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Graphs Trees Fondamental Properties

Basic definitions

Definition (Graph)
A graph is an ordered triple
G = (V ,E , φ), where

1 V 6= ∅
2 V ∩ E = ∅
3 φ : E → P(V ) is a map such

that |φ(e)| ∈ {1, 2} for each
e ∈ E .

Definition (Directed Graph)
A directed graph or digraph is an
ordered triple ~G = (V ,E , η),
where

V 6= ∅.
V ∩ E = ∅.
η : E → V × V is a map.
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Graphs Trees Fondamental Properties

Types of graphs

Definition (Simple Graph)
G = (V ,E ), where V 6= ∅ and E is a set of 2-elements from V
such that E ⊆ {X | X ⊆ V , |X | = 2} = {{u, v} | u, v ∈ V , u 6= v}.

Definition (Complete Graph)
G = (V ,E ), where V 6= ∅ and E is a set of 2-elements from V
such a vertex is connected to all other vertices.

Definition (Bipartite graph)
A bipartite graph (or bigraph) is a graph whose vertices can be
divided into two disjoint sets U and V such that every edge
connects a vertex in U to one in V .
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Graphs Trees Fondamental Properties

Types of graphs

Definition (Subgraph)
For graphs G ′ = (V ′,E ′, φ′) and G = (V ,E , φ), we say that G ′ is
a subgraph of G if

1 V ′ ⊆ V ,
2 E ′ ⊆ E ,
3 φ′(e) = φ(e) for all e ∈ E ′.

Definition (Clique)
A clique in a graph G = (V ,E , φ) is a subset of the vertex set
C ⊆ V such that for every two vertices in C there is an edge
connecting the two.
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Graphs Trees Fondamental Properties

1 A walk in a graph G = (V ,E , φ) is an alternating sequence

(u0, e1, u1, e2, . . . , ek , uk)

of vertices and edges that begins and ends with a vertex.

2 A trail in G is a walk with all of its edges e1, e2, . . . , ek
distinct.

3 A path in G is a walk with all of its nodes u0, e1, . . . , uk
distinct.

4 A walk or trail of length at least one is closed if its initial
vertex and final vertex are the same. A closed trail is also
called a circuit.

5 A cycle is a closed walk with distinct vertices except for the
initial and final vertices, which are the same.
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Graphs Trees Fondamental Properties

Types of graphs

Definition (Connected)
A graph G is connected if for every pair of distinct vertices
u, v ∈ V (G), there is a path from u to v . Otherwise we say that
the graph is disconnected.

Definition (Connector components)
Let G be a graph. Let H1, . . . ,Hk be connected subgraphs of G
whose vertex sets and edge sets are pairwise disjoint and such that
they cover all the vertices and edges of G . That is,

V (G) = V (H1) ∪ · · · ∪ V (Hk),

E (G) = E (H1) ∪ · · · ∪ E (Hk),

where V (Hi) ∩ V (Hj) = ∅ = E (Hi) ∩ E (Hj), for each distinct i , j .
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Graphs Trees Fondamental Properties

Trees

Definition (Tree, Forest)
A tree is a connected graph that has no cycle as a subgraph. A
forest is a graph in which every component is a tree.

Definition (Leaf)
A vertex u of a simple graph G is called a leaf if dG(u) = 1. A
vertex that is not a leaf is called an internal vertex.
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Graphs Trees Fondamental Properties

Spanning Trees

Definition
Let G be a graph.

1 A subtree T of G is called a spanning tree of G if
V (T ) = V (G).

2 A subforest F of G is called a spanning forest of G if for each
component H of G , the subgraph F ∩ H is a spanning tree of
H.
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Graphs Trees Fondamental Properties

Kruskal’s Algorithm

Kruskal’s Algorithm
Input: A connected weighted graph (G ,W ) on n vertices.
Output: A minimum cost spanning tree T on G .
begin

T1 = ∅.
for i = 1 to n − 1 do {
let ei ∈ E (G) \ E (Ti) be a minimum weight edge such

that Ti ∪ {ei} is a forest;
Ti+1 = Ti ∪{ei}; // that is, ei along with its other

endpoint added
}
output T = Tn.

end
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Graphs Trees Fondamental Properties

Prim’s Algorithm

Prim’s Algorithm
Input: A connected weighted graph (G ,W ) on n vertices.
Output: A minimum cost spanning tree T on G .
begin

T1 = ({u1}, ∅). // ui arbitrary initial vertex
for i = 1 to n do {
let ei ∈ E (G) \ E (Ti) be a minimum weight edge such

that |V (Ti) ∩ ei | = 1;
Ti+1 = Ti ∪ {ei}; // ei with its other endpoint

added
}
output T = Tn.

end
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Graphs Trees Fondamental Properties

Example
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Graphs Trees Fondamental Properties

Eulerian Graphs

Definition
Let G be a graph. A trail of G that contains each edge of G is
called an Eulerian trail of G . A circuit of G that contains each
edge of G is called an Eulerian circuit of G . If G has an Eulerian
circuit, then G is called an Eulerian graph.
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Graphs Trees Fondamental Properties

Properties of Eulerian Graphs

Theorem

A connected graph G is Eulerian if and only if each vertex in G has
even degree.

Corollary

A connected graph G has an Eulerian trail if and only if all except
two vertices in G have an even degree.
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Graphs Trees Fondamental Properties

Hamiltonian Graphs

Definition
Let G be a graph. A path in G that includes every vertex of G is
called a Hamiltonian path of G . A cycle that includes every vertex
in G is called a Hamiltonian cycle of G . If G contains a
Hamiltonian cycle (that is a path), then G is called a Hamiltonian
graph.
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Graphs Trees Fondamental Properties

Observations on Hamiltonian Graphs

Every Hamiltonian graph must be connected.

No tree is Hamiltonian.
For each n ≥ 3, the cycle graph Cn is Hamiltonian.
For each n ≥ 3, the complete graph Kn is Hamiltonian.
For each n ≥ 2, the complete bipartite graph Kn,n is
Hamiltonian.
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Graphs Trees Fondamental Properties

Properties of Hamiltonian Graphs

Theorem

If G is a simple Hamiltonian graph, then for each S ⊆ V (G), the
number of components of G − S is at most |S|.
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Graphs Trees Fondamental Properties

Example

Example
Let the complete bipartite graph K2,3 be presented on the vertices

V (K2,3) = {u1, u2, u3} ∪ {v1, v2}.

where each ui is connected to each vj . If we let S = {v1, v2}, then
|S| = 2 but G − S is a graph consisting of three isolated vertices
u1, u2 and u3, and hence G − S has three components, one more
than the elements of S.
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