
Assignment #3

Name: ID:

This assignment has 4 questions, for a total of 25 marks.

Question 1: SOS for STLC . 5 marks
Write the reduction rules for structural operational semantics, small step, call by name for STLC.

1

Question 2: Progress cases for pairs . 5 marks
Write the proof for the progress theorem for the following cases related to pairs: t ≡ 〈t1, t2〉 [3], t ≡ t1.1
[2].

Page 2

Question 3: Progress cases for sums . 4 marks
Write the proof for the progress theorem for the following cases related to sums: t ≡ inl t1 [2], t ≡
case t1 of inl x1 7→ t2 | inr x2 7→ t3 [2].

Page 3

Question 4: Named functions . 11 marks
Extend STLC to have named function, call this language STLCN. A program is no longer a term, but
a collection of named functions. A named function defines a function name, a parameter of a certain
type and the function body. A function body is a term. Terms now must include new constructs to call
other functions.

Define the new syntactic cathegory of programs P , of named functions F and of terms [1]. Define the
COS judgements for STLCN [1]. Define the primitive reduction rules for STLCN as well as evaluation
contexts [2]. Define the typing judgements for STLCN, starting from how to determine when a program
is well typed [3]. Define the typing rules for STLCN [4].

Some primitive reductions and typing rules from STLCN will be similar to those of STLC. To avoid too
much duplicates, name all the STLC rules that have analogous ones and show how to convert two of
them to the new forms only.

STLCN should still be safe, i.e., it should not get stuck trying to call a function with a parameter of the
wrong type, or calling a function that does not exist. However, STLCN is not normalising: there may
be functions that mutually call each other and thus diverge.

Page 4

