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Goal of the Lecture

remind/illustrate FP style, and related concepts;
remind why FP is important and its strong points.1

Introduce you to the syntax of Racket.

1J. Hughes. Why functional programming matters. Comput. J.,
32(2):98–107, April 1989.
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INTERACTIVE
With explanation on the side.
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Organisation of the Lecture

1/2 (or more): FP

1/2 (or less): Racket syntax
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Functional Programming: Motivation

modularisation;

“no” side effects.
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Motivation

Motivation 1: Modular Code

Divide et impera

: break a problem in subproblems and glue them
to solve the problem.

HOW? (what is the glue?)

algebraic data types (seen yesterday);
functions;
functions as first-class citizens (higher-order functions);
laziness.
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Motivation

Motivation 1: Modular Code

WHY?

code is smaller (strangely a good thing);
code can be reasoned about in isolation; (also, verified)
code can be reused. (similar motivation for OO programming!
what is the difference?)

Homework
Think about this!
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Motivation

Motivation 2: “No” Side Effects

Side effects are:

modify the value of a global/static variable; (well, who cares)
exceptions; (mmm)
input/output operations; (ouch!)

Maybe we need them.
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Motivation

Motivation 2: “No” Side Effects

Pros

variables do not change value;
(no state)

functions only compute their
result;
irrelevant order of execution!
parallelisable code!!

Cons

variables do not change value;
(no state)
no I/O, seriously?

Achievable via Monads (more on Dave’s lectures).
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Algebraic Data Types

Algebraic Data Types and Pattern Matching

Algebraic data types are kind of a composite type (Nat in the
Scala assignment) based on the induction principle

Induction
provide a Base case;

provide a way to construct elements based on “smaller” elements.
(Inductive case)

Pattern matching is
you tell me! you were told yesterday!
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Algebraic Data Types

Algebraic Data Types and Pattern Matching

Coding time #1
Natural numbers, double, addition, multiplication, equality,
maximum.
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Functions as First-class Citizens

Functions as First-class Citizens

??

Entity that can be constructed at run-time, passed as a parameter,
returned from a subroutine, or assigned into a variable.

What do we do with functions?

define them;
call them;
send them as parameters!
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Functions as First-class Citizens

Functions with Types

Extra reasoning when defining a function: TYPES.

A function that inputs a Nat and outputs a Nat is written:
Nat→Nat

A function that inputs two Nat’s and outputs a Nat is written:
Nat→Nat→Nat

The type checker ensures that the program is well-typed (in a
typed programming language).

This is lame...
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Functions as First-class Citizens

Functions with Polimorphic Types

A function that inputs any type and returns that type:
∀a.a → a

This is the ****!

AND
The type checker can infer it automatically (more or less, in certain
languages).
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Functions as First-class Citizens

Functions as First-class Citizens

Coding time #2
Lists, sum of elements of a list, tail recursive sum, length, append.

Marco Patrignani K.U.Leuven
Functional Programming



Higher-order Functions

Outline

Marco Patrignani K.U.Leuven
Functional Programming



Higher-order Functions

Functions with Better Types

A function that inputs an element of type a, a function from
any type a to another type b and outputs something of that
type b is written:

∀a, b. a → (a → b) → b

Higher order!
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Higher-order Functions

Higher-Order Functions

Coding time #3
Map, filter, foldr.
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foldr’s, foldr’s everywhere!
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foldr’s, foldr’s everywhere!

foldr

The structure of a foldr is not new.

Consider the list [1, 1, 1].

cons

1 cons

1 cons

1 nil

What is the type of cons?

∀a. a → [a] → [a]

And the type of nil?

∀a.[a]

The type of a foldr is:

∀a, b. [a] →b→(a → b → b)→ b
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foldr’s, foldr’s everywhere!

More Modularisation

Coding time #4
sum via foldr, append via foldr, length via foldr, map via foldr.
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foldr’s, foldr’s everywhere!

The Type of Function Composition

The operator . allows for functions to be combined in the classical
mathematical way.

Question:
Given f : c → a and g : b → c, what is the type of f .g ?

b → a
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foldr’s, foldr’s everywhere!

More Modularisation

Coding time #4 bis
map via foldr.
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More Complex Data Structures

What About ... ?

more complex data structures?

Does the foldr scale on them?

YES!
All inductively-defined data structures implicitly have a foldr.
It is the concept of catamorphism.
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More Complex Data Structures

Binary Trees

Coding time #5
BTrees, foldr on trees, map on trees, map on trees via foldr, depth
via foldr.
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Laziness

Laziness

What is laziness?

Why do we want/need laziness?
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Laziness

Laziness: What

Example: how do students study?

delay the computation until you need it;
“call by need” in the λ-calculus;
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Laziness

Laziness: Why

to avoid large and possibly diverging computation;

(2 == 2) || (isPrime 997)

Similar to short-circuit evaluation, except always!
to define infinite types (co-induction as opposed to induction);

data Stream a = Elem a (Stream a)

Once upon a time ...
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Laziness

Laziness

Coding time #6
All numbers, all the even ones, all the prime ones.

Marco Patrignani K.U.Leuven
Functional Programming



Syntax

Outline
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Syntax

Racket

download Racket, install it and open DrRacket;

above is the definitions area, below is the interaction one;
the first line defines the language you are using;
write something in the interaction area;
write something in the definition area and call it;
Racket is: functional and untyped, so you can write functions
that expect functions!
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Syntax

Racket

conditional statements;

pattern-matching... on lists;
lambda functions.

Play with it before the next lectures.
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