Assignment \#2

Name: \qquad ID: \qquad

This assignment has $\mathbf{4}$ questions, for a total of $\mathbf{2 5}$ marks.
Recall the following acronyms: SOS (structural operational semantics), COS (contextual operational semantics), SM (small step), BG (big step), CBV (call by value), CBN (call by name).

Question 1: Safe untypable term.. 6 marks Write out a term that is safe (i.e., it does not reduce to fail) but that cannot be typed. Show the typing derivation until it fails (i.e., no rule is applicable) [3]. Also, show how the same term would reduce according to SOS-SM-CBV semantics [3].

Question 2: Big step semantics for pairs and sums... 6 marks
Write the operational semantics rules for a big-step, call-by-value reduction for pairs [3] and sums [3]. Write the semantically correct ones only, but write them all.

Question 3: Typing derivation
Show the typing derivation of these terms, with the following environment $\Gamma=f: \mathbb{N} \rightarrow \mathbb{N}$

- $t_{1}=f(3+5): \mathbb{N}$
- $t_{2}=f((\lambda x: \mathbb{N} . x+2) 5): \mathbb{N}$

Question 4: Encoding 7 marks For each of the following constructs, create an encoding in STLC. Show that your encodings behave as the related construct by showing the reductions of your encoding using COS-SM-CBV. The intended semantics for the constructs is given after each construct in text.

- sequencing: $t::=\cdots \mid t ; t^{\prime}$. Semantics: t is evaluated first, then t^{\prime} is evaluated.
- let-in: $t::=\cdots \mid$ let $x=t$ in t^{\prime}. Semantics: t is evaluated into a value v and then t^{\prime} is evaluated for v in place of x.
- arrays of length $4: t::=\cdots \mid[t, t, t, t]$. Values include arrays of values: $v::=\cdots \mid[v, v, v, v]$. (no semantics for this case)
- array field access: $t::=\cdots \mid t . i \quad(i \in 0 . .3)$. Semantics: for $i \in 0 . .3$ we have that $\left[v_{0}, v_{1}, v_{2}, v_{3}\right] . i$ returns v_{i} (show the encodings for at least two cases of i).
- array update: $t::=\cdots \mid t . i=t \quad(i \in 0 . .3)$. Semantics: for $i \in 0 . .3$ we have that $\left[v_{0}, v_{1}, v_{2}, v_{3}\right] .2=v$ returns $\left[v_{0}, v_{1}, v, v_{3}\right]$ (show the encodings for at least two cases of i).

