have to implement the tile.erl so that a tile behaves as it is supposed
to in the game. To simplify your task, the behaviour of the tile has been
summarised for you.

A tile has an Id telling its location on the grid (1 is the top-left and 16
is the bottom-right) as well as a value that tells what number it is being
displayed on that tile. Finally, a tile has a boolean flag merged that tells
whether the tile has been merged (explained below). Tiles can have other
parameters, you are free to add those that you need.

The tile must be able to receive at least a number of messages (you can
extend this set, not reduce it).

• up, dn, lx, rx. These are commands. Commands trigger tile be-
haviour as described below.

• die. This message causes the death of the tile.

• {yourValue, Resp}. This message causes the tile to answer to Resp
its value and whether it is merged.

• {set value, Future, NewMerged}. This message updates the value
and the merged flag of a tile to Future and to NewMerged.

Tile behaviour. Once a command is received, a tile moves its value
as intended by that command. For example, when the up command is
received, a tile moves its value upwards in the grid (if possible). To do
so, a tile checks the values in all possible future locations reachable by the
command. For example, the future locations for tile 9 for a command up
are tiles 5 and 1 (Figure 3). The future location of tile 7 is 7.

Figure 3: Execution of an up move.

To know the values of future locations, a tile sends all future locations a
message {yourValue, self()}. Then, a tile detects the furthest location
where it can move its value based on the responses it collects. A tile can
move to a location if that location has not been merged this round and if

4

the value of the location is either 0 or it is equal to the tile’s own value.
Tiles cannot be skipped, so in Figure 3, tile 13 cannot send its value to
tile 1.

Once assessed the furthest location that a tile can move to, a tile calcu-
lates the new value for that tile and then sends it a {set value, Future,
NewMerged} message. There, Future is the new value that that tile will
have and NewMerged is the boolean flag indicating whether the value is
the result of a merge. In Figure 3, tile 9 sends message {set value, 16,
true} to tile 5.

Finally, a tile updates its own value. If it caused another tile to update
value, its new value becomes 0.

When updating other tiles it is important to know that their computations
are finished, thus the propagation of commands is important.

Command propagation. Commands are initially sent to a row of tiles
by the manager. Each tile is then responsible to perform the computations
according to its behaviour, then to propagate the command to the next
tile.

Given a command that makes the tiles move their values in a direction
of the grid, that command is first sent to the last row of tiles for that
direction. For example, the up command is sent to tiles 1, 2, 3 and 4.
Once those tiles have executed, they propagate the command to the pre-
decessor in the direction. For example, 1 propagates up to 5. Once done,
5 propagates up to 9 and so on.

Once the last row is reached, the command is not propagated. For exam-
ple, once 13 receives up, it executes its behaviour but it does not send up
to other tiles.

With these informations you can implement the behaviour of a tile.

Hint: instead of programming a general algorithm for the whole tile be-
haviour altogether do two things. Firstly, split that algorithm in sub-
functions and intermediate steps whose correctness you can test. Sec-
ondly, write that algorithm only for a single direction of the game, then
generalise it.

Task 2: tile failure (40%). The goal of this task is to test your understand-
ing of failure in Erlang. To test the correctness of this task, you can use
the main:play/0 function.

Implement a mechanism that ensures that even when the blaster kills
a tile processes, the game can be played anyway. You can modify the
code in manager.erl to account for the new functionality. You are free to
choose the way this is done, you will have to give a brief description of
your solution in an accompanying document (described in Section 1.2).

5

Task 3: tile concurrency (20%). The goal of this task is to test your under-
standing of advanced concurrent communication in the actor model. To
test the correctness of this task, you can use the main:play/0 function.

Instruction timer:sleep(700), in manager.erl pauses the manager for
700 milliseconds, during which the tiles are supposed to finish their calcu-
lation. Then, the manager collects the data from the tiles and sends that
data to the gui for showing.

Eliminate that instruction. The manager thus must wait for all tiles to
have finished their calculation before spawning the collector that probes
them for the values to display. Make sure the manager and the tiles
communicate via message passing. Once all the computations are done,
the tiles should inform the manager that it can collect its data. You are
free to choose the way this is done, you will have to give a brief description
of your solution in an accompanying document (described in Section 1.2).

2 Delivery and Important Dates
In order to complete the assignment, please deliver a single .zip archive through
Toledo with:

• a folder src containing all source files;

• a single .pdf explanatory document (please use LATEXwhen preparing doc-
uments). This document must not exceed two pages. It must describe the
protocols used to solve Task 2 and Task 3. Describe what messages are
exchanged by what processes and why.

Do not forget to write your name in all source files and in the document.

The deadline is December 19th at 23:59 Brussels time.

Good luck.

6

	Outline
	Starting Material
	Your Tasks

	Delivery and Important Dates

