Graph Theory

Marco Patrignani

K.U.Leuven

19 October 2012

Marco Patrignani Graph Theory K.U.Leuven

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

1/24

Application Area

 graph

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ @ K.U.Leuven

Marco Patrignani Graph Theory

2/24

Application Area

Marco Patrignani Graph Theory K.U.Leuven

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Marco Patrignani

Graph Theory

Trees

Application Area

bridges of Konigsberg

< ロ > < 回 > < 回 > < 回 > < 回 >

 $\mathsf{K}.\mathsf{U}.\mathsf{Leuven}$

2/24

Application Area

Marco	Patrignani
Graph	Theory

K.U.Leuven 2/24

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Graphs				i ondamentar i	roperties
Application .	Area				
		(websites		
		networks	social	6 degrees	
			bridge	s of Konigsberg	
	graph	old problems	4 colors		

Marco Patrignani Graph Theory K.U.Leuven

æ.

イロト イヨト イヨト イヨト

2/24

0		- 1		
G	ra	n	h	s

Application Area

chemistry

Marco Patrignani Graph Theory K.U.Leuven 2/24

< ロ > < 回 > < 回 > < 回 > < 回 >

0				
G	ra	D	h	s

Application Area

Marco Patrignani	K.U.Leuven
Graph Theory	2/24

0				
G	ra	D	h	s

Marco Patrignani

Graph Theory

Trees

Application Area

2/24

0				
G	ra	D	h	s

Application Area

Marco Patrignani Graph Theory

Graph Theory

Application Area

Application Area

Basic definitions

Definition (Graph)

A graph is an ordered triple $G = (V, E, \phi)$, where

$$V \neq \emptyset$$

$$V \cap E = \emptyset$$

•
$$\phi: E \to \mathcal{P}(V)$$
 is a map such that $|\phi(e)| \in \{1, 2\}$ for each $e \in E$.

Marco Patrignani

K.U.Leuven

< ロ > < 回 > < 回 > < 回 > < 回 >

Basic definitions

Definition (Graph)

A graph is an ordered triple $G = (V, E, \phi)$, where

 $V \neq \emptyset$

$$v \cap E = \emptyset$$

• $\phi: E \to \mathcal{P}(V)$ is a map such that $|\phi(e)| \in \{1, 2\}$ for each $e \in E$.

Definition (Directed Graph)

A directed graph or digraph is an ordered triple $\vec{G} = (V, E, \eta)$, where

•
$$V \neq \emptyset$$
.

•
$$V \cap E = \emptyset$$
.

•
$$\eta: E \to V \times V$$
 is a map.

イロト イヨト イヨト イヨト

Marco Patrignani

э

Types of graphs

Definition (Simple Graph)

G = (V, E), where $V \neq \emptyset$ and E is a set of 2-elements from V such that $E \subseteq \{X \mid X \subseteq V, |X| = 2\} = \{\{u, v\} \mid u, v \in V, u \neq v\}.$

Marco Patrignani Graph Theory K.U.Leuven 4/24

Definition (Simple Graph)

G = (V, E), where $V \neq \emptyset$ and E is a set of 2-elements from V such that $E \subseteq \{X \mid X \subseteq V, |X| = 2\} = \{\{u, v\} \mid u, v \in V, u \neq v\}.$

Definition (Complete Graph)

G = (V, E), where $V \neq \emptyset$ and E is a set of 2-elements from V such a vertex is connected to all other vertices.

Definition (Simple Graph)

G = (V, E), where $V \neq \emptyset$ and E is a set of 2-elements from V such that $E \subseteq \{X \mid X \subseteq V, |X| = 2\} = \{\{u, v\} \mid u, v \in V, u \neq v\}.$

Definition (Complete Graph)

G = (V, E), where $V \neq \emptyset$ and E is a set of 2-elements from V such a vertex is connected to all other vertices.

Definition (Bipartite graph)

A *bipartite graph* (or bigraph) is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.

Marco Patrignani

Graph Theory

4/24

K.U.Leuven

Definition (Subgraph)

For graphs $G' = (V', E', \phi')$ and $G = (V, E, \phi)$, we say that G' is a *subgraph* of G if

$$V' \subseteq V$$

$$2 E' \subseteq E,$$

3
$$\phi'(e) = \phi(e)$$
 for all $e \in E'$.

Marco Patrignani Graph Theory K.U.Leuven 5/24

э

Types of graphs

Definition (Subgraph)

For graphs $G' = (V', E', \phi')$ and $G = (V, E, \phi)$, we say that G' is a *subgraph* of G if

$$V' \subseteq V_{i}$$

$$2 E' \subseteq E,$$

3
$$\phi'(e) = \phi(e)$$
 for all $e \in E'$.

Definition (Clique)

A *clique* in a graph $G = (V, E, \phi)$ is a subset of the vertex set $C \subseteq V$ such that for every two vertices in C there is an edge connecting the two.

Marco Patrignani Graph Theory K.U.Leuven 5/24

• A walk in a graph $G = (V, E, \phi)$ is an alternating sequence

$$(u_0, e_1, u_1, e_2, \ldots, e_k, u_k)$$

of vertices and edges that begins and ends with a vertex.

< ロ > < 回 > < 回 > < 回 > < 回 >

Marco Patrignani Graph Theory

6/24

イロト イポト イヨト イヨト

K.U.Leuven

6/24

• A walk in a graph $G = (V, E, \phi)$ is an alternating sequence

$$(u_0, e_1, u_1, e_2, \ldots, e_k, u_k)$$

of vertices and edges that begins and ends with a vertex.

2 A *trail* in G is a walk with all of its edges e_1, e_2, \ldots, e_k distinct.

(A walk in a graph $G = (V, E, \phi)$ is an alternating sequence

$$(u_0, e_1, u_1, e_2, \ldots, e_k, u_k)$$

of vertices and edges that begins and ends with a vertex.

- **2** A *trail* in G is a walk with all of its edges e_1, e_2, \ldots, e_k distinct.
- A path in G is a walk with all of its nodes u₀, e₁, ..., u_k distinct.

Graphs

Trees

• A walk in a graph $G = (V, E, \phi)$ is an alternating sequence

$$(u_0, e_1, u_1, e_2, \ldots, e_k, u_k)$$

of vertices and edges that begins and ends with a vertex.

- **2** A *trail* in G is a walk with all of its edges e_1, e_2, \ldots, e_k distinct.
- A path in G is a walk with all of its nodes u₀, e₁, ..., u_k distinct.
- A walk or trail of length at least one is *closed* if its initial vertex and final vertex are the same. A closed trail is also called a *circuit*.

Graphs

Trees

• A walk in a graph $G = (V, E, \phi)$ is an alternating sequence

$$(u_0, e_1, u_1, e_2, \ldots, e_k, u_k)$$

of vertices and edges that begins and ends with a vertex.

- 2 A trail in G is a walk with all of its edges e_1, e_2, \ldots, e_k distinct.
- **(a)** A path in G is a walk with all of its nodes u_0, e_1, \ldots, u_k distinct.
- A walk or trail of length at least one is *closed* if its initial vertex and final vertex are the same. A closed trail is also called a *circuit*.
- A cycle is a closed walk with distinct vertices except for the initial and final vertices, which are the same.

Types of graphs

Definition (Connected)

A graph *G* is *connected* if for every pair of distinct vertices $u, v \in V(G)$, there is a path from *u* to *v*. Otherwise we say that the graph is *disconnected*.

Marco Patrignani Graph Theory K.U.Leuven 7/24

Definition (Connected)

A graph G is connected if for every pair of distinct vertices $u, v \in V(G)$, there is a path from u to v. Otherwise we say that the graph is disconnected.

Definition (Connector components)

Let G be a graph. Let H_1, \ldots, H_k be connected subgraphs of G whose vertex sets and edge sets are pairwise disjoint and such that they *cover* all the vertices and edges of G. That is,

$$V(G) = V(H_1) \cup \cdots \cup V(H_k),$$

$$E(G) = E(H_1) \cup \cdots \cup E(H_k),$$

where $V(H_i) \cap V(H_j) = \emptyset = E(H_i) \cap E(H_j)$, for each distinct *i*, *j*.

Marco Patrignani

Graph Theory

Definition (Tree, Forest)

A *tree* is a connected graph that has no cycle as a subgraph. A *forest* is a graph in which every component is a tree.

Marco Patrignani Graph Theory K.U.Leuven 8/24

< ロ > < 回 > < 回 > < 回 > < 回 >

Definition (Tree, Forest)

A *tree* is a connected graph that has no cycle as a subgraph. A *forest* is a graph in which every component is a tree.

Definition (Leaf)

A vertex u of a simple graph G is called a *leaf* if $d_G(u) = 1$. A vertex that is not a leaf is called an *internal vertex*.

Spanning Trees

Definition

Let G be a graph.

- A subtree T of G is called a spanning tree of G if
 V(T) = V(G).
- A subforest F of G is called a *spanning forest* of G if for each component H of G, the subgraph F ∩ H is a spanning tree of H.

Kruskal's Algorithm

Kruskal's Algorithm

INPUT: A connected weighted graph (G, W) on *n* vertices. OUTPUT: A minimum cost spanning tree T on G. **begin**

$$T_1 = \emptyset.$$

for $i = 1$ to $n - 1$ do {
let $e_i \in E(G) \setminus E(T_i)$ be a minimum weight edge such
that $T_i \cup \{e_i\}$ is a forest;
 $T_{i+1} = T_i \cup \{e_i\}$; // that is, e_i along with its other
endpoint added
}
output $T = T_n$.
end

Marco Patrignani

Prim's Algorithm

Prim's Algorithm

INPUT: A connected weighted graph (G, W) on *n* vertices. OUTPUT: A minimum cost spanning tree T on G. **begin**

 $T_1 = (\{u_1\}, \emptyset).$ // u_i arbitrary initial vertex for i = 1 to n do {

let $e_i \in E(G) \setminus E(T_i)$ be a minimum weight edge such that $|V(T_i) \cap e_i| = 1$;

 $\mathcal{T}_{i+1} = \mathcal{T}_i \cup \{e_i\};$ // e_i with its other endpoint added

$$\begin{cases} \\ \text{output } T = T_n. \\ \text{end} \end{cases}$$

Marco Patrignani

э

イロト 不得 トイヨト イヨト

Marco Patrignani Graph Theory

Eulerian Graphs

Definition

Let G be a graph. A trail of G that contains each edge of G is called an *Eulerian trail* of G. A circuit of G that contains each edge of G is called an *Eulerian circuit* of G. If G has an Eulerian circuit, then G is called an *Eulerian graph*.

Marco Patrignani Graph Theory K.U.Leuven 13/24

Image: Image:

3 × 1

Properties of Eulerian Graphs

Theorem

A connected graph G is Eulerian if and only if each vertex in G has even degree.

Marco Patrignani Graph Theory K.U.Leuven 14/24

< ロ > < 回 > < 回 > < 回 > < 回 >

Properties of Eulerian Graphs

Theorem

A connected graph G is Eulerian if and only if each vertex in G has even degree.

Corollary

A connected graph G has an Eulerian trail if and only if all except two vertices in G have an even degree.

Marco Patrignani Graph Theory K.U.Leuven 14/24

Hamiltonian Graphs

Definition

Let G be a graph. A path in G that includes every vertex of G is called a *Hamiltonian path* of G. A cycle that includes every vertex in G is called a *Hamiltonian cycle* of G. If G contains a Hamiltonian cycle (that is a path), then G is called a *Hamiltonian graph*.

Marco Patrignani Graph Theory K.U.Leuven 15/24

Observations on Hamiltonian Graphs

• Every Hamiltonian graph must be connected.

Marco Patrignani Graph Theory K.U.Leuven 16/24

< ロ > < 回 > < 回 > < 回 > < 回 >

Observations on Hamiltonian Graphs

- Every Hamiltonian graph must be connected.
- No tree is Hamiltonian.

Marco Patrignani Graph Theory K.U.Leuven 16/24

< ロ > < 回 > < 回 > < 回 > < 回 >

イロト イヨト イヨト イヨト

K.U.Leuven

16/24

Observations on Hamiltonian Graphs

- Every Hamiltonian graph must be connected.
- No tree is Hamiltonian.
- For each $n \ge 3$, the cycle graph C_n is Hamiltonian.

Observations on Hamiltonian Graphs

- Every Hamiltonian graph must be connected.
- No tree is Hamiltonian.
- For each $n \ge 3$, the cycle graph C_n is Hamiltonian.
- For each $n \ge 3$, the complete graph K_n is Hamiltonian.

Observations on Hamiltonian Graphs

- Every Hamiltonian graph must be connected.
- No tree is Hamiltonian.
- For each $n \ge 3$, the cycle graph C_n is Hamiltonian.
- For each $n \ge 3$, the complete graph K_n is Hamiltonian.
- For each $n \ge 2$, the complete bipartite graph $K_{n,n}$ is Hamiltonian.

Properties of Hamiltonian Graphs

Theorem

If G is a simple Hamiltonian graph, then for each $S \subseteq V(G)$, the number of components of G - S is at most |S|.

Marco Patrignani Graph Theory K.U.Leuven 17/24

Example

Let the complete bipartite graph $K_{2,3}$ be presented on the vertices

$$V(K_{2,3}) = \{u_1, u_2, u_3\} \cup \{v_1, v_2\}.$$

where each u_i is connected to each v_j . If we let $S = \{v_1, v_2\}$, then |S| = 2 but G - S is a graph consisting of three isolated vertices u_1, u_2 and u_3 , and hence G - S has three components, one more than the elements of S.

Marco Patrignani Graph Theory K.U.Leuven 18/24

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Marco Patrignani Graph Theory

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Marco Patrignani Graph Theory

Example

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Marco Patrignani Graph Theory

Marco Patrignani Graph Theory

Marco Patrignani Graph Theory

23/24

