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Introduction rules only generate label L _

Observations & Remarks

Elimination rules include security checks =

Avoid implicit leaks

through the result

Can be increased
via subtyping

To state and prove non-interference we also need:

-V @ T - Similar to the intro

rules for expressions

Environment and typing |_ 0T
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T1 <: T1 T2 <: T2
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Subtyping Relation

<. S . -
unit <: unit
i € {1,2} Ti <: Tji
®@ € {+,x} ’ ’
T1 @ T2 <: T1 ®© Ty
Contravariant _ T1’ <: T1 T <! T

in the argument

[Sub-Unit]

[Sub-Sum
[Sub-Pair

11 =» T

<.

Covariant
in the result




£ C £ S1 <: S?
[Sub-LType]
S1El < SzEz
S <:S : :
unlit <: unit [Sub-Unit]
@ € {+,x} ' [ -
T1 ©® T <! T1 ©® Ty [Sub-Pair]
T1 <: T T <: T
- ! 2 2 Sub-Fun]




Exercise. Prove that Booll - Booll <: Bool- - BoolH

T <. T
£ C £ S1 <: S2
[Sub-LType]
S1El < SzEz
S <:S : :
unlit <: unit [Sub-Unit]
1 € {1 2} Ti <: Ti Sub-Sum|
® € {+,x} ' | -
T1 ©® T <! T1 ©® Ty [Sub-Pair]
T1 <: T T < T
. ! 2 2 Sub-Fun]
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For all ASFG types, expressions, and values such that:

Secret input L l Public output

X ' T e : BoolL
where

L /s the attacker security level

T /S not observable by the attacker:

T = st suchthat ¢ IZ L
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Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

AnyZSecretEV1 - L
Input values Vo & T

X+ V1]

If _ _ then V
X b V2|

[l
<
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For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

AnyZSecretEV1 - T
Input values Vo & T

Same public output

’

:X = Vl: V V
If _ _ then vV =
X b V2
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Non-Interference for ASFG

For all ASFG types, expressions, and values such that:

X ' T+ e: BoolL

AnyZSecretEV1 - T
Input values Vo & T

Same public output

’

e yIx P vi]ly V
If _ _ then V =
e yLX P Va2l 7

Vv

["Public outputs do not depend on secret in,outs’)
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~
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Proof Technique

s )
@ Define a logical relation for programs giving equal public outputs

ElTI- = { ((e1, 01) , (e2,02)) | Equivalent values at level L
v
e1 191y A ey 192y, = (vi,v2) € VITI}
\_ v,
r N
@ Prove the fundamental theorem of logical relations

If I = e : T then

V (61 62) € IIMNT- = ((e,B61) ,(e,02)) € EILTI-
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@ Define a logical relation for programs giving equal public outputs )
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Proof Technique

s )
@ Define a logical relation for programs giving equal public outputs

ElTI- = { ((e1, 01) , (e2,02)) | Equivalent values at level L
v
e1 191y A ey 192y, = (vi,v2) € VITI}
\_ v,
r N
@ Prove the fundamental theorem of logical relations

If I = e : T then

0,) € }[[F]]L — ((e,01) , (e, 02)) € E[TI-

Y (61

’

. _J

Equivalent input envs at L

[@ Derive non-interference as a corollary J
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Simple Types

Expressions

Syntax with references

S ..

e ..

£

—

Keep tracks of
side-effects

/4

Ref T | T = T

new e le | e := e
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Simple Types

Expressions

VValues

Syntax with references

—

Keep tracks of
side-effects

/2
S = Ref T | T 5 1
e = new e le | e 1= €
V o= - | n
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Simple Types

Expressions

VValues
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S ..

e ..

£
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Keep tracks of |
side-effects
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Ref T | T = T

new e le | e := e

V ..

+ | n < Address in store




ASFG with References

Simple Types

Expressions

VValues

Store

Syntax with references

—

Keep tracks of \
side-effects

/4
S Ref T | T 5 1
e = s new e le | e 1= e
Vo= + | n < Address in store
2




ASFG with References

Simple Types

Expressions

VValues

Store

Syntax with references

—

Keep tracks of \
side-effects

/4
S Ref T | T 5 1
e = s new e le | e := e
V ii= =+« | n < Address in store

Dynamic Semantics

(£,e) 48 (¥, v)




ASFG with References

Simple Types

Expressions

VValues

Store

Syntax with references

—

Keep tracks of \
side-effects

/4
S Ref T | T 5 1
e = s new e le | e := e
V ii= =+« | n < Address in store

Dynamic Semantics

(Z,E) ue (ZI,V

i Standard
)
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[ Fpc € 1 T
references labeled below the PC

A

“Program Counter” label

-

-

The pc label is a lower bound on the write effects of the program e

~

_J
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A

“Program Counter” label

Static Semantics

Program e cannot create and write

references labeled below the PC
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Eliminate implicit leaks
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The pc label is a lower bound on the write effects of the program e
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@ Static Semantics

Program e cannot create and write

[ Fpc € 1 T
references labeled below the PC

A

A
Eliminate implicit leaks

“Program Counter” label

through the store

-

-

The pc label is a lower bound on the write effects of the program e

~

_J

Exercise. [Prove that the following program is ill-typed.:

[ ¥ if h then 1 := true else () : unitH




&

Fl—pce:'t

Static Semantics

Program e cannot create and write

\ references labeled below the PC

“Program Counter” label

A
Eliminate implicit leaks

through the store

-

-

The pc label is a lower bound on the write effects of the program e

~

_J

Exercise.

[ ¥ if h then 1 := true else () : unitH

with typing environment

Prove that the following program is ill-typed.:

T=1[ hw» Boolt , 1~ (Ref BoolL)L ]
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Subtyping Relation

<.

T <: T L’

C ¢

i Contravariant

£ T

— T2 <! T1 —

References ?

Tz’

[Sub-Fun]
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<: S iConfravarianf
T1 <: T1 T <: T L' Cc L
[Sub-Fun]
T1 LN o < T9 IR 183
References 7
Covariant Contravariant
T <* T T <! T

Ref 1 <: Ref T

Ref 1 <: Ref T




Subtyping Relation

<: S iConfravarianf
T1 <: T1 T <: T L' C L
[Sub-Fun]
T1 LN o < T9 AN 183
References ?
Covariant Invariant Contravariant
T < T T <! T
Ref T <: Ref T’ Ref T <: Ref T Ref T <: Ref T’




Subtyping Relation

<: S iConfravarianf
T1 <: T1 T <: Ty L' Cc L
[Sub-Fun]
T1 LN o < T9 IR 19
References 7
Covariant Invariant Contravariant
T<: T T <! T

Ref 1 <: Ref T Ref 1 <: Ref T Ref 1 <: Ref T

v




Exercise

Find a well-typed program that leaks if we consider references covariant:

Covariant x

T <: T

Ref 1T <: Ref T’

Find a well-typed program that leaks if we consider references contravariant:

Contravariantx
’ T

T <:

Ref T <: Ref T’
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& Soundness issues! &

Covariant x Contravariantx
T ’ T

T <° T <:
Ref T <: Ref T Ref T <: Ref T
A A
Ref Bool- can be Ref BoolHcan be
written as Ref BoolH read as Ref Boolk

!

let h ref = 1 ref 1in
h ref :=h
Il ref




& Soundness issues!

A\

Covariant x
T ’

T <.

Ref 1 <: Ref T

A

Ref Bool- can be
written as Ref BoolH

!

let h ref = 1 ref 1in
h ref :=h
Il ref

Contravariantx
’ T

1 <.

Ref 1 <: Ref T

A

Ref BoolHcan be
read as Ref Boolk

'

let L ref = h _ref 1in
Il _ref




& Soundness issues!

A\

Covariant x
T ’

T <.

Ref 1 <: Ref T

A

Ref Bool- can be
written as Ref BoolH

!

Contravariantx
’ T

1 <.

Ref 1 <: Ref T

A

Ref BoolHcan be
read as Ref Boolk

'

let h ref = 1 ref 1in
h ref :=h
'L_ref

/

Well-typed but leak!

let L ref = h _ref 1in

Il _ref




Covariant x

A

Ref Boolk can be
written as Ref BoolH

Contravariantx

A

Ref BoolHcan be
read as Ref Boolk

References are input (read) and output (write) channels!

Invariant /

Ref 1 <: Ref T

[Sub-Ref]
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Soundness Proof

The store can contain references

A\

\J
[ Non-Interference for ASFG with higher-order state ]

Avoid circular reasoning

v

|

[Step-indexed Kripke logical re/at/onJ

See “On the Expressiveness and Semantics of Information Flow Types”
by Rajani and Garg
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Dynamic Fine-Grained IFC

Enforce dynamic security policies

@ ~ Runtime Labe
PG

Possibly unknown statically

_J

\

[abel /ntros,oect/on Useful programming

patterns
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® s \
yntax New]

V
Iypes T m=unit | T-> 1 | T+ 1T | T x T | Label

Labeled Values v = rt




Dynamic Fine-grained IFC

Types T i

[Labeled Vvalues Vv ::

Syntax

~

New!

v

unit | T Tt | T+ T | T x T | Label

rt <

Raw value at security level £
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Dynamic Fine-grained IFC

[ abeled Values

Types

Raw Values

Environments

\_

r .=

| inl(v) | 1nr(v) | £ %Runﬁmelabels

unit | T Tt | T+ T | T x T | Label

rt <

()

Syntax

~

New!

Raw value at security level £

(x.e , 8) | (v, v)

v

O € Var - LValue




Dynamic Fine-grained IFC

[ abeled Values

Types

Raw Values

Environments

Expressions

\_

Syntax

T u=unit | Tt 1| T+ 1| Tx 1 | Label

~

New!

v ii= rt 3§ Raw value ot security level {

r == () | (x.e , 0)

(Vv , V)

v

| inl(v) | 1nr(v) | £ %Runﬁmelabels

O € Var - LValue

e = --- | labelOf(e)

| getPC | e C? e

/




Dynamic Fine-grained IFC

[ abeled Values

Types

Raw Values

Environments

Expressions

\_

~

Syntax o
v
T u=unit | Tt 1| T+ 1| Tx 1 | Label
v 2= rt § Raw value at security level £
ra= () | (x.e, 8) | (v, v)
| inl(v) | 1nr(v) | £ %Runﬁmelabels
6 € Var - LValue
Label Introspection
L
e = .-+ | labelOf(e) | getPC | e E? e

/
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Semantics

Static

Security Monitor

v
Dynamic

-

= € .

0
e Uy

leandard: no security checks!

T

Vv

T Program Counter




Semantics

leandard: no security checks!

Static [ - e : T
Security Monitor
v
Dynamic e Usc Vv

T Program Counter

The monitor propagates labels from inputs to outputs
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Label Propagation

The semantics tracks control-flow dependencies
with the program counter label.

= ®

A
Control flow depends
on data labeled with H

true”

6 = [ x » true”, y » true*, z » false" ]

47



Label Propagation

The semantics tracks control-flow dependencies
with the program counter label.

LuH=H
—Qé’—> true”
(W)

A

Control flow depends
on data labeled with H

6 = [ x » true”, y » true*, z » false" ]

47
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Dynamic Semantics e llgc Vv

~

=

Observations
Introduction rules label the result with the program counter

Elimination rules taint the result with the intermediate value

J

v

Invariant

0 ¢
rooe 45 r then pc £ £
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Label Introspection

e llpec rf What is the label of
the label itself?

labelOf(e) llr?c E



Label Introspection

labelof(e) 18 ¢t
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The label has the same
sensitivity of the result!

L
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Label Introspection

e UpGC r

The label has the same
sensitivity of the result!

L

labelOf (e) llr?c gt

getPC !

S
pC

pc™
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Simple lypes T = -+ | Ref T
0 JReference to data labeled {

Values v = -+« | n
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Syntax with references \
Simple lypes T = -+ | Ref T
o JReference to data labeled {
Values v 1= = Ng -2
Expressions e 1= ««-« new e | 'le | e (= e
| labelOfRef(e)
TLabel introspection on refs
Store ¥ € (£ : Label) - Memory ¢
Memory £ M =[] | r : M

J




APFG with References

Simple Types

Values

Expressions

Store

Memory £

Syntax with references

~

T = -« | Ref 1
V "= s
e = .- new e |

| labelOfRef(e)

g J Reference to data labeled {

le

| e 1= e

TLabel introspection on refs

> € (£ : Label) - Memory ¢

M a=T[] | r: M

T

The store is
partitioned by label

7
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[ New |
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(Z,e) bg (2, v)

Allocate in memory £

Fresh Address (¥, e) Upec (2, rt)
V

n=[X(e)] X'=X[rX(L)[nwrr]]

[ New |
(£, new e) ll%c (=", (ng)P*)




Dynamic Semantics

(£,e) 4o (2", V)

Allocate in memory £

F\ll‘eSh Address (2, e) Upec (2", rt) JUpdafe the store

n=[X(e)] X=X[erX(L)[nwr]]

[ New |
(£, new e) ll%c (=", (ng)P*)




Dynamic Semantics

(£,e) 4o (2, V)

| Read |

0
(X, le) Upc




Dynamic Semantics

(£,e) 4o (2, V)

| Read |




Dynamic Semantics

(£,e) 4o (2, V)

Protects the “identity” of the ref

V
(z,e) 18 (', (np)?)
| Read |
(x,1e) 4°




Dynamic Semantics

(Z,e) bg (2, v)

Protects the “identity” of the ref

V
(z,e) 18 (=, (n)V ) (&) [n] = r
| Read |
(x,1e) U




Dynamic Semantics
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Dynamic Semantics

(£,e) 4o (2, V)

Protects the “identity” of the ref

(z,e) 49 (', (ne)t ) s®)[n] = r

| Read |

(£, 1e) 48 (z',rtulh)
pC A
Tainted with original label + identity of the ref
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(£,e) 4o (2, V)
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[ Write |




Dynamic Semantics

[ Write |




Dynamic Semantics

PC
(2, e1) ugc (57, (ng)t1) Security Checks
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[ Write |

(X, e1:=e2) UF?C
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: depend on data above the label of the reference

£> © £ Must not write data above the label of the reference
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Proof Technique

v1 and V2 are indistinguishable at security level L

V
[ Define the low-equivalence relation | V1 zT,_ V2
@ Prove that the semantics preserves the relation:
01~ 02 Cr U0t
if then ci’' = c2’
Ci= C2 02 ’
C>2 Up c Co2

\_

@ Derive non-interference as a corollary
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