
Cs358 Exam

Name: ID:

This assignment has 6 questions, for a total of 100 marks.

Question 1: Formalising capability machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 marks
Capability machines extend assembly instructions with explicit capabilities such that reading and writing
on memory is only allowed if a capability is provided.

Take ULC (with Nats, pairs and products) and add a heap from natural numbers (i.e., as the one from
assignment 6), make allocation deterministic starting from 0, each new location is at the next number.
Extend the language with capabilities and formalise their semantics. You choose how to model them,
choose wisely according to their behaviour as described below.

Capabilities are unforgeable and unobservable tokens which the program can create. Every time a
memory location is created, it is unprotected. The language must provide primitives for protecting a
location given a capability, this should only be possible if the location is unprotected. Reading and
writing a memory location is always possible if the location is unprotected. However, if the location is
protected with a capability, reading and writing that location is only possible if the same capability is
provided at reading and writing time.
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Question 2: Thread-based concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 marks
Take STLC with sums and pairs. Add a new term for spawning a process, call that fork t. fork t must
not reduce t, instead it must return 0 and immediately spawn a thread whose body is t. Threads are
scheduled nondeterministically for now, though you may want to look at the next exercise to build a
more robust solution.

Formalise the statics and dynamic semantics of such a concurrent language and show all changes to the
formalisation of the language.
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Question 3: Round-robin scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 marks
Take the language from the previous exercise. Change the scheduling to be round-robin. A thread
executes for 10 steps and then control passes to the next thread (if there is one). If a thread terminates
before 10 steps, control passes to the next thread. The next thread to be scheduled must be the next
one in order of spawning.

Formalise the scheduling process and show changes to the formalisation of the language.

Make the formalisation elegant.
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Question 4: Free theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 marks
Consider type τ = ∀α.∀β.α → β. Is it inhabited? If yes, show a term that inhabits τ and prove that
such a term is in the term relation for τ . If not, prove that there is no term in the term relation for τ .
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Question 5: Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 marks
Subtyping lets you use a term of type τ at a super-type τ ′. Intuitively, it is the same principle by which
you can use an object of a class as if it were of a super class. Concretely, subtyping is achieved by
introducing the subsumption rule below, as well as an ordering on types, indicated with <:.

(Subsumption)

Γ ` t : τ τ <: τ ′

Γ ` t : τ ′

Consider the standard typing of the sequencing rule and its related reduction. Suppose we extend our
types with Unit , so τ ::= · · · | Unit and our terms with unit (a new value), so t ::= · · · | unit .

(Type-seq)

Γ ` t : Unit Γ ` t′ : τ
Γ ` t; t′ : τ

(Eval-seq)

unit ; t;p t

Consider STLC with sums and pairs. Can we introduce an ordering on types to allow this kind of
reduction: v; t;p t for any value v? If yes, show such an ordering. If no, argue why not.
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Question 6: Program equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 marks
For each of these programs, tell if they are equivalent or not. If they are equivalent, show what they
reduce to, no matter the input. If they are not, argue why and if possible, show a context that tells
them apart.

1. z : Ref (N → N).
t1 = λx : N. !z 0; 2 + x

t2 = λx : N. if x > 0 then x+ 2 else !z x;x+ 2.

2. t1 = let x : N = λy : ∀α.α→ α. λz : N. y [N ] (x+ 1) in x

t2 = λy : ∀α.α→ α. λx : N. (y [N ] x) + 1.

3. f : (Ref N)→ N .
t1 = let x = new 0 in f x; !x

t2 = let x = new 1 in f (new 0);x := (!x− 1).

4. r : Ref N .
t1 = let x =!r in let y = new x in r :=!y; !y

t2 = let x = new 0 in let y =!x; !r in y.

5. t1 = λx : N. 〈x, 1〉 .1
t2 = let x = Λα.λx : α. x in x.
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