
Assignment #2

Name: ID:

This assignment has 4 questions, for a total of 25 marks.

Recall the following acronyms: SOS (structural operational semantics), COS (contextual operational
semantics), SM (small step), BG (big step), CBV (call by value), CBN (call by name).

Question 1: Safe untypable term . 6 marks
Write out a term that is safe (i.e., it does not reduce to fail) but that cannot be typed. Show the typing
derivation until it fails (i.e., no rule is applicable) [3]. Also, show how the same term would reduce
according to SOS-SM-CBV semantics [3].

1

Question 2: Big step semantics for pairs and sums .6 marks
Write the operational semantics rules for a big-step, call-by-value reduction for pairs [3] and sums [3].
Write the semantically correct ones only, but write them all.

Page 2

Question 3: Typing derivation .6 marks
Show the typing derivation of these terms, with the following environment Γ = f : N→ N

• t1 = f (3 + 5) : N [3]

• t2 = f ((λx : N. x+ 2)5) : N [3]

Page 3

Question 4: Encoding . 7 marks
For each of the following constructs, create an encoding in STLC. Show that your encodings behave as
the related construct by showing the reductions of your encoding using COS-SM-CBV. The intended
semantics for the constructs is given after each construct in text.

• sequencing: t ::= · · · | t; t′. Semantics: t is evaluated first, then t′ is evaluated. [1]

• let-in: t ::= · · · | let x = t in t′. Semantics: t is evaluated into a value v and then t′ is evaluated for
v in place of x. [1]

• arrays of length 4: t ::= · · · | [t, t, t, t]. Values include arrays of values: v ::= · · · | [v, v, v, v].
(no semantics for this case) [1]

• array field access: t ::= · · · | t.i (i ∈ 0..3). Semantics: for i ∈ 0..3 we have that [v0, v1, v2, v3].i
returns vi (show the encodings for at least two cases of i). [2]

• array update: t ::= · · · | t.i = t (i ∈ 0..3). Semantics: for i ∈ 0..3 we have that [v0, v1, v2, v3].2 = v
returns [v0, v1, v, v3] (show the encodings for at least two cases of i). [2]

Page 4

