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Graphs

Basic definitions

Definition (Graph)
A graph is an ordered triple
G=(V,E,¢), where
Q@ V#ID
Q@ VNE=0
@ ¢: E— P(V)isamap such
that |¢(e)| € {1,2} for each
ecE.
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Definition (Directed Graph)

A directed gragh or digraph is an
ordered triple G = (V, E,n),
where

o VA0
e VNE=0.
e n:E—V xVisamap.
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Graphs

Types of graphs

Definition (Simple Graph)

G = (V,E), where V # () and E is a set of 2-elements from V
suchthat EC{X | X C V,|X|=2} ={{u,v} | uveV,u#v}
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Graphs

Types of graphs

Definition (Simple Graph)

G = (V,E), where V # () and E is a set of 2-elements from V
suchthat EC{X | X C V,|X|=2} ={{u,v} | uveV,u#v}

Definition (Complete Graph)

G = (V,E), where V # () and E is a set of 2-elements from V
such a vertex is connected to all other vertices.

Definition (Bipartite graph)

A bipartite graph (or bigraph) is a graph whose vertices can be
divided into two disjoint sets U and V such that every edge
connects a vertex in U to one in V.
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Graphs

Types of graphs

Definition (Subgraph)
For graphs G’ = (V', E’',¢') and G = (V, E, ¢), we say that G’ is
a subgraph of G if

Q V'cy,

Q@ E'CE,

Q ¢/'(e) = ¢(e) for all e € E'.
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Graphs

Types of graphs

Definition (Subgraph)
For graphs G' = (V' E',¢') and G = (V, E, ¢), we say that G’ is
a subgraph of G if

Q V'cy,

Q@ E'CE,

Q ¢/'(e) = ¢(e) for all e € E'.

Definition (Clique)
A clique in a graph G = (V, E, ¢) is a subset of the vertex set
C C V such that for every two vertices in C there is an edge

connecting the two.
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© A walkin a graph G = (V, E, ) is an alternating sequence

(UOa €1,U1,€2,...,¢€, Uk)

of vertices and edges that begins and ends with a vertex.
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of vertices and edges that begins and ends with a vertex.

@ A trailin G is a walk with all of its edges €1, e, ..., ex
distinct.
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called a circuit.
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© A walkin a graph G = (V, E, ) is an alternating sequence

(UOa €1,U1,€2,...,¢€, Uk)

of vertices and edges that begins and ends with a vertex.

@ A trailin G is a walk with all of its edges €1, e, ..., ex
distinct.

© A pathin G is a walk with all of its nodes wg, €1, ..., ux
distinct.

@ A walk or trail of length at least one is closed if its initial
vertex and final vertex are the same. A closed trail is also
called a circuit.

© A cycleis a closed walk with distinct vertices except for the
initial and final vertices, which are the same.
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Graphs

Types of graphs

Definition (Connected)

A graph G is connected if for every pair of distinct vertices
u,v € V(G), there is a path from u to v. Otherwise we say that
the graph is disconnected.

Marco Patrignani K.U.Leuven

Graph Theory



Fondamental Properties

Graphs

Types of graphs

Definition (Connected)

A graph G is connected if for every pair of distinct vertices
u,v € V(G), there is a path from u to v. Otherwise we say that
the graph is disconnected.

Definition (Connector components)

Let G be a graph. Let Hy, ..., Hy be connected subgraphs of G
whose vertex sets and edge sets are pairwise disjoint and such that
they cover all the vertices and edges of G. That is,

V(G) = V(Hi)U---UV(Hy),
E(G) = E(Hi1)U---UE(Hy),

where V(H;) N V(H;) = 0 = E(H;) N E(H;), for each distinct i, j.
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Definition (Tree, Forest)

A tree is a connected graph that has no cycle as a subgraph. A
forest is a graph in which every component is a tree.
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Definition (Tree, Forest)

A tree is a connected graph that has no cycle as a subgraph. A
forest is a graph in which every component is a tree.

Definition (Leaf)

A vertex u of a simple graph G is called a leaf if dg(u) =1. A
vertex that is not a leaf is called an internal vertex.
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Spanning Trees

Let G be a graph.

© A subtree T of G is called a spanning tree of G if
V(T) = V(G).
@ A subforest F of G is called a spanning forest of G if for each

component H of G, the subgraph F N H is a spanning tree of
H.
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Kruskal's Algorithm

Kruskal’s Algorithm
INPUT: A connected weighted graph (G, W) on n vertices.
OuTPUT: A minimum cost spanning tree T on G.
begin
T1 = 0.
fori=1ton—1do
let e, € E(G) \ E(T;) be a minimum weight edge such
that T; U {e;} is a forest;
Tit1 = TiU{e}; // that is, e; along with its other
endpoint added
}
output 7T = T,,.
end
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Prim's Algorithm

Prim’s Algorithm
INPUT: A connected weighted graph (G, W) on n vertices.
OuTPUT: A minimum cost spanning tree T on G.
begin

T ={w},0). // uj arbitrary initial vertex

for i=1to ndo {

let e, € E(G) \ E(T;) be a minimum weight edge such

that ’V(T,) N e,-| =1,

Tiv1 = T U{e}; // ei with its other endpoint
added
}
output 7T = T,,.
end
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Fondamental Properties

Eulerian Graphs

Definition

Let G be a graph. A trail of G that contains each edge of G is
called an Eulerian trail of G. A circuit of G that contains each
edge of G is called an Eulerian circuit of G. If G has an Eulerian
circuit, then G is called an Eulerian graph.
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Fondamental Properties

Properties of Eulerian Graphs

A connected graph G is Eulerian if and only if each vertex in G has
even degree.
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Fondamental Properties

Properties of Eulerian Graphs

A connected graph G is Eulerian if and only if each vertex in G has
even degree.

Corollary

A connected graph G has an Eulerian trail if and only if all except
two vertices in G have an even degree.
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Fondamental Properties

Hamiltonian Graphs

Definition

Let G be a graph. A path in G that includes every vertex of G is
called a Hamiltonian path of G. A cycle that includes every vertex
in G is called a Hamiltonian cycle of G. If G contains a
Hamiltonian cycle (that is a path), then G is called a Hamiltonian

graph.
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Fondamental Properties

Observations on Hamiltonian Graphs

@ Every Hamiltonian graph must be connected.
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Fondamental Properties

Observations on Hamiltonian Graphs

@ Every Hamiltonian graph must be connected.

@ No tree is Hamiltonian.
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Fondamental Properties

Observations on Hamiltonian Graphs

@ Every Hamiltonian graph must be connected.
@ No tree is Hamiltonian.

@ For each n > 3, the cycle graph C, is Hamiltonian.
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Fondamental Properties

Observations on Hamiltonian Graphs

Every Hamiltonian graph must be connected.
No tree is Hamiltonian.

For each n > 3, the cycle graph C, is Hamiltonian.

For each n > 3, the complete graph K, is Hamiltonian.
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Fondamental Properties

Observations on Hamiltonian Graphs

Every Hamiltonian graph must be connected.
No tree is Hamiltonian.
For each n > 3, the cycle graph C, is Hamiltonian.

For each n > 3, the complete graph K, is Hamiltonian.

For each n > 2, the complete bipartite graph K, , is
Hamiltonian.
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Fondamental Properties

Properties of Hamiltonian Graphs

If G is a simple Hamiltonian graph, then for each S C V(G), the
number of components of G — S is at most |S|.
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Fondamental Properties

Example

Example

Let the complete bipartite graph K>3 be presented on the vertices
V(Ka3) = {u1, uz2, uz} U{v1, va}.

where each u; is connected to each v;. If we let S = {vi, v»}, then
|S| =2 but G — S is a graph consisting of three isolated vertices

u1, up and w3z, and hence G — S has three components, one more
than the elements of S.
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