Facets of Information
Flow Control

Marco Vassena

EEEEEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIII

Complex Software System

Sensitive Data

Complex Software System

Sensitive Data Devices

Complex Software System

Sensitive Data Devices OQutputs

Complex Software System

Sensitive Data Devices OQutputs

Modern software contains many 3rd party components!

App Components

Modern software contains many 3rd party components!

Mutually Distrusting

ApPpP Com,oo\ﬁ”)ents 6\3
_ A

7. —

—_ |

_

G ™ =

SN—

S

Modern software contains many 3rd party components!

App Components /' (X)

—
_

Modern software contains many 3rd party components!

App Components (X)
iBuggy /'

—

_

B . -

N—

—

Modern software contains many 3rd party components!

App Components /' (X)

iBuggy
—
—_ |
_
& > -
A e’

Malicious

Modern software contains many 3rd party components!

\
—>

D

\\~

App Components

i Buggy

2

A

Malicious

&
—
_

SN T
SO

v

N
A Data confidentiality and integrity is at stake &
_J

Example

Sign up

Username

I
Fassword @

Join

Example

Sign up

Username

Password

Join

4i

Untrusted Library

strengthOf(pwd : String)
db. log(pwd)
return STRONG

Example

Sign up

Username

Password

Join

4i

Untrusted Library

strengthOf(pwd : String)
-~ db.log(pwd)
return STRONG

- Attacker Controlled

~— Database
——

Example

Sign up

Username

Fassword é@q ‘\’

Untrusted Library

strengthOf(pwd : String)
-~ db.log(pwd)

return STRONG

Join

Password Ieak!T

SO o
S

S’

Attacker Controlled
Database

~

-

Restrict access to sensitive data in untrusted components

Access Control?

~

_J

Sign up

Username

Password

Join

=
STRENGTH \’

Untrusted Library

strengthOf(pwd : String)

- db. log(pwd)
return STRONG

- Attacker Controlled

~— Database
)

~

_

Restrict access to sensitive data in untrusted components

Access Control?

~

_J

Sign up

Username

Password

Join

m
STRENGTH

Untrusted Library

strengthOf(pwd : String)

- db. log(pwd)
return STRONG

- Attacker Controlled

~— Database
S—

~

_

Restrict access to sensitive data in untrusted components

Access Control?

~

_J

Sign up

Username

Password

Join

@
STRENGTH

Legitimate need to

access the password

v

Untrusted Library

strengthOf(pwd : String)
- db. log(pwd)

return STRONG
- Attacker Controlled
e — o Database
N’

~

_

\
Access Control?
Restrict access to sensitive data in untrusted components
_/
. Legitimate need to
Slgn up access the password
V
Username .
Untrusted Library 3
FPassword @
strengthOf(pwd : String)
Join I~ db.log (pwd)
1 return STRONG
This is the leak! T x
- Attacker Controlled
» — 7 Database
N’

~

_

~
Access Control? O

Restrict access to sensitive data in untrusted components

_J

Sign up

Username

Password

Join

Legitimate need to
access the password

v

Untrusted Library

m
STRENGTH

strengthOf(pwd : String
- db.log(pud)

YA *

; .I return STRONG

s ¢ *
. *

)

Ty 0

0

"%

This is the leak! T

~— Database
S—

- Attacker Controlled

~

_

Information Flow Control

Do not restrict data access, restrict where data can flow!

~

_J

Sign up

Username

Untrusted Library

Password

Join

=
e ‘\’ strengthOf (pwd

- db. log(pwd)
return STRONG

: String)

~—— Database
)

- Attacker Controlled

~

_

Information Flow Control

Do not restrict data access, restrict where data can flow!

~

_J

Sign up

Track data flows across
program components

Username

Password

Join

N
m Q Untrusted Library
A 4

— ‘\’ strengthOf (pwd

- db. log(pwd)
return STRONG

: String)

~— Database
—

- Attacker Controlled

~

Information Flow Control

Do not restrict data access, restrict where data can flow!

_J

Sign up

Username

Join

_V
FPassword &Q ‘\’

Track data flows across
program components

Untrusted Library

strengthOf(pwd : String)
db. log(pwd)
return STRONG

Detect and suppress
information leakage

X

_/

Attacker Controlled
Database

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

Facets of Language-based IFC

“Public” and “Secret”

/
Associate data with security levels to track data flows in programs

Facets of Language-based IFC

“Public” and “Secret”

/
Associate data with security levels to track data flows in programs

- 2
Tracking
Static Hybrid Dynamic

Facets of Language-based IFC

“Public” and “Secret”

/
Associate data with security levels to track data flows in programs

(")

Tracking

1 | .

Static Hybrid Dynamic

Facets of Language-based IFC

“Public” and “Secret”

/
Associate data with security levels to track data flows in programs

|
(Tracking

ConservaﬁveL C
| | :]

Static Hybrid Dynamic

_ y,

Facets of Language-based IFC

“Public” and “Secret”

/

Associate data with security levels to track data flows in programs

(

ConservaﬁveL Q

_

Tracking 1

|
Static

|
Hybrid

:] iRunfime Overhead

Dynamic

,

Facets of Language-based IFC

“Public” and “Secret”

/

Associate data with security levels to track data flows in programs

(

ConservaﬁveL Q

Tracking 1

_

Static

|
Hybrid

:] iRunfime Overhead

Dynamic

,

-

Granularity of data flows

M

~

)

P

Fine-grained

—

|
Coarse-grained

Facets of Language-based IFC

“Public” and “Secret”

/

Associate data with security levels to track data flows in programs

(

ConservaﬁveL Q

Tracking 1

_

Static

|
Hybrid

:] iRunfime Overhead

Dynamic

,

(

Granularity of data flows

Per variabl

M

~

)

:

eL o—

Fine-grained

—

|
Coarse-grained

Facets of Language-based IFC

“Public” and “Secret”

/

Associate data with security levels to track data flows in programs

(

_

Tracking 1
ConservaﬁveL (I | ;]iRunﬁme Overhead
Static Hybrid Dynamic
y
(Granularity of data flows 1

Per variabl

M

:

eL —

Fine-grained

—

I) iPer computation
Coarse-grained J

Plan

Overview of different language-based IFC approaches

® Non Interference

Plan

Overview of different language-based IFC approaches

J Confidentiality & Integrity

® Non Interference

Plan

Overview of different language-based IFC approaches

J Confidentiality & Integrity
® Non Interference

e 4 |FC Languages

Plan

Overview of different language-based IFC approaches

J Confidentiality & Integrity
® Non Interference

e 4 |FC Languages

Static Dynamic

Fine-grained ASFG ADFG

Coarse-grained ASCG ADCG

Security Policy

Information flow policies are specified by the security lattice

Security Policy

Which data flows are allowed

|
Information flow policies are specified by the security lattice

Security Policy

Which data flows are allowed

|
Information flow policies are specified by the security lattice

Simple lattice for confidentiality:

Secret

T

Public

Security Policy

Which data flows are allowed

|
Information flow policies are specified by the security lattice

Simple lattice for confidentiality:

Secret

Public and Secret
are security labels T
~\

Public

Security Policy

Which data flows are allowed

|
Information flow policies are specified by the security lattice

Simple lattice for confidentiality:

Secret

Public and Secret
are security labels T
~\

Public

“Secret inputs cannot flow to Public outputs”

Security Policy

Which data flows are allowed

|
Information flow policies are specified by the security lattice

Simple lattice for confidentiality:

Secret

Public and Secret
are security labels T
~\

J 2-point lattice

Public

“Secret inputs cannot flow to Public outputs”

Simple lattice for confidentiality:

Secret

T

Public

“Secret inputs cannot flow to Public outputs”

Formally:

4 =({P,S}, CC> LC)

Simple lattice for confidentiality:

Secret

T

Public

“Secret inputs cannot flow to Public outputs”

Formally: Partial order between labels

PC = ({P,S}, CC LC)

Simple lattice for confidentiality:

Secret

E

Public

“Secret inputs cannot flow to Public outputs”

Formally: Partial order between labels

PC = ({P,S}, CC LC)

Simple lattice for confidentiality:

Secret

E

Public

“Secret inputs cannot flow to Public outputs”

Formally:

where

Partial order between labels

PC = ({P,S}, CC LC)

PCCP
PCCS

SCCS
SzCP

Simple lattice for confidentiality:

Formally:

Secret

E

Public

“Secret inputs cannot flow to Public outputs”

Join Operator (least upper bound)

v

¥ =({P,S}, CC> LC)

Simple lattice for confidentiality:

Secret

E

Public

“Secret inputs cannot flow to Public outputs”

Formally: Join Operator (least upper bound)

v

¥ =({P,S}, CC> LC)

where P/ CP=P S¢S =S5
Pu¢cS=S SueP=S

“Dual” lattice for integrity:

Untrusted

e

Trusted

“Untrusted inputs cannot flow to Trusted outputs”

“Dual” lattice for integrity:

Untrusted

e

Trusted

“Untrusted inputs cannot flow to Trusted outputs”

Formally:

ZL'=({Tu}, ct,)

“Dual” lattice for integrity:

Untrusted

e

Trusted

“Untrusted inputs cannot flow to Trusted outputs”

Formally:

ZL'=({Tu}, ct,)

where TCIT UclU
TClU uogltT

“Dual” lattice for integrity:

Untrusted

e

Trusted

“Untrusted inputs cannot flow to Trusted outputs”

Formally:

ZL'=({Tu}, ct,)

where T/ T=T Uutu=0U
TuU=U UUP=U

Secret

E

Public

Untrusted

B

Trusted

Secret

E

Public

Untrusted

B

Trusted

Simple lattice for confidentiality and integrity:

Secret Untrusted

E g

Public Trusted

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

/N

(Secret , Trusted) (Public , Untrusted)

N/

(Public , Trusted)

Secret

E

Public

Untrusted

e

Trusted

Simple lattice for confidentiality and integrity:

(Secret , Trusted)

(Secret , Untrusted)< Restricted usage

/N
N

(Public , Trusted)

(Public , Untrusted)

Secret

E

Public

Untrusted

B

Trusted

Simple lattice for confidentiality and integrity:

(Secret , Trusted)

(Secret , Untrusted)< Restricted usage

/N
N

(Public , Untrusted)

(Public , Trusted 4 Unrestricted usage

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

/N

(Secret, Trusted) (Public , Untrusted)

N

(Public , Trusted)

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

/N

(Secret, Trusted) (Public , Untrusted)

N

(Public , Trusted)
Formally:

¥C = ({P,S} x {T,U}, cC x C!, uC x U

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

/N

(Secret, Trusted) (Public , Untrusted)

N

(Public , Trusted)
Formally:

¥C = ({P,S} x {T,U}, cC x C!, uC x U

Notice

S, nHzet(P,U) (P,U)zC (S, T)

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

/N

(Secret, Trusted) (Public , Untrusted)

N

(Public , Trusted)
Formally:

¥C = ({P,S} x {T,U}, cC x C!, uC x U

Notice l Mutually Incomparablel
S, e (P,U) P,UgC (S, T

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

/N

(Secret, Trusted) (Public , Untrusted)

N

(Public , Trusted)
Formally:

= ({P,S} x {T,U}, CC x Cl', LuC x U
Notice

(S, T)uct (P, U)

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

/N

(Secret, Trusted) (Public , Untrusted)

N

(Public , Trusted)
Formally:

= ({P,S} x {T,U}, CC x Cl', LuC x U
Notice

S, Hue'(P,U) =(SuCP,Tu U

Simple lattice for confidentiality and integrity:

(Secret , Untrusted)

/N

(Secret, Trusted) (Public , Untrusted)

N

(Public , Trusted)
Formally:

= ({P,S} x {T,U}, CC x Cl', LuC x U
Notice

S, Huwe(P,U) =G ueP, Tu'lU) =(S, U)

General lattice for principals P:

General lattice for principals P:

P = {Alice, Bob, Charlie}

General lattice for principals P:

P = {Alice, Bob, Charlie}

General lattice for principals P: P = {Alice, Bob, Charlie}

General lattice for principals P:

{A B}

A,CJ

P = {Alice, Bob, Charlie}

1B,C}

Al >< >< {C}
S~

General lattice for principals P:

{A,B,C}

e

{A B}

A,CJ

P = {Alice, Bob, Charlie}

1B,C}

Al >< >< {C}
S~

General lattice for principals P: P = {Alice, Bob, Charlie}
{A,B,C}

{A B} A,CJ 1B,C}

Al >< >< {C}
S~

Formally: #P=(PP), C, u)

General lattice for principals P: P = {Alice, Bob, Charlie}
{A,B,C}

e

{A B} {A,C} {B, C}

{C}
\ /@(P) is the power set of P

C is subset inclusion
U Is set union

Formaly: ~ #P=(PP), c,u)

In general we work with an abstract lattice with standard properties

C /S reflexive, transitive, and antisymmetric.

LI IS Idempotent, commutative, and associative.

In general we work with an abstract lattice with standard properties

C /S reflexive, transitive, and antisymmetric.

LI IS Idempotent, commutative, and associative.

1 element:

In general we work with an abstract lattice with standard properties
ZL=(L,c,u)

C /S reflexive, transitive, and antisymmetric.

LI IS Idempotent, commutative, and associative.
Bottom of

the lattice

N | element:

In general we work with an abstract lattice with standard properties

C /S reflexive, transitive, and antisymmetric.

LI IS Idempotent, commutative, and associative.
Bottom of

the lattice

N | element: VEe. L1CEL A Lut=2¢

In general we work with an abstract lattice with standard properties

C /S reflexive, transitive, and antisymmetric.

LI IS Idempotent, commutative, and associative.
Bottom of

the lattice

N | element: VEe. L1CEL A Lut=2¢

VL € L€s. {UTC Liuls A LC Liu £y

In general we work with an abstract lattice with standard properties

C /S reflexive, transitive, and antisymmetric.

LI IS Idempotent, commutative, and associative.
Bottom of

the lattice

N | element: VEe. L1CEL A Lut=2¢

Join and partial order “agree”

V v
VL 0o €. LLCLiuly A LT Liu £

Non-Interference

Public outputs must not depend on secret inputs.

Program @
Secret Input \‘ /'Secret Output

7 .

Public Input Public Output

Non-Interference

Public outputs must not depend on secret inputs.

Program @
Secret Input \‘ /'Secret Output

B, &
7 .

Public Input Public Output

Non-Interference

Public outputs must not depend on secret inputs.

Aaversarial Program @

Secret Input \‘ /'Secret Output

Public Input Public Output

&
.

Quiz

Do the following programs satisfy non-interference?

h := inputH()
1 := inputt()
outputh(l + h)

Quiz

Do the following programs satisfy non-interference?

h := inputH()
1 := inputt()
outputh(l + h)

v

Quiz

Do the following programs satisfy non-interference?

h := inputH()
1 := inputt()
outputh(l + h) ~Z

Public and secret data can
flow to secret outputs

v

Quiz

Do the following programs satisfy non-interference?

h := inputH()
L := inputt()
outputh(l + h) ~Z

v

Public and secret data can
flow to secret outputs

h := inputH()
outputt(h + 1)

Quiz

Do the following programs satisfy non-interference?

h := inputH()
L := inputt()
outputh(l + h) #

v

Public and secret data can
flow to secret outputs

X

h := inputH()
outputt(h + 1)

Quiz

Do the following programs satisfy non-interference?

v

h := inputH()
L := inputt()
outputh(l + h) ~Z

Public and secret data can
flow to secret outputs

Secret data must not

" — H
h := inputh() flow to public outputs

outputt(h + 1) 2

X

Quiz

Do the following programs satisfy non-interference?

v

h := inputH()
1 := inputt()
outputh(l + h) ~Z

Public and secret data can
flow to secret outputs

Secret data must not

" — H
h := inputh() flow to public outputs

outputt(h + 1) 2

X

This is an example of an explicit flow

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h
output.(0)

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h

output-(0)

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h
output-(0Q) #

The presence of a public output
leaks information about the secret

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h
output-(0Q) #

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h
output-(0Q) #

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

h := inputH()
outputt(h - h)

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h
output-(0Q) #

The presence of a public output
leaks information about the secret

This is an example of an implicit flow

h := inputH()
outputt(h - h)

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h

The presence of a public output
leaks information about the secret

output-(0Q) #

This is an example of an implicit flow

X

h 1= inputH() iequivalenf foL
outputt(h - h)

:= inputH() J

outputt(0)

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h

The presence of a public output
leaks information about the secret

output-(0Q) #

This is an example of an implicit flow

X

outputt(h - h) outputt(0)

Most IFC languages reject this program

_ iequivalenf foL _ J
h := inputH() h := inputH()

Quiz

Do the following programs satisfy non-interference?

h := inputH()
if h

The presence of a public output
leaks information about the secret

output-(0Q) #

This is an example of an implicit flow

X

outputt(h - h) outputt(0)

Most IFC languages reject this program

_ iequivalenf foL _ J
h := inputH() h := inputH()

False positive

Outline

Overview of different language-based IFC approaches
® Non Interference

® 4 |IFC Languages

Static Dynamic

Fine-grained ASFG)\DFG

Coarse-grained ASCG ADCG

Outline

Overview of different language-based IFC approaches
® Non Interference

® 4 |IFC Languages

Static Dynamic

Fine-grained @)\DFG

Coarse-grained ASCG ADCG

Static Fine-grained IFC

(=

Syntax

Static Fine-grained IFC

@ Syntax

Labeled Types T :ii= st

Simple Types s = unit | T > T | T+ 1T | T x T

Static Fine-grained IFC

@ Syntax

l Label annotation used in IFC type-system
£

Labeled Types T ii= S

Simple Types s = unit | T > T | T+ 1T | T x T

Static Fine-grained IFC

@ Syntax

l Label annotation used in IFC type-system
£

Labeled Types T ii= S

Simple Types s = unit | T > T | T+ 1T | T x T

Expressions e :ii= () | x | AX.e | e e
| (e , e) | fst(e) | snd(e)

| inl(e) | inr(e) | case(e, x.e, x.e)

Static Fine-grained IFC

(=

[abeled Types
Simple Types

Expressions

Values

KEH vironments

Syntax
l Label annotation used in IFC type-system
T = st
si=unit | T->T | T+T | TxT
e 2= () | x| Ax.e | e e

| (e , e) | fst(e)
| 1nl(e) | inr(e)

v 2= () | (x.e , 0)

B € Var - Value

| snd(e)

| case(e, x.e, x.e)

(v , V)

| inl(v)

| inr(v)

J

Static Fine-grained IFC

(=

[abeled Types
Simple Types

Expressions

Values

KEH vironments

Syntax
l Label annotation used in IFC type-system
T = st
si=unit | T->T | T+T | TxT
e 2= () | x| Ax.e | e e

| (e , e) | fst(e) | snd(e)

| inl(e) | inr(e) | case(e, x.e, x.e)

v u= () | (x.e , 6) | (v, v)

| inl(v)

O € Var - Value TFuncfion Closure

| inr(v)

J

&

Dynamic Semantics e U9 v

@ leandard: no security checks!

Dynamic Semantics e U9 v

@ leandard: no security checks!

Dynamic Semantics e U9 v

Static Semantics

[- e : T where [€ Var - LTypes

@ leandard: no security checks!

Dynamic Semantics e U9 v

Static Semantics iWell—fyped program are secure

[- e : T where [€ Var - LTypes

@ leandard: no security checks!

Dynamic Semantics e U9 v

Static Semantics iWell—fyped program are secure

[- e : T where [€ Var - LTypes

Exercise. Prove that the following program is ill-typed:

[i~ 1f h then 11 else 1, : Bool:

with typing environment

=1 hw» Boolt , 11 » Bool- , 1+~ Bool"]

@ leandard: no security checks!

Dynamic Semantics e U9 v

Static Semantics iWell—fyped program are secure

[- e : T where [€ Var - LTypes

Exercise. Prove that the following program is ill-typed:

[i~ 1f h then 11 else 1, : Bool:

with typing environment

=1 hw» Boolt , 11 » Bool- , 1+~ Bool"]

where Bool! £ (unit: + unitt)?

A

case(e, .ei1, _.€2)

if e then e; else e

@ leandard: no security checks!

Dynamic Semantics e U9 v

Static Semantics iWell—fyped program are secure

[e : T where [€ Var - LTypes

Exercise. Prove that the following program is ill-typed:

[i~ 1f h then 11 else 1, : Bool:

with typing environment

=1 hw» Boolt , 11 » Bool- , 1+~ Bool"]

where Bool! £ (unit: + unitt)?

5>;“*°C"° > if e then e; else e, = case(e, _.ei, _.e2)
ugar

@ Static Semantics

[- e : T where [€ Var - LTypes

@ Static Semantics

[e : T where [€ Var - LTypes

Observations & Remarks

Elimination rules include security checks

@ Static Semantics

[e : T where [€ Var - LTypes

Observations & Remarks

Elimination rules include security checks =

Avoid implicit leaks
through the result

@ Static Semantics

[e : T where [€ Var - LTypes

Observations & Remarks

Elimination rules include security checks =

Avoid implicit leaks
through the result

Introduction rules only generate label L

@ Static Semantics

[e : T where [€

Var - LTypes

Introduction rules only generate label L _

Observations & Remarks

Elimination rules include security checks =

Avoid implicit leaks
through the result

Can be increased
via subtyping

@ Static Semantics

[e : T where [€

Var - LTypes

Introduction rules only generate label L _

Observations & Remarks

Elimination rules include security checks =

Avoid implicit leaks

through the result

Can be increased
via subtyping

To state and prove non-interference we also need:

@ Static Semantics

[e : T where [€

Var - LTypes

Introduction rules only generate label L _

Observations & Remarks

Elimination rules include security checks =

Avoid implicit leaks

through the result

Can be increased
via subtyping

To state and prove non-interference we also need:

= VvV @« T

@ Static Semantics

[e : T where [€

Var - LTypes

Introduction rules only generate label L _

Observations & Remarks

Elimination rules include security checks =

Avoid implicit leaks

through the result

Can be increased
via subtyping

To state and prove non-interference we also need:

-V @ T - Similar to the intro

rules for expressions

@ Static Semantics

[- e : T where [€

Var - LTypes

Introduction rules only generate label L _

Observations & Remarks

Elimination rules include security checks =

Avoid implicit leaks

through the result

Can be increased
via subtyping

To state and prove non-interference we also need:

-V @ T - Similar to the intro

rules for expressions

Environment and typing |_ 0T

contexts “agree”

Subtyping Relation

S1 <:

S2

[Sub-LType]

Subtyping Relation

<.

unit <:

unit

[Sub-Unit]

Subtyping Relation

S <! S . :
unit <: unit
i € {1,2} Ti <: Ti
® € {+,x} ’
T1 ® Tr) <! T1 ® T

[Sub-Unit]

Subtyping Relation

unit <:

L € 11,2
® € {+,x} - ! !

unit

Ti <: Ti

’

T1 & Ty <:

A

T1 © Ty

Structural for sums and pairs

[Sub-Unit]

[Sub-Sum]
[Sub-Pair]

Subtyping Relation

S <:S : :
unlit <: unit [Sub-Unit]
i € {1,2} Ti <! Ti Sub-Sum]
®@ € {+,x} ' [)
T1 ©® T <! T1 ©® Ty [Sub-Pair]
T1 <: T1 T2 <: T2

Subtyping Relation

S <! S . .
unlit <: unit [Sub-Unit]
1 € {1, 2} Ti <: Ti Sub-Sum]
® € {+,x} [)
T1 ©® T <! T1 ©® Ty [Sub-Pair]
Tl’ < Tl TZ < TZ' - COVGI’ian

in the result

Subtyping Relation

<. S . -
unit <: unit
i € {1,2} Ti <: Tji
®@ € {+,x} ’ ’
T1 @ T2 <: T1 ®© Ty
Contravariant _ T1’ <: T1 T <! T

in the argument

[Sub-Unit]

[Sub-Sum
[Sub-Pair

11 =» T

<.

Covariant
in the result

£ C £ S1 <: S?
[Sub-LType]
S1El < SzEz
S <:S : :
unlit <: unit [Sub-Unit]
@ € {+,x} ' [-
T1 ©® T <! T1 ©® Ty [Sub-Pair]
T1 <: T T <: T
- ! 2 2 Sub-Fun]

Exercise. Prove that Booll - Booll <: Bool- - BoolH

T <. T
£ C £ S1 <: S2
[Sub-LType]
S1El < SzEz
S <:S : :
unlit <: unit [Sub-Unit]
1 € {1 2} Ti <: Ti Sub-Sum|
® € {+,x} ' | -
T1 ©® T <! T1 ©® Ty [Sub-Pair]
T1 <: T T < T
. ! 2 2 Sub-Fun]

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X * T+ e : BoolL

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

Secret input L

X * T+ e : BoolL

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

Secret input L l Public output

X * T+ e : BoolL

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

Secret input L l Public output

X * T+ e : BoolL

where

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

Secret input L l Public output

X ' T e : BoolL
where

L /s the attacker security level

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

Secret input L l Public output

X ' T e : BoolL
where

L /s the attacker security level

T /S not observable by the attacker:

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

Secret input L l Public output

X ' T e : BoolL
where

L /s the attacker security level

T /S not observable by the attacker:

T = st suchthat ¢ IZ L

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

AnyZSecretEV1 - L
Input values Vo & T

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

AnyZSecretEV1 - L
Input values Vo & T

X b V1
If

X » V2

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

AnyZSecretEV1 - L
Input values Vo & T

X+ V1]

If _ _ then V
X b V2|

[l
<

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

AnyZSecretEV1 - T
Input values Vo & T

Same public output

’

:X = Vl: V V
If _ _ then vV =
X b V2

Vv

Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

AnyZSecretEV1 - T
Input values Vo & T

Same public output

’

e yIx P vi]ly V
If _ _ then V =
e yLX P Va2l 7

Vv

["Public outputs do not depend on secret in,outs’)

Proof Technique

-~
@ Define a logical relation for programs giving equal public outputs

~

Proof Technique

-~
@ Define a logical relation for programs giving equal public outputs

Eltlt = { ((e1,01), (e2,62)) |

~

Proof Technique

-~
@ Define a logical relation for programs giving equal public outputs

Eltlt = { ((e1,01), (e2,62)) |

e1 101vy A e 192y, = (vi,v2) € V[TIt}

~

J

Proof Technique

-~
@ Define a logical relation for programs giving equal public outputs

El Tt =

{ ((e1, 01) , (e2,02)) | Equivalent values at level L

V
e1 101vy A e 192y, = (vi,v2) € V[TIt}

~

J

Proof Technique

-~
@ Define a logical relation for programs giving equal public outputs

_

~

ElTI- = { ((e1, 01) , (e2,02)) | Equivalent values at level L
v
e1 191y A ey 192y, = (vi,v2) € VITI}
v,
r N
@ Prove the fundamental theorem of logical relations
Y

Proof Technique

-~
@ Define a logical relation for programs giving equal public outputs

_

~

ElTI- = { ((e1, 01) , (e2,02)) | Equivalent values at level L
v

e1 191y A ey 192y, = (vi,v2) € VITI}

v,

r N
@ Prove the fundamental theorem of logical relations

IfI' = e : T then
Y

Proof Technique

s)
@ Define a logical relation for programs giving equal public outputs

ElTI- = { ((e1, 01) , (e2,02)) | Equivalent values at level L
v
e1 191y A ey 192y, = (vi,v2) € VITI}
_ v,
r N
@ Prove the fundamental theorem of logical relations

If I = e : T then

V (61 62) € IIMNT- = ((e,B61) ,(e,02)) € EILTI-

’

Proof Technique

_

@ Define a logical relation for programs giving equal public outputs)
ElxIt = { ((e1,01), (e2, 02)) | Equivalent values at level L

e1 191y A e 102y, = (vi,v2) € \\;[[T]]'- }

V),

r A
@ Prove the fundamental theorem of logical relations

If I~ e i T then
V (81, 82) € I[rl = ((e,01) ,(e,02)) € E[Tt
J

Equivalent input envs at L

Proof Technique

s)
@ Define a logical relation for programs giving equal public outputs

ElTI- = { ((e1, 01) , (e2,02)) | Equivalent values at level L
v
e1 191y A ey 192y, = (vi,v2) € VITI}
_ v,
r N
@ Prove the fundamental theorem of logical relations

If I = e : T then

0,) € }[[F]]L — ((e,01) , (e, 02)) € E[TI-

Y (61

’

. _J

Equivalent input envs at L

[@ Derive non-interference as a corollary J

ASFG with References

@ Syntax with references

£

Simple Types s ii= ««« | Ref T | T = T

~

ASFG with References

—

@ Syntax with references Keep tracks of |

side-effects
" 2

Simple Types s ii= ««« | Ref T | T = T

ASFG with References

Simple Types

Expressions

Syntax with references

S ..

e ..

£

—

Keep tracks of
side-effects

/4

Ref T | T = T

new e le | e := e

ASFG with References

Simple Types

Expressions

VValues

Syntax with references

—

Keep tracks of
side-effects

/2
S = Ref T | T 5 1
e = new e le | e 1= €
V o= - | n

ASFG with References

Simple Types

Expressions

VValues

Syntax with references

S ..

e ..

£

—

Keep tracks of |
side-effects

/4

Ref T | T = T

new e le | e := e

V ..

+ | n < Address in store

ASFG with References

Simple Types

Expressions

VValues

Store

Syntax with references

—

Keep tracks of \
side-effects

/4
S Ref T | T 5 1
e = s new e le | e 1= e
Vo= + | n < Address in store
2

ASFG with References

Simple Types

Expressions

VValues

Store

Syntax with references

—

Keep tracks of \
side-effects

/4
S Ref T | T 5 1
e = s new e le | e := e
V ii= =+« | n < Address in store

Dynamic Semantics

(£,e) 48 (¥, v)

ASFG with References

Simple Types

Expressions

VValues

Store

Syntax with references

—

Keep tracks of \
side-effects

/4
S Ref T | T 5 1
e = s new e le | e := e
V ii= =+« | n < Address in store

Dynamic Semantics

(Z,E) ue (ZI,V

i Standard
)

Static Semantics

@ Static Semantics

[Fpc € 5 T
A
“Program Counter” label

@ Static Semantics

Fl—pce:'t
A

“Program Counter” label

-

-

The pc label is a lower bound on the write effects of the program e

~

_J

@ Static Semantics

Program e cannot create and write

[Fpc € 1 T
references labeled below the PC

A

“Program Counter” label

-

-

The pc label is a lower bound on the write effects of the program e

~

_J

&

F|—pce
A

“Program Counter” label

Static Semantics

Program e cannot create and write

references labeled below the PC
A

Eliminate implicit leaks

through the store

-

-

The pc label is a lower bound on the write effects of the program e

~

_J

@ Static Semantics

Program e cannot create and write

[Fpc € 1 T
references labeled below the PC

A

A
Eliminate implicit leaks

“Program Counter” label

through the store

-

-

The pc label is a lower bound on the write effects of the program e

~

_J

Exercise. [Prove that the following program is ill-typed.:

[¥ if h then 1 := true else () : unitH

&

Fl—pce:'t

Static Semantics

Program e cannot create and write

\ references labeled below the PC

“Program Counter” label

A
Eliminate implicit leaks

through the store

-

-

The pc label is a lower bound on the write effects of the program e

~

_J

Exercise.

[¥ if h then 1 := true else () : unitH

with typing environment

Prove that the following program is ill-typed.:

T=1[hw» Boolt , 1~ (Ref BoolL)L]

Subtyping Relation

[Sub-Fun]

Subtyping Relation

i Contravariant

[Sub-Fun]

Subtyping Relation

<.

T <: T L’

C ¢

i Contravariant

£ T

— T2 <! T1 —

References ?

Tz’

[Sub-Fun]

Subtyping Relation

<: S iConfravarianf
T1 <: T1 T <: T L' cC e
[Sub-Fun]
T1 LN o < T9 RN 183
References ?
Covariant
T <: T

Ref 1 <: Ref T

Subtyping Relation

<: S iConfravarianf
T1 <: T1 T <: T L' Cc L
[Sub-Fun]
T1 LN o < T9 IR 183
References 7
Covariant Contravariant
T <* T T <! T

Ref 1 <: Ref T

Ref 1 <: Ref T

Subtyping Relation

<: S iConfravarianf
T1 <: T1 T <: T L' C L
[Sub-Fun]
T1 LN o < T9 AN 183
References ?
Covariant Invariant Contravariant
T < T T <! T
Ref T <: Ref T’ Ref T <: Ref T Ref T <: Ref T’

Subtyping Relation

<: S iConfravarianf
T1 <: T1 T <: Ty L' Cc L
[Sub-Fun]
T1 LN o < T9 IR 19
References 7
Covariant Invariant Contravariant
T<: T T <! T

Ref 1 <: Ref T Ref 1 <: Ref T Ref 1 <: Ref T

v

Exercise

Find a well-typed program that leaks if we consider references covariant:

Covariant x

T <: T

Ref 1T <: Ref T’

Find a well-typed program that leaks if we consider references contravariant:

Contravariantx
’ T

T <:

Ref T <: Ref T’

A Soundness issues! &

Covariant x Contravariantx
T ’ T

T <. T <.

Ref 1 <: Ref T Ref 1 <: Ref T

A Soundness issues! &

Covariant x Contravariantx
T ’ T

T <. T <.

Ref 1 <: Ref T Ref 1 <: Ref T

A

Ref Bool- can be
written as Ref BoolH

& Soundness issues! A

Covariant x Contravariantx
T ’ T

T <. T <:

Ref 1 <: Ref T Ref 1 <: Ref T

A

Ref Bool- can be
written as Ref BoolH

!

let h ref = 1 ref 1in
h ref :=h
Il ref

& Soundness issues! &

Covariant x Contravariantx
T ’ T

T <° T <:
Ref T <: Ref T Ref T <: Ref T
A A
Ref Bool- can be Ref BoolHcan be
written as Ref BoolH read as Ref Boolk

!

let h ref = 1 ref 1in
h ref :=h
Il ref

& Soundness issues!

A\

Covariant x
T ’

T <.

Ref 1 <: Ref T

A

Ref Bool- can be
written as Ref BoolH

!

let h ref = 1 ref 1in
h ref :=h
Il ref

Contravariantx
’ T

1 <.

Ref 1 <: Ref T

A

Ref BoolHcan be
read as Ref Boolk

'

let L ref = h _ref 1in
Il _ref

& Soundness issues!

A\

Covariant x
T ’

T <.

Ref 1 <: Ref T

A

Ref Bool- can be
written as Ref BoolH

!

Contravariantx
’ T

1 <.

Ref 1 <: Ref T

A

Ref BoolHcan be
read as Ref Boolk

'

let h ref = 1 ref 1in
h ref :=h
'L_ref

/

Well-typed but leak!

let L ref = h _ref 1in

Il _ref

Covariant x

A

Ref Boolk can be
written as Ref BoolH

Contravariantx

A

Ref BoolHcan be
read as Ref Boolk

References are input (read) and output (write) channels!

Invariant /

Ref 1 <: Ref T

[Sub-Ref]

Soundness Proof

[Non-Interference for ASFG with higher-order state]

Soundness Proof

The store can contain references

\J
[Non-Interference for ASFG with higher-order state]

Soundness Proof

The store can contain references

A\

\J
[Non-Interference for ASFG with higher-order state]

|

[Step-indexed Kripke logical re/at/onJ

Soundness Proof

The store can contain references

A\

\J
[Non-Interference for ASFG with higher-order state]

Avoid circular reasoning T

Vv
[Step-indexed Kripke logical re/at/onJ

Soundness Proof

The store can contain references

A\

\J
[Non-Interference for ASFG with higher-order state]

Avoid circular reasoning

v

|

[Step-indexed Kripke logical re/at/onJ

See “On the Expressiveness and Semantics of Information Flow Types”
by Rajani and Garg

Outline

Overview of different language-based IFC approaches
® Non Interference

® 4 |IFC Languages

Static Dynamic

Fine-grained @)\DFG

Coarse-grained ASCG ADCG

Outline

Overview of different language-based IFC approaches
® Non Interference

® 4 |IFC Languages

Static Dynamic

Fine-grained ASFG @

Coarse-grained ASCG ADCG

Dynamic Fine-Grained IFC

Enforce dynamic security policies

\b/’
& — -

\ _/

Dynamic Fine-Grained IFC

Enforce dynamic security policies

=[] &t
& — -
. Possibly unknown statically

\ _/

Dynamic Fine-Grained IFC

Enforce dynamic security policies

@ Runhme Labe
= ULy

Possibly unknown statically

Dynamic Fine-Grained IFC

Enforce dynamic security policies

Possibly unknown statically

Runhme Labe
=] @&
g —~ UL

[abel Introspection

Dynamic Fine-Grained IFC

Enforce dynamic security policies

@ ~ Runtime Labe
PG

Possibly unknown statically

_J

\

[abel /ntros,oect/on Useful programming

patterns

Dynamic Fine-grained IFC

® s)
yntax

Iypes T m=unit | T-> 1 | T+ 1T | T x T | Label

Dynamic Fine-grained IFC

® s \
yntax New]

V
Iypes T m=unit | T-> 1 | T+ 1T | T x T | Label

Dynamic Fine-grained IFC

® s \
yntax New]

V
Iypes T m=unit | T-> 1 | T+ 1T | T x T | Label

Labeled Values v = rt

Dynamic Fine-grained IFC

Types T i

[Labeled Vvalues Vv ::

Syntax

~

New!

v

unit | T Tt | T+ T | T x T | Label

rt <

Raw value at security level £

Dynamic Fine-grained IFC

[abeled Values

Types

Raw Values

Environments

_

~

Syntax o
Vv
T u=unit | Tt 1| T+ 1| Tx 1 | Label
v ii= rt 3§ Raw value ot security level {
ra= () | (x.e, 8) | (v, v)
| inl(v) | inr(v) | £
6 € Var - LValue

Dynamic Fine-grained IFC

[abeled Values

Types

Raw Values

Environments

_

r .=

| inl(v) | 1nr(v) | £ %Runﬁmelabels

unit | T Tt | T+ T | T x T | Label

rt <

()

Syntax

~

New!

Raw value at security level £

(x.e , 8) | (v, v)

v

O € Var - LValue

Dynamic Fine-grained IFC

[abeled Values

Types

Raw Values

Environments

Expressions

_

Syntax

T u=unit | Tt 1| T+ 1| Tx 1 | Label

~

New!

v ii= rt 3§ Raw value ot security level {

r == () | (x.e , 0)

(Vv , V)

v

| inl(v) | 1nr(v) | £ %Runﬁmelabels

O € Var - LValue

e = --- | labelOf(e)

| getPC | e C? e

/

Dynamic Fine-grained IFC

[abeled Values

Types

Raw Values

Environments

Expressions

_

~

Syntax o
v
T u=unit | Tt 1| T+ 1| Tx 1 | Label
v 2= rt § Raw value at security level £
ra= () | (x.e, 8) | (v, v)
| inl(v) | 1nr(v) | £ %Runﬁmelabels
6 € Var - LValue
Label Introspection
L
e = .-+ | labelOf(e) | getPC | e E? e

/

Semantics

Static [- e : T

Semantics

leandard: no security checks!

Static [- e : T

Semantics

leandard: no security checks!

Static [- e : T

Dynamic e Usc Vv

Semantics

leandard: no security checks!

Static [- e : T
Security Monitor
v
Dynamic e Usc Vv

Semantics

Static

Security Monitor

v
Dynamic

-

= € .

0
e Uy

leandard: no security checks!

T

Vv

T Program Counter

Semantics

leandard: no security checks!

Static [- e : T
Security Monitor
v
Dynamic e Usc Vv

T Program Counter

The monitor propagates labels from inputs to outputs

Label Propagation

The semantics tracks control-flow dependencies
with the program counter label.

[x » true”, y » true", z » false"]

46

Label Propagation

The semantics tracks control-flow dependencies
with the program counter label.

= [
A

Program Counter

[x » true”, y » true", z » false"]

46

Label Propagation

The semantics tracks control-flow dependencies
with the program counter label.

6 = [x » true”, y » true*, z » false"]

47

Label Propagation

The semantics tracks control-flow dependencies
with the program counter label.

A

Control flow depends
on data labeled with H

6 = [x » true”, y » true*, z » false"]

47

Label Propagation

The semantics tracks control-flow dependencies
with the program counter label.

= ®

A
Control flow depends
on data labeled with H

true”

6 = [x » true”, y » true*, z » false"]

47

Label Propagation

The semantics tracks control-flow dependencies
with the program counter label.

LuH=H
—Qé’—> true”
(W)

A

Control flow depends
on data labeled with H

6 = [x » true”, y » true*, z » false"]

47

D
ynami
IC
Semantics
e
UG
pc v

&

Dynamic Semantics e llgc Vv

~

=

Observations
Introduction rules label the result with the program counter

Elimination rules taint the result with the intermediate value

J

&

Dynamic Semantics e llgc Vv

~

=

Observations
Introduction rules label the result with the program counter

Elimination rules taint the result with the intermediate value

J

v

Invariant

0 ¢
rooe 45 r then pc £ £

Lab
e
| Introspe
ction

la
belOf(e)
M B
DC

Lab
e
| Introspe
ction

la
belOf(e)
M B
DC

Lab
e
| Introspe
ction

lab
elof(e) U5
pc L

Label Introspection

e llpec rf What is the label of
the label itself?

labelOf(e) llr?c E

Label Introspection

labelof(e) 18 ¢t

Label Introspection

The label has the same
sensitivity of the result!

L
e UpGC r

labelOf (e) llr?c gt

Label Introspection

e UpGC r

The label has the same
sensitivity of the result!

L

labelOf (e) llr?c gt

getPC !

S
pC

pc™

APFG with References

Syntax with references \

Simple lypes T = -+ | Ref T

APFG with References

Syntax with references \

Simple lypes T = -+ | Ref T

Values v 1= «-« | np

APFG with References

Syntax with references \

Simple lypes T = -+ | Ref T
0 JReference to data labeled {

Values v = -+« | n

APFG with References

Syntax with references \
Simple Types T :i= - | Ref T
es e 1) Reference to data labeled {
Expressions e 1= new e | 'le | e (= e
| labelOfRef(e)

APFG with References

Syntax with references \
Simple Types T :i= - | Ref T
es e 1) Reference to data labeled {
Expressions e 1= new e | 'le | e (= e
| labelOfRef(e)

TLabel introspection on refs

J

APFG with References

Syntax with references \
Simple lypes T = -+ | Ref T
o JReference to data labeled {
Values v 1= = Ng -2
Expressions e 1= ««-« new e | 'le | e (= e
| labelOfRef(e)
TLabel introspection on refs
Store ¥ € (£ : Label) - Memory ¢
Memory £ M =[] | r : M

J

APFG with References

Simple Types

Values

Expressions

Store

Memory £

Syntax with references

~

T = -« | Ref 1
V "= s
e = .- new e |

| labelOfRef(e)

g J Reference to data labeled {

le

| e 1= e

TLabel introspection on refs

> € (£ : Label) - Memory ¢

M a=T[] | r: M

T

The store is
partitioned by label

7

Dynamic Semantics

(Z,e) bg (2, v)

[New |

(x,new e) 19 (X, (ng)PC)

pC

Dynamic Semantics

(Z,e) bg (2, v)

(£,e) 45 (2, rt)

[New |

(x,new e) 19 (X, (ng)PC)

pC

Dynamic Semantics

(Z,e) bg (2, v)

Allocate in memory £

(£,e) 45 (2", rt)

[New |
(£, new e) ll%c (=", (ng)P*)

Dynamic Semantics

(Z,e) bg (2, v)

Allocate in memory £

(£,e) 45 (2", rt)

n = |X(8) |

[New |
(£, new e) ll%c (=", (ng)P*)

Dynamic Semantics

(Z,e) bg (2, v)

Allocate in memory £

Fresh Address (¥, e) Upec (2, rt)
V

n = |X(8) |

[New |
(£, new e) ll%c (=", (ng)P*)

Dynamic Semantics

(Z,e) bg (2, v)

Allocate in memory £

Fresh Address (¥, e) Upec (2, rt)
V

n=[X(e)] X'=X[rX(L)[nwrr]]

[New |
(£, new e) ll%c (=", (ng)P*)

Dynamic Semantics

(£,e) 4o (2", V)

Allocate in memory £

F\ll‘eSh Address (2, e) Upec (2", rt) JUpdafe the store

n=[X(e)] X=X[erX(L)[nwr]]

[New |
(£, new e) ll%c (=", (ng)P*)

Dynamic Semantics

(£,e) 4o (2, V)

| Read |

0
(X, le) Upc

Dynamic Semantics

(£,e) 4o (2, V)

| Read |

Dynamic Semantics

(£,e) 4o (2, V)

Protects the “identity” of the ref

V
(z,e) 18 (', (np)?)
| Read |
(x,1e) 4°

Dynamic Semantics

(Z,e) bg (2, v)

Protects the “identity” of the ref

V
(z,e) 18 (=, (n)V) (&) [n] = r
| Read |
(x,1e) U

Dynamic Semantics

(Z,e) bg (2, v)

Protects the “identity” of the ref

(z,e) 49 (', (ne)t) s®)[n] = r

| Read |

6 r Lue’
(X, le) Upc (X', r)

Dynamic Semantics

(£,e) 4o (2, V)

Protects the “identity” of the ref

(z,e) 49 (', (ne)t) s®)[n] = r

| Read |

(£, 1e) 48 (z',rtulh)
pC A
Tainted with original label + identity of the ref

Dynamic Semantics

(£,e) 4o (2, V)

[Write |

(X, e1:=e2) UF?C

Dynamic Semantics

(£,e) 4o (2, V)

(z,e1) 48 (27, (ng)tr)

[Write |

(X, e1:=e2) UF?C

Dynamic Semantics

(£,e) 4o (2, V)

[Write |

Dynamic Semantics

[Write |

Dynamic Semantics

PC
(2, e1) ugc (57, (ng)t1) Security Checks
(', ez2) Ugc (s rt2)

[Write |

(X, e1:=e2) UF?C
The decision of writing this reference must not

i1 C ¢
: depend on data above the label of the reference

Dynamic Semantics

e ’ [Security Checks
(zrel) UpC (Z r(nﬁ) 1)
(Z’,EZ) U[Z?C (Z”r r£2)

[Write |

(X, e1:=e2) UF?C

The decision of writing this reference must not

i1 C ¢
: depend on data above the label of the reference

£> © £ Must not write data above the label of the reference

Dynamic Semantics

(z,e1) 48 (27, (ng)tr)

(Z’ ’ 82) U[Z?C (Z” ’ r£2)

Y=L YX(L) [Nk r]] < Update store

[Write |

(£,e1:=e2) 45 (2, OFC)

The decision of writing this reference must not

i1 C ¢
: depend on data above the label of the reference

£> © £ Must not write data above the label of the reference

Proof Technique

[@ Define the low-equivalence relation | V1 zT,_ V2

Proof Technique

v1 and V2 are indistinguishable at security level L

V
[Define the low-equivalence relation | V1 zT,_ V2

Proof Technique

v1 and V2 are indistinguishable at security level L

V
[@ Define the low-equivalence relation | V1 zT,_ V2

@ Prove that the semantics preserves the relation:

1= 02

Ci= C2

Proof Technique

v1 and V2 are indistinguishable at security level L

V
[@ Define the low-equivalence relation | V1 zT,_ V2

@ Prove that the semantics preserves the relation:
01= 0> Cild S é C1’
if
Ci= C2 62 !
c2 oC C2

Proof Technique

v1 and V2 are indistinguishable at security level L

V
[Define the low-equivalence relation | V1 zT,_ V2
@ Prove that the semantics preserves the relation:
01~ 02 Cr U0t
if then ci’' = c2’
Ci= C2 02 ’
C>2 Up c Co2

Proof Technique

v1 and V2 are indistinguishable at security level L

V
[Define the low-equivalence relation | V1 zT,_ V2
@ Prove that the semantics preserves the relation:
01~ 02 Cr U0t
if then ci’' = c2’
Ci= C2 02 ’
C>2 Up c Co2

_

@ Derive non-interference as a corollary

Outline

Overview of different language-based IFC approaches
® Non Interference

® 4 |IFC Languages

Static Dynamic

Fine-grained ASFG ADFG

Coarse-grained ASCG ADCG

Outline

Overview of different language-based IFC approaches

® Non Interference @

® 4 |IFC Languages

Static Dynamic

Fine-grained ASFG ADFG

Coarse-grained ASCG ADCG

Outline

Overview of different language-based IFC approaches

® Non Interference @

® 4 |IFC Languages

Static Dynamic

Fine-grained ASFG ADFG

%

Coarse-grained ASCG ADCG

References

Introduction and Surveys

[anguage-based information-flow security

Different Variants of
Non-Interference

Andrei Sabelfeld and Andrew C. Myers

\

A Perspective on Information-Flow Control
Daniel Hedin and Andrei Sabelfeld

Dynamic vs Static IFCL

From dynamic to static and back:

Riding the roller coaster of information-flow control research

Andrei Sabelfeld and Alejandro Russo

Static

Dynamic

Hybrid

Fine-Grained IFC

On the Expressiveness and Semantics of Information Flow Types
Vineet Rajani and Deepak Garg

Efficient purely dynamic information flow analysis
Thomas H. Austin and Cormac Flanagan

Type-Driven Gradual Security with References
Matias Toro, Ronald Garcia, Eric Tanter

Static

Coarse-Grained IFC

MAC, A Verified Static Information-Flow Control Library

Dynamic

Hybrid

Marco Vassena, Alejandro Russo, Pablo Buiras, Lucas \Waye

Flexible Dynamic Information Flow Control in Presence of Exceptions
Deian Stefan, Alejandro Russo, John Mitchell, and David Mazieres

HLIO: Mixing Static and Dynamic Typing for Information-Flow Control in Haskell
Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo

https://people.cispa.io/marco.vassena/publications_files/JLAMP-published.pdf

Covert Channels

Addressing Covert Termination and Timing Channels in Concurrent Information Flow Systems

Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and David Mazieres

Securing Concurrent Lazy Programs Against Information [eakage

Marco Vassena, Joachim Breitner and Alejandro Russo

Foundations for Parallel Information Flow Control Runtime Systems
Marco Vassena, Gary Soeller, Peter Amidon, Matthew Chan, and Deian Stefan

From trash to treasure: timing-sensitive garbage collection
Mathias V. Pedersen and Aslan Askarov

A Library For Removing Cache-based Attacks in Concurrent Information Flow Systems

Pablo Buiras, Deian Stefan, Amit Levy, Alejandro Russo, and David Mazieres

http://www.cse.chalmers.se/~russo/publications_files/csf2017.pdf
http://www.cse.chalmers.se/~russo/publications_files/tgc2013.pdf
http://www.cse.chalmers.se/~russo/publications_files/icfp2012.pdf
http://users-cs.au.dk/askarov/gc-timing/
https://people.cispa.io/marco.vassena/publications_files/post19.pdf

Declassification and Endorsement

Declassification: Dimensions and principles
Andrei Sabelfeld and David Sands

A Semantic Framework for Declassification and Endorsement
Aslan Askarov and Andrew C. Myers

Nonmalleable Information Flow Control
Ethan Cecchetti, Andrew C. Myers, Owen Arden

http://askarov.net/askarov-myers-esop10.pdf

