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Universal Composability: UC

- gold standard for proving security of crypto
protocols under concurrent composition

- overcome main drawback in protocol
vulnerabilities: composition

- many flavours: UC, SaUCy 2, iUC 3

This talk: generic presentation, geared towards
the newer theories SaUCy and iUC

Canetti. 2001. “Universally composable security”
2Liao et al. 2019. “ILC: A Calculus for Composable, Computational Cryptography”

3camenisch et al. 2019 “iUC: Flexible Universal Composability Made Simple”
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UC Base Notions: ITMs

protocols [ (using concrete crypto)

commitment for b€ {0,1} with SID sid:

Go forb=1

Upon receiving (Com, sid. y) from P,, P; outputs (Receipt. sid, cid. P;, P;)

“From: Canetti, Fischlin. 2001. “Universally Composable Commitments”
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protocols [ (using concrete crypto)

commitment for 0,1} with SID sid:

compute random r € {0,1}"
set y = G [ [ 3

oforb=1
send (C

Com. sid. y) from F,. P; outputs (Receipt. sid, cid, P;.

+ attackers A &

(corrupting parties etc.)
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UC Base Notions: ITMs

protocols [ (using concrete crypto)

commitment for 0,1} with SID sid:

compute random r € {0,1}"
set y = G [ [ 3

oforb=1
send (C

Com. sid. y) from F,. P; outputs (Receipt. sid, cid, P;.

+ attackers A &

(corrupting parties etc.)
« environments Z (objective witness)

“From: Canetti, Fischlin. 2001. “Universally Composable Commitments”
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UC, Pros and Cons

- modularise
protocols

- small building
blocks

« reusable results
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UC, Pros and Cons

- modularise 1. informal formalism
protocols 2. pseudocode protocols

- small building 3. (PL-wise) informal
blocks proofs

- reusable results 4 no (ish) mechanisation

Existing work (SaUCy and iUC): points 1 and 2

Our work: points 3 and 4
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UC Beneifts: Compositionality

if My Fuc

and Myig = Mo [M4]

- and = Mo [F4 ]
then Myig Fuc =
Moare [M1] Fuc =
Moare [M1] Fuc Mpart [F1]
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Secure Compilation: SC

- many criteria: FACS, TPC®, RSC(C7, ...

5Abadi. 1998. “Protection in Programming-Language Translations”
6Patrignani, Garg. 2017. “Secure Compilation and Hyperproperties Preservation”
7 Abate et al. 2018. “When Good Components Go Bad ..."
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Robust Hyperproperty Preservation: RHC
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Robust Hyperproperty Preservation: RHC

[[]+ RHC TVP, A JAVE
A x [[P]]Aaf > AxP~t
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A Closer Look
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uc SC
protocol M [P] compiled program
concrete attacker A A target context
ideal functionality F P source program
simulator s A source context
environment, output Z,0/1 {,~  trace, semantics
communication o linking
probabilistic equiv. N = trace equality
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| uc | SC |
protocol M| [P] compiled program
concrete attacker AlA target context
ideal functionality F|P source program
simulator S| A source context
environment, output Z,0/1 | {,~  trace, semantics
communication < | X linking
probabilistic equiv. r | = trace equality
human translation I - ¥ | []: 7 — P compiler
general composition result
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UC and RHC are similar enough so that we can
reuse metatheoretical results of one system for
the other
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Cryptographers:

- must specify hidden UC assumptions?®
« more formal UC proofs
« mechanisation of UC results

8As advocated by: Barbosa et al. 2019. “SoK: Computer-aided Cryptography”
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- understand composition of SC results
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8As advocated by: Barbosa et al. 2019. “SoK: Computer-aided Cryptography”
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UC Roadmap
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UC Roadmap

1. - formalise simple functionalities and protocols
inILC
« prove their compiler is RHC

2. - formally prove (a version of) UC (iUC) and
RHC are equivalent
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But Fully Abstract Compilation ...

[Pi] » Al Py x Al

/N TN I =

[ i\ — [[Pg]] x Al Py x gl

FAC is relational, RHC is propositional, like UC
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But Fully Abstract Compilation ...

Fully
Abstract
 Compilation

Robust
Compilation
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But What is the vV ?

- each pair P-[P] is a pair of UC F-T1

S _ P ifPI—U(:P
* [[P]]T = }
P otherwise

in this interpretation, S and T are ITMs
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But Attackers and Environments...

« UC works employ a dummy attacker
- the VZ accounts for attacker behaviour
- Z has some “objective” behaviour
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But Attackers and Environments...

UC works employ a dummy attacker

the VZ accounts for attacker behaviour

Z has some “objective” behaviour

we leave the attacker business in A

and the semantics (~) to the objectivity

this is similar to the EasyUC work
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But UC was Mechanised in EasyCrypt®

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
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But UC was Mechanised in EasyCrypt®

- with a titanic effort
- our analogy is tool-indipendent

- some similarities between the approaches
(see next)

9Canetti et al. 2019. “EasyUC: Using EasyCrypt to Mechanize Proofs of Universally
Composable Security”
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