
Facets of Information
Flow Control

Marco Vassena

Sensitive Data

Complex Software System

Sensitive Data

Complex Software System
Devices

Sensitive Data

Complex Software System
OutputsDevices

Sensitive Data

Complex Software System
OutputsDevices

“Apps”

App Components

Modern software contains many 3rd party components!

App Components

Modern software contains many 3rd party components!
Mutually Distrusting

App Components

Modern software contains many 3rd party components!

App Components
Buggy

Modern software contains many 3rd party components!

App Components
Buggy

Malicious

Modern software contains many 3rd party components!

App Components
Buggy

Malicious

Modern software contains many 3rd party components!

Data confidentiality and integrity is at stake

Example
Sign up

Username

STRENGTHPassword

Join

Example
Sign up

Username

STRENGTHPassword

Join

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Example
Sign up

Username

STRENGTHPassword

Join

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Attacker Controlled
Database

Example
Sign up

Username

STRENGTHPassword

Join

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Attacker Controlled
Database

Password leak!

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Access Control?
Restrict access to sensitive data in untrusted components

Sign up

Username

STRENGTHPassword

Join

Attacker Controlled
Database

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Access Control?
Restrict access to sensitive data in untrusted components

Sign up

Username

STRENGTHPassword

Join

Attacker Controlled
Database

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Access Control?
Restrict access to sensitive data in untrusted components

Sign up

Username

STRENGTHPassword

Join

Attacker Controlled
Database

Legitimate need to
access the password

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Access Control?
Restrict access to sensitive data in untrusted components

Sign up

Username

STRENGTHPassword

Join

Attacker Controlled
Database

Legitimate need to
access the password

This is the leak!

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Access Control?
Restrict access to sensitive data in untrusted components

Sign up

Username

STRENGTHPassword

Join

Attacker Controlled
Database

Legitimate need to
access the password

This is the leak!

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Attacker Controlled
Database

Information Flow Control

Do not restrict data access, restrict where data can flow!

Sign up

Username

STRENGTHPassword

Join

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Attacker Controlled
Database

Information Flow Control

Do not restrict data access, restrict where data can flow!

Sign up

Username

STRENGTHPassword

Join

Track data flows across
program components

Untrusted Library

strengthOf(pwd : String)
 db.log(pwd)
 return STRONG

Attacker Controlled
Database

Information Flow Control

Do not restrict data access, restrict where data can flow!

Sign up

Username

STRENGTHPassword

Join

Detect and suppress
information leakage

Track data flows across
program components

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Static DynamicHybrid

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Tracking

Static DynamicHybrid

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Tracking

Static DynamicHybrid

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Tracking
Conservative

Static DynamicHybrid

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Tracking
Conservative Runtime Overhead

Static DynamicHybrid

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Tracking

Granularity of data flows

Fine-grained Coarse-grained

Conservative Runtime Overhead

Static DynamicHybrid

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Tracking

Granularity of data flows

Fine-grained Coarse-grained

Per variable

Conservative Runtime Overhead

Static DynamicHybrid

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Tracking

Granularity of data flows

Fine-grained Coarse-grained

Per variable Per computation

Conservative Runtime Overhead

Plan
Overview of different language-based IFC approaches

• Non Interference

Plan
Overview of different language-based IFC approaches

• Non Interference
Confidentiality & Integrity

Plan
Overview of different language-based IFC approaches

• Non Interference
Confidentiality & Integrity

• 4 IFC Languages

Plan
Overview of different language-based IFC approaches

• Non Interference
Confidentiality & Integrity

Fine-grained

Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages

Security Policy

Information flow policies are specified by the security lattice

Security Policy

Information flow policies are specified by the security lattice

Which data flows are allowed

Simple lattice for confidentiality:

Security Policy

Information flow policies are specified by the security lattice

Which data flows are allowed

Secret

Public

Simple lattice for confidentiality:

Security Policy

Information flow policies are specified by the security lattice

Which data flows are allowed

Secret

Public

Public and Secret
are security labels

Simple lattice for confidentiality:

Security Policy

Information flow policies are specified by the security lattice

Which data flows are allowed

Secret

Public

“ Secret inputs cannot flow to Public outputs ”

Public and Secret
are security labels

Simple lattice for confidentiality:

Security Policy

Information flow policies are specified by the security lattice

Which data flows are allowed

Secret

Public

“ Secret inputs cannot flow to Public outputs ”

Public and Secret
are security labels 2-point lattice

Secret

Public

“ Secret inputs cannot flow to Public outputs ”

Simple lattice for confidentiality:

Formally:

C = ({P,S} , ⊑C , ⊔C)

Secret

Public

“ Secret inputs cannot flow to Public outputs ”

Simple lattice for confidentiality:

Formally:

C = ({P,S} , ⊑C , ⊔C)

Partial order between labels

Secret

Public

“ Secret inputs cannot flow to Public outputs ”

Simple lattice for confidentiality:

Formally:

C = ({P,S} , ⊑C , ⊔C)

Partial order between labels

⊑C

Secret

Public

“ Secret inputs cannot flow to Public outputs ”

Simple lattice for confidentiality:

Formally:

C = ({P,S} , ⊑C , ⊔C)

Partial order between labels

where P ⊑C P
P ⊑C S

S ⊑C S
S ⊑C P

⊑C

Secret

Public

“ Secret inputs cannot flow to Public outputs ”

Simple lattice for confidentiality:

Formally: Join Operator (least upper bound)

⊑C

C = ({P,S} , ⊑C , ⊔C)

Secret

Public

“ Secret inputs cannot flow to Public outputs ”

Simple lattice for confidentiality:

Formally: Join Operator (least upper bound)

where P ⊔C P = P

P ⊔C S = S
S ⊔C S = S
S ⊔C P = S

⊑C

C = ({P,S} , ⊑C , ⊔C)

Untrusted

Trusted

“ Untrusted inputs cannot flow to Trusted outputs ”

“Dual” lattice for integrity:

⊑I

Untrusted

Trusted

“ Untrusted inputs cannot flow to Trusted outputs ”

“Dual” lattice for integrity:

Formally:

I = ({T,U} , ⊑I , ⊔I)

⊑I

Untrusted

Trusted

“ Untrusted inputs cannot flow to Trusted outputs ”

“Dual” lattice for integrity:

Formally:

I = ({T,U} , ⊑I , ⊔I)

where T ⊑I T
T ⊑I U

U ⊑I U
U ⊑I T

⊑I

Untrusted

Trusted

“ Untrusted inputs cannot flow to Trusted outputs ”

“Dual” lattice for integrity:

Formally:

I = ({T,U} , ⊑I , ⊔I)

⊑I

where T ⊔I T = T

T ⊔I U = U
U ⊔I U = U
U ⊔I P = U

Untrusted

Trusted

⊑I

Secret

Public

⊑C

Untrusted

Trusted

⊑I

Secret

Public

⊑C

Simple lattice for confidentiality and integrity:

Untrusted

Trusted

⊑I

Secret

Public

⊑C

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Untrusted

Trusted

⊑I

Secret

Public

⊑C

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Restricted usage

Untrusted

Trusted

⊑I

Secret

Public

⊑C

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Restricted usage

Unrestricted usage

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Formally:

 CI = ({P,S} × {T,U} , ⊑C × ⊑I , ⊔C × ⊔I)

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Formally:

 CI = ({P,S} × {T,U} , ⊑C × ⊑I , ⊔C × ⊔I)

Notice

(P , U) ⊑CI (S , T) (S , T) ⊑CI (P , U)

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Formally:

 CI = ({P,S} × {T,U} , ⊑C × ⊑I , ⊔C × ⊔I)

Notice

(P , U) ⊑CI (S , T) (S , T) ⊑CI (P , U)
Mutually Incomparable

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Formally:

 CI = ({P,S} × {T,U} , ⊑C × ⊑I , ⊔C × ⊔I)
Notice

(S , T) ⊔CI (P , U)

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Formally:

 CI = ({P,S} × {T,U} , ⊑C × ⊑I , ⊔C × ⊔I)
Notice

(S , T) ⊔CI (P , U) = (S ⊔C P , T ⊔I U)

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

(Public , Trusted)

(Public , Untrusted)(Secret , Trusted)

Formally:

 CI = ({P,S} × {T,U} , ⊑C × ⊑I , ⊔C × ⊔I)
Notice

(S , T) ⊔CI (P , U) = (S ⊔C P , T ⊔I U) = (S , U)

General lattice for principals P:

General lattice for principals P: P = {Alice, Bob, Charlie}

General lattice for principals P: P = {Alice, Bob, Charlie}

Ø

General lattice for principals P: P = {Alice, Bob, Charlie}

Ø

{A} {B} {C}

General lattice for principals P: P = {Alice, Bob, Charlie}

Ø

{A} {B} {C}

{A,B} {B,C}{A,C}

General lattice for principals P: P = {Alice, Bob, Charlie}

Ø

{A} {B} {C}

{A,B} {B,C}{A,C}

{A,B,C}

General lattice for principals P: P = {Alice, Bob, Charlie}

Ø

{A} {B} {C}

{A,B} {B,C}{A,C}

{A,B,C}

P = (𝒫(P) , ⊆ , ∪)Formally:

General lattice for principals P: P = {Alice, Bob, Charlie}

Ø

{A} {B} {C}

{A,B} {B,C}{A,C}

{A,B,C}

P = (𝒫(P) , ⊆ , ∪)

 𝒫(P) is the power set of P
 ⊆ is subset inclusion
 ∪ is set union

Formally:

In general we work with an abstract lattice with standard properties

= (𝑳 , ⊑ , ⊔)

⊑ is reflexive, transitive, and antisymmetric.

⊔ is idempotent, commutative, and associative.

In general we work with an abstract lattice with standard properties

= (𝑳 , ⊑ , ⊔)

⊑ is reflexive, transitive, and antisymmetric.

⊔ is idempotent, commutative, and associative.

⊥ element:

In general we work with an abstract lattice with standard properties

= (𝑳 , ⊑ , ⊔)

⊑ is reflexive, transitive, and antisymmetric.

⊔ is idempotent, commutative, and associative.

⊥ element:

Bottom of
the lattice

In general we work with an abstract lattice with standard properties

= (𝑳 , ⊑ , ⊔)

⊑ is reflexive, transitive, and antisymmetric.

⊔ is idempotent, commutative, and associative.

⊥ element: ∀ ℓ . ⊥ ⊑ ℓ ∧ ⊥ ⊔ ℓ = ℓ

Bottom of
the lattice

In general we work with an abstract lattice with standard properties

= (𝑳 , ⊑ , ⊔)

⊑ is reflexive, transitive, and antisymmetric.

⊔ is idempotent, commutative, and associative.

⊥ element: ∀ ℓ . ⊥ ⊑ ℓ ∧ ⊥ ⊔ ℓ = ℓ

Bottom of
the lattice

∀ ℓ1 ℓ2 ℓ3 . ℓ1 ⊑ ℓ1 ⊔ ℓ2 ∧ ℓ2 ⊑ ℓ1 ⊔ ℓ2

In general we work with an abstract lattice with standard properties

= (𝑳 , ⊑ , ⊔)

⊑ is reflexive, transitive, and antisymmetric.

⊔ is idempotent, commutative, and associative.

⊥ element: ∀ ℓ . ⊥ ⊑ ℓ ∧ ⊥ ⊔ ℓ = ℓ

Bottom of
the lattice

∀ ℓ1 ℓ2 ℓ3 . ℓ1 ⊑ ℓ1 ⊔ ℓ2 ∧ ℓ2 ⊑ ℓ1 ⊔ ℓ2

Join and partial order “agree”

Non-Interference

Secret Input

Public Output

Program

Public Input

Secret Output

Public outputs must not depend on secret inputs.

Non-Interference

Secret Input

Public Output

Program

Public Input

Secret Output

Public outputs must not depend on secret inputs.

Non-Interference

Secret Input

Public OutputPublic Input

Secret Output

Public outputs must not depend on secret inputs.

Adversarial Program

Quiz

h := inputH()
l := inputL()
outputH(l + h)

Do the following programs satisfy non-interference?

Quiz

h := inputH()
l := inputL()
outputH(l + h)

Do the following programs satisfy non-interference?

Quiz

h := inputH()
l := inputL()
outputH(l + h)

Public and secret data can
flow to secret outputs

Do the following programs satisfy non-interference?

Quiz

h := inputH()
l := inputL()
outputH(l + h)

Public and secret data can
flow to secret outputs

h := inputH()
outputL(h + 1)

Do the following programs satisfy non-interference?

Quiz

h := inputH()
l := inputL()
outputH(l + h)

Public and secret data can
flow to secret outputs

h := inputH()
outputL(h + 1)

Do the following programs satisfy non-interference?

Quiz

h := inputH()
l := inputL()
outputH(l + h)

Public and secret data can
flow to secret outputs

h := inputH()
outputL(h + 1)

Secret data must not
flow to public outputs

Do the following programs satisfy non-interference?

Quiz

h := inputH()
l := inputL()
outputH(l + h)

Public and secret data can
flow to secret outputs

h := inputH()
outputL(h + 1)

Secret data must not
flow to public outputs

This is an example of an explicit flow

Do the following programs satisfy non-interference?

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

The presence of a public output
leaks information about the secret

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

h := inputH()
outputL(h - h)

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

h := inputH()
outputL(h - h)

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

h := inputH()
outputL(h - h)

equivalent to
h := inputH()
outputL(0)

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

h := inputH()
outputL(h - h)

equivalent to
h := inputH()
outputL(0)

Most IFC languages reject this program

Quiz
Do the following programs satisfy non-interference?

h := inputH()
if h
 outputL(0)

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

h := inputH()
outputL(h - h)

equivalent to
h := inputH()
outputL(0)

Most IFC languages reject this program
False positive

Outline
Overview of different language-based IFC approaches

• Non Interference

Fine-grained

Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages

Outline
Overview of different language-based IFC approaches

• Non Interference

Fine-grained

Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages

Static Fine-grained IFC

λSFG Syntax

Static Fine-grained IFC

λSFG Syntax

Labeled Types τ ::= sℓ

Simple Types s ::= unit | τ → τ | τ + τ | τ × τ

Static Fine-grained IFC

λSFG Syntax
Label annotation used in IFC type-system

Labeled Types τ ::= sℓ

Simple Types s ::= unit | τ → τ | τ + τ | τ × τ

Static Fine-grained IFC

λSFG Syntax

e ::= () | x | λx.e | e e
 | ⟨e , e⟩ | fst(e) | snd(e)
 | inl(e) | inr(e) | case(e, x.e, x.e)

Expressions

Label annotation used in IFC type-system
Labeled Types τ ::= sℓ

Simple Types s ::= unit | τ → τ | τ + τ | τ × τ

Static Fine-grained IFC

λSFG Syntax

e ::= () | x | λx.e | e e
 | ⟨e , e⟩ | fst(e) | snd(e)
 | inl(e) | inr(e) | case(e, x.e, x.e)

Expressions

v ::= () | (x.e , θ) | ⟨v , v⟩ | inl(v) | inr(v) Values

Environments θ ∈ Var ⇀ Value

Label annotation used in IFC type-system
Labeled Types τ ::= sℓ

Simple Types s ::= unit | τ → τ | τ + τ | τ × τ

Static Fine-grained IFC

λSFG Syntax

e ::= () | x | λx.e | e e
 | ⟨e , e⟩ | fst(e) | snd(e)
 | inl(e) | inr(e) | case(e, x.e, x.e)

Expressions

v ::= () | (x.e , θ) | ⟨v , v⟩ | inl(v) | inr(v) Values

Environments θ ∈ Var ⇀ Value

Label annotation used in IFC type-system
Labeled Types τ ::= sℓ

Simple Types s ::= unit | τ → τ | τ + τ | τ × τ

Function Closure

λSFG

Dynamic Semantics e ⇓θ v

λSFG

Dynamic Semantics e ⇓θ v
Standard: no security checks!

λSFG

Dynamic Semantics e ⇓θ v
Standard: no security checks!

Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

λSFG

Dynamic Semantics e ⇓θ v
Standard: no security checks!

Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Well-typed program are secure

λSFG

Dynamic Semantics e ⇓θ v
Standard: no security checks!

Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Exercise. Prove that the following program is ill-typed:

Γ = [h ↦ BoolH , l1 ↦ BoolL , l2 ↦ BoolL]

Γ ⊬ if h then l1 else l2 : BoolL

with typing environment

Well-typed program are secure

λSFG

Dynamic Semantics e ⇓θ v
Standard: no security checks!

Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Exercise. Prove that the following program is ill-typed:

Γ = [h ↦ BoolH , l1 ↦ BoolL , l2 ↦ BoolL]

Γ ⊬ if h then l1 else l2 : BoolL

with typing environment

Boolℓ ≜ (unitL + unitL)ℓwhere

if e then e1 else e2 ≜ case(e, _.e1, _.e2)

Well-typed program are secure

λSFG

Dynamic Semantics e ⇓θ v
Standard: no security checks!

Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Exercise. Prove that the following program is ill-typed:

Γ = [h ↦ BoolH , l1 ↦ BoolL , l2 ↦ BoolL]

Γ ⊬ if h then l1 else l2 : BoolL

with typing environment

Boolℓ ≜ (unitL + unitL)ℓwhere

if e then e1 else e2 ≜ case(e, _.e1, _.e2)Syntactic
Sugar

Well-typed program are secure

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Observations & Remarks

Elimination rules include security checks

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Observations & Remarks

Elimination rules include security checks

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Avoid implicit leaks
through the result

Observations & Remarks

Elimination rules include security checks

Introduction rules only generate label ⊥

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Avoid implicit leaks
through the result

Observations & Remarks

Elimination rules include security checks

Introduction rules only generate label ⊥

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Can be increased
via subtyping

Avoid implicit leaks
through the result

Observations & Remarks

Elimination rules include security checks

Introduction rules only generate label ⊥

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Can be increased
via subtyping

Avoid implicit leaks
through the result

To state and prove non-interference we also need:

Observations & Remarks

Elimination rules include security checks

Introduction rules only generate label ⊥

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Can be increased
via subtyping

Avoid implicit leaks
through the result

⊢ v : τ

To state and prove non-interference we also need:

Observations & Remarks

Elimination rules include security checks

Introduction rules only generate label ⊥

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Can be increased
via subtyping

Avoid implicit leaks
through the result

⊢ v : τ

To state and prove non-interference we also need:

Similar to the intro
rules for expressions

Observations & Remarks

Elimination rules include security checks

Introduction rules only generate label ⊥

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Can be increased
via subtyping

Avoid implicit leaks
through the result

⊢ v : τ

⊢ θ : Γ

To state and prove non-interference we also need:

Similar to the intro
rules for expressions

Environment and typing
contexts “agree”

Subtyping Relation

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

Subtyping Relation

s <: s
unit <: unit [Sub-Unit]

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

[Sub-Unit]

Subtyping Relation

s <: s
unit <: unit

τ1 ⊕ τ2 <: τ1’ ⊕ τ2’

τi <: τi’i ∈ {1,2}
⊕ ∈ {+,×}

[Sub-Unit]

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

[Sub-Unit]

Subtyping Relation

s <: s
unit <: unit

τ1 ⊕ τ2 <: τ1’ ⊕ τ2’

τi <: τi’i ∈ {1,2}
⊕ ∈ {+,×}

Structural for sums and pairs

[Sub-Unit]

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

[Sub-Unit]

[Sub-Sum]
[Sub-Pair]

Subtyping Relation

s <: s
unit <: unit [Sub-Unit]

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

τ1 → τ2 <: τ1’ → τ2’

τ1’ <: τ1 τ2 <: τ2’

τ1 ⊕ τ2 <: τ1’ ⊕ τ2’

τi <: τi’i ∈ {1,2}
⊕ ∈ {+,×} [Sub-Sum]

[Sub-Pair]

Subtyping Relation

s <: s
unit <: unit [Sub-Unit]

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

τ1 → τ2 <: τ1’ → τ2’

τ1’ <: τ1 τ2 <: τ2’ Covariant
in the result

τ1 ⊕ τ2 <: τ1’ ⊕ τ2’

τi <: τi’i ∈ {1,2}
⊕ ∈ {+,×} [Sub-Sum]

[Sub-Pair]

Subtyping Relation

s <: s
unit <: unit [Sub-Unit]

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

τ1 → τ2 <: τ1’ → τ2’

τ1’ <: τ1 τ2 <: τ2’Contravariant
in the argument

Covariant
in the result

τ1 ⊕ τ2 <: τ1’ ⊕ τ2’

τi <: τi’i ∈ {1,2}
⊕ ∈ {+,×} [Sub-Sum]

[Sub-Pair]

s <: s
unit <: unit [Sub-Unit]

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

τ1 → τ2 <: τ1’ → τ2’

τ1’ <: τ1 τ2 <: τ2’ [Sub-Fun]

τ1 ⊕ τ2 <: τ1’ ⊕ τ2’

τi <: τi’i ∈ {1,2}
⊕ ∈ {+,×}

[Sub-Unit]

[Sub-Sum]
[Sub-Pair]

s <: s
unit <: unit [Sub-Unit]

s1 ℓ1 <: s2 ℓ2

s1 <: s2ℓ1 ⊑ ℓ2
τ <: τ

[Sub-LType]

τ1 → τ2 <: τ1’ → τ2’

τ1’ <: τ1 τ2 <: τ2’

Exercise. Prove that BoolH → BoolL <: BoolL → Bool H

[Sub-Fun]

τ1 ⊕ τ2 <: τ1’ ⊕ τ2’

τi <: τi’i ∈ {1,2}
⊕ ∈ {+,×}

[Sub-Unit]

[Sub-Sum]
[Sub-Pair]

Non-Interference for λSFG

For all λSFG types, expressions, and values such that:

x : τ ⊢ e : BoolL

Non-Interference for λSFG

For all λSFG types, expressions, and values such that:

x : τ ⊢ e : BoolL
Secret input

Non-Interference for λSFG

For all λSFG types, expressions, and values such that:

x : τ ⊢ e : BoolL
Secret input Public output

Non-Interference for λSFG

For all λSFG types, expressions, and values such that:

x : τ ⊢ e : BoolL

where

Secret input Public output

Non-Interference for λSFG

For all λSFG types, expressions, and values such that:

x : τ ⊢ e : BoolL

where

Secret input Public output

L is the attacker security level

Non-Interference for λSFG

For all λSFG types, expressions, and values such that:

x : τ ⊢ e : BoolL

where

Secret input Public output

L is the attacker security level

τ is not observable by the attacker:

Non-Interference for λSFG

For all λSFG types, expressions, and values such that:

x : τ ⊢ e : BoolL

where

Secret input Public output

L is the attacker security level

τ is not observable by the attacker:

τ = s ℓ ℓ ⊑ Lsuch that

Non-Interference for λSFG

x : τ ⊢ e : BoolL

For all λSFG types, expressions, and values such that:

Non-Interference for λSFG

x : τ ⊢ e : BoolL

v1 : τ

v2 : τ

For all λSFG types, expressions, and values such that:

Non-Interference for λSFG

x : τ ⊢ e : BoolL

v1 : τ

v2 : τ

For all λSFG types, expressions, and values such that:

Any 2 secret
input values

Non-Interference for λSFG

x : τ ⊢ e : BoolL

v1 : τ

If

v2 : τ

e ⇓[x ↦ v1] v
e ⇓[x ↦ v2] v’

For all λSFG types, expressions, and values such that:

Any 2 secret
input values

Non-Interference for λSFG

x : τ ⊢ e : BoolL

v1 : τ

If

v2 : τ

e ⇓[x ↦ v1] v
e ⇓[x ↦ v2] v’

then v = v’

For all λSFG types, expressions, and values such that:

Any 2 secret
input values

Non-Interference for λSFG

x : τ ⊢ e : BoolL

v1 : τ

If

v2 : τ

e ⇓[x ↦ v1] v
e ⇓[x ↦ v2] v’

then v = v’

Same public output

For all λSFG types, expressions, and values such that:

Any 2 secret
input values

Non-Interference for λSFG

x : τ ⊢ e : BoolL

v1 : τ

If

v2 : τ

e ⇓[x ↦ v1] v
e ⇓[x ↦ v2] v’

then v = v’

Same public output

“Public outputs do not depend on secret inputs”

For all λSFG types, expressions, and values such that:

Any 2 secret
input values

Proof Technique
Define a logical relation for programs giving equal public outputs1

Proof Technique
Define a logical relation for programs giving equal public outputs1

E⟦ τ ⟧L = { ((e1,θ1) , (e2,θ2)) |

Proof Technique
Define a logical relation for programs giving equal public outputs1

E⟦ τ ⟧L = { ((e1,θ1) , (e2,θ2)) |

e1 ⇓θ1 v1 ∧ e2 ⇓θ2 v2 ⟹ (v1,v2) ∈ V⟦ τ ⟧L }

Proof Technique
Define a logical relation for programs giving equal public outputs1

E⟦ τ ⟧L = { ((e1,θ1) , (e2,θ2)) | Equivalent values at level L

e1 ⇓θ1 v1 ∧ e2 ⇓θ2 v2 ⟹ (v1,v2) ∈ V⟦ τ ⟧L }

Proof Technique
Define a logical relation for programs giving equal public outputs1

Prove the fundamental theorem of logical relations 2

E⟦ τ ⟧L = { ((e1,θ1) , (e2,θ2)) | Equivalent values at level L

e1 ⇓θ1 v1 ∧ e2 ⇓θ2 v2 ⟹ (v1,v2) ∈ V⟦ τ ⟧L }

Proof Technique
Define a logical relation for programs giving equal public outputs1

Prove the fundamental theorem of logical relations 2
Γ ⊢ e : τIf then

E⟦ τ ⟧L = { ((e1,θ1) , (e2,θ2)) | Equivalent values at level L

e1 ⇓θ1 v1 ∧ e2 ⇓θ2 v2 ⟹ (v1,v2) ∈ V⟦ τ ⟧L }

Proof Technique
Define a logical relation for programs giving equal public outputs1

Prove the fundamental theorem of logical relations 2
Γ ⊢ e : τIf then

E⟦ τ ⟧L = { ((e1,θ1) , (e2,θ2)) | Equivalent values at level L

∀ (θ1 , θ2) ∈ I⟦ Γ ⟧L ⟹ ((e,θ1) , (e,θ2)) ∈ E⟦ τ ⟧L

e1 ⇓θ1 v1 ∧ e2 ⇓θ2 v2 ⟹ (v1,v2) ∈ V⟦ τ ⟧L }

Proof Technique
Define a logical relation for programs giving equal public outputs1

Prove the fundamental theorem of logical relations 2
Γ ⊢ e : τIf then

Equivalent input envs at L

E⟦ τ ⟧L = { ((e1,θ1) , (e2,θ2)) | Equivalent values at level L

∀ (θ1 , θ2) ∈ I⟦ Γ ⟧L ⟹ ((e,θ1) , (e,θ2)) ∈ E⟦ τ ⟧L

e1 ⇓θ1 v1 ∧ e2 ⇓θ2 v2 ⟹ (v1,v2) ∈ V⟦ τ ⟧L }

Proof Technique
Define a logical relation for programs giving equal public outputs1

Prove the fundamental theorem of logical relations 2

Derive non-interference as a corollary3

Γ ⊢ e : τIf then

Equivalent input envs at L

E⟦ τ ⟧L = { ((e1,θ1) , (e2,θ2)) | Equivalent values at level L

∀ (θ1 , θ2) ∈ I⟦ Γ ⟧L ⟹ ((e,θ1) , (e,θ2)) ∈ E⟦ τ ⟧L

e1 ⇓θ1 v1 ∧ e2 ⇓θ2 v2 ⟹ (v1,v2) ∈ V⟦ τ ⟧L }

λSFG

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG with References

Syntax with references

λSFG

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG with References

Syntax with references Keep tracks of
 side-effects

λSFG

e ::= ··· | new e | !e | e := eExpressions

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG with References

Syntax with references Keep tracks of
 side-effects

λSFG

e ::= ··· | new e | !e | e := eExpressions

v ::= ··· | n Values

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG with References

Syntax with references Keep tracks of
 side-effects

λSFG

e ::= ··· | new e | !e | e := eExpressions

v ::= ··· | n Values

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG with References

Syntax with references

Address in store

Keep tracks of
 side-effects

λSFG

e ::= ··· | new e | !e | e := eExpressions

v ::= ··· | n Values

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG with References

Syntax with references

Store Σ

Address in store

Keep tracks of
 side-effects

λSFG

e ::= ··· | new e | !e | e := eExpressions

v ::= ··· | n Values

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG with References

Syntax with references

Store Σ

Address in store

Keep tracks of
 side-effects

Dynamic Semantics

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩

λSFG

e ::= ··· | new e | !e | e := eExpressions

v ::= ··· | n Values

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG with References

Syntax with references

Store Σ

Address in store

Keep tracks of
 side-effects

Dynamic Semantics
Standard

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩

λSFG Static Semantics

Γ ⊢pc e : τ

λSFG Static Semantics

Γ ⊢pc e : τ

“Program Counter” label

λSFG Static Semantics

Γ ⊢pc e : τ

“Program Counter” label

The pc label is a lower bound on the write effects of the program e

λSFG Static Semantics

Γ ⊢pc e : τ

“Program Counter” label

The pc label is a lower bound on the write effects of the program e

Program e cannot create and write
references labeled below the pc

λSFG Static Semantics

Γ ⊢pc e : τ

“Program Counter” label

The pc label is a lower bound on the write effects of the program e

Program e cannot create and write
references labeled below the pc

Eliminate implicit leaks
 through the store

λSFG Static Semantics

Γ ⊢pc e : τ

“Program Counter” label

The pc label is a lower bound on the write effects of the program e

Program e cannot create and write
references labeled below the pc

Exercise. Prove that the following program is ill-typed:

Γ ⊬L if h then l := true else () : unitH

Eliminate implicit leaks
 through the store

λSFG Static Semantics

Γ ⊢pc e : τ

“Program Counter” label

The pc label is a lower bound on the write effects of the program e

Program e cannot create and write
references labeled below the pc

Exercise. Prove that the following program is ill-typed:

Γ ⊬L if h then l := true else () : unitH

Γ = [h ↦ BoolH , l ↦ (Ref BoolL)L]

with typing environment

Eliminate implicit leaks
 through the store

s <: s

Subtyping Relation

[Sub-Fun]
τ1’ <: τ1 τ2 <: τ2’ ℓ' ⊑ ℓ

τ1 ⟶ τ2 <: τ1’ ⟶ τ2’ ℓ ℓ'

s <: s

Subtyping Relation

[Sub-Fun]
τ1’ <: τ1 τ2 <: τ2’ ℓ' ⊑ ℓ

τ1 ⟶ τ2 <: τ1’ ⟶ τ2’ ℓ ℓ'

Contravariant

s <: s

Subtyping Relation

[Sub-Fun]
τ1’ <: τ1 τ2 <: τ2’ ℓ' ⊑ ℓ

τ1 ⟶ τ2 <: τ1’ ⟶ τ2’ ℓ ℓ'

Contravariant

References ?

s <: s

Subtyping Relation

[Sub-Fun]
τ1’ <: τ1 τ2 <: τ2’ ℓ' ⊑ ℓ

τ1 ⟶ τ2 <: τ1’ ⟶ τ2’ ℓ ℓ'

Contravariant

References ?

Ref τ <: Ref τ’

τ <: τ’

Covariant

s <: s

Subtyping Relation

[Sub-Fun]
τ1’ <: τ1 τ2 <: τ2’ ℓ' ⊑ ℓ

τ1 ⟶ τ2 <: τ1’ ⟶ τ2’ ℓ ℓ'

Contravariant

References ?

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant Contravariant

s <: s

Subtyping Relation

[Sub-Fun]
τ1’ <: τ1 τ2 <: τ2’ ℓ' ⊑ ℓ

τ1 ⟶ τ2 <: τ1’ ⟶ τ2’ ℓ ℓ'

Contravariant

References ?

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Ref τ <: Ref τ

Covariant ContravariantInvariant

s <: s

Subtyping Relation

[Sub-Fun]
τ1’ <: τ1 τ2 <: τ2’ ℓ' ⊑ ℓ

τ1 ⟶ τ2 <: τ1’ ⟶ τ2’ ℓ ℓ'

Contravariant

References ?

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Ref τ <: Ref τ

Covariant ContravariantInvariant

Exercise

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant

Contravariant

Find a well-typed program that leaks if we consider references covariant:

Find a well-typed program that leaks if we consider references contravariant:

Soundness issues!

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant Contravariant

Soundness issues!

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant Contravariant

Ref BoolL can be
written as Ref BoolH

Soundness issues!

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant Contravariant

Ref BoolL can be
written as Ref BoolH

 let h_ref = l_ref in
 h_ref := h
 !l_ref

Soundness issues!

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant Contravariant

Ref BoolL can be
written as Ref BoolH

Ref BoolH can be
read as Ref BoolL

 let h_ref = l_ref in
 h_ref := h
 !l_ref

Soundness issues!

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant Contravariant

Ref BoolL can be
written as Ref BoolH

Ref BoolH can be
read as Ref BoolL

 let l_ref = h_ref in
 !l_ref

 let h_ref = l_ref in
 h_ref := h
 !l_ref

Soundness issues!

Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant Contravariant

Ref BoolL can be
written as Ref BoolH

Ref BoolH can be
read as Ref BoolL

 let l_ref = h_ref in
 !l_ref

 let h_ref = l_ref in
 h_ref := h
 !l_ref

Well-typed but leak!

Covariant Contravariant

Ref BoolL can be
written as Ref BoolH

Ref BoolH can be
read as Ref BoolL

References are input (read) and output (write) channels!

Ref τ <: Ref τ

Invariant

[Sub-Ref]

Soundness Proof

Non-Interference for λSFG with higher-order state

Soundness Proof

Non-Interference for λSFG with higher-order state

The store can contain references

Soundness Proof

Non-Interference for λSFG with higher-order state

The store can contain references

Step-indexed Kripke logical relation

Soundness Proof

Non-Interference for λSFG with higher-order state

The store can contain references

Step-indexed Kripke logical relation

Avoid circular reasoning

Soundness Proof

Non-Interference for λSFG with higher-order state

The store can contain references

Step-indexed Kripke logical relation

Avoid circular reasoning

See “On the Expressiveness and Semantics of Information Flow Types”
by Rajani and Garg

Outline
Overview of different language-based IFC approaches

• Non Interference

Fine-grained

Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages

Outline
Overview of different language-based IFC approaches

• Non Interference

Fine-grained

Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages

Dynamic Fine-Grained IFC
Enforce dynamic security policies

Possibly unknown statically

Dynamic Fine-Grained IFC
Enforce dynamic security policies

Possibly unknown statically

Dynamic Fine-Grained IFC
Enforce dynamic security policies

Runtime Labels

Possibly unknown statically

Dynamic Fine-Grained IFC
Enforce dynamic security policies

if (

send(

=)

),

Runtime Labels

Label Introspection

Possibly unknown statically

Dynamic Fine-Grained IFC
Enforce dynamic security policies

if (

send(

=)

),

Runtime Labels

Label Introspection
Useful programming

patterns

Dynamic Fine-grained IFC
λDFG Syntax

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

Dynamic Fine-grained IFC
λDFG Syntax

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

New!

Dynamic Fine-grained IFC
λDFG Syntax

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

New!

Labeled Values v ::= rℓ

Dynamic Fine-grained IFC
λDFG Syntax

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

New!

Labeled Values v ::= rℓ Raw value at security level ℓ

Dynamic Fine-grained IFC
λDFG Syntax

Environments θ ∈ Var ⇀ LValue

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

New!

r ::= () | (x.e , θ) | ⟨v , v⟩

 | inl(v) | inr(v) | ℓ

Raw Values

Labeled Values v ::= rℓ Raw value at security level ℓ

Dynamic Fine-grained IFC
λDFG Syntax

Environments θ ∈ Var ⇀ LValue

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

New!

r ::= () | (x.e , θ) | ⟨v , v⟩

 | inl(v) | inr(v) | ℓ

Raw Values

Labeled Values v ::= rℓ Raw value at security level ℓ

Runtime labels

Dynamic Fine-grained IFC
λDFG Syntax

e ::= ··· | labelOf(e) | getPC | e ⊑? e Expressions

Environments θ ∈ Var ⇀ LValue

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

New!

r ::= () | (x.e , θ) | ⟨v , v⟩

 | inl(v) | inr(v) | ℓ

Raw Values

Labeled Values v ::= rℓ Raw value at security level ℓ

Runtime labels

Dynamic Fine-grained IFC
λDFG Syntax

e ::= ··· | labelOf(e) | getPC | e ⊑? e Expressions

Environments θ ∈ Var ⇀ LValue

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

New!

r ::= () | (x.e , θ) | ⟨v , v⟩

 | inl(v) | inr(v) | ℓ

Raw Values

Labeled Values v ::= rℓ

Label Introspection

Raw value at security level ℓ

Runtime labels

λDFG

Static Γ ⊢ e : τ

Semantics

λDFG

Standard: no security checks!

Static Γ ⊢ e : τ

Semantics

λDFG

Standard: no security checks!

Static Γ ⊢ e : τ

Dynamic e ⇓θ vpc

Semantics

λDFG

Standard: no security checks!

Static Γ ⊢ e : τ

Dynamic e ⇓θ vpc

Security Monitor

Semantics

λDFG

Standard: no security checks!

Static Γ ⊢ e : τ

Dynamic e ⇓θ vpc

Security Monitor

Program Counter

Semantics

λDFG

Standard: no security checks!

Static Γ ⊢ e : τ

Dynamic e ⇓θ vpc

Security Monitor

Program Counter

The monitor propagates labels from inputs to outputs

Semantics

if x
 then y
 else z

46

θ = [x ↦ trueH, y ↦ trueL, z ↦ falseL]

θ
y

The semantics tracks control-flow dependencies
with the program counter label.

Label Propagation

if x
 then y
 else z

46

θ = [x ↦ trueH, y ↦ trueL, z ↦ falseL]

θ

L

Program Counter

y

The semantics tracks control-flow dependencies
with the program counter label.

Label Propagation

47

H
y

θ

The semantics tracks control-flow dependencies
with the program counter label.

θ = [x ↦ trueH, y ↦ trueL, z ↦ falseL]

Label Propagation

47

H
y

θ

Control flow depends
on data labeled with H

The semantics tracks control-flow dependencies
with the program counter label.

θ = [x ↦ trueH, y ↦ trueL, z ↦ falseL]

Label Propagation

47

H
trueHy

θ

Control flow depends
on data labeled with H

The semantics tracks control-flow dependencies
with the program counter label.

θ = [x ↦ trueH, y ↦ trueL, z ↦ falseL]

Label Propagation

47

H
trueHy

θ

Control flow depends
on data labeled with H

L ⊔ H = H

The semantics tracks control-flow dependencies
with the program counter label.

θ = [x ↦ trueH, y ↦ trueL, z ↦ falseL]

Label Propagation

λSFG
Dynamic Semantics e ⇓θ vpc

λSFG
Dynamic Semantics e ⇓θ vpc

Observations

Elimination rules taint the result with the intermediate value

Introduction rules label the result with the program counter

λSFG
Dynamic Semantics e ⇓θ vpc

Observations

Elimination rules taint the result with the intermediate value

Introduction rules label the result with the program counter

Invariant

e ⇓θ rℓpcIf then pc ⊑ ℓ

Label Introspection

⇓θpclabelOf(e)

Label Introspection

⇓θpclabelOf(e)

rℓe ⇓θpc

Label Introspection

⇓θpclabelOf(e) ℓ

rℓe ⇓θpc

Label Introspection

⇓θpclabelOf(e) ℓ ?

rℓe ⇓θpc What is the label of
the label itself?

Label Introspection

ℓ ℓ⇓θpclabelOf(e)

rℓe ⇓θpc

Label Introspection

ℓ ℓ

The label has the same
sensitivity of the result!

⇓θpclabelOf(e)

rℓe ⇓θpc

Label Introspection

ℓ ℓ

The label has the same
sensitivity of the result!

⇓θpcgetPC pcpc

⇓θpclabelOf(e)

rℓe ⇓θpc

λDFG

λDFG with References

Syntax with references

Simple Types τ ::= ··· | Ref τ

λDFG

λDFG with References

Syntax with references

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ

λDFG

λDFG with References

Syntax with references

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ
Reference to data labeled ℓ

λDFG

λDFG with References

Syntax with references

e ::= ··· | new e | !e | e := e

 | labelOfRef(e)

Expressions

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ
Reference to data labeled ℓ

λDFG

λDFG with References

Syntax with references

Label introspection on refs

e ::= ··· | new e | !e | e := e

 | labelOfRef(e)

Expressions

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ
Reference to data labeled ℓ

λDFG

λDFG with References

Syntax with references

Label introspection on refs

e ::= ··· | new e | !e | e := e

 | labelOfRef(e)

Expressions

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ

M ::= [] | r : MMemory ℓ

Store Σ ∈ (ℓ : Label) → Memory ℓ

Reference to data labeled ℓ

λDFG

λDFG with References

Syntax with references

Label introspection on refs

e ::= ··· | new e | !e | e := e

 | labelOfRef(e)

Expressions

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ

M ::= [] | r : MMemory ℓ

Store Σ ∈ (ℓ : Label) → Memory ℓ

The store is
partitioned by label

Reference to data labeled ℓ

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[New]
⟨Σ , new e⟩ ⇓θpc ⟨ Σ’’ , (nℓ)pc⟩

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[New]
⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

[New]
⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

n = | Σ’(ℓ) |
[New]

⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

Fresh Address

n = | Σ’(ℓ) |
[New]

⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

Fresh Address

n = | Σ’(ℓ) |
[New]

⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩

Σ’’ = Σ’[ℓ ↦ Σ’(ℓ)[n ↦ r]]

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

Fresh Address

n = | Σ’(ℓ) |
[New]

⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩

Σ’’ = Σ’[ℓ ↦ Σ’(ℓ)[n ↦ r]]

Update the store

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Read]
⟨Σ , !e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Read]
⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Read]
⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

Protects the “identity” of the ref

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Read]
Σ’(ℓ)[n] = r⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

Protects the “identity” of the ref

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Read]
Σ’(ℓ)[n] = r⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

Protects the “identity” of the ref

⟨ Σ’ , r ℓ ⊔ ℓ’ ⟩

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Read]
Σ’(ℓ)[n] = r⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

Protects the “identity” of the ref

⟨ Σ’ , r ℓ ⊔ ℓ’ ⟩

Tainted with original label + identity of the ref

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Write]
⟨Σ , e1 := e2⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Write]

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[Write]

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Security Checks

[Write]

ℓ1 ⊑ ℓ

ℓ2 ⊑ ℓ

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Security Checks

[Write]

ℓ1 ⊑ ℓ

ℓ2 ⊑ ℓ

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc

ℓ1 ⊑ ℓ
The decision of writing this reference must not
depend on data above the label of the reference

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Security Checks

[Write]

ℓ1 ⊑ ℓ

ℓ2 ⊑ ℓ

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc

ℓ1 ⊑ ℓ
The decision of writing this reference must not
depend on data above the label of the reference

ℓ2 ⊑ ℓ Must not write data above the label of the reference

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Security Checks

[Write]

ℓ1 ⊑ ℓ

ℓ2 ⊑ ℓ

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc ⟨ Σ’’’ , ()pc⟩

Σ’’’ = Σ’’[ℓ ↦ Σ’’(ℓ)[n ↦ r]]

ℓ1 ⊑ ℓ
The decision of writing this reference must not
depend on data above the label of the reference

ℓ2 ⊑ ℓ Must not write data above the label of the reference

Update store

Proof Technique

Define the low-equivalence relation1 v1 ≈τL v2

Proof Technique

Define the low-equivalence relation1 v1 ≈τL v2

v1 and v2 are indistinguishable at security level L

Prove that the semantics preserves the relation:2

θ₁ ≈ θ₂

c₁ ≈ c₂

Proof Technique

Define the low-equivalence relation1 v1 ≈τL v2

v1 and v2 are indistinguishable at security level L

Prove that the semantics preserves the relation:2

θ₁ ≈ θ₂

c₁ ≈ c₂

Proof Technique

Define the low-equivalence relation1 v1 ≈τL v2

v1 and v2 are indistinguishable at security level L

if
c₂⇓θ2 c₂’pc

c₁⇓θ1 c₁’pc

Prove that the semantics preserves the relation:2

θ₁ ≈ θ₂

c₁ ≈ c₂

Proof Technique

Define the low-equivalence relation1 v1 ≈τL v2

v1 and v2 are indistinguishable at security level L

then c₁’ ≈ c₂’ if
c₂⇓θ2 c₂’pc

c₁⇓θ1 c₁’pc

Prove that the semantics preserves the relation:2

θ₁ ≈ θ₂

c₁ ≈ c₂

Proof Technique

Define the low-equivalence relation1 v1 ≈τL v2

v1 and v2 are indistinguishable at security level L

then c₁’ ≈ c₂’

Derive non-interference as a corollary3

if
c₂⇓θ2 c₂’pc

c₁⇓θ1 c₁’pc

Outline
Overview of different language-based IFC approaches

• Non Interference

Fine-grained

Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages

Outline
Overview of different language-based IFC approaches

• Non Interference

Fine-grained

Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages

Outline
Overview of different language-based IFC approaches

• Non Interference

Fine-grained

Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages

References
Introduction and Surveys

A Perspective on Information-Flow Control
Daniel Hedin and Andrei Sabelfeld

Language-based information-flow security
Andrei Sabelfeld and Andrew C. MyersDifferent Variants of

Non-Interference

From dynamic to static and back:
Riding the roller coaster of information-flow control research

Andrei Sabelfeld and Alejandro Russo

Dynamic vs Static IFC

Fine-Grained IFC

Efficient purely dynamic information flow analysis
Thomas H. Austin and Cormac Flanagan

On the Expressiveness and Semantics of Information Flow Types
Vineet Rajani and Deepak Garg

Type-Driven Gradual Security with References
Matías Toro, Ronald Garcia, Éric Tanter

Hybrid

Dynamic

Static

Coarse-Grained IFC

Flexible Dynamic Information Flow Control in Presence of Exceptions
Deian Stefan, Alejandro Russo, John Mitchell, and David Mazières

MAC, A Verified Static Information-Flow Control Library
Marco Vassena, Alejandro Russo, Pablo Buiras, Lucas Waye

HLIO: Mixing Static and Dynamic Typing for Information-Flow Control in Haskell
Pablo Buiras, Dimitrios Vytiniotis, and Alejandro RussoHybrid

Dynamic

Static

https://people.cispa.io/marco.vassena/publications_files/JLAMP-published.pdf

Covert Channels

Securing Concurrent Lazy Programs Against Information Leakage
Marco Vassena, Joachim Breitner and Alejandro Russo

A Library For Removing Cache-based Attacks in Concurrent Information Flow Systems
Pablo Buiras, Deian Stefan, Amit Levy, Alejandro Russo, and David Mazières

Addressing Covert Termination and Timing Channels in Concurrent Information Flow Systems
Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and David Mazières

From trash to treasure: timing-sensitive garbage collection
Mathias V. Pedersen and Aslan Askarov

Foundations for Parallel Information Flow Control Runtime Systems
Marco Vassena, Gary Soeller, Peter Amidon, Matthew Chan, and Deian Stefan

http://www.cse.chalmers.se/~russo/publications_files/csf2017.pdf
http://www.cse.chalmers.se/~russo/publications_files/tgc2013.pdf
http://www.cse.chalmers.se/~russo/publications_files/icfp2012.pdf
http://users-cs.au.dk/askarov/gc-timing/
https://people.cispa.io/marco.vassena/publications_files/post19.pdf

Declassification and Endorsement

Declassification: Dimensions and principles
Andrei Sabelfeld and David Sands

A Semantic Framework for Declassification and Endorsement
Aslan Askarov and Andrew C. Myers

Nonmalleable Information Flow Control
Ethan Cecchetti, Andrew C. Myers, Owen Arden

http://askarov.net/askarov-myers-esop10.pdf

