
Universal Composability is
Secure Compilation

Marco Patrignani1,2 Riad S. Wahby1 Robert Künneman2

25th January 2020

1 2



Goal

Unveil a similarity between two fields

Explore how each field can benefit from the
other

1/19



Goal

Unveil a similarity between two fields

Explore how each field can benefit from the
other

1/19



Fields

UC SC

2/19



Fields: UC

UC

2/19



Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC1, SaUCy 2, iUC 3

This talk: generic presentation, geared towards
the newer theories SaUCy and iUC

1Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”
3Camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”

3/19



Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC1, SaUCy 2, iUC 3

This talk: generic presentation, geared towards
the newer theories SaUCy and iUC

1Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”
3Camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”

3/19



Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC1, SaUCy 2, iUC 3

This talk: generic presentation, geared towards
the newer theories SaUCy and iUC

1Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”
3Camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”

3/19



Universal Composability: UC

• gold standard for proving security of crypto
protocols under concurrent composition

• overcome main drawback in protocol
vulnerabilities: composition

• many flavours: UC1, SaUCy 2, iUC 3

This talk: generic presentation, geared towards
the newer theories SaUCy and iUC

1Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”
3Camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”

3/19



UC Base Notions: ITMs 4

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

4From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

4/19



UC Base Notions: ITMs 4

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

4From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

4/19



UC Base Notions: ITMs 4

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)

4From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

4/19



UC Base Notions: ITMs 4

• protocols Π (using concrete crypto)

• functionalities F (using abstract notions)

• attackers A & S (corrupting parties etc.)

• environments Z (objective witness)
4From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

4/19



UC (Semi-formally)

Π A

Z

0/1

F S

Z

0/1

≈

↔ represent communication channels

Π ⊢UC F def= ∀poly A,∃S,∀Z.

Exec[Z,A,Π] ≈ Exec[Z,S,F]

5/19



UC (Semi-formally)

Π A

Z

0/1

F S

Z

0/1

≈

↔ represent communication channels

Π ⊢UC F def= ∀poly A,∃S,∀Z.

Exec[Z,A,Π] ≈ Exec[Z,S,F]
5/19



UC, Pros and Cons

• modularise
protocols

• small building
blocks

• reusable results

1. informal formalism
2. pseudocode protocols
3. (PL-wise) informal
proofs

4. no (ish) mechanisation

Existing work (SaUCy and iUC): points 1 and 2

Our work: points 3 and 4

6/19



UC, Pros and Cons

• modularise
protocols

• small building
blocks

• reusable results

1. informal formalism
2. pseudocode protocols
3. (PL-wise) informal
proofs

4. no (ish) mechanisation

Existing work (SaUCy and iUC): points 1 and 2

Our work: points 3 and 4

6/19



UC, Pros and Cons

• modularise
protocols

• small building
blocks

• reusable results

1. informal formalism
2. pseudocode protocols
3. (PL-wise) informal
proofs

4. no (ish) mechanisation

Existing work (SaUCy and iUC): points 1 and 2

Our work: points 3 and 4

6/19



UC, Pros and Cons

• modularise
protocols

• small building
blocks

• reusable results

1. informal formalism
2. pseudocode protocols
3. (PL-wise) informal
proofs

4. no (ish) mechanisation

Existing work (SaUCy and iUC): points 1 and 2

Our work: points 3 and 4

6/19



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1]

• then Πbig ⊢UC Fbig =
Πpart [Π1]⊢UC Fbig =
Πpart [Π1]⊢UC Πpart [F1]

7/19



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1] recall they are all ITMs

• then Πbig ⊢UC Fbig =
Πpart [Π1]⊢UC Fbig =
Πpart [Π1]⊢UC Πpart [F1]

7/19



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1]
• then Πbig ⊢UC Fbig

=
Πpart [Π1]⊢UC Fbig =
Πpart [Π1]⊢UC Πpart [F1]

7/19



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1]
• then Πbig ⊢UC Fbig =

Πpart [Π1]⊢UC Fbig

=
Πpart [Π1]⊢UC Πpart [F1]

7/19



UC Beneifts: Compositionality

• if Π1 ⊢UC F1
• and Πbig

def= Πpart [Π1]
• and Fbig

def= Πpart [F1]
• then Πbig ⊢UC Fbig =

Πpart [Π1]⊢UC Fbig =
Πpart [Π1]⊢UC Πpart [F1]

7/19



Fields

UC SC

8/19



Fields: SC

SC

8/19



Secure Compilation: SC

• many criteria: FAC 5, TPC 6, RSCC 7, . . .

5Abadi. 1998. “Protection in Programming-Language Translations”
6Patrignani, Garg. 2017. “Secure Compilation and Hyperproperties Preservation”
7Abate et al. 2018. “When Good Components Go Bad . . . ”

9/19



Secure Compilation: SC

• many criteria: FAC 5, TPC 6, RSCC 7, . . .

5Abadi. 1998. “Protection in Programming-Language Translations”
6Patrignani, Garg. 2017. “Secure Compilation and Hyperproperties Preservation”
7Abate et al. 2018. “When Good Components Go Bad . . . ”

9/19



Robust Criteria for SC

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la
tio
na
l

Hy
pe
rp
ro
pe
rt
ie
s

Hy
pe
rp
ro
pe
rt
ie
s

Tr
ac
e

Pr
op
er
tie
s

Abate et al. 2019. “Journey Beyond Full Abstraction . . . ”
10/19



Robust Criteria for SC

Robust Relational Hyperproperty
Preservation

Robust K-Relational Hyperproperty
Preservation

Robust 2-Relational Hyperproperty
Preservation

Robust Relational Property
Preservation

Robust K-Relational Property
Preservation

Robust 2-Relational Property
Preservation

Robust Relational relaXed safety
Preservation

Robust Finite-Relational relaXed
safety Preservation

Robust K-Relational relaXed
safety Preservation

Robust 2-Relational relaXed
safety Preservation

Robust Relational Safety
Preservation

Robust Finite-Relational
Safety Preservation

Robust K-Relational Safety
Preservation

Robust 2-Relational Safety
Preservation

Robust Hyperproperty
Preservation

Robust Subset-Closed Hyperproperty
Preservation

Robust K-Subset-Closed Hyperproperty
Preservation

Robust 2-Subset-Closed Hyperproperty
Preservation

Robust Trace Property Preservation

Robust Hypersafety Preservation

Robust K-Hypersafety Preservation

Robust 2-Hypersafety Preservation

Robust Safety Property PreservationRobust Dense Property Preservation

Robust Trace Equivalence
Preservation

Robust Termination-Insensitive
Noninterference Preservation

+ determinacy

Re
la
tio
na
l

Hy
pe
rp
ro
pe
rt
ie
s

Hy
pe
rp
ro
pe
rt
ie
s

Tr
ac
e

Pr
op
er
tie
s

Abate et al. 2019. “Journey Beyond Full Abstraction . . . ”
10/19



Robust Hyperproperty Preservation: RHC

AJPK &
t

↝

AP &
t

↝

⇐⇒

J⋅K ⊢ RHC
def= ∀P ,A.∃A.∀t .
A & JPK↝t ⇐⇒ A &P↝t

11/19



Robust Hyperproperty Preservation: RHC

AJPK &
t

↝

AP &
t

↝

⇐⇒

J⋅K ⊢ RHC
def= ∀P ,A.∃A.∀t .
A & JPK↝t ⇐⇒ A &P↝t

11/19



A Closer Look

∀poly A,∃S,∀Z. ∀P ,A.∃A.∀t .

Π A

Z

0/1

F S

Z

0/1

≈
AJPK &

t

↝

AP &
t

↝

⇐⇒

12/19



Analogy

UC SC

protocol Π JPK compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator S A source context
environment, output Z, 0/1 t , ↝ trace, semantics
communication ↔ & linking
probabilistic equiv. ≈ ⇐⇒ trace equality

human translation Π → F J⋅K: P → P compiler
general composition result . . .

13/19



Analogy

UC SC

protocol Π JPK compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator S A source context
environment, output Z, 0/1 t , ↝ trace, semantics
communication ↔ & linking
probabilistic equiv. ≈ ⇐⇒ trace equality

human translation Π → F J⋅K: P → P compiler
general composition result . . .

13/19



Our Claim

UC and RHC are similar enough so that we can
reuse metatheoretical results of one system for

the other

14/19



Benefits

Cryptographers:

• must specify hidden UC assumptions8
• more formal UC proofs
• mechanisation of UC results

Secure-compilationers:

• understand composition of SC results

more?

8As advocated by: Barbosa et al. 2019. “SoK: Computer-aided Cryptography”

15/19



Benefits

Cryptographers:

• must specify hidden UC assumptions8
• more formal UC proofs
• mechanisation of UC results

Secure-compilationers:

• understand composition of SC results

more?

8As advocated by: Barbosa et al. 2019. “SoK: Computer-aided Cryptography”

15/19



Benefits

Cryptographers:

• must specify hidden UC assumptions8
• more formal UC proofs
• mechanisation of UC results

Secure-compilationers:

• understand composition of SC results

more?
8As advocated by: Barbosa et al. 2019. “SoK: Computer-aided Cryptography”

15/19



UC Roadmap

1. • formalise simple functionalities and protocols
in ILC

• prove their compiler is RHC

2. • formally prove (a version of) UC (iUC) and
RHC are equivalent

16/19



UC Roadmap

1. • formalise simple functionalities and protocols
in ILC

• prove their compiler is RHC

2. • formally prove (a version of) UC (iUC) and
RHC are equivalent

16/19



SC Roadmap

• RHC defined for J⋅K but paper mentions
chains = compiler, linker(s), . . . = (J⋅K,&,&)

Assuming these are RHC :

• (J⋅KST,&,&) (J⋅KOT,&,&) (J⋅KTB,&,&)
What can we say about:

• (J⋅KSB = J⋅KST ○ J⋅KTB,&,&)?
• (J⋅KS∪OT = J⋅KST ∪ J⋅KOT,& ∪ &,&)?
• P = JPKST&JPKOT

17/19



SC Roadmap

• RHC defined for J⋅K but paper mentions
chains = compiler, linker(s), . . . = (J⋅K,&,&)

Assuming these are RHC :

• (J⋅KST,&,&) (J⋅KOT,&,&) (J⋅KTB,&,&)
What can we say about:

• (J⋅KSB = J⋅KST ○ J⋅KTB,&,&)?

• (J⋅KS∪OT = J⋅KST ∪ J⋅KOT,& ∪ &,&)?
• P = JPKST&JPKOT

17/19



SC Roadmap

• RHC defined for J⋅K but paper mentions
chains = compiler, linker(s), . . . = (J⋅K,&,&)

Assuming these are RHC :

• (J⋅KST,&,&) (J⋅KOT,&,&) (J⋅KTB,&,&)
What can we say about:

• (J⋅KSB = J⋅KST ○ J⋅KTB,&,&)?
• (J⋅KS∪OT = J⋅KST ∪ J⋅KOT,& ∪ &,&)?

• P = JPKST&JPKOT

17/19



SC Roadmap

• RHC defined for J⋅K but paper mentions
chains = compiler, linker(s), . . . = (J⋅K,&,&)

Assuming these are RHC :

• (J⋅KST,&,&) (J⋅KOT,&,&) (J⋅KTB,&,&)
What can we say about:

• (J⋅KSB = J⋅KST ○ J⋅KTB,&,&)?
• (J⋅KS∪OT = J⋅KST ∪ J⋅KOT,& ∪ &,&)?
• P = JPKST&JPKOT

17/19



But Fully Abstract Compilation . . .

Π A

Z

0/1

F S

Z

0/1

≈ A ⇓JP1 K &

A ⇓JP2 K &

⇐⇒ A ⇓P1 &

A ⇓P2 &

⇐⇒⇐⇒

FAC is relational, RHC is propositional, like UC

18/19



But Fully Abstract Compilation . . .

18/19



Questions?

19/19



But What is the ∀P?

• each pair P-JPK is a pair of UC F-Π

• JPKST =
⎧⎪⎪⎨⎪⎪⎩
P if P⊢UCP
P otherwise

in this interpretation, S and T are ITMs

19/19



But Attackers and Environments . . .

• UC works employ a dummy attacker

• the ∀Z accounts for attacker behaviour
• Z has some “objective” behaviour

• we leave the attacker business in A

• and the semantics (↝) to the objectivity
this is similar to the EasyUC work

19/19



But Attackers and Environments . . .

• UC works employ a dummy attacker

• the ∀Z accounts for attacker behaviour
• Z has some “objective” behaviour
• we leave the attacker business in A

• and the semantics (↝) to the objectivity
this is similar to the EasyUC work

19/19



But UC was Mechanised in EasyCrypt9

• with a titanic effort
• our analogy is tool-indipendent
• some similarities between the approaches
(see next)

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”

19/19



But UC was Mechanised in EasyCrypt9

• with a titanic effort

• our analogy is tool-indipendent
• some similarities between the approaches
(see next)

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”

19/19



But UC was Mechanised in EasyCrypt9

• with a titanic effort
• our analogy is tool-indipendent

• some similarities between the approaches
(see next)

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”

19/19



But UC was Mechanised in EasyCrypt9

• with a titanic effort
• our analogy is tool-indipendent
• some similarities between the approaches
(see next)

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”

19/19


