Universal Composability is
Secure Compilation

Marco Patrignani'? Riad S. Wahby! Robert Kiinneman?

-

5" January 2020

CISPA

EEEEEEEEEEEEEEEEE

[Stanford

University 2 o

Unveil a similarity between two fields

1/19

Unveil a similarity between two fields

Explore how each field can benefit from the
other

1/19

2/19

Fields: UC

UucC

Universal Composability: UC

- gold standard for proving security of crypto
protocols under concurrent composition

3/19

Universal Composability: UC

- gold standard for proving security of crypto
protocols under concurrent composition

- overcome main drawback in protocol
vulnerabilities: composition

3/19

Universal Composability: UC

- gold standard for proving security of crypto
protocols under concurrent composition

- overcome main drawback in protocol
vulnerabilities: composition

- many flavours: UC, SaUCy 2, iUC 3

Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”

3camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”
3/19

Universal Composability: UC

- gold standard for proving security of crypto
protocols under concurrent composition

- overcome main drawback in protocol
vulnerabilities: composition

- many flavours: UC, SaUCy 2, iUC 3

This talk: generic presentation, geared towards
the newer theories SaUCy and iUC

Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”

3camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”
3/19

UC Base Notions: ITMs

protocols [(using concrete crypto)

commitment for b€ {0,1} with SID sid:

Go forb=1

Upon receiving (Com, sid. y) from P,, P; outputs (Receipt. sid, cid. P;, P;)

“From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

4/19

UC Base Notions: ITMs

. protocols [(using concrete crypto)

commitment for b€ {0,1} with SID sid:

r random r € {0,1}"
for b = 0. or (-"‘_.-..I')Eo forb=1

“From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

4/19

UC Base Notions: ITMs

protocols [(using concrete crypto)

commitment for 0,1} with SID sid:

compute random r € {0,1}"
set y = G [[3

oforb=1
send (C

Com. sid. y) from F,. P; outputs (Receipt. sid, cid, P;.

+ attackers A &

(corrupting parties etc.)

“From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

4/19

UC Base Notions: ITMs

protocols [(using concrete crypto)

commitment for 0,1} with SID sid:

compute random r € {0,1}"
set y = G [[3

oforb=1
send (C

Com. sid. y) from F,. P; outputs (Receipt. sid, cid, P;.

+ attackers A &

(corrupting parties etc.)
« environments Z (objective witness)

“From: Canetti, Fischlin. 2001. “Universally Composable Commitments”

4/19

UC (Semi-formally)

0/1 0/1

0 ()

/ /
/N TN
[—— A —

< represent communication channels

UC (Semi-formally)

0/1 0/1

0 ()

/ /
/N TN

[T —— A —
< represent communication channels
MrycF < Vpoly A, 33, VZ.
EXEC[Z,A,] ~ EXEC[Z, S, F]

5/19

UC, Pros and Cons

- modularise
protocols

- small building
blocks

« reusable results

6/19

UC, Pros and Cons

- modularise
protocols

- small building
blocks

« reusable results

1. informal formalism
2. pseudocode protocols

3. (PL-wise) informal
proofs

4. no (ish) mechanisation

6/19

UC, Pros and Cons

- modularise 1. informal formalism
protocols 2. pseudocode protocols

- small building 3. (PL-wise) informal
blocks proofs

- reusable results 4 no (ish) mechanisation

Existing work (SaUCy and iUC): points 1 and 2

6/19

UC, Pros and Cons

- modularise 1. informal formalism
protocols 2. pseudocode protocols

- small building 3. (PL-wise) informal
blocks proofs

- reusable results 4 no (ish) mechanisation

Existing work (SaUCy and iUC): points 1 and 2

Our work: points 3 and 4

6/19

UC Beneifts: Compositionality

° |f I_I1|—UC
+ and ﬂbig d:efl—lpart [I"Il]
- and = Mo [F4]

7/19

UC Beneifts: Compositionality

° |f |_|1 Fuc
def
+ and ﬂbig = I—Ipart [I"Il]
« and E Hpart [] recall they are all ITMs

7/19

UC Beneifts: Compositionality

« if My ~yc

» and Myig = Mpare [M1]
- and = Mo [F4]
then Myig Fuc

7/19

UC Beneifts: Compositionality

« if My ~yc

» and Myig = Mpare [M1]
- and = Mo [F4]
then Myig Fuc =
Moare [M1] Fuc

7/19

UC Beneifts: Compositionality

if My Fuc

and Myig = Mo [M4]

- and = Mo [F4]
then Myig Fuc =
Moare [M1] Fuc =
Moare [M1] Fuc Mpart [F1]

7/19

8/19

Fields: SC

SC

Secure Compilation: SC

9/19

Secure Compilation: SC

- many criteria: FACS, TPC®, RSC(C7, ...

5Abadi. 1998. “Protection in Programming-Language Translations”
6Patrignani, Garg. 2017. “Secure Compilation and Hyperproperties Preservation”
7 Abate et al. 2018. “When Good Components Go Bad ..."

9/19

Relational
Hyperproperties

Hyperproperties

Trace
Properties

Robust Criteria

Robust Relational Hyperproperty
Preservation \ Robust Relational Property

| . o 9
. Preservation
Robust K-Relational Hyperproperty Robust Relational rglaXed safety
q Preservation
Preservation :
| / _ Robust Finite-Relational relaXed N
Robust 2-Relational Hyperproperty /Robust K -Relational Property safety Preservation Preservation
Preservation [Preservation
| ‘ N
Robust 2-Relational Property Robust K-Relational relaXed Robust Finite-Relational

Preservation safety Preservation Safety Preservation

Robust Relational Safety

Robust Hyperproperty ™/
Preservation | “/
| V /
Robust Subset-Closed Hyperproperty | .
Preservation |7 Robust Trace qulvalence

| | 4 / Preservation

Robust K-Subset-Closed Hyperpropert/y
Preservation / Robust 2-Relational Safety
| Yy ‘ / // Preservation

Robust 2-Subset-Closed Hyperproperty Robust K-Hypersafety Preservation =
Presgqvgtion

|
Robust 2-Relational relaXed
safety Preservation

+determinacy, .- X
o Robust K'-Relational Safety

Preservation

Robust Hypersafety Preservation A~ =

Robust 2-Hypersafety Preservation —___
Robust Termination-Insensitive
Noninterference Preservation

Robust Trace Property Preservation
| \

Robust Dense Property Preservation Robust Safety Property Preservation

Abate et al. 2019. “Journey Beyond Full Abstraction ...”

10/19

Relational
Hyperproperties

Hyperproperties

Trace
Properties

Robust Criteria

Robust Relational Hyperproperty
Preservation \ Robust Relational Property

| . o 9
. Preservation
Robust K-Relational Hyperproperty Robust Relational rglaXed safety
q Preservation
Preservation :
| / _ Robust Finite-Relational relaXed N
Robust 2-Relational Hyperproperty /Robust K -Relational Property safety Preservation Preservation
Preservation [Preservation
| ‘ N
Robust 2-Relational Property Robust K-Relational relaXed Robust Finite-Relational

Preservation safety Preservation Safety Preservation

Robust Relational Safety

Robust Hyperproperty ™/ |
Preservation V/ ‘/ / Robust 2-Relational relaXed

safety Preservation

/ +determinacy, .- X
o Robust K'-Relational Safety

. I
Robust Subset-Closed Hyperproper /' .
/ Preservation

Preservation |7 Robust Trace quivalence
| | 4 / Preservation
Robust K-Subset-Closed Hyperpropert/y
Preservation / / Robust 2-Relational Safety
| Yy ‘ // Preservation

Robust 2-Subset-Closed Hyperproperty Robust K-Hypersafety Preservation =
Presgqvgtion

Robust Hypersafety Preservation A~ =

Robust 2-Hypersafety Preservation —___
Robust Termination-Insensitive
Noninterference Preservation

Robust Trace Property Preservation
| \

Robust Dense Property Preservation Robust Safety Property Preservation

Abate et al. 2019. “Journey Beyond Full Abstraction ...”

10/19

Robust Hyperproperty Preservation: RHC

11/19

Robust Hyperproperty Preservation: RHC

[[]+ RHC TVP, A JAVE
A x [[P]]Aaf > AxP~t

11/19

A Closer Look

Vpoly A, 3s,VZ. VP,A.JA. VL.
0/1 0/1

~|

~
-

4
~
—
X ~7 o]

[re—.\ Fe—sS | [P] » A= P A

12/19

uc SC
protocol M [P] compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator s A source context
environment, output Z,0/1 {,~ trace, semantics
communication o linking
probabilistic equiv. N = trace equality

13/19

| uc | SC |
protocol M| [P] compiled program
concrete attacker AlA target context
ideal functionality F|P source program
simulator S| A source context
environment, output Z,0/1 | {,~ trace, semantics
communication < | X linking
probabilistic equiv. r | = trace equality
human translation I - ¥ | []: 7 — P compiler
general composition result

13/19

UC and RHC are similar enough so that we can
reuse metatheoretical results of one system for
the other

14/19

Cryptographers:

- must specify hidden UC assumptions?®
« more formal UC proofs
« mechanisation of UC results

8As advocated by: Barbosa et al. 2019. “SoK: Computer-aided Cryptography”

15/19

Cryptographers:

- must specify hidden UC assumptions?®
« more formal UC proofs
« mechanisation of UC results

Secure-compilationers:

- understand composition of SC results

8As advocated by: Barbosa et al. 2019. “SoK: Computer-aided Cryptography”

15/19

Cryptographers:

- must specify hidden UC assumptions?®
« more formal UC proofs
« mechanisation of UC results

Secure-compilationers:

- understand composition of SC results

more?

8As advocated by: Barbosa et al. 2019. “SoK: Computer-aided Cryptography”

15/19

UC Roadmap

1. - formalise simple functionalities and protocols
inILC
« prove their compiler is RHC

16/19

UC Roadmap

1. - formalise simple functionalities and protocols
inILC
« prove their compiler is RHC

2. - formally prove (a version of) UC (iUC) and
RHC are equivalent

16/19

SC Roadmap

« RHC defined for [-] but paper mentions
chains = compiler, linker(s), ...= ([-], », %)

17/19

SC Roadmap

« RHC defined for [-] but paper mentions
chains = compiler, linker(s), ...= ([-], », %)

Assuming these are RHC:
* () ([lpor) (FLEm)

What can we say about:

([15 = [l 0[5, 0,)?

17/19

SC Roadmap

« RHC defined for [-] but paper mentions
chains = compiler, linker(s), ...= ([-], », %)

Assuming these are RHC:
* () ([lpor) (FLEm)

What can we say about:

© (105 = i 0 15, 5,2
([0 = 15 0 [w0,)2

17/19

SC Roadmap

« RHC defined for [-] but paper mentions
chains = compiler, linker(s), ...= ([-], », %)

Assuming these are RHC:
* () ([lpor) (FLEm)
What can we say about:
C (L5 = [o 115, ,)?

([= [T o [lps o,)?
+ P = [Plp=[Plr

17/19

But Fully Abstract Compilation ...

[Pi] » Al Py x Al

/N TN I =

[i\ — [[Pg]] x Al Py x gl

FAC is relational, RHC is propositional, like UC

18/19

But Fully Abstract Compilation ...

Fully
Abstract
 Compilation

Robust
Compilation

18/19

19/19

But What is the vV ?

- each pair P-[P] is a pair of UC F-T1

S _ P ifPI—U(:P
* [[P]]T = }
P otherwise

in this interpretation, S and T are ITMs

19/19

But Attackers and Environments...

« UC works employ a dummy attacker
- the VZ accounts for attacker behaviour
- Z has some “objective” behaviour

19/19

But Attackers and Environments...

UC works employ a dummy attacker

the VZ accounts for attacker behaviour

Z has some “objective” behaviour

we leave the attacker business in A

and the semantics (~) to the objectivity

this is similar to the EasyUC work

19/19

But UC was Mechanised in EasyCrypt®

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”

19/19

But UC was Mechanised in EasyCrypt®

« with a titanic effort

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”

19/19

But UC was Mechanised in EasyCrypt®

- with a titanic effort
- our analogy is tool-indipendent

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”

19/19

But UC was Mechanised in EasyCrypt®

- with a titanic effort
- our analogy is tool-indipendent

- some similarities between the approaches
(see next)

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”

19/19

