
Assignment #5

Name: ID:

This assignment has 3 questions, for a total of 25 marks.

Question 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 marks
Prove that for any closed term f of type ∀α.∀β.α→ (α ] β) and for any closed types τ1, τ2 value v : τ1,
we have f τ1 τ2 v ;∗ inl v.
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Question 2: Z combinator typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 marks
This is the Z combinator in ULC:

λf. (λx. f(λy. ((x x) y)))(λx. f(λy. ((x x) y)))

Add type annotations as well as fold/unfolds and prove it can be typed in System F + isorecursive types.
Its type is ((τ1 → τ2) → (τ1 → τ2)) → (τ1 → τ2) for arbitrary τ1 and τ2.
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Question 3: Encoding ULC into System F using recursive types . . . . . . . . . . . . . . . . . . . . . . . . . . 15 marks
Try to define type τu, which is the type that any ULC term can be given in F+isorecursive types. If you
can define τu, define a function inductively on ULC terms so that it maps any ULC term to a term of
F+isorecursive types whose type is τu and that has the same behaviour as the original ULC term (i.e.,
if you map an ULC application, you get something that eventually behaves like an application). If you
cannot define τu, argue why it cannot exist.

In this case, consider ULC terms to be: t ::= n | x | λx. t | t t | 〈t, t〉 | t.1 | t.2 | inl t | inr t |
case t of inl x1 7→ t | inr x2 7→ t. Encoding these terms into lambdas is not an option.
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