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Malicious

Modern software contains many 3rd party components!

Data confidentiality and integrity is at stake
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Untrusted Library

strengthOf(pwd : String) 
  db.log(pwd) 
  return STRONG

Attacker Controlled  
Database

Information Flow Control

Do not restrict data access, restrict where data can flow! 

Sign up

Username

STRENGTHPassword

Join

Detect and suppress 
information leakage

Track data flows across 
program components 
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Facets of Language-based IFC

Associate data with security levels to track data flows in programs

“Public” and “Secret”

Tracking

Granularity of data flows

Fine-grained Coarse-grained

Per variable Per computation

Conservative Runtime Overhead
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Coarse-grained

Static Dynamic

λSFG λDFG

λSCG λDCG

• 4 IFC Languages
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Simple lattice for confidentiality and integrity:

( Secret , Untrusted )

( Public , Trusted )

( Public , Untrusted )( Secret , Trusted )

Formally:

 CI = ( {P,S} × {T,U} , ⊑C × ⊑I , ⊔C × ⊔I)
Notice

(S , T) ⊔CI (P , U) = (S ⊔C P , T ⊔I U) = (S , U) 
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General lattice for principals P: P = {Alice, Bob, Charlie}

Ø

{A} {B} {C}

{A,B} {B,C}{A,C}

{A,B,C}

P = ( 𝒫(P) , ⊆ , ∪ )

 𝒫(P) is the power set of P 
 ⊆ is subset inclusion 
 ∪ is set union

Formally:
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In general we work with an abstract lattice with standard properties

= ( 𝑳 , ⊑ , ⊔ )

⊑ is reflexive, transitive, and antisymmetric.

⊔ is idempotent, commutative, and associative.

⊥ element: ∀ ℓ .   ⊥ ⊑ ℓ   ∧   ⊥ ⊔ ℓ = ℓ 

Bottom of  
the lattice

∀ ℓ1  ℓ2   ℓ3   .  ℓ1 ⊑ ℓ1  ⊔ ℓ2    ∧  ℓ2 ⊑ ℓ1  ⊔ ℓ2

Join and partial order “agree” 
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Secret Input

Public OutputPublic Input

Secret Output

Public outputs must not depend on secret inputs.

Adversarial Program
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Do the following programs satisfy non-interference?

h := inputH() 
if h 
  outputL(0)

The presence of a public output 
leaks information about the secret 

This is an example of an implicit flow

h := inputH() 
outputL(h - h)

equivalent to
h := inputH() 
outputL(0)

Most IFC languages reject this program
False positive
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λSFG Syntax

e ::= () | x | λx.e | e e 
   | ⟨e , e⟩ | fst(e) | snd(e)  
   | inl(e) | inr(e) | case(e, x.e, x.e)

Expressions

v ::= () | (x.e , θ) | ⟨v , v⟩ | inl(v) | inr(v) Values

Environments θ ∈ Var ⇀ Value

Label annotation used in IFC type-system
Labeled Types τ ::= sℓ

Simple Types s ::= unit | τ → τ | τ + τ | τ × τ

Function Closure
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λSFG

Dynamic Semantics e ⇓θ v
Standard: no security checks!

Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Exercise. Prove that the following program is ill-typed: 

Γ = [ h ↦ BoolH , l1 ↦ BoolL , l2 ↦ BoolL ]

Γ ⊬ if h then l1 else l2 : BoolL

with typing environment

Boolℓ  ≜ (unitL + unitL)ℓwhere

if e then e1 else e2  ≜ case(e, _.e1, _.e2)Syntactic 
Sugar

Well-typed program are secure
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Observations & Remarks

Elimination rules include security checks 

Introduction rules only generate label ⊥ 

λSFG
Static Semantics

Γ ⊢ e : τ Γ ∈ Var ⇀ LTypeswhere

Can be increased  
via subtyping

Avoid implicit leaks  
through the result

⊢ v : τ

⊢ θ : Γ

To state and prove non-interference we also need: 

Similar to the intro 
rules for expressions

Environment and typing 
contexts “agree”
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x : τ ⊢ e : BoolL

where 

Secret input Public output

L is the attacker security level 

τ is not observable by the attacker:

τ = s ℓ ℓ ⊑ Lsuch that
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Non-Interference for  λSFG

x : τ ⊢ e : BoolL

v1 : τ

If 

v2 : τ

e ⇓[x ↦ v1] v
e ⇓[x ↦ v2] v’

then v = v’

Same public output

“Public outputs do not depend on secret inputs”

For all λSFG  types, expressions, and values such that:

Any 2 secret 
input values
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Proof Technique
Define a logical relation for programs giving equal public outputs1

Prove the fundamental theorem of logical relations 2

Derive non-interference as a corollary3

Γ ⊢ e : τIf then

Equivalent input envs at L

E⟦ τ ⟧L = { ( (e1,θ1) , (e2,θ2 ))  | Equivalent values at level L
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λSFG

e ::= ··· | new e | !e | e := eExpressions

v ::= ··· | n Values

ℓSimple Types s ::= ··· | Ref τ | τ ⟶ τ

λSFG  with References

Syntax with references

Store Σ

Address in store

Keep tracks of 
 side-effects

Dynamic Semantics
Standard

⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩
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λSFG Static Semantics

Γ ⊢pc e : τ

“Program Counter” label

The pc label is a lower bound on the write effects of the program e 

Program  e cannot create and write 
references labeled below the pc

Exercise. Prove that the following program is ill-typed: 

Γ ⊬L if h then l := true else () : unitH

Γ = [ h ↦ BoolH , l ↦ (Ref BoolL)L ]

with typing environment

Eliminate implicit leaks 
 through the store 
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Ref τ <: Ref τ’

τ <: τ’

Covariant

Contravariant

Find a well-typed program that leaks if we consider references covariant:

Find a well-typed program that leaks if we consider references contravariant:
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Ref τ <: Ref τ’

τ’ <: τ

Ref τ <: Ref τ’

τ <: τ’

Covariant Contravariant

Ref BoolL can be 
written as Ref BoolH 

Ref BoolH can be 
read as Ref BoolL

 let l_ref = h_ref in 
   !l_ref

 let h_ref = l_ref in 
   h_ref := h 
   !l_ref
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Covariant Contravariant

Ref BoolL can be 
written as Ref BoolH 

Ref BoolH can be 
read as Ref BoolL

References are input (read) and output (write) channels!

Ref τ <: Ref τ

Invariant

[Sub-Ref]
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Soundness Proof

Non-Interference for λSFG  with higher-order state

The store can contain references

Step-indexed Kripke logical relation 

Avoid circular reasoning

See “On the Expressiveness and Semantics of Information Flow Types” 
by Rajani and Garg
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Possibly unknown statically

Dynamic Fine-Grained IFC
Enforce dynamic security policies

if (

send(

= )

),

Runtime Labels

Label Introspection
Useful programming 

patterns
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Dynamic Fine-grained IFC
λDFG Syntax

e ::= ··· | labelOf(e) | getPC | e ⊑? e Expressions

Environments θ ∈ Var ⇀ LValue

Types τ ::= unit | τ → τ | τ + τ | τ × τ | Label

New!

r ::= () | (x.e , θ) | ⟨v , v⟩  

   | inl(v) | inr(v) | ℓ

Raw Values

Labeled Values v ::= rℓ

Label Introspection

Raw value at security level ℓ

Runtime labels
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λDFG

Standard: no security checks!

Static Γ ⊢ e : τ

Dynamic e ⇓θ vpc

Security Monitor

Program Counter

The monitor propagates labels from inputs to outputs 

Semantics



if x   
  then y 
  else z

46

θ = [ x ↦ trueH, y ↦ trueL, z ↦ falseL ] 

θ
y

The semantics tracks control-flow dependencies  
with the program counter label.

Label Propagation



if x   
  then y 
  else z

46

θ = [ x ↦ trueH, y ↦ trueL, z ↦ falseL ] 

θ

L

Program Counter

y
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47

H
trueHy

θ

Control flow depends  
on data labeled with H

L ⊔ H = H

The semantics tracks control-flow dependencies  
with the program counter label.

θ = [ x ↦ trueH, y ↦ trueL, z ↦ falseL ] 

Label Propagation
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Dynamic Semantics e ⇓θ vpc

Observations

Elimination rules taint the result with the intermediate value

Introduction rules label the result with the program counter

Invariant

e ⇓θ rℓpcIf then pc ⊑ ℓ
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ℓ ℓ

The label has the same 
sensitivity of the result!

⇓θpcgetPC pcpc

⇓θpclabelOf(e)

rℓe ⇓θpc
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λDFG  with References

Syntax with references

e ::= ··· | new e | !e | e := e  

   | labelOfRef(e)

Expressions

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ
Reference to data labeled  ℓ
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λDFG  with References

Syntax with references

Label introspection on refs
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   | labelOfRef(e)
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v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ
Reference to data labeled  ℓ



λDFG

λDFG  with References

Syntax with references

Label introspection on refs

e ::= ··· | new e | !e | e := e  

   | labelOfRef(e)

Expressions

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ

M ::= [] | r : MMemory  ℓ

Store Σ ∈ (ℓ : Label) → Memory ℓ  

Reference to data labeled  ℓ



λDFG

λDFG  with References

Syntax with references

Label introspection on refs

e ::= ··· | new e | !e | e := e  

   | labelOfRef(e)

Expressions

v ::= ··· | nℓ Values

Simple Types τ ::= ··· | Ref τ

M ::= [] | r : MMemory  ℓ

Store Σ ∈ (ℓ : Label) → Memory ℓ  

The store is 
partitioned by label

Reference to data labeled  ℓ



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ New ]
⟨Σ , new e⟩ ⇓θpc ⟨ Σ’’ , (nℓ)pc⟩



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ New ]
⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

[ New ]
⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

n = | Σ’(ℓ) |
[ New ]

⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

Fresh Address

n = | Σ’(ℓ) |
[ New ]

⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

Fresh Address

n = | Σ’(ℓ) |
[ New ]

⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩

Σ’’ = Σ’[ℓ ↦ Σ’(ℓ)[n ↦ r]]



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Allocate in memory ℓ

Fresh Address

n = | Σ’(ℓ) |
[ New ]

⟨Σ , new e⟩ ⇓θpc

⟨Σ , e⟩ ⇓θ ⟨Σ’, rℓ ⟩pc

⟨ Σ’’ , (nℓ)pc⟩

Σ’’ = Σ’[ℓ ↦ Σ’(ℓ)[n ↦ r]]

Update the store



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc
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⟨Σ , !e⟩ ⇓θpc
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λDFG Dynamic Semantics

[ Read ]
⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ Read ]
⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

Protects the “identity” of the ref 



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ Read ]
Σ’(ℓ)[n] = r⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

Protects the “identity” of the ref 



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ Read ]
Σ’(ℓ)[n] = r⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

Protects the “identity” of the ref 

⟨ Σ’ , r ℓ ⊔ ℓ’ ⟩



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ Read ]
Σ’(ℓ)[n] = r⟨Σ , e⟩ ⇓θ ⟨Σ’, (nℓ)ℓ’ ⟩pc

⟨Σ , !e⟩ ⇓θpc

Protects the “identity” of the ref 

⟨ Σ’ , r ℓ ⊔ ℓ’ ⟩

Tainted with original label + identity of the ref



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ Write ]
⟨Σ , e1 := e2⟩ ⇓θpc



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ Write ]

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

[ Write ]

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Security Checks

[ Write ]

ℓ1 ⊑ ℓ

ℓ2 ⊑ ℓ

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Security Checks

[ Write ]

ℓ1 ⊑ ℓ

ℓ2 ⊑ ℓ

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc

ℓ1 ⊑ ℓ
The decision of writing this reference must not 
depend on data above the label of the reference



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Security Checks

[ Write ]

ℓ1 ⊑ ℓ

ℓ2 ⊑ ℓ

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc

ℓ1 ⊑ ℓ
The decision of writing this reference must not 
depend on data above the label of the reference

ℓ2 ⊑ ℓ Must not write data above the label of the reference 



⟨Σ , e⟩ ⇓θ ⟨Σ’, v⟩pc

λDFG Dynamic Semantics

Security Checks

[ Write ]

ℓ1 ⊑ ℓ

ℓ2 ⊑ ℓ

⟨Σ , e1⟩ ⇓θ ⟨Σ’, (nℓ)ℓ1⟩pc

⟨Σ’, e2⟩ ⇓θ ⟨Σ’’, r ℓ2⟩pc

⟨Σ , e1 := e2⟩ ⇓θpc ⟨ Σ’’’ , ()pc⟩

Σ’’’ = Σ’’[ℓ ↦ Σ’’(ℓ)[n ↦ r]]

ℓ1 ⊑ ℓ
The decision of writing this reference must not 
depend on data above the label of the reference

ℓ2 ⊑ ℓ Must not write data above the label of the reference 

Update store
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Prove that the semantics preserves the relation:2
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Proof Technique

Define the low-equivalence relation1 v1 ≈τL  v2

v1 and v2 are indistinguishable at security level L

if
c₂⇓θ2  c₂’pc

c₁⇓θ1  c₁’pc



Prove that the semantics preserves the relation:2

θ₁ ≈ θ₂

c₁ ≈ c₂ 

Proof Technique

Define the low-equivalence relation1 v1 ≈τL  v2

v1 and v2 are indistinguishable at security level L

then c₁’ ≈ c₂’ if
c₂⇓θ2  c₂’pc

c₁⇓θ1  c₁’pc



Prove that the semantics preserves the relation:2

θ₁ ≈ θ₂

c₁ ≈ c₂ 

Proof Technique

Define the low-equivalence relation1 v1 ≈τL  v2

v1 and v2 are indistinguishable at security level L

then c₁’ ≈ c₂’ 

Derive non-interference as a corollary3

if
c₂⇓θ2  c₂’pc

c₁⇓θ1  c₁’pc
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