
Functional Programming

Marco Patrignani

K.U.Leuven

19 October 2012

Marco Patrignani K.U.Leuven
Functional Programming

Goal of the Lecture

remind/illustrate FP style, and related concepts;
remind why FP is important and its strong points.1

Introduce you to the syntax of Racket.

1J. Hughes. Why functional programming matters. Comput. J.,
32(2):98–107, April 1989.

Marco Patrignani K.U.Leuven
Functional Programming

Goal of the Lecture

remind/illustrate FP style, and related concepts;

remind why FP is important and its strong points.1

Introduce you to the syntax of Racket.

1J. Hughes. Why functional programming matters. Comput. J.,
32(2):98–107, April 1989.

Marco Patrignani K.U.Leuven
Functional Programming

Goal of the Lecture

remind/illustrate FP style, and related concepts;
remind why FP is important and its strong points.1

Introduce you to the syntax of Racket.

1J. Hughes. Why functional programming matters. Comput. J.,
32(2):98–107, April 1989.

Marco Patrignani K.U.Leuven
Functional Programming

Goal of the Lecture

remind/illustrate FP style, and related concepts;
remind why FP is important and its strong points.1

Introduce you to the syntax of Racket.

1J. Hughes. Why functional programming matters. Comput. J.,
32(2):98–107, April 1989.

Marco Patrignani K.U.Leuven
Functional Programming

Style of the Lecture

INTERACTIVE
With explanation on the side.

Marco Patrignani K.U.Leuven
Functional Programming

Style of the Lecture

INTERACTIVE

With explanation on the side.

Marco Patrignani K.U.Leuven
Functional Programming

Style of the Lecture

INTERACTIVE
With explanation on the side.

Marco Patrignani K.U.Leuven
Functional Programming

Organisation of the Lecture

1/2 (or more): FP

1/2 (or less): Racket syntax

Marco Patrignani K.U.Leuven
Functional Programming

Organisation of the Lecture

1/2 (or more): FP

1/2 (or less): Racket syntax

Marco Patrignani K.U.Leuven
Functional Programming

Functional Programming: Motivation

modularisation;

“no” side effects.

Marco Patrignani K.U.Leuven
Functional Programming

Functional Programming: Motivation

modularisation;

“no” side effects.

Marco Patrignani K.U.Leuven
Functional Programming

Functional Programming: Motivation

modularisation;

“no” side effects.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Outline

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

Divide et impera

: break a problem in subproblems and glue them
to solve the problem.

HOW? (what is the glue?)

algebraic data types (seen yesterday);
functions;
functions as first-class citizens (higher-order functions);
laziness.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

Divide et impera: break a problem in subproblems and glue them
to solve the problem.

HOW? (what is the glue?)

algebraic data types (seen yesterday);
functions;
functions as first-class citizens (higher-order functions);
laziness.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

Divide et impera: break a problem in subproblems and glue them
to solve the problem.

HOW?

(what is the glue?)

algebraic data types (seen yesterday);
functions;
functions as first-class citizens (higher-order functions);
laziness.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

Divide et impera: break a problem in subproblems and glue them
to solve the problem.

HOW? (what is the glue?)

algebraic data types (seen yesterday);
functions;
functions as first-class citizens (higher-order functions);
laziness.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

Divide et impera: break a problem in subproblems and glue them
to solve the problem.

HOW? (what is the glue?)

algebraic data types (seen yesterday);

functions;
functions as first-class citizens (higher-order functions);
laziness.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

Divide et impera: break a problem in subproblems and glue them
to solve the problem.

HOW? (what is the glue?)

algebraic data types (seen yesterday);
functions;

functions as first-class citizens (higher-order functions);
laziness.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

Divide et impera: break a problem in subproblems and glue them
to solve the problem.

HOW? (what is the glue?)

algebraic data types (seen yesterday);
functions;
functions as first-class citizens (higher-order functions);

laziness.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

Divide et impera: break a problem in subproblems and glue them
to solve the problem.

HOW? (what is the glue?)

algebraic data types (seen yesterday);
functions;
functions as first-class citizens (higher-order functions);
laziness.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

WHY?

code is smaller (strangely a good thing);
code can be reasoned about in isolation; (also, verified)
code can be reused. (similar motivation for OO programming!
what is the difference?)

Homework
Think about this!

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

WHY?
code is smaller (strangely a good thing);

code can be reasoned about in isolation; (also, verified)
code can be reused. (similar motivation for OO programming!
what is the difference?)

Homework
Think about this!

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

WHY?
code is smaller (strangely a good thing);
code can be reasoned about in isolation; (also, verified)

code can be reused. (similar motivation for OO programming!
what is the difference?)

Homework
Think about this!

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

WHY?
code is smaller (strangely a good thing);
code can be reasoned about in isolation; (also, verified)
code can be reused.

(similar motivation for OO programming!
what is the difference?)

Homework
Think about this!

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 1: Modular Code

WHY?
code is smaller (strangely a good thing);
code can be reasoned about in isolation; (also, verified)
code can be reused. (similar motivation for OO programming!
what is the difference?)

Homework
Think about this!

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Side effects are:

modify the value of a global/static variable; (well, who cares)
exceptions; (mmm)
input/output operations; (ouch!)

Maybe we need them.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Side effects are:
modify the value of a global/static variable;

(well, who cares)
exceptions; (mmm)
input/output operations; (ouch!)

Maybe we need them.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Side effects are:
modify the value of a global/static variable; (well, who cares)

exceptions; (mmm)
input/output operations; (ouch!)

Maybe we need them.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Side effects are:
modify the value of a global/static variable; (well, who cares)
exceptions;

(mmm)
input/output operations; (ouch!)

Maybe we need them.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Side effects are:
modify the value of a global/static variable; (well, who cares)
exceptions; (mmm)

input/output operations; (ouch!)

Maybe we need them.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Side effects are:
modify the value of a global/static variable; (well, who cares)
exceptions; (mmm)
input/output operations;

(ouch!)

Maybe we need them.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Side effects are:
modify the value of a global/static variable; (well, who cares)
exceptions; (mmm)
input/output operations; (ouch!)

Maybe we need them.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Side effects are:
modify the value of a global/static variable; (well, who cares)
exceptions; (mmm)
input/output operations; (ouch!)

Maybe we need them.

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Pros

variables do not change value;
(no state)

functions only compute their
result;
irrelevant order of execution!
parallelisable code!!

Cons

variables do not change value;
(no state)
no I/O, seriously?

Achievable via Monads (more on Dave’s lectures).

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Pros

variables do not change value;
(no state)
functions only compute their
result;

irrelevant order of execution!
parallelisable code!!

Cons

variables do not change value;
(no state)
no I/O, seriously?

Achievable via Monads (more on Dave’s lectures).

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Pros

variables do not change value;
(no state)
functions only compute their
result;
irrelevant order of execution!

parallelisable code!!

Cons

variables do not change value;
(no state)
no I/O, seriously?

Achievable via Monads (more on Dave’s lectures).

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Pros

variables do not change value;
(no state)
functions only compute their
result;
irrelevant order of execution!
parallelisable code!!

Cons

variables do not change value;
(no state)
no I/O, seriously?

Achievable via Monads (more on Dave’s lectures).

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Pros

variables do not change value;
(no state)
functions only compute their
result;
irrelevant order of execution!
parallelisable code!!

Cons

variables do not change value;
(no state)

no I/O, seriously?

Achievable via Monads (more on Dave’s lectures).

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Pros

variables do not change value;
(no state)
functions only compute their
result;
irrelevant order of execution!
parallelisable code!!

Cons

variables do not change value;
(no state)
no I/O, seriously?

Achievable via Monads (more on Dave’s lectures).

Marco Patrignani K.U.Leuven
Functional Programming

Motivation

Motivation 2: “No” Side Effects

Pros

variables do not change value;
(no state)
functions only compute their
result;
irrelevant order of execution!
parallelisable code!!

Cons

variables do not change value;
(no state)
no I/O, seriously?

Achievable via Monads (more on Dave’s lectures).

Marco Patrignani K.U.Leuven
Functional Programming

Algebraic Data Types

Outline

Marco Patrignani K.U.Leuven
Functional Programming

Algebraic Data Types

Algebraic Data Types and Pattern Matching

Algebraic data types are kind of a composite type (Nat in the
Scala assignment) based on the induction principle

Induction
provide a Base case;

provide a way to construct elements based on “smaller” elements.
(Inductive case)

Pattern matching is
you tell me! you were told yesterday!

Marco Patrignani K.U.Leuven
Functional Programming

Algebraic Data Types

Algebraic Data Types and Pattern Matching

Algebraic data types are kind of a composite type (Nat in the
Scala assignment) based on the induction principle

Induction
provide a Base case;

provide a way to construct elements based on “smaller” elements.
(Inductive case)

Pattern matching is
you tell me! you were told yesterday!

Marco Patrignani K.U.Leuven
Functional Programming

Algebraic Data Types

Algebraic Data Types and Pattern Matching

Algebraic data types are kind of a composite type (Nat in the
Scala assignment) based on the induction principle

Induction
provide a Base case;

provide a way to construct elements based on “smaller” elements.
(Inductive case)

Pattern matching is

you tell me! you were told yesterday!

Marco Patrignani K.U.Leuven
Functional Programming

Algebraic Data Types

Algebraic Data Types and Pattern Matching

Algebraic data types are kind of a composite type (Nat in the
Scala assignment) based on the induction principle

Induction
provide a Base case;

provide a way to construct elements based on “smaller” elements.
(Inductive case)

Pattern matching is
you tell me! you were told yesterday!

Marco Patrignani K.U.Leuven
Functional Programming

Algebraic Data Types

Algebraic Data Types and Pattern Matching

Coding time #1
Natural numbers, double, addition, multiplication, equality,
maximum.

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Outline

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions as First-class Citizens

??

Entity that can be constructed at run-time, passed as a parameter,
returned from a subroutine, or assigned into a variable.

What do we do with functions?

define them;
call them;
send them as parameters!

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions as First-class Citizens

??
Entity that can be constructed at run-time, passed as a parameter,
returned from a subroutine, or assigned into a variable.

What do we do with functions?

define them;
call them;
send them as parameters!

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions as First-class Citizens

??
Entity that can be constructed at run-time, passed as a parameter,
returned from a subroutine, or assigned into a variable.

What do we do with functions?

define them;
call them;
send them as parameters!

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions as First-class Citizens

??
Entity that can be constructed at run-time, passed as a parameter,
returned from a subroutine, or assigned into a variable.

What do we do with functions?

define them;
call them;
send them as parameters!

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions as First-class Citizens

??
Entity that can be constructed at run-time, passed as a parameter,
returned from a subroutine, or assigned into a variable.

What do we do with functions?

define them;
call them;
send them as parameters!

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions with Types

Extra reasoning when defining a function: TYPES.

A function that inputs a Nat and outputs a Nat is written:
Nat→Nat

A function that inputs two Nat’s and outputs a Nat is written:
Nat→Nat→Nat

The type checker ensures that the program is well-typed (in a
typed programming language).

This is lame...

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions with Types

Extra reasoning when defining a function: TYPES.
A function that inputs a Nat and outputs a Nat is written:

Nat→Nat

A function that inputs two Nat’s and outputs a Nat is written:
Nat→Nat→Nat

The type checker ensures that the program is well-typed (in a
typed programming language).

This is lame...

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions with Types

Extra reasoning when defining a function: TYPES.
A function that inputs a Nat and outputs a Nat is written:

Nat→Nat

A function that inputs two Nat’s and outputs a Nat is written:
Nat→Nat→Nat

The type checker ensures that the program is well-typed (in a
typed programming language).

This is lame...

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions with Types

Extra reasoning when defining a function: TYPES.
A function that inputs a Nat and outputs a Nat is written:

Nat→Nat

A function that inputs two Nat’s and outputs a Nat is written:
Nat→Nat→Nat

The type checker ensures that the program is well-typed (in a
typed programming language).

This is lame...

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions with Polimorphic Types

A function that inputs any type and returns that type:
∀a.a → a

This is the ****!

AND
The type checker can infer it automatically (more or less, in certain
languages).

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions with Polimorphic Types

A function that inputs any type and returns that type:
∀a.a → a

This is the ****!

AND
The type checker can infer it automatically (more or less, in certain
languages).

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions with Polimorphic Types

A function that inputs any type and returns that type:
∀a.a → a

This is the ****!

AND
The type checker can infer it automatically (more or less, in certain
languages).

Marco Patrignani K.U.Leuven
Functional Programming

Functions as First-class Citizens

Functions as First-class Citizens

Coding time #2
Lists, sum of elements of a list, tail recursive sum, length, append.

Marco Patrignani K.U.Leuven
Functional Programming

Higher-order Functions

Outline

Marco Patrignani K.U.Leuven
Functional Programming

Higher-order Functions

Functions with Better Types

A function that inputs an element of type a, a function from
any type a to another type b and outputs something of that
type b is written:

∀a, b. a → (a → b) → b

Higher order!

Marco Patrignani K.U.Leuven
Functional Programming

Higher-order Functions

Functions with Better Types

A function that inputs an element of type a, a function from
any type a to another type b and outputs something of that
type b is written:

∀a, b. a → (a → b) → b

Higher order!

Marco Patrignani K.U.Leuven
Functional Programming

Higher-order Functions

Higher-Order Functions

Coding time #3
Map, filter, foldr.

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

Outline

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.

Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] → b →(a → b → b)→ b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] → b → (a → b → b) → b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.
Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] → b → (a → b → b) → b

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

More Modularisation

Coding time #4
sum via foldr, append via foldr, length via foldr, map via foldr.

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

The Type of Function Composition

The operator . allows for functions to be combined in the classical
mathematical way.

Question:
Given f : c → a and g : b → c, what is the type of f .g ?

b → a

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

The Type of Function Composition

The operator . allows for functions to be combined in the classical
mathematical way.

Question:
Given f : c → a and g : b → c, what is the type of f .g ?

b → a

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

The Type of Function Composition

The operator . allows for functions to be combined in the classical
mathematical way.

Question:
Given f : c → a and g : b → c, what is the type of f .g ?

b → a

Marco Patrignani K.U.Leuven
Functional Programming

foldr’s, foldr’s everywhere!

More Modularisation

Coding time #4 bis
map via foldr.

Marco Patrignani K.U.Leuven
Functional Programming

More Complex Data Structures

Outline

Marco Patrignani K.U.Leuven
Functional Programming

More Complex Data Structures

What About ... ?

more complex data structures?

Does the foldr scale on them?

YES!
All inductively-defined data structures implicitly have a foldr.
It is the concept of catamorphism.

Marco Patrignani K.U.Leuven
Functional Programming

More Complex Data Structures

What About ... ?

more complex data structures?

Does the foldr scale on them?

YES!
All inductively-defined data structures implicitly have a foldr.
It is the concept of catamorphism.

Marco Patrignani K.U.Leuven
Functional Programming

More Complex Data Structures

What About ... ?

more complex data structures?

Does the foldr scale on them?

YES!
All inductively-defined data structures implicitly have a foldr.
It is the concept of catamorphism.

Marco Patrignani K.U.Leuven
Functional Programming

More Complex Data Structures

Binary Trees

Coding time #5
BTrees, foldr on trees, map on trees, map on trees via foldr, depth
via foldr.

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Outline

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness

What is laziness?

Why do we want/need laziness?

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness

What is laziness?
Why do we want/need laziness?

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness: What

Example: how do students study?

delay the computation until you need it;
“call by need” in the λ-calculus;

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness: What

Example: how do students study?

delay the computation until you need it;

“call by need” in the λ-calculus;

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness: What

Example: how do students study?

delay the computation until you need it;
“call by need” in the λ-calculus;

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness: Why

to avoid large and possibly diverging computation;

(2 == 2) || (isPrime 997)

Similar to short-circuit evaluation, except always!
to define infinite types (co-induction as opposed to induction);

data Stream a = Elem a (Stream a)

Once upon a time ...

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness: Why

to avoid large and possibly diverging computation;

(2 == 2) || (isPrime 997)

Similar to short-circuit evaluation, except always!

to define infinite types (co-induction as opposed to induction);

data Stream a = Elem a (Stream a)

Once upon a time ...

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness: Why

to avoid large and possibly diverging computation;

(2 == 2) || (isPrime 997)

Similar to short-circuit evaluation, except always!
to define infinite types (co-induction as opposed to induction);

data Stream a = Elem a (Stream a)

Once upon a time ...

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness: Why

to avoid large and possibly diverging computation;

(2 == 2) || (isPrime 997)

Similar to short-circuit evaluation, except always!
to define infinite types (co-induction as opposed to induction);

data Stream a = Elem a (Stream a)

Once upon a time ...

Marco Patrignani K.U.Leuven
Functional Programming

Laziness

Laziness

Coding time #6
All numbers, all the even ones, all the prime ones.

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Outline

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

download Racket, install it and open DrRacket;

above is the definitions area, below is the interaction one;
the first line defines the language you are using;
write something in the interaction area;
write something in the definition area and call it;
Racket is: functional and untyped, so you can write functions
that expect functions!

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

download Racket, install it and open DrRacket;
above is the definitions area, below is the interaction one;

the first line defines the language you are using;
write something in the interaction area;
write something in the definition area and call it;
Racket is: functional and untyped, so you can write functions
that expect functions!

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

download Racket, install it and open DrRacket;
above is the definitions area, below is the interaction one;
the first line defines the language you are using;

write something in the interaction area;
write something in the definition area and call it;
Racket is: functional and untyped, so you can write functions
that expect functions!

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

download Racket, install it and open DrRacket;
above is the definitions area, below is the interaction one;
the first line defines the language you are using;
write something in the interaction area;

write something in the definition area and call it;
Racket is: functional and untyped, so you can write functions
that expect functions!

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

download Racket, install it and open DrRacket;
above is the definitions area, below is the interaction one;
the first line defines the language you are using;
write something in the interaction area;
write something in the definition area and call it;

Racket is: functional and untyped, so you can write functions
that expect functions!

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

download Racket, install it and open DrRacket;
above is the definitions area, below is the interaction one;
the first line defines the language you are using;
write something in the interaction area;
write something in the definition area and call it;
Racket is: functional and untyped, so you can write functions
that expect functions!

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

conditional statements;

pattern-matching... on lists;
lambda functions.

Play with it before the next lectures.

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

conditional statements;
pattern-matching... on lists;

lambda functions.

Play with it before the next lectures.

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

conditional statements;
pattern-matching... on lists;
lambda functions.

Play with it before the next lectures.

Marco Patrignani K.U.Leuven
Functional Programming

Syntax

Racket

conditional statements;
pattern-matching... on lists;
lambda functions.

Play with it before the next lectures.

Marco Patrignani K.U.Leuven
Functional Programming

