Facets of Information Flow Control

Marco Vassena

Complex Software System

Sensitive Data

BANK

Complex Software System

Sensitive Data

BANK

Complex Software System

Sensitive Data

Devices
Outputs

Complex Software System

Sensitive Data

Modern software contains many 3rd party components!

Modern software contains many 3rd party components!

Modern software contains many 3rd party components!

Modern software contains many 3rd party components!

Modern software contains many 3rd party components!

Modern software contains many 3rd party components!

Data confidentiality and integrity is at stake

Example

Sign up

Username
 Password

Join

Example

Example

Example

Access Control?

Restrict access to sensitive data in untrusted components

Attacker Controlled
Database

Access Control?

Restrict access to sensitive data in untrusted components

Attacker Controlled
Database

Access Control?

Restrict access to sensitive data in untrusted components

Attacker Controlled

Database

Access Control?

Restrict access to sensitive data in untrusted components

Access Control?

Restrict access to sensitive data in untrusted components

Information Flow Control

Do not restrict data access, restrict where data can flow!

Attacker Controlled
Database

Information Flow Control

Do not restrict data access, restrict where data can flow!

Track data flows across program components

Untrusted Library

strength0f(pwd : String) db. log(pwd) return STRONG

Attacker Controlled
Database

Information Flow Control

Do not restrict data access, restrict where data can flow!

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

Facets of Language-based IFC

"Public" and "Secret"

Associate data with security levels to track data flows in programs

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

Facets of Language-based IFC

Associate data with security levels to track data flows in programs

Facets of Language-based IFC

"Public" and "Secret"
Associate data with security levels to track data flows in programs

Granularity of data flows

Fine-grained
Coarse-grained

Facets of Language-based IFC

"Public" and "Secret"
Associate data with security levels to track data flows in programs

Granularity of data flows
Per variable

Fine-grained
Coarse-grained

Facets of Language-based IFC

"Public" and "Secret"
Associate data with security levels to track data flows in programs

Plan

Overview of different language-based IFC approaches

- Non Interference

Plan

Overview of different language-based IFC approaches

Plan

Overview of different language-based IFC approaches

- 4 IFC Languages

Plan

Overview of different language-based IFC approaches

- 4 IFC Languages

	Static	Dynamic
Fine-grained	$\lambda \mathbf{S F G}$	$\lambda \mathbf{D F G}$
Coarse-grained	$\lambda \mathbf{S C G}$	$\lambda \mathbf{D C G}$

Security Policy

Information flow policies are specified by the security lattice

Security Policy

Which data flows are allowed
Information flow policies are specified by the security lattice

Security Policy

Which data flows are allowed
Information flow policies are specified by the security lattice

Simple lattice for confidentiality:

Secret

Public

Security Policy

Which data flows are allowed
Information flow policies are specified by the security lattice

Simple lattice for confidentiality:

Secret

Public and Secret are security labels

Public

Security Policy

Which data flows are allowed
Information flow policies are specified by the security lattice

Simple lattice for confidentiality:

Secret

Public and Secret are security labels

Public

"Secret inputs cannot flow to Public outputs"

Security Policy

Which data flows are allowed
Information flow policies are specified by the security lattice

Simple lattice for confidentiality:

Secret
Public and Secret are security labels

2-point lattice

Public

"Secret inputs cannot flow to Public outputs"

Simple lattice for confidentiality:

Secret

1

Public

"Secret inputs cannot flow to Public outputs"

Formally:

$$
\mathscr{L}^{\mathrm{C}}=\left(\{\mathrm{P}, \mathrm{~S}\}, \sqsubseteq \mathrm{C}, \sqcup^{\mathrm{C}}\right)
$$

Simple lattice for confidentiality:

Secret

1

Public

"Secret inputs cannot flow to Public outputs"

Formally:

$$
\begin{aligned}
& \text { Partial order between labels } \\
& \mathscr{L}^{\mathrm{C}}=\left(\{\mathrm{P}, \mathrm{~S}\}, \sqsubseteq^{\mathrm{c}}, \sqcup^{\mathrm{C}}\right)
\end{aligned}
$$

Simple lattice for confidentiality:

Secret

$$
\uparrow \sqsubseteq c
$$

Public

"Secret inputs cannot flow to Public outputs"

Formally:

$$
\begin{aligned}
& \text { Partial order between labels } \\
& \mathscr{L}^{\mathrm{C}}=\left(\{\mathrm{P}, \mathrm{~S}\}, \sqsubseteq_{\mathrm{c}}, \sqcup^{\mathrm{C}}\right)
\end{aligned}
$$

Simple lattice for confidentiality:

Secret

$$
\uparrow \sqsubseteq c
$$

Public

"Secret inputs cannot flow to Public outputs"

Formally:
Partial order between labels

$$
\mathscr{L}^{\mathrm{C}}=\left(\{\mathrm{P}, \mathrm{~S}\}, \underline{\Sigma}^{\mathrm{c}}, \sqcup^{\mathrm{C}}\right)
$$

where
P 巨c
$S \sqsubseteq^{C}$
P $\underline{\mathrm{C}}^{\mathrm{C}}$
S \ddagger^{C} P

Simple lattice for confidentiality:

Secret

$\uparrow \sqsubseteq C$

Public

"Secret inputs cannot flow to Public outputs"

Formally:
Join Operator (least upper bound)

$$
\mathscr{L}^{\mathbf{c}}=\left(\{\mathrm{P}, \mathrm{~S}\}, \sqsubseteq \mathrm{C}, \sqcup^{\mathrm{c}}\right)
$$

Simple lattice for confidentiality:

Secret

$\uparrow \sqsubseteq$

Public

"Secret inputs cannot flow to Public outputs"

Formally:
Join Operator (least upper bound)
$\mathscr{L}^{\mathbf{C}}=\left(\{\mathrm{P}, \mathrm{S}\}, \sqsubseteq \mathrm{C}, \sqcup^{\mathrm{C}}\right)$
where
$P \sqcup^{C} P=P \quad S \iota^{C} S=S$
$P \sqcup^{C} S=S \quad S \iota^{C} P=S$
"Dual" lattice for integrity:

Untrusted

Trusted
"Untrusted inputs cannot flow to Trusted outputs"
"Dual" lattice for integrity:

Untrusted

Trusted
"Untrusted inputs cannot flow to Trusted outputs"

Formally:

$$
\mathscr{L}^{\prime}=\left(\{\mathrm{T}, \mathrm{U}\}, \sqsubseteq^{\prime}, \mathrm{U}^{\mathrm{I}}\right)
$$

"Dual" lattice for integrity:

Untrusted

$$
\hat{\mid F I}^{\prime}
$$

Trusted

"Untrusted inputs cannot flow to Trusted outputs"

Formally:

$$
\begin{array}{cc}
\mathscr{L}^{\prime}=\left(\{\mathrm{T}, \mathrm{U}\}, \sqsubseteq^{\mathrm{I}}, \sqcup^{\mathrm{l}}\right) \\
\mathrm{T} \sqsubseteq^{\mathrm{I} T} \quad & \mathrm{U} \sqsubseteq^{\mathrm{I}} \mathrm{U} \\
\mathrm{~T} \sqsubseteq^{\mathrm{I}} \mathrm{U} & \mathrm{U} \not ¥^{\mathrm{I}} \mathrm{~T}
\end{array}
$$

"Dual" lattice for integrity:

Untrusted

$$
\hat{F}^{\prime}
$$

Trusted

"Untrusted inputs cannot flow to Trusted outputs"

Formally:

$$
\begin{aligned}
& \mathscr{L}^{\prime}=\left(\{T, \mathrm{U}\}, \sqsubseteq^{\prime}, \sqcup^{\prime}\right) \\
& \text { where } \\
& \begin{array}{ll}
T \Delta^{\prime} T=T & U \Delta^{\prime} U=U \\
T U^{\prime} U=U & U \Delta^{\prime} P=U
\end{array}
\end{aligned}
$$

Secret
$1=0$
Public

Untrusted

Trusted

Secret

Public

Untrusted
\uparrow ■
Trusted

Simple lattice for confidentiality and integrity:

Secret

$\uparrow \sqsubseteq C$
Public

Untrusted

Trusted

Simple lattice for confidentiality and integrity:
(Secret , Untrusted)

(Secret , Trusted)

(Public, Untrusted)

(Public , Trusted)

Secret
$1 \leq 0$
Public

Untrusted

Trusted

Simple lattice for confidentiality and integrity:
(Secret , Untrusted) $<$ Restricted usage
(Secret, Trusted) (Public, Untrusted)

(Public , Trusted)

Secret
\uparrow ¢

Public

Untrusted

Trusted

Simple lattice for confidentiality and integrity:
(Secret , Untrusted) $<$ Restricted usage

(Secret , Trusted)

(Public , Untrusted)

(Public , Trusted) Unrestricted usage

Simple lattice for confidentiality and integrity:
(Secret , Untrusted)

(Secret , Trusted)

(Public , Untrusted)

(Public , Trusted)

Simple lattice for confidentiality and integrity:
(Secret, Untrusted)

(Secret , Trusted)

(Public , Untrusted)

(Public , Trusted)
Formally:

$$
\mathscr{L}^{\mathrm{Cl}}=\left(\{\mathrm{P}, \mathrm{~S}\} \times\{\mathrm{T}, \mathrm{U}\}, \sqsubseteq \mathrm{C} \times \sqsubseteq^{\mathrm{I}}, \mathrm{u}^{\left.\mathbf{c} \times \sqcup^{\mathrm{l}}\right)}\right.
$$

Simple lattice for confidentiality and integrity:
(Secret , Untrusted)

(Secret , Trusted)
(Public , Untrusted)

(Public , Trusted)
Formally:

$$
\mathscr{L}^{\mathbf{c I}}=\left(\{\mathrm{P}, \mathrm{~S}\} \times\{\mathrm{T}, \mathrm{U}\}, \sqsubseteq^{\mathrm{C}} \times \sqsubseteq^{\mathrm{I}}, \mathrm{u}^{\mathrm{C}} \times \mathrm{u}^{\mathbf{l}}\right)
$$

Notice

$$
(\mathrm{S}, \mathrm{~T}) \not \ddagger^{\mathbf{C l}}(\mathrm{P}, \mathrm{U}) \quad(\mathrm{P}, \mathrm{U}) \not \ddagger^{\mathrm{Cl}}(\mathrm{~S}, \mathrm{~T})
$$

Simple lattice for confidentiality and integrity:

(Secret, Untrusted)

(Secret , Trusted)
(Public, Untrusted)

(Public, Trusted)
Formally:

$$
\mathscr{L}^{\mathbf{C l}}=\left(\{\mathrm{P}, \mathrm{~S}\} \times\{\mathrm{T}, \mathrm{U}\}, \sqsubseteq \mathrm{C} \times \sqsubseteq^{\mathrm{I}}, \mathrm{u}^{\left.\mathbf{c} \times \sqcup^{\mathrm{l}}\right)}\right.
$$

Notice

$$
(\mathrm{S}, \mathrm{~T}) \nsucceq \mathrm{Cl}(\mathrm{P}, \mathrm{U}) \quad(\mathrm{P}, \mathrm{U}) \not \ddagger^{\mathrm{Cl}}(\mathrm{~S}, \mathrm{~T})
$$

Simple lattice for confidentiality and integrity:
(Secret, Untrusted)

(Secret , Trusted)
(Public , Untrusted)

(Public , Trusted)
Formally:

$$
\mathscr{L}^{\mathbf{c I}}=\left(\{\mathrm{P}, \mathrm{~S}\} \times\{\mathrm{T}, \mathrm{U}\}, \sqsubseteq \mathrm{C} \times \sqsubseteq^{\mathrm{I}}, \mathrm{u}^{\left.\mathbf{c} \times \sqcup^{\mathrm{l}}\right)}\right.
$$

Notice
$(\mathrm{S}, \mathrm{T}) \sqcup^{\mathrm{Cl}}(\mathrm{P}, \mathrm{U})$

Simple lattice for confidentiality and integrity:
(Secret, Untrusted)

(Secret , Trusted)
(Public, Untrusted)

(Public , Trusted)
Formally:

$$
\mathscr{L}^{\mathbf{c l}}=\left(\{\mathrm{P}, \mathrm{~S}\} \times\{\mathrm{T}, \mathrm{U}\}, \sqsubseteq \mathrm{C} \times \sqsubseteq^{\mathrm{I}}, \mathrm{ப}^{\left.\mathbf{c} \times \sqcup^{\mathrm{l}}\right)}\right.
$$

Notice

$$
(S, T) \sqcup^{\mathbf{C l}}(P, U)=\left(S \sqcup^{c} P, T \sqcup^{l} U\right)
$$

Simple lattice for confidentiality and integrity:
(Secret, Untrusted)

(Secret , Trusted)
(Public, Untrusted)

(Public , Trusted)
Formally:

$$
\mathscr{L}^{\mathbf{C I}}=\left(\{\mathrm{P}, \mathrm{~S}\} \times\{T, \mathrm{U}\}, \sqsubseteq \mathbf{C} \times \sqsubseteq \mathrm{I}, \sqcup^{\mathbf{C}} \times \sqcup^{\mathrm{l}}\right)
$$

Notice

$$
(S, T) \sqcup^{\mathbf{C l}}(P, U)=\left(S \sqcup^{\mathbf{c}} P, T \sqcup^{\mathbf{l}} \mathrm{U}\right)=(\mathrm{S}, \mathrm{U})
$$

General lattice for principals P:

General lattice for principals \boldsymbol{P} :
$\mathbf{P}=\{$ Alice, Bob, Charlie $\}$

General lattice for principals \boldsymbol{P} :
$\mathbf{P}=\{$ Alice, Bob, Charlie $\}$

General lattice for principals P:
$\mathbf{P}=\{$ Alice, Bob, Charlie $\}$

General lattice for principals P:
$\mathbf{P}=\{$ Alice, Bob, Charlie $\}$

General lattice for principals \mathbf{P} :
 $\mathbf{P}=\{$ Alice, Bob, Charlie $\}$

General lattice for principals \mathbf{P} :
 $\mathbf{P}=\{$ Alice, Bob, Charlie $\}$

Formally: $\quad \mathscr{L}^{\mathbf{P}}=(\mathscr{P}(\mathbf{P}), \subseteq, \cup)$

General lattice for principals $\mathbf{P}: \quad \mathbf{P}=\{$ Alice, Bob, Charlie $\}$

Formally:

$$
\mathscr{L}^{\mathbf{P}}=(\mathscr{P}(\mathbf{P}), \subseteq, u)^{\vee}
$$

In general we work with an abstract lattice with standard properties

$$
\mathscr{L}=(L, \sqsubseteq, \sqcup)
$$

\sqsubseteq is reflexive, transitive, and antisymmetric.
u is idempotent, commutative, and associative.

In general we work with an abstract lattice with standard properties

$$
\mathscr{L}=(L, \sqsubseteq, \sqcup)
$$

\sqsubseteq is reflexive, transitive, and antisymmetric.
u is idempotent, commutative, and associative.
\perp element:

In general we work with an abstract lattice with standard properties

$$
\mathscr{L}=(L, \sqsubseteq, \sqcup)
$$

\sqsubseteq is reflexive, transitive, and antisymmetric.

Bottom of \sqcup is idempotent, commutative, and associative.
\perp element:

In general we work with an abstract lattice with standard properties

$$
\mathscr{L}=(L, \sqsubseteq, \sqcup)
$$

\sqsubseteq is reflexive, transitive, and antisymmetric.

Bottom of \sqcup is idempotent, commutative, and associative.
\perp element:

$$
\forall \ell . \perp \sqsubseteq \ell \wedge \perp \sqcup \ell=\ell
$$

In general we work with an abstract lattice with standard properties

$$
\mathscr{L}=(L, \sqsubseteq, \sqcup)
$$

\sqsubseteq is reflexive, transitive, and antisymmetric.

Bottom of \sqcup is idempotent, commutative, and associative. the lattice
\perp element:

$$
\forall \ell . \perp \sqsubseteq \ell \wedge \perp \sqcup \ell=\ell
$$

$$
\forall \ell_{1} \ell_{2} \ell_{3} \cdot \ell_{1} \sqsubseteq \ell_{1} \sqcup \ell_{2} \wedge \ell_{2} \sqsubseteq \ell_{1} \sqcup \ell_{2}
$$

In general we work with an abstract lattice with standard properties

$$
\mathscr{L}=(L, \sqsubseteq, \sqcup)
$$

〔 is reflexive, transitive, and antisymmetric.

Bottom of \sqcup is idempotent, commutative, and associative. the lattice
\perp element:

$$
\forall \ell . \perp \sqsubseteq \ell \wedge \perp \sqcup \ell=\ell
$$

Join and partial order "agree"

$$
\forall \ell_{1} \ell_{2} \ell_{3} \cdot \ell_{1} \sqsubseteq \ell_{1} \sqcup \ell_{2} \wedge \ell_{2} \sqsubseteq \ell_{1} \sqcup \ell_{2}
$$

Non-Interference

Public outputs must not depend on secret inputs.

Non-Interference

Public outputs must not depend on secret inputs.

Non-Interference

Public outputs must not depend on secret inputs.

Secret Input

Public Input

Quiz

Do the following programs satisfy non-interference?

```
h := inputH()
l := input'()
outputH(l + h)
```


Quiz

Do the following programs satisfy non-interference?

```
h := input }\mp@subsup{}{}{(}(
l := input'()
outputH(l + h)
```


Quiz

Do the following programs satisfy non-interference?

Quiz

Do the following programs satisfy non-interference?

h := input ${ }^{H}()$
output ${ }^{\text {(}}$ h + 1)

Quiz

Do the following programs satisfy non-interference?

h := input ${ }^{H}()$
output ${ }^{\text {(}}$ h + 1)

Quiz

Do the following programs satisfy non-interference?

h : = input ${ }^{H}()$ outputㄴ (h + 1)

Secret data must not flow to public outputs

Quiz

Do the following programs satisfy non-interference?

h : = input ${ }^{H}()$ outputㄴ (h + 1)

Secret data must not flow to public outputs

This is an example of an explicit flow

Quiz

Do the following programs satisfy non-interference?

```
h := input'()
if h
    output'(0)
```


Quiz

Do the following programs satisfy non-interference?

```
h := input'()
if h
    output'(0)
```


Quiz

Do the following programs satisfy non-interference?

$$
\begin{aligned}
& \mathrm{h}:=\text { input }^{\mathrm{H}}() \quad \begin{array}{l}
\text { The presence of a public output } \\
\text { leaks information about the secret }
\end{array} \\
& \text { if } \mathrm{h}
\end{aligned}
$$

Quiz

Do the following programs satisfy non-interference?

$$
\begin{aligned}
& \mathrm{h}:=\text { input }{ }^{H}() \quad \begin{array}{l}
\text { The presence of a public output } \\
\text { leaks information about the secret }
\end{array} \\
& \text { if } \mathrm{h} \\
& \text { output }^{\llcorner }(0)
\end{aligned}
$$

This is an example of an implicit flow

Quiz

Do the following programs satisfy non-interference?

```
h := inputH()
if h
outputL(0)
```

The presence of a public output leaks information about the secret

This is an example of an implicit flow
h := input ${ }^{H}()$
outputㄴ (h - h)

Quiz

Do the following programs satisfy non-interference?

```
h := inputH()
if h
outputL(0)
```

The presence of a public output leaks information about the secret

This is an example of an implicit flow
h := input ${ }^{H}()$
output ${ }^{\text {L }}$ h - h)

Quiz

Do the following programs satisfy non-interference?

$$
\begin{aligned}
& \mathrm{h}:=\text { input }{ }^{H}() \quad \begin{array}{l}
\text { The presence of a public output } \\
\text { leaks information about the secret }
\end{array} \\
& \text { if } \mathrm{h} \\
& \text { output }{ }^{L}(0)
\end{aligned}
$$

This is an example of an implicit flow

Quiz

Do the following programs satisfy non-interference?

$$
\begin{aligned}
& \mathrm{h}:=\text { input }{ }^{H}() \quad \begin{array}{c}
\text { The presence of a public output } \\
\text { leaks information about the secret }
\end{array} \\
& \text { if } \mathrm{h} \\
& \text { output }{ }^{(}(0)
\end{aligned}
$$

This is an example of an implicit flow

Most IFC languages reject this program

Quiz

Do the following programs satisfy non-interference?

$$
\begin{aligned}
& \mathrm{h}:=\text { input }{ }^{H}() \quad \begin{array}{c}
\text { The presence of a public output } \\
\text { leaks information about the secret }
\end{array} \\
& \text { if } \mathrm{h} \\
& \text { output }{ }^{(}(0) \quad
\end{aligned}
$$

This is an example of an implicit flow

False positive
Most IFC languages reject this program

Outline

Overview of different language-based IFC approaches

- Non Interference
- 4 IFC Languages

Outline

Overview of different language-based IFC approaches

- Non Interference
- 4 IFC Languages

Static Fine-grained IFC

Static Fine-grained IFC

Syntax

Labeled Types $\tau::=s^{\ell}$
Simple Types s ::= unit $|\tau \rightarrow \tau| \tau+\tau \mid \tau \times \tau$

Static Fine-grained IFC

Syntax

Labeled Types $\tau::=s^{\ell}$
Simple Types s ::= unit | $\tau \rightarrow \tau|\tau+\tau| \tau \times \tau$

Static Fine-grained IFC

Syntax

Labeled Types $\tau::=s^{\ell}$
Simple Types $\mathrm{s}::=$ unit $|\tau \rightarrow \tau| \tau+\tau \mid \tau \times \tau$
Expressions

$$
\mathrm{e}
$$

$$
::=()|x| \lambda x . e \mid e \mathrm{e}
$$

$$
|\langle e, e\rangle| \text { frt }(e) \mid \text { std }(e)
$$

$$
|\operatorname{inl}(e)| \operatorname{inr}(e) \mid \operatorname{case}(e, x . e, x . e)
$$

Static Fine-grained IFC

Syntax

Labeled Types $\tau::=s^{\ell}$ Label annotation used in IFC type-sy
Simple Types $\mathrm{s}::=$ unit $|\tau \rightarrow \tau| \tau+\tau \mid \tau \times \tau$
Expressions

$$
\mathrm{e}
$$

$$
::=()|x| \lambda x . e \mid e \mathrm{e}
$$

$$
|\langle e, e\rangle| \text { fit }(e) \mid \text { sud }(e)
$$

| inl(e) | inr(e) | case (e, x.e, x.e)

Values $v::=()|(x . e, \theta)|\langle v, v\rangle|\operatorname{inl}(v)| i n r(v)$
Environments $\theta \in \operatorname{Var}-$ Value

Static Fine-grained IFC

Syntax

Labeled Types $\tau::=\mathrm{s}^{\ell}$
Simple Types $\mathrm{s}::=$ unit | $\tau \rightarrow \tau|\tau+\tau| \tau \times \tau$
Expressions

$$
\mathrm{e}
$$

$$
::=()|x| \lambda x . e \mid e \mathrm{e}
$$

$$
|\langle e, e\rangle| \text { fit }(e) \mid \text { sid }(e)
$$

| inl(e) | inr(e) | case(e, x.e, x.e)

Values $v::=()|(x . e, \theta)|\langle v, v\rangle|i n l(v)| i n r(v)$
Environments $\theta \in$ Var \rightarrow Value Function Closure

Dynamic Semantics
e $\downarrow \theta$ v

Dynamic Semantics

Static Semantics

$$
\Gamma \vdash \mathrm{e}: \tau \quad \text { where } \quad \Gamma \in \operatorname{Var} \rightarrow \text { LTypes }
$$

Dynamic Semantics

e $\downarrow \theta$ v

Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \quad \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Dynamic Semantics
Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \quad \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Exercise. Prove that the following program is ill-typed: $\Gamma \nvdash$ if h then l_{1} else l_{2} : Booll
with typing environment

$$
\Gamma=\left[\mathrm{h} \leftrightarrow \text { Bool }^{H}, l_{1} \mapsto \text { BoolL , } l_{2} \mapsto \text { BoolL }\right]
$$

Dynamic Semantics
Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \quad \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Exercise. Prove that the following program is ill-typed: $\Gamma \nvdash$ if h then l_{1} else l_{2} : Boole
with typing environment

$$
\Gamma=\left[h \leftrightarrow B o o l H, l_{1} \leftrightarrow \text { Doll , } l_{2} \leftrightarrow \text { RolL }\right]
$$

where $\mathrm{Bool}^{\ell} \triangleq\left(\mathbf{u n i t}^{\llcorner }+\mathbf{u n i t}^{\llcorner }\right)^{\ell}$

Dynamic Semantics
Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \quad \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Exercise. Prove that the following program is ill-typed: $\Gamma \nmid$ if h then l_{1} else $l_{2}: ~ B o o l l$
with typing environment

$$
\Gamma=\left[h \leftrightarrow B o o l H, l_{1} \leftrightarrow \text { RolL , } l_{2} \leftrightarrow \text { RolL }\right]
$$

where $\operatorname{Bool}^{\ell} \triangleq\left(\text { unit }^{L}+\text { unit }^{\mathrm{L}}\right)^{\ell}$
Syntactic if e then e_{1} else $e_{2} \triangleq \operatorname{case}\left(e, \ldots . e_{1}, \ldots . e_{2}\right)$ Sugar

Static Semantics
$\Gamma \vdash \mathrm{e}: \tau \quad$ where $\Gamma \in \operatorname{Var}-$ LTypes

Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Observations \& Remarks

Elimination rules include security checks

Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Observations \& Remarks

Elimination rules include security checks
Avoid implicit leaks through the result

Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Observations \& Remarks

Elimination rules include security checks
Avoid implicit leaks through the result

Introduction rules only generate label \perp

Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Observations \& Remarks

Elimination rules include security checks
Avoid implicit leaks through the result

Introduction rules only generate label $\perp\left\{\begin{array}{c}\text { Can be increased } \\ \text { via subtyping }\end{array}\right.$

Static Semantics

$$
\Gamma \vdash \mathrm{e}: \tau \quad \text { where } \Gamma \in \operatorname{Var} \rightarrow \text { LTypes }
$$

Observations \& Remarks

Elimination rules include security checks $\left\{\begin{array}{c}\text { Avoid implicit leak } \\ \text { through the result }\end{array}\right.$
Introduction rules only generate label $\perp\left\{\begin{array}{c}\text { Can be increased } \\ \text { via subtyping }\end{array}\right.$

To state and prove non-interference we also need:

Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Observations \& Remarks

Avoid implicit leaks through the result
 Introduction rules only generate label $\perp\left\{\begin{array}{c}\text { Can be increased } \\ \text { via subtyping }\end{array}\right.$

To state and prove non-interference we also need:

$$
\vdash v: \tau
$$

Static Semantics

$$
\Gamma \vdash e: \tau \quad \text { where } \Gamma \in \operatorname{Var}-\text { LTypes }
$$

Observations \& Remarks

Elimination rules include security checks $\left\{\begin{array}{l}\text { Avoid implicit leaks } \\ \text { through the result }\end{array}\right.$
Introduction rules only generate label $\perp\left\{\begin{array}{c}\text { Can be increased } \\ \text { via subtyping }\end{array}\right.$

To state and prove non-interference we also need:

$$
\vdash \mathrm{V}: \tau\left\{\begin{array}{l}
\text { Similar to the intro } \\
\text { rules for expressions }
\end{array}\right.
$$

Static Semantics

$$
\Gamma \vdash \mathrm{e}: \tau \quad \text { where } \Gamma \in \operatorname{Var} \rightarrow \text { LTypes }
$$

Observations \& Remarks

Elimination rules include security checks $\left\{\begin{array}{l}\text { Avoid implicit leaks } \\ \text { through the result }\end{array}\right.$
Introduction rules only generate label $\perp\left\{\begin{array}{c}\text { Can be increased } \\ \text { via subtyping }\end{array}\right.$

To state and prove non-interference we also need:

Environment and typing

$$
\vdash \mathrm{V}:: \quad \tau\left\{\begin{array}{l}
\text { Similar to the intro } \\
\text { rules for expressions }
\end{array}\right.
$$

Subtyping Relation

$$
\begin{array}{|c|c:c}
\hline \mathrm{\tau}<: \tau \\
\hline & \ell_{1} \sqsubseteq \ell_{2} \quad \mathrm{~S}_{1}<: \mathrm{S}_{2} \\
\mathrm{~S}_{1} \ell_{1}<: \mathrm{S}_{2} \ell_{2} & \text { [Sub-LType] }
\end{array}
$$

Subtyping Relation

$\tau<: \tau$

$$
\frac{\ell_{1} \sqsubseteq \ell_{2} \quad \mathrm{~S}_{1}<: \mathrm{S}_{2}}{\mathrm{~S}_{1} \ell_{1}<: \mathrm{S}_{2} \ell_{2}}
$$

[Sub-LType]

$$
\mathrm{S}<\mathrm{S}
$$

unit <: unit
[Sub-Unit]

Subtyping Relation

$$
\begin{array}{|l|l}
\hline \tau<: \tau \\
\hline & l_{1} \sqsubseteq l_{2} \quad \mathrm{~s}_{1}<: \mathrm{s}_{2} \\
\mathrm{~s}_{1} \ell_{1}<: \mathrm{s}_{2}^{\ell_{2}} \\
\hline
\end{array}
$$

$$
\begin{array}{|c}
\hline s<: \mathrm{s} \\
\hline \\
\hline \oplus \in\{+, \times\} \frac{\text { unit }<\text { i unit }}{} \begin{array}{l}
\text { [Sub-Unit] } \\
\tau_{1} \oplus \tau_{2}<: \tau_{1}^{\prime} \oplus \tau_{2}^{\prime}
\end{array}
\end{array}
$$

Subtyping Relation

$$
\begin{aligned}
& \text { s <: s } \\
& \text { unit <: unit } \\
& \text { [SubUnit] } \\
& \begin{array}{l}
\oplus \in\{+, x\} \frac{i \in\{1,2\} \quad \tau_{i}<: \tau_{i}{ }^{\prime}}{\tau_{1} \oplus \tau_{2}<: \tau_{1}{ }^{\prime} \oplus \tau_{2}{ }^{\prime}} \quad \text { [Sub-Sum] } \\
\text { [Sub-Pair] }
\end{array} \\
& \text { Structural for sums and pairs }
\end{aligned}
$$

Subtyping Relation

$$
\begin{aligned}
& s<: s \quad \text { unit }<\text { : unit } \text { [Sub-Unit] } \\
& \oplus \in\{+, \times\} \frac{i \in\{1,2\} \quad \tau_{i}<: \tau_{i}^{\prime}}{\tau_{1} \oplus \tau_{2}<: \tau_{1}^{\prime} \oplus \tau_{2}^{\prime}} \\
& \begin{array}{l}
\tau_{1}^{\prime}<: \tau_{1} \quad \tau_{2}<: \tau_{2}^{\prime} \\
\hline \tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}
\end{array} \\
& \text { [Sub-Unit] } \\
& \text { [Sub-Sum] } \\
& \text { [Sub-Pair] }
\end{aligned}
$$

Subtyping Relation

$$
\begin{aligned}
& s<: s \text { unit <: unit [SubUnit] } \\
& \oplus \in\{+, x\} \frac{i \in\{1,2\} \quad \tau_{i}<: \tau_{i}{ }^{\prime}}{\tau_{1} \oplus \tau_{2}<: \tau_{1}^{\prime} \oplus \tau_{2}^{\prime}} \\
& \left.\begin{array}{lll}
\tau_{1}^{\prime}<: \tau_{1} & \tau_{2}<: \tau_{2}^{\prime}
\end{array}\right\} \begin{array}{c}
\text { Covariant } \\
\text { in the result }
\end{array}
\end{aligned}
$$

Subtyping Relation

Exercise. Prove that $\mathrm{Bool}^{\mathrm{H}} \rightarrow$ Bool $^{\mathrm{L}}<$: $\mathrm{Bool}^{\mathrm{L}} \rightarrow$ Bool $^{\mathrm{H}}$

$$
\begin{array}{|l|}
\hline \tau<: \tau \\
\hline \mathrm{s}_{1} \ell_{1}<: \mathrm{s}_{2} \ell_{2} \\
\hline
\end{array}
$$

[Sub-LType]
$\mathrm{s}<\mathrm{s} \mathrm{s}$
unit <: unit
[Sub-Unit]
$\oplus \in\{+, x\} \frac{i \in\{1,2\} \quad \tau_{i}<: \tau_{i}{ }^{\prime}}{\tau_{1} \oplus \tau_{2}<: \tau_{1} \oplus \tau_{2}^{\prime}}$

$$
\begin{aligned}
& \tau_{1}^{\prime}<: \tau_{1} \quad \tau_{2}<: \tau_{2}^{\prime} \\
& \hline \tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}
\end{aligned}
$$

[Sub-Sum]
[Sub-Pair]
[Sub-Fun]

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

$$
x: \tau \vdash e: B o o l{ }^{L}
$$

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\text {SFG }}$ types, expressions, and values such that:

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\text {sFG }}$ types, expressions, and values such that:

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

where

Non-Interference for $\lambda^{\text {SFG }}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

where

L is the attacker security level

Non-Interference for $\lambda^{\text {SFG }}$

For all $\lambda^{\text {SFG }}$ types, expressions, and values such that:

where

L is the attacker security level
τ is not observable by the attacker:

Non-Interference for $\lambda^{\text {SFG }}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

Public output
where

L is the attacker security level
τ is not observable by the attacker:

$$
\mathbf{\tau}=\mathrm{s}^{\ell} \text { such that } \ell \nsubseteq \mathrm{L}
$$

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\text {SFG }}$ types, expressions, and values such that:

$$
x: \tau \vdash e: B o o l{ }^{L}
$$

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\text {sFG }}$ types, expressions, and values such that:

$$
\begin{aligned}
x & : \tau \vdash e: B o o l \\
v_{1} & : \tau \\
v_{2} & : \tau
\end{aligned}
$$

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

$$
\begin{aligned}
& x: \tau \vdash e: B o o l^{L} \\
& \begin{array}{l}
\text { Any } 2 \text { secret } \\
\text { input values } \\
\mathrm{v}_{1}: ~ \\
\mathrm{v}_{2}: ~ \\
\hline
\end{array} \\
& \text { If } \\
& \text { e } \downarrow\left[x \mapsto V_{1}\right] v \\
& \text { e } \downarrow\left[x \mapsto V_{2}\right] v^{\prime} \\
& \text { \} }
\end{aligned}
$$

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

$$
\begin{aligned}
& x: \tau \vdash e: B o o l^{L} \\
& \begin{array}{l}
\begin{array}{c}
\text { Any } 2 \text { secret } \\
\text { input values } \\
\mathrm{v}_{1}
\end{array} \longrightarrow \mathrm{v}_{2}: \tau \\
\hline
\end{array} \\
& \text { If } \left.\begin{array}{lll}
\mathrm{e} & \Downarrow[\mathrm{x} \leftrightarrow & \left.v_{1}\right] \\
& \mathrm{v} \\
\mathrm{e} & {\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right]} & v^{\prime}
\end{array}\right\} \quad \text { then } \quad v=v^{\prime}
\end{aligned}
$$

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

Non-Interference for $\lambda^{\mathbf{S F G}}$

For all $\lambda^{\mathbf{S F G}}$ types, expressions, and values such that:

$$
x: \tau \vdash e: B o o l^{L}
$$

$\begin{aligned} & \text { Any } 2 \text { secret } \\ & \text { input values }\end{aligned} \zeta \mathrm{v}_{1}: \begin{gathered} \\ \mathrm{v}_{2}\end{gathered}$

"Public outputs do not depend on secret inputs"

Proof Technique

(1) Define a logical relation for programs giving equal public outputs

Proof Technique

(1) Define a logical relation for programs giving equal public outputs

$$
\mathbf{E} \mathbb{T} \mathbb{1} \mathbb{L}^{\perp}=\left\{\left(\left(\mathrm{e}_{1}, \theta_{1}\right),\left(\mathrm{e}_{2}, \theta_{2}\right)\right) \mid\right.
$$

Proof Technique

1 Define a logical relation for programs giving equal public outputs

$$
\begin{aligned}
\mathbf{E} \mathbb{\tau} \mathbb{\rrbracket}^{\llcorner }=\{ & \left(\left(e_{1}, \theta_{1}\right),\left(e_{2}, \theta_{2}\right)\right) \mid \\
& \left.e_{1} \downarrow \theta_{1} v_{1} \wedge e_{2} \downarrow \theta_{2} v_{2} \Longrightarrow\left(v_{1}, v_{2}\right) \in \mathbf{V} \mathbb{T} \mathbb{1}^{\llcorner }\right\}
\end{aligned}
$$

Proof Technique

(1) Define a logical relation for programs giving equal public outputs

$$
\begin{aligned}
\mathbf{E} \mathbb{\tau} \mathbb{1}^{\llcorner }= & \left\{\left(\left(e_{1}, \theta_{1}\right),\left(e_{2}, \theta_{2}\right)\right) \mid \quad \text { Equivalent values at level } \mathrm{L}\right. \\
& \left.\mathrm{e}_{1} \downarrow \theta_{1} \mathrm{v}_{1} \wedge \mathrm{e}_{2} \Downarrow \theta_{2} \mathrm{v}_{2} \Longrightarrow\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathbb{V} \mathbb{T} \mathbb{1}^{L}\right\}
\end{aligned}
$$

Proof Technique

(1) Define a logical relation for programs giving equal public outputs

$$
\begin{array}{rlrl}
\mathbf{E} \mathbb{\tau} \mathbb{1}^{L}= & \left\{\left(\left(e_{1}, \theta_{1}\right),\left(e_{2}, \theta_{2}\right)\right) \mid\right. & \text { Equivalent values at level } L \\
& \left.\mathrm{e}_{1} \downarrow \theta_{1} \mathrm{v}_{1} \wedge \mathrm{e}_{2} \downarrow \theta_{2} \mathrm{v}_{2} \Longrightarrow\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathbb{V} \mathbb{T} \mathbb{1}^{L}\right\}
\end{array}
$$

(2)

Prove the fundamental theorem of logical relations

Proof Technique

(1) Define a logical relation for programs giving equal public outputs

$$
\begin{array}{rlrl}
\mathbf{E} \mathbb{\tau} \mathbb{1}^{L}= & \left\{\left(\left(e_{1}, \theta_{1}\right),\left(e_{2}, \theta_{2}\right)\right) \mid\right. & \text { Equivalent values at level } L \\
& \left.\mathrm{e}_{1} \downarrow \theta_{1} \mathrm{v}_{1} \wedge \mathrm{e}_{2} \downarrow \theta_{2} \mathrm{v}_{2} \Longrightarrow\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathbb{V} \mathbb{T} \mathbb{1}^{L}\right\}
\end{array}
$$

(2)

Prove the fundamental theorem of logical relations

$$
\text { If } \Gamma \vdash \mathrm{e}: \tau \text { then }
$$

Proof Technique

(1) Define a logical relation for programs giving equal public outputs

$$
\begin{aligned}
\mathbf{E} \mathbb{\tau} \mathbb{1}^{\llcorner }= & \left\{\left(\left(e_{1}, \theta_{1}\right),\left(e_{2}, \theta_{2}\right)\right) \mid \quad \text { Equivalent values at level } \mathrm{L}\right. \\
& \left.\mathrm{e}_{1} \downarrow \theta_{1} \mathrm{v}_{1} \wedge \mathrm{e}_{2} \downarrow \theta_{2} \mathrm{v}_{2} \Longrightarrow\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathbf{V} \mathbb{T} \mathbb{1}^{L}\right\}
\end{aligned}
$$

Prove the fundamental theorem of logical relations

$$
\text { If } \Gamma \vdash \mathrm{e}: \tau \text { then }
$$

$\forall\left(\theta_{1}, \theta_{2}\right) \in I \llbracket \Gamma \mathbb{1}^{\llcorner } \Longrightarrow\left(\left(e, \theta_{1}\right),\left(e, \theta_{2}\right)\right) \in E \llbracket \tau \rrbracket^{\llcorner }$

Proof Technique

(1) Define a logical relation for programs giving equal public outputs

$$
\begin{aligned}
\mathbf{E} \mathbb{\tau} \mathbb{1}^{L}= & \left\{\left(\left(e_{1}, \theta_{1}\right),\left(e_{2}, \theta_{2}\right)\right) \mid \quad \text { Equivalent values at level } \mathrm{L}\right. \\
& \left.\mathrm{e}_{1} \downarrow \theta_{1} \mathrm{v}_{1} \wedge \mathrm{e}_{2} \downarrow \theta_{2} \mathrm{v}_{2} \Longrightarrow\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathbf{V} \mathbb{T} \mathbb{1}^{L}\right\}
\end{aligned}
$$

(2)

Prove the fundamental theorem of logical relations

$$
\begin{aligned}
& \text { If } \Gamma \vdash \mathrm{e}: \mathbf{\tau} \text { then } \\
& \forall\left(\theta_{1}, \theta_{2}\right) \in \mathbb{I} \Gamma \mathbb{\rrbracket}^{\llcorner } \Longrightarrow\left(\left(e, \theta_{1}\right),\left(e, \theta_{2}\right)\right) \in \mathbb{E} \tau \mathbb{\rrbracket} \\
& \text { Equivalent input envy at L }
\end{aligned}
$$

Proof Technique

(1) Define a logical relation for programs giving equal public outputs

$$
\begin{aligned}
\mathbf{E} \mathbb{\tau} \mathbb{1}^{\llcorner }=\{ & \left(\left(e_{1}, \theta_{1}\right),\left(e_{2}, \theta_{2}\right)\right) \mid \quad \text { Equivalent values at level } L \\
& \left.e_{1} \downarrow \theta_{1} \mathrm{v}_{1} \wedge \mathrm{e}_{2} \downarrow \theta_{2} \mathrm{v}_{2} \Longrightarrow\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathbf{V} \mathbb{T} \mathbb{1}^{L}\right\}
\end{aligned}
$$

Prove the fundamental theorem of logical relations

$$
\begin{gathered}
\text { If } \Gamma \vdash \mathrm{e}: \tau \text { then } \\
\forall\left(\theta_{1}, \theta_{2}\right) \in \mathbb{I} \llbracket \mathbb{1}^{\llcorner } \Longrightarrow\left(\left(\mathrm{e}, \theta_{1}\right),\left(\mathrm{e}, \theta_{2}\right)\right) \in E \mathbb{\llbracket} \tau \mathbb{1}^{\llcorner }
\end{gathered}
$$

Equivalent input ens at L

λ SFG with References

Syntax with references
Simple Types $\quad \mathrm{s}::=\cdots|\operatorname{Ref} \tau| \tau \xrightarrow{\ell} \tau$

λ SFG with References

Simple Types

Syntax with references

Keep tracks of side-effects

Expressions
e ::= ... | new e | !e | e := e
Values \quad v :: = \cdots | n Address in store
Store Σ

> Dynamic Semantics
> $\langle\Sigma, e\rangle \Downarrow \theta\left\langle\Sigma^{\prime}, v\right\rangle$

λ SFG with References

Simple Types

Syntax with references

Keep tracks of side-effects

Expressions
e ::= ... | new e | !e | e := e
Values $\quad \mathrm{y}::=\cdots \mid \mathrm{n}$ Address in store
Store Σ

> Dynamic Semantics
> $\langle\Sigma, \mathrm{e}\rangle \Downarrow \theta\left\langle\Sigma^{\prime}, v\right\rangle$ Standard

$$
\Gamma \vdash_{p c} e: \tau
$$

Static Semantics

$$
\Gamma \vdash_{p c} e: \tau
$$

"Program Counter" label

Static Semantics

$$
\Gamma \vdash_{p c} e: \tau
$$

"Program Counter" label

The pc label is a lower bound on the write effects of the program e

Static Semantics

The pc label is a lower bound on the write effects of the program e

Static Semantics

The pc label is a lower bound on the write effects of the program e

Static Semantics

"Program Counter" label

Program e cannot create and write references labeled below the pc

Eliminate implicit leaks through the store

The pc label is a lower bound on the write effects of the program e

Exercise. Prove that the following program is ill-typed:
$\Gamma \psi_{\mathrm{L}}$ if h then $\mathrm{l}:=$ true else () : unit ${ }^{H}$

Static Semantics

"Program Counter" label Program e cannot create and write references labeled below the pc Eliminate implicit leaks through the store

The pc label is a lower bound on the write effects of the program e

Exercise. Prove that the following program is ill-typed:

$$
\Gamma \forall_{\mathrm{L}} \text { if } \mathrm{h} \text { then } l:=\text { true else }() \text { : unit }{ }^{H}
$$

with typing environment

$$
\Gamma=\left[h \mapsto B o o l H, l \mapsto(\operatorname{Ref} B o o l L)^{L}\right]
$$

Subtyping Relation

$$
\begin{array}{|l|l}
\hline \mathrm{S}<: \mathrm{s} \\
\hline & \frac{\tau_{1}^{\prime}<: \tau_{1}}{} \quad \tau_{2}<: \tau_{2}^{\prime} \quad \begin{array}{l}
\ell^{\prime} \sqsubseteq \ell \\
\tau_{1}
\end{array} \begin{array}{l}
\ell \\
\\
\end{array} \tau_{2}<: \tau_{1}^{\prime} \xrightarrow{\ell^{\prime}} \tau_{2}^{\prime}
\end{array} \text { [Sub-Fun] }
$$

Subtyping Relation

$$
\begin{aligned}
& \begin{array}{r}
\tau_{1}^{\prime}<: \tau_{1} \quad \tau_{2}<: \tau_{2}^{\prime} \quad \ell^{\prime} \sqsubseteq \ell \\
\tau_{1} \xrightarrow{\ell} \tau_{2}<: \tau_{1}^{\prime} \xrightarrow{\ell^{\prime}} \tau_{2}^{\prime}
\end{array} \\
& \text { [Sub-Fun] }
\end{aligned}
$$

Subtyping Relation

References?

Subtyping Relation

Subtyping Relation

Subtyping Relation

Subtyping Relation

Exercise

Find a well-typed program that leaks if we consider references covariant:
Covariant

$$
\tau<: \tau^{\prime}
$$

$$
\operatorname{Ref} \tau<: \operatorname{Ref} \tau^{\prime}
$$

Find a well-typed program that leaks if we consider references contravariant:

Soundness issues!

Soundness issues!

Soundness issues!

Ref BoolL canbe
written as Ref BoolH
let h_ref = l_ref in
h_ref := h
!l_ref

Soundness issues!

Soundness issues!

τ^{\prime}
$\operatorname{Ref} \tau<: \operatorname{Ref} \tau^{\prime}$

$\xrightarrow{-}$
Ref BoolL canbe written as Ref Bool ${ }^{H}$
let h_ref = l_ref in
h_ref := h
!l_ref
let l_ref = h_ref in !l_ref

Soundness issues!

ـ
Ref RolL can be written as Ref BootH

Contravariant

$$
\tau^{\prime}<: \tau
$$

$$
\operatorname{Ref} \tau<: \operatorname{Ref} \tau^{\prime}
$$

Λ
Ref Mol ${ }^{H}$ can be read as Ref Boole
let l_ref = h_ref in !l_ref

Well-typed but leak!

References are input (read) and output (write) channels!

Invariant

Soundness Proof

Non-Interference for $\lambda^{\text {SFG }}$ with higher-order state

Soundness Proof

The store can contain references

Non-Interference for $\lambda^{\text {SFG }}$ with higher-order state

Soundness Proof

The store can contain references

Non-Interference for $\lambda^{\text {SFG }}$ with higher-order state

Step-indexed Kripke logical relation

Soundness Proof

The store can contain references

Non-Interference for $\lambda^{\text {SFG }}$ with higher-order state

Avoid circular reasoning

Step-indexed Kripke logical relation

Soundness Proof

The store can contain references

Non-Interference for $\lambda^{\text {SFG }}$ with higher-order state

Avoid circular reasoning

Step-indexed Kripke logical relation

See "On the Expressiveness and Semantics of Information Flow Types" by Rajani and Garg

Outline

Overview of different language-based IFC approaches

- Non Interference
- 4 IFC Languages

Outline

Overview of different language-based IFC approaches

- Non Interference
- 4 IFC Languages

Dynamic Fine-Grained IFC

Enforce dynamic security policies

Dynamic Fine-Grained IFC

Enforce dynamic security policies

Possibly unknown statically

Dynamic Fine-Grained IFC

Enforce dynamic security policies

Dynamic Fine-Grained IFC

Enforce dynamic security policies

Label Introspection

Dynamic Fine-Grained IFC

Enforce dynamic security policies

Dynamic Fine-grained IFC

入DFG Syntax
Types $\tau::=$ unit $|\tau \rightarrow \tau| \tau+\tau|\tau \times \tau|$ Label

Dynamic Fine-grained IFC

Syntax
New!
Types $\tau::=$ unit $|\tau \rightarrow \tau| \tau+\tau \mid \tau \times \tau$ | Label

Dynamic Fine-grained IFC

Dynamic Fine-grained IFC

Syntax
Types $\tau::=$ unit $|\tau \rightarrow \tau| \tau+\tau|\tau \times \tau|$ Label
Labeled Values $v::=r^{\ell}\left\{\begin{array}{l}\text { Raw value at security level } \ell\end{array}\right.$

Dynamic Fine-grained IFC

Syntax
Types $\tau::=$ unit $|\tau \rightarrow \tau| \tau+\tau|\tau \times \tau|$ Label
Labeled Values v ::= rl
Raw value at security level ℓ
Raw Values $r::=()|(x . e, \theta)|\langle v, v\rangle$
| inl(v) | inr(v) | ℓ
Environments $\quad \theta \in \operatorname{Var}$ - LValue

Dynamic Fine-grained IFC

1006

Labeled Values \quad v :: $=r^{\ell}$ Raw value at security level ℓ
Raw Values r ::=()|(x.e , θ) | $\langle\mathrm{v}, \mathrm{v}\rangle$

$$
|\operatorname{inl}(v)| \operatorname{inr}(v) \mid \ell\{\text { Runtime labels }
$$

Environments $\theta \in$ Var - Value

Dynamic Fine-grained IFC

(106e)

> Syntax
> Types $\tau::=$ unit $|\tau \rightarrow \tau| \tau+\tau|\tau \times \tau|$ Label

Labeled Values $v::=r \ell\{$ Raw value at security level ℓ
Raw Values $\mathrm{r}::=()|(x . e, \theta)|\langle v, v\rangle$

$$
|\operatorname{inl}(v)| \operatorname{inr}(v) \mid \ell\{\text { Runtime labels }
$$

Environments $\theta \in$ Var \rightarrow Value

Expressions e ::= ... | labelOf(e) | getPC | e \sqsubseteq ? e

Dynamic Fine-grained IFC

Syntax
New!
Types $\tau::=$ unit $|\tau \rightarrow \tau| \tau+\tau|\tau \times \tau|$ Label
Labeled Values $v::=r \ell\{$ Raw value at security level ℓ
Raw Values $\mathrm{r}::=(\mathrm{l}|(\mathrm{x} . \mathrm{e}, \theta)|\langle\mathrm{v}, \mathrm{v}\rangle$

$$
|\operatorname{inl}(v)| \operatorname{inr}(v) \mid \ell\{\text { Runtime labels }
$$

Environments $\theta \in$ Var \rightarrow Value

```
Label Introspection
```

Expressions e ::= ... | labelOf(e) | getPC | e \sqsubseteq ? e

Semantics

Static

$$
\Gamma \vdash e: \tau
$$

Semantics

Standard: no security checks!

Static
 $\Gamma \vdash e: \tau$

Semantics

Static

$$
\Gamma \vdash e: \tau
$$

Dynamic

$\mathrm{e} \stackrel{\Downarrow}{\mathrm{pc}} \stackrel{\theta}{ } \mathrm{v}$

Semantics

Semantics

Semantics

Static

Standard: no security checks!

$$
\Gamma \vdash e: \tau
$$

Security Monitor

Dynamic
 e $\Downarrow_{\text {pc }}^{\theta} v$

Program Counter

The monitor propagates labels from inputs to outputs

Label Propagation

The semantics tracks control-flow dependencies with the program counter label.

$\theta=\left[X \mapsto\right.$ true $^{H}, y \mapsto$ true $^{L}, \quad z \mapsto$ false $\left.^{L}\right]$

Label Propagation

The semantics tracks control-flow dependencies with the program counter label.

$\theta=\left[X \mapsto\right.$ true $^{H}, y \mapsto$ true $^{L}, \quad z \mapsto$ false $\left.^{L}\right]$

Label Propagation

The semantics tracks control-flow dependencies

 with the program counter label.
$\theta=\left[x \mapsto\right.$ true $^{H}, y \mapsto$ true $^{\mathrm{L}}, \quad z \mapsto$ false $\left.^{L}\right]$

Label Propagation

The semantics tracks control-flow dependencies with the program counter label.

Control flow depends on data labeled with \mathbf{H}
$\theta=\left[X \mapsto\right.$ true $^{H}, y \mapsto$ true $^{L}, z \mapsto$ false $\left.^{L}\right]$

Label Propagation

The semantics tracks control-flow dependencies with the program counter label.

Control flow depends on data labeled with \mathbf{H}
$\theta=\left[X \mapsto\right.$ true $^{H}, y \mapsto$ true $^{L}, z \mapsto$ false $\left.^{L}\right]$

Label Propagation

The semantics tracks control-flow dependencies with the program counter label.

Control flow depends on data labeled with \mathbf{H}
$\theta=\left[X \mapsto\right.$ true $^{H}, y \mapsto$ true $^{L}, \quad z \mapsto$ false $\left.^{L}\right]$

Dynamic Semantics e $\downarrow{ }_{\text {pc }}^{\theta} v$

Dynamic Semantics e $\Downarrow \underset{\text { pc }}{\theta} v$

Observations

Introduction rules label the result with the program counter

Elimination rules taint the result with the intermediate value

Dynamic Semantics e $\downarrow \underset{p c}{\theta} v$

Observations

Introduction rules label the result with the program counter

Elimination rules taint the result with the intermediate value

Invariant
If $\mathrm{e} \Downarrow_{\mathrm{pc}}^{\theta} \mathrm{r}^{\ell}$ then $\mathrm{pc} \subseteq \ell$

Label Introspection

labelOf $(\mathrm{e}) \stackrel{\psi_{\mathrm{pc}}}{\theta}$

Label Introspection

$$
\mathrm{e} \stackrel{\psi_{\mathrm{pc}}^{\theta}}{\theta} \quad \mathrm{r}^{\ell}
$$

labelof(e) $\Downarrow_{\text {pc }}^{\theta}$

Label Introspection

$$
\mathrm{e} \stackrel{\Downarrow_{\mathrm{pc}}^{\theta}}{\theta} \quad \mathrm{r}^{\ell}
$$

labelOf(e) $\Downarrow_{\mathrm{pc}}^{\theta} \ell$

Label Introspection

Label Introspection

$\mathrm{e} \quad \Downarrow_{\mathrm{pc}}^{\theta} \mathrm{r} \ell$
labelof(e) $\Downarrow_{p c}{ }^{\theta} \ell^{\ell}$

Label Introspection

labelof(e) $\Downarrow_{\mathrm{pc}}^{\theta} \ell^{\ell}$

Label Introspection

labelof(e) $\Downarrow_{\mathrm{pc}}^{\theta} \ell^{\ell}$
$\boldsymbol{\operatorname { g e t } P C} \stackrel{\Downarrow}{\mathrm{pc}} \quad \mathrm{pc} \mathrm{c}^{\mathrm{pc}}$

λ DFG with References

Syntax with references
Simple Types τ ::= ... | Ref τ

λ DFG with References

Syntax with references
Simple Types τ ::= ... | Ref τ
Values v ::= ... | n_{ℓ}

λ DFG with References

Syntax with references
Simple Types τ ::= ... | Ref τ
Values \quad v $::=\cdots \mid n_{\ell}$ Reference to data labeled ℓ

λ DFG with References

Simple Types

Values \quad v $::=\cdots \left\lvert\, n_{\ell}$| Reference to data labeled ℓ |
| ---: | :--- |\right.

Expressions e ::= ... | new e | !e | e := e
| labelOfRef(e)

λ DFG with References

Simple Types
Values $v::=\cdots \mid n_{\ell}$ Reference to data labeled ℓ
Expressions e ::= ... | new e | !e | e := e
| labelOfRef(e)
Label introspection on refs

λ DFG with References

Simple Types
Values \quad v ::= $\cdots \mid n_{\ell}$ Reference to data labeled ℓ
Expressions e ::= ... | new e | !e | e := e
| labelOfRef(e)
Label introspection on refs
Store $\Sigma \in(\ell:$ Label $) \rightarrow$ Memory ℓ
Memory ℓ M ::= [] | r : M

λ DFG with References

Simple Types
Values \quad v ::= $\cdots \mid n_{\ell}$ Reference to data labeled ℓ
Expressions e ::= ... | new e | !e | e := e
| labelOfRef(e)
Label introspection on refs
Store $\Sigma \in(\ell:$ Label $) \rightarrow$ Memory ℓ
Memory ℓ M ::= [] | r : M

Syntax with references

The store is partitioned by label
(XDGG Dynamic Semantics

$$
\langle\Sigma, \mathrm{e}) \|_{\mathrm{pc}}^{\theta}\left(\Sigma^{\prime}, v\right)
$$

$\langle\Sigma$, new e $\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime \prime},\left(\mathrm{n}_{\ell}\right)^{\mathrm{pc}}\right\rangle$
[New]

Dynamic Semantics

	$\langle\Sigma, \mathrm{e}\rangle \downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{v}\right\rangle$
$\langle\Sigma, \mathrm{e}\rangle \psi_{\mathrm{pc}} \hat{\mathrm{p}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{r}^{\ell}\right\rangle$	
$\left\langle\Sigma\right.$, new e ${ }^{\text {c }} \downarrow_{\text {pc }}^{\theta}\left\langle\Sigma^{\prime \prime},\left(n_{\ell}\right)^{p c}\right\rangle$	

Dynamic Semantics

	$\langle\Sigma, \mathrm{e}\rangle \downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{v}\right\rangle$
$\begin{aligned} & \hline \text { Allocate in memory } \ell \\ & \langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{r}^{\ell}\right\rangle \end{aligned}$	
$\left\langle\Sigma\right.$, new e ${ }^{\text {c }} \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}{ }^{\prime},\left(\mathrm{n}_{\ell}\right)^{\mathrm{pc}}\right\rangle$	$)[\mathrm{New}]$

Dynamic Semantics

	$\langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{v}\right\rangle$
$\begin{aligned} & \text { Allocate in memory } \ell \\ & \langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{r}^{\ell}\right\rangle \end{aligned}$	
$\mathrm{n}=\left\|\Sigma^{\prime}(\ell)\right\|$	

Dynamic Semantics

Dynamic Semantics

Dynamic Semantics

Allocate in memory ℓ		
$\sqrt{\text { Fresh Address }}\langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{r}^{\ell}\right\rangle$		

(DG \quad Dynamic Semantics

$$
(\Sigma, \mathrm{e}) \|_{\mathrm{pc}}^{\theta}\left(\Sigma^{\prime}, \mathrm{v}\right)
$$

[Read]

$$
\langle\Sigma,!e\rangle \stackrel{\Downarrow}{\mathrm{pc}} \boldsymbol{\theta}
$$

Dynamic Semantics

$\langle\Sigma, \mathrm{e}\rangle \downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(\mathrm{n}_{\ell}\right)^{\ell^{\prime}}\right\rangle$	$\langle\Sigma, \mathrm{e}\rangle \downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{v}\right\rangle$
$\langle\Sigma,!e\rangle \downarrow_{\text {pc }}^{\theta}$	

Dynamic Semantics

$$
\langle\Sigma, e\rangle \psi_{\mathrm{pc}}^{\theta}\left(\Sigma^{\prime}, v\right\rangle
$$

Protects the "identity" of the ref
$\langle\Sigma, e\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(n_{\ell}\right)^{\ell^{\prime}}\right\rangle$
[Read]

$$
\langle\Sigma,!e\rangle \Downarrow_{\mathrm{pc}}^{\theta}
$$

Dynamic Semantics

$$
\langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{v}\right\rangle
$$

$$
\frac{\langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},(\mathrm{n} \ell)^{\ell^{\prime}}\right\rangle \Sigma^{\prime}(\ell)[\mathrm{n}]=r}{\langle\Sigma,!\mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}}
$$

Dynamic Semantics

$$
\langle\Sigma, e\rangle \psi_{\mathrm{pc}}^{\theta}\left(\Sigma^{\prime}, v\right\rangle
$$

Protects the "identity" of the ref

$$
\langle\Sigma, e\rangle \psi_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(\mathrm{n}_{\ell}\right)^{\ell^{\prime}}\right\rangle \quad \Sigma^{\prime}(\ell)[\mathrm{n}]=r
$$

$$
\langle\Sigma,!e\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{r}^{\ell} \sqcup \ell^{\prime}\right\rangle
$$

Tainted with original label + identity of the ref
(才DGG Dynamic Semantics

$$
(\Sigma, \mathrm{e}) \|_{\mathrm{pc}}^{\theta}\left(\Sigma^{\prime}, \mathrm{v}\right)
$$

[Write]

$$
\left\langle\Sigma, \mathrm{e}_{1}:=\mathrm{e}_{2}\right\rangle \stackrel{\downarrow}{\mathrm{pc}}
$$

Dynamic Semantics

$$
\langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{v}\right\rangle
$$

$$
\left\langle\Sigma, \mathrm{e}_{1}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(\mathrm{n}_{\ell}\right)^{\ell_{1}}\right\rangle
$$

[Write]

$$
\left\langle\Sigma, \mathrm{e}_{1}:=\mathrm{e}_{2}\right\rangle \stackrel{\downarrow}{\mathrm{pc}}{ }^{\theta}
$$

Dynamic Semantics

$$
\langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{v}\right\rangle
$$

$$
\begin{aligned}
\left\langle\Sigma, \mathrm{e}_{1}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(\mathrm{n}_{\ell}\right)^{\ell_{1}}\right\rangle \\
\left\langle\Sigma^{\prime}, \mathrm{e}_{2}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime \prime}, \mathrm{r}^{\ell_{2}}\right\rangle
\end{aligned}
$$

[Write]

$$
\left\langle\Sigma, \mathrm{e}_{1}:=\mathrm{e}_{2}\right\rangle \stackrel{\downarrow}{\mathrm{pc}}{ }^{\theta}
$$

Dynamic Semantics

$$
\begin{array}{cc|}
\left\langle\Sigma, \mathrm{e}_{1}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(\mathrm{n}_{\ell}\right)^{\ell_{1}}\right\rangle & \ell_{1} \subseteq \ell \\
\left\langle\Sigma^{\prime}, \mathrm{e}_{2}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime \prime}, \mathrm{r}^{\ell_{2}}\right\rangle & \ell_{2} \subseteq \ell
\end{array}
$$

$$
\langle\Sigma, \mathrm{e}\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{v}\right\rangle
$$

$$
\left\langle\Sigma, \mathrm{e}_{1}:=\mathrm{e}_{2}\right\rangle \stackrel{\psi}{\mathrm{p} C}
$$

Dynamic Semantics

$$
\begin{array}{ll}
\left\langle\Sigma, \mathrm{e}_{1}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(\mathrm{n}_{\ell}\right)^{\ell_{1}}\right\rangle & \ell_{1} \sqsubseteq \ell \\
\left\langle\Sigma^{\prime}, \mathrm{e}_{2}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, r^{\ell_{2}}\right\rangle & \ell_{2} \sqsubseteq \ell
\end{array}
$$

$$
\langle\Sigma, e\rangle \psi_{\mathrm{pc}}^{\theta}\left(\Sigma^{\prime}, v\right\rangle
$$

[Write]

$$
\left\langle\Sigma, \mathrm{e}_{1}:=\mathrm{e}_{2}\right\rangle \stackrel{{ }_{\mathrm{pc}}}{\theta}
$$

$\ell_{1} \subseteq \ell$
The decision of writing this reference must not depend on data above the label of the reference

Dynamic Semantics

$$
\begin{array}{cc}
\left\langle\Sigma, \mathrm{e}_{1}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(\mathrm{n}_{\ell}\right)^{\ell_{1}}\right\rangle & \ell_{1} \sqsubseteq \ell \\
\left\langle\Sigma^{\prime}, \mathrm{e}_{2}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, \mathrm{r}^{\ell_{2}}\right\rangle & \ell_{2} \sqsubseteq \ell
\end{array}
$$

$$
\langle\Sigma, e\rangle \psi_{\mathrm{pc}}^{\theta}\left(\Sigma^{\prime}, v\right\rangle
$$

[Write]

$$
\left\langle\Sigma, \mathrm{e}_{1}:=\mathrm{e}_{2}\right\rangle \stackrel{{ }_{\mathrm{pc}}}{\theta}
$$

$\ell_{1} \subseteq \ell$
The decision of writing this reference must not depend on data above the label of the reference
$\ell_{2} \subseteq \ell$ Must not write data above the label of the reference

Dynamic Semantics

$$
\begin{aligned}
& \langle\Sigma, e\rangle \psi_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, v\right\rangle \\
& \left\langle\Sigma, \mathrm{e}_{1}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime},\left(\mathrm{n}_{\ell}\right)^{\ell_{1}}\right\rangle \quad \ell_{1} \subseteq \ell \ell \text { Security Checks } \\
& \left\langle\Sigma^{\prime}, e_{2}\right\rangle \Downarrow_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime}, r^{\ell_{2}}\right\rangle \\
& \ell_{2} \subseteq \ell \\
& \Sigma^{\prime \prime \prime}=\Sigma^{\prime \prime}\left[\ell \mapsto \Sigma^{\prime \prime}(\ell)[n \mapsto r]\right]\{\text { Update store } \\
& \left\langle\Sigma, \mathrm{e}_{1}:=\mathrm{e}_{2}\right\rangle \psi_{\mathrm{pc}}^{\theta}\left\langle\Sigma^{\prime \prime}{ }^{\prime},()^{\mathrm{pc}}\right\rangle
\end{aligned}
$$

$\ell_{1} \subseteq \ell$
The decision of writing this reference must not depend on data above the label of the reference
$\ell_{2} \subseteq \ell$ Must not write data above the label of the reference

Proof Technique

(1) Define the low-equivalence relation

$$
\mathrm{V}_{1} \approx_{\mathrm{L}}^{\mathbf{\tau}} \mathrm{V}_{2}
$$

Proof Technique

V_{1} and V_{2} are indistinguishable at security level L
(1) Define the low-equivalence relation

$$
\mathrm{V}_{1} \approx \mathrm{v}_{\mathrm{L}}^{\mathrm{T}} \mathrm{~V}_{2}
$$

Proof Technique

V_{1} and V_{2} are indistinguishable at security level L
(1) Define the low-equivalence relation

$$
\mathrm{V}_{1} \approx \approx_{\mathrm{L}}^{\mathrm{T}} \mathrm{~V}_{2}
$$

(2) Prove that the semantics preserves the relation:

$$
\left.\begin{array}{l}
\theta_{1} \approx \theta_{2} \\
c_{1} \approx c_{2}
\end{array}\right\}
$$

Proof Technique

V_{1} and V_{2} are indistinguishable at security level L

(1) Define the low-equivalence relation

$$
\mathrm{V}_{1} \approx \approx_{\mathrm{L}}^{\mathrm{T}} \mathrm{~V}_{2}
$$

(2) Prove that the semantics preserves the relation:

$$
\left.\left.\begin{array}{l}
\theta_{1} \approx \theta_{2} \\
c_{1} \approx c_{2}
\end{array}\right\} \quad \text { if } \begin{array}{lll}
c_{1} \Downarrow_{\mathrm{pc}}^{\theta_{1}} & \mathrm{c}_{1}^{\prime} \\
& c_{2} \Downarrow_{\mathrm{pc}}^{\theta_{2}} & \mathrm{c}_{2}^{\prime}
\end{array}\right\}
$$

Proof Technique

V_{1} and V_{2} are indistinguishable at security level L

(1) Define the low-equivalence relation

$$
\mathrm{V}_{1} \approx \mathrm{\tau} \mathrm{~V}_{2}
$$

(2) Prove that the semantics preserves the relation:

$$
\left.\left.\begin{array}{l}
\theta_{1} \approx \theta_{2} \\
\mathrm{c}_{1} \approx \mathrm{c}_{2}
\end{array}\right\} \quad \text { if } \begin{array}{lll}
\mathrm{c}_{1} \Downarrow_{\mathrm{pc}}^{\theta_{1}} & \mathrm{c}_{1}^{\prime} \\
\mathrm{c}_{2} \Downarrow_{\mathrm{pc}}^{\theta_{2}} & \mathrm{c}_{2}^{\prime}
\end{array}\right\} \quad \text { then } \quad \mathrm{c}_{1}^{\prime} \approx \mathrm{c}_{2}^{\prime}
$$

Proof Technique

V_{1} and V_{2} are indistinguishable at security level L

(1) Define the low-equivalence relation

$$
\mathrm{V}_{1} \approx{ }^{\mathbf{T}} \mathrm{V}_{2}
$$

(2) Prove that the semantics preserves the relation:

$$
\left.\left.\begin{array}{l}
\theta_{1} \approx \theta_{2} \\
\mathrm{c}_{1} \approx \mathrm{c}_{2}
\end{array}\right\} \quad \text { if } \begin{array}{lll}
\mathrm{c}_{1} \Downarrow_{\mathrm{pc}}^{\theta_{1}} & \mathrm{c}_{1}^{\prime} \\
\mathrm{c}_{2} \Downarrow_{\mathrm{pc}}^{\theta_{2}} & \mathrm{c}_{2}^{\prime}
\end{array}\right\} \quad \text { then } \quad \mathrm{c}_{1}^{\prime} \approx \mathrm{c}_{2}^{\prime}
$$

Outline

Overview of different language-based IFC approaches

- Non Interference
- 4 IFC Languages

Outline

Overview of different language-based IFC approaches

- Non Interference \square
- 4 IFC Languages

Outline

Overview of different language-based IFC approaches

- Non Interference \square
- 4 IFC Languages

	Static	Dynamic
Fine-grained	$\lambda \mathbf{S F G}$	$\lambda \mathbf{D F G}$
Coarse-grained	$\lambda \mathbf{S C G}$	$\lambda \mathbf{D C G}$

Introduction and Surveys

Language-based information-flow security

Different Variants of Non-Interference
A Perspective on Information-Flow Control Daniel Hedin and Andrei Sabelfeld

Dynamic vs Static IFC
From dynamic to static and back:
Riding the roller coaster of information-flow control research Andrei Sabelfeld and Alejandro Russo

Fine-Grained IFC

Static

On the Expressiveness and Semantics of Information Flow Types Vineet Rajani and Deepak Garg

Efficient purely dynamic information flow analysis Thomas H. Austin and Cormac Flanagan

Hybrid
Type-Driven Gradual Security with References Matías Toro, Ronald Garcia, Éric Tanter

Coarse-Grained IFC

Static

MAC, A Verified Static Information-Flow Control Library Marco Vassena, Alejandro Russo, Pablo Buiras, Lucas Waye

Flexible Dynamic Information Flow Control in Presence of Exceptions Deian Stefan, Alejandro Russo, John Mitchell, and David Mazières Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo

Covert Channels

Addressing Covert Termination and Timing Channels in Concurrent Information Flow Systems
Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and David Mazières

Securing Concurrent Lazy Programs Against Information Leakage Marco Vassena, Joachim Breitner and Alejandro Russo

Foundations for Parallel Information Flow Control Runtime Systems Marco Vassena, Gary Soeller, Peter Amidon, Matthew Chan, and Deian Stefan

From trash to treasure: timing-sensitive garbage collection Mathias V. Pedersen and Aslan Askarov

A Library For Removing Cache-based Attacks in Concurrent Information Flow Systems
Pablo Buiras, Deian Stefan, Amit Levy, Alejandro Russo, and David Mazières

Declassification and Endorsement

Declassification: Dimensions and principles
 Andrei Sabelfeld and David Sands

A Semantic Framework for Declassification and Endorsement Aslan Askarov and Andrew C. Myers

Nonmalleable Information Flow Control Ethan Cecchetti, Andrew C. Myers, Owen Arden

