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Abstract. Secure compilers generate compiled code that withstands
many target-level attacks such as alteration of control flow, data leaks
or memory corruption. Many existing secure compilers are proven to
be fully abstract, meaning that they reflect and preserve observational
equivalence. Fully abstract compilation is strong and useful but, in cer-
tain cases, comes at the cost of requiring expensive runtime constructs in
compiled code. These constructs may have no relevance for security, but
are needed to accommodate differences between the source and target
languages that fully abstract compilation necessarily needs.

As an alternative to fully abstract compilation, this paper explores a
different criterion for secure compilation called robustly safe compilation
or RSC. Briefly, this criterion means that the compiled code preserves
relevant safety properties of the source program against all adversarial
contexts interacting with the compiled program. We show that RSC can
be proved more easily than fully abstract compilation and also often re-
sults in more efficient code. We also develop two illustrative robustly-safe
compilers and, through them, illustrate two different proof techniques for
establishing that a compiler attains RSC. Based on these, we argue that
proving RSC can be simpler than proving fully abstraction.

To better explain and clarify notions, this paper uses colours. For a
better experience, please print or view this paper in colours.*

1 Introduction

Low-level adversaries, such as those written in C or assembly can attack co-
linked code written in a high-level language in ways that may not be feasible in
the high-level language itself. For example, such an adversary may manipulate
or hijack control flow, cause buffer overflows, or directly access private memory,
all in contravention to the abstractions of the high-level language. Specific coun-
termeasures such as Control Flow Integrity [3] or Code Pointer Integrity [41]
have been devised to address some of these attacks individually. An alternative

4 Specifically, in this paper we use a blue, sans-serif font for source elements, an orange,
bold font for target elements and a black, italic font for elements common to both
languages (to avoid repeating similar definitions twice). Thus, C is a source-level
component, C is a target-level component and C' is generic notation for either a
source-level or a target-level component.



approach is to devise a secure compiler, which seeks to defend against entire
classes of such attacks. Secure compilers often achieve security by relying on
different protection mechanisms, e.g., cryptographic primitives [4, 5, 22, 26],
types [10, 11|, address space layout randomisation [6, 37], protected module ar-
chitectures [9, 53, 57, 59] (also know as enclaves [46]), tagged architectures [7, 39],
etc. Once designed, the question researchers face is how to formalise that such a
compiler is indeed secure, and how to prove this. Basically, we want a criterion
that specifies secure compilation. A widely-used criterion for compiler security
is fully abstract compilation (FAC) [2, 35, 52|, which has been shown to pre-
serve many interesting security properties like confidentiality, integrity, invariant
definitions, well-bracketed control flow and hiding of local state [9, 37, 53, 54].

Informally, a compiler is fully abstract if it preserves and reflects observa-
tional equivalence of source-level components (i.e., partial programs) in their
compiled counterparts. Most existing work instantiates observational equivalence
with contextual equivalence: co-divergence of two components in any larger con-
text they interact with. Fully abstract compilation is a very strong property,
which preserves all source-level abstractions.

Unfortunately, preserving all source-level abstractions also has downsides. In
fact, while FAC preserves many relevant security properties, it also preserves a
plethora of other non-security ones, and the latter may force inefficient checks in
the compiled code. For example, when the target is assembly, two observationally
equivalent components must compile to code of the same size [9, 53], else full
abstraction is trivially violated. This requirement is security-irrelevant in most
cases. Additionally, FAC is not well-suited for source languages with undefined
behaviour (e.g., C and LLVM) [39] and, if used naively, it can fail to preserve even
simple safety properties [60] (though, fortunately, no existing work falls prey to
this naivety).

Motivated by this, recent work started investigating alternative secure com-
pilation criteria that overcome these limitations. These security-focussed criteria
take the form of preservation of hyperproperties or classes of hyperproperties,
such as hypersafety properties or safety properties [8, 33]. This paper investi-
gates one of these criteria, namely, Robustly Safe Compilation (RSC) which has
clear security guarantees and can often be attained more efficiently than FAC.

Informally, a compiler attains RSC if it is correct and it preserves robust
safety of source components in the target components it produces. Robust safety
is an important security notion that has been widely adopted to formalize se-
curity, e.g., of communication protocols [14, 17, 34]. Before explaining RSC, we
explain robust safety as a language property.

Robust Safety as a Language Property. Informally, a program property is
a safety property if it encodes that “bad” sequences of events do not happen
when the program executes [13, 63|. A program is robustly safe if it has relevant
(specified) safety properties despite active attacks from adversaries. As the name
suggests, robust safety relies on the notions of safety and robustness which we
now explain.



Safety. As mentioned, safety asserts that “no bad sequence of events hap-
pens”, so we can specify a safety property by the set of finite observations which
characterise all bad sequences of events. A whole program has a safety property
if its behaviours exclude these bad observations. Many security properties can be
encoded as safety, including integrity, weak secrecy and functional correctness.

Ezample 1 (Integrity). Integrity ensures that an attacker does not tamper with
code invariants on state. For example, consider the function charge_account(n)
which deducts amount n from an account as part of an electronic card payment. A
card PIN is required if n is larger than 10 euros. So the function checks whether n
> 10, requests the PIN if this is the case, and then changes the account balance.
We expect this function to have a safety (integrity) property in the account
balance: A reduction of more than 10 euros in the account balance must be
preceded by a call to request_pin(). Here, the relevant observation is a trace
(sequence) of account balances and calls to request_pin(). Bad observations for
this safety property are those where an account balance is at least 10 euros less
than the previous one, without a call to request_pin() in between. Note that
this function seems to have this safety property, but it may not have the safety
property robustly: a target-level adversary may transfer control directly to the
“else” branch of the check n > 10 after setting n to more than 10, to violate the
safety property. 0l

Ezample 2 (Weak Secrecy). Weak secrecy asserts that a program secret never
flows explicitly to the attacker. For example, consider code that manages
network_h, a handler (socket descriptor) for a sensitive network interface. This
code does not expose network_h directly to external code but it provides an API
to use it. This API makes some security checks internally. If the handler is di-
rectly accessible to outer code, then it can be misused in insecure ways (since the
security checks may not be made). If the code has weak secrecy wrt network_h
then we know that the handler is never passed to an attacker. In this case we
can define bad observations as those where network_h is passed to external code
(e.g., as a parameter, as a return value on or on the heap). o

Ezample 3 (Correctness). Program correctness can also be formalized as a safety
property. Consider a program that computes the nth Fibonacci number. The
program reads n from an input source and writes its output to an output source.
Correctness of this program is a safety property. Our observations are pairs of an
input (read by the program) and the corresponding output. A bad observation
is one where the input is n (for some n) but the output is different from the nth
Fibonacci number. D

These examples not only illustrate the expressiveness of safety properties, but
also show that safety properties are quite coarse-grained: they are only concerned
with (sequences of) relevant events like calls to specific functions, changes to
specific heap variables, inputs, and outputs. They do not specify or constrain how
the program computes between these events, leaving the programmer and the
compiler considerable flexibility in optimizations. However, safety properties are



not a panacea for security, and there are security properties that are not safety.
For example, noninterference [70, 72|, the standard information flow property,
is not safety. Nonetheless, many interesting security properties are safety. In
fact, many non-safety properties including noninterference can be conservatively
approximated as safety properties [20]. Hence, safety properties are a meaningful
goal to pursue for secure compilation.

Robustness. We often want to reason about properties of a component of
interest that hold irrespective of any other components the component inter-
acts with. These other components may be the libraries the component is linked
against, or the language runtime. Often, these surrounding components are mod-
elled as the program contert whose hole the component of interest fills. From a
security perspective the context represents the attacker in the threat model.
When the component of interest links to a context, we have a whole program
that can run. A property holds robustly for a component if it holds in any context
that the component of interest can be linked to.

Robust Safety Preservation as a Compiler Property. A compiler attains ro-
bustly safe compilation or RSC if it maps any source component that has a safety
property robustly to a compiled component that has the same safety property ro-
bustly. Thus, safety has to hold robustly in the target language, which often does
not have the powerful abstractions (e.g., typing) that the source language has.
Hence, the compiler must insert enough defensive runtime checks into the com-
piled code to prevent the more powerful target contexts from launching attacks
(violations of safety properties) that source contexts could not launch. This is
unlike correct compilation, which either considers only those target contexts that
behave like source contexts [40, 49, 65] or considers only whole programs [43].

As mentioned, safety properties are usually quite coarse-grained. This means
that RSC still allows the compiler to optimise code internally, as long as the
sequence of observable events is not affected. For example, when compiling the
fibonacci function of Example 3, the compiler can do any internal optimisation
such as caching intermediate results, as long as the end result is correct. Cru-
cially, however, these intermediate results must be protected from tampering by
a (target-level) attacker, else the output can be incorrect, breaking RSC.

A RSC-attaining compiler focuses only on preserving security (as captured
by robust safety) instead of contextual equivalence (typically captured by full
abstraction). So, such a compiler can produce code that is more efficient than
code compiled with a fully abstract compiler as it does not have to preserve all
source abstractions (we illustrate this later).

Finally, robust safety scales naturally to thread-based concurrency [1, 34, 58].
Thus RSC also scales naturally to thread-based concurrency (we demonstrate
this too). This is unlike FAC, where thread-based concurrency can introduce
additional undesired abstractions that also need to be preserved.

RSC is a very recently proposed criterion for secure compilers. Recent work [8,
33| define RSC' abstractly in terms of preservation of program behaviours, but
their development is limited to the definition only. Our goal in this paper is to
examine how RSC can be realized and established, and to show that in certain



cases it leads to compiled code that is more efficient than what FAC leads to.
To this end, we consider a specific setting where observations are values in spe-
cific (sensitive) heap locations at cross-component calls. We define robust safety
and RSC for this specific setting (Section 2). Unlike previous work [8, 33] which
assumed that the domain of traces (bheaviours) is the same in the source and
target languages, our RSC definition allows for different trace domains in the
source and target languages, as long as they can be suitably related. The second
contribution of our paper is two proof techniques to establish RSC.

— The first technique is an adaption of trace-based backtranslation, an exist-
ing technique for proving FAC [7, 9, 59]. To illustrate this technique, we
build a compiler from an untyped source language to an untyped target
language with support for fine-grained memory protection via so-called ca-
pabilities [23, 71] (Section 3). Here, we guarantee that if a source program
is robustly safe, then so is its compilation.

— The second proof technique shows that if source programs are verified for
robust safety, then one can simplify the proof of RSC so that no backtrans-
lation is needed. In this case, we develop a compiler from a typed source
language where the types already enforce robust safety, to a target language
similar to that of the first compiler (Section 4). In this instance, both lan-
guages also support shared-memory concurrency. Here, we guarantee that
all compiled target programs are robustly safe.

To argue that RSC is general and is not limited to compilation targets based
on capabilities, we also develop a third compiler. This compiler starts from the
same source language as our second compiler but targets an untyped concurrent
language with support for coarse-grained memory isolation, modelling recent
hardware extensions such as Intel’s SGX [46]. Due to space constraints, we report
this result only in the companion technical report [61].

The final contribution of this paper is a comparison between RSC and FAC.
For this, we describe changes that would be needed to attain FAC for the first
compiler and argue that these changes make generated code inefficient and also
complicate the backtranslation proof significantly (Section 5).

Due to space constraints, we elide some technical details and limit proofs to
sketches. These are fully resolved in the companion technical report [61].

2 Robustly Safe Compilation

This section first discusses robust safety as a language (not a compiler) prop-
erty (Section 2.1) and then presents RSC as a compiler property along with an
informal discussion of techniques to prove it (Section 2.2).

2.1 Safety and Robust Safety

To explain robust safety, we first describe a general imperative programming
model that we use. Programmers write components on which they want to en-
force safety properties robustly. A component is a list of function definitions that



can be linked with other components (the context) in order to have a runnable
whole program (functions in “other” components are like extern functions in C).
Additionally, every component declares a set of “sensitive” locations that con-
tain all the data that is safety-relevant. For instance, in Example 1 this set may
contain the account balance and in Example 3 it may contain the I/O buffers.
We explain the relevance of this set after we define safety properties.

We want safety properties to specify that a component never executes a “bad”
sequence of events. For this, we first need to fix a notion of events. We have
several choices here, e.g., our events could be inputs and outputs, all syscalls,
all changes to the heap (as in CompCert [44]), etc. Here, we make a specific
choice motivated by our interest in robustness: We define events as calls/re-
turns that cross a component boundary, together with the state of the heap
at that point. Consequently, our safety properties can constrain the contents of
the heap at component boundaries. This choice of component boundaries as the
point of observation is meaningful because, in our programming model, control
transfers to/from an adversary happen only at component boundaries (more
precisely, they happen at cross-component function call and returns). This al-
lows the compiler complete flexibility in optimizing code within a component,
while not reducing the ability of safety properties to constrain observations of
the adversary.

Concretely, a component behaviour is a trace, i.e., a sequence of actions
recording component boundary interactions and, in particular, the heap at these
points. Actions, the items on a trace, have the following grammar:

Actions o :==call f v H? | call f v H! |ret H! | ret H?

These actions respectively capture call and callback to a function f with pa-
rameter v when the heap is H as well as return and returnback with a certain
heap H.> We use ? and ! decorations to indicate whether the control flow of the
action goes from the context to the component (?7) or from the component to the
context (!). Well-formed traces have alternations of ? and ! decorated actions,
starting with 7 since execution starts in the context. For a sequence of actions
@, relevant(a@) is the list of heaps H mentioned in the actions of @.

Next, we need a representation of safety properties. Generally, properties are
sets of traces, but safety properties specifically can be specified as automata (or
monitors in the sequel) [63]. We choose this representation since monitors are
less abstract than sets of traces and they are closer to enforcement mechanisms
used for safety properties, e.g., runtime monitors. Briefly, a safety property is a
monitor that transitions states in response to events of the program trace. At
any point, the monitor may refuse to transition (it gets stuck), which encodes
property violation. While a monitor can transition, the property has not been
violated. Schneider [63] argues that all properties codable this way are safety
properties and that all enforceable safety properties can be coded this way.

> A callback is a call from the component to the context, so it generates label

call f v H!. A returnback is a return from such a callback, i.e., the context re-
turning to the component, and it generates the label ret H?.



Formally, a monitor M in our setting consists of a set of abstract states
{o---}, the transition relation ~», an initial state oy, the set of heap locations
that matter for the monitor, {-- -}, and the current state o, (we indicate a set of
elements of class e as {e- - - }). The transition relation ~~ is a set of triples of the
form (o, H,0¢) consisting of a starting state o, a final state o and a heap H.
The transition (o, H,o0y) is interpreted as “state o, transitions to oy when the
heap is H”. When determining the monitor transition in response to a program
action, we restrict the program’s heap to the location set {l---}, i.e., to the set
of locations the monitor cares about. This heap restriction is written H | 0y

We assume determinism of the transition relation: for any o, and (restricted
heap) H, there is at most one oy such that (o5, H,05) € ~~.

Given the behaviour of a program as a trace @ and a monitor M specifying
a safety property, M F @ denotes that the trace satisfies the safety property.
Intuitively, to satisfy a safety property, the sequence of heaps in the actions of a
trace must never get the monitor stuck (Rule Valid trace). Every single heap must
allow the monitor to step according to its transition relation (Rule Monitor Step).
Note that we overload the ~» notation here to also denote an auxiliary relation,
the monitor small-step semantics (Rule Monitor Step-base and Rule Monitor
Step-ind).

(Valid trace) (Monitor Step-base) __ (Monitor Step-ind)
M;relevant(a@) ~ M’ - M;H~M'" M';H~ M
MFa M; o~ M M;F~H-‘»M/

(Monitor Step)
(UC? H|{l4.. }7Uf) €~

{o-}tim00{l--},00)iH~ ({0}, ~,00,{l---},0¢)

With this setup in place, we can formalise safety, attackers and robust safety.
In defining (robust) safety for a component, we only admit monitors (safety
properties) whose {l---} agrees with the sensitive locations declared by the
component. Making the set of safety-relevant locations explicit in the compo-
nent and the monitor gives the compiler more flexibility by telling it precisely
which locations need to be protected against target-level attacks (the compiler
may choose to not protect the rest). At the same time, it allows for expressive
modelling. For instance, in Example 3 the safety-relevant locations could be the
I/0 buffers from which the program performs inputs and outputs, and the safety
property can constrain the input and output buffers at corresponding call and
return actions involving the Fibonacci function.

Definition 1 (Safety, attacker and robust safety).
Mt© C:safe™ if - C:whole then if 2y (C) == _ then M - @

def

CrA:athk=C={l---},F and {l---}Nfn(4) =2

def

MEC:rs=VA if M C and C+ A: atk then M - A[C] : safe

A whole program C is safe for a monitor M, written M F C' : safe, if the monitor
accepts any trace the program generates from its initial state (£2y (C)).



An attacker A is valid for a component C, written C + A : atk, if A’s free
names (denoted fn(A)) do not refer to the locations that the component cares
about. This is a basic sanity check: if we allow an attacker to mention heap
locations that the component cares about, the attacker will be able to modify
those locations, causing all but trivial safety properties to not hold robustly.

A component C is robustly safe wrt monitor M, written M + C : rs, if
C composed with any attacker is safe wrt M. As mentioned, for this setup to
make sense, the monitor and the component must agree on the locations that
are safety-relevant. This agreement is denoted M — C.

2.2 Robustly Safe Compilation

Robustly-safe compilation ensures that robust safety properties and their mean-
ings are preserved across compilation. But what does it means to preserve mean-
ings across languages? If a source safety property says never write 3 to a location,
and we compile to an assembly language by mapping numbers to binary, the
corresponding target property should say never write 0x11 to an address.

In order to relate properties across languages, we assume a relation &~ : v X v
between source and target values that is total, so it maps any source value v
to a target value v: Vv.3v.vav. This value relation is used to define a relation
between heaps: Ha H, which intuitively holds when related locations point to
related values. This is then used to define a relation between actions: o= «,
which holds when the two actions are the “same” modulo this relation, i.e.,
call - - -7 only relates to call - - -7 and the arguments of the action (values
and heap) are related. Next, we require a relation M~ M between source and
target monitors, which means that the source monitor M and the target monitor
M code the same safety property, modulo the relation ~ on values assumed
above. The precise definition of this relation depends on the source and target
languages; specific instances are shown in Sections 3.3 and 4.3.5

We denote a compiler from language S to language T by [[]]ST A compiler
[[]]ST attains RSC, if it maps any component C that is robustly safe wrt M to a
component C that is robustly safe wrt M, provided that M ~ M.

Definition 2 (Robustly Safe Compilation).
F 15 RSC E WC,M, M. if M C:rs and MM then M+ [C]5. : rs

A consequence of the universal quantification over monitors here is that the
compiler cannot be property-sensitive. A robustly-safe compiler preserves all
robust safety properties, not just a specific one, e.g., it does not just enforce
that fibonacci is correct. This seemingly strong goal is sensible as compiler
writers will likely not know what safety properties individual programmers will
want to preserve.

5 Accounting for the difference in the representation of safety properties sets us apart
from recent work [8, 33|, which assumes that the source and target languages have
the same trace alphabet. The latter works only in some settings.



Remark. Some readers may wonder why we do not follow existing work and
specify safety as “programmer-written assertions never fail” [31, 34, 45, 68]. Un-
fortunately, this approach does not yield a meaningful criterion for specifying a
compiler, since assertions in the compiled program (if any) are generated by the
compiler itself. Thus a compiler could just erase all assertions and the compiled
code it generates would be trivially (robustly) safe — no assertion can fail if there
are no assertions in the first place!

Proving RSC. Proving that a compiler attains RSC can be done either by
proving that a compiler satisfies Definition 2 or by proving something equivalent.
To this end, Definition 3 below presents an alternative, equivalent formulation of
RSC'. We call this characterisation property-free as it does not mention monitors
explicitly (it mentions the relevant( - ) function for reasons we explain below).

Definition 3 (Property-Free RSC).
- ]S : PF-RSC ¥ vC, A, .
if [[C]}rsr FA:atk and F A {[[C]]?r} : whole and (g (A {[[C}]STD =, -

«

then 3A,a@. CH A:atk and - A[C]: whole and Qo (A[C]) ==

and relevant(@) ~ relevant(a)

Specifically, PF-RSC states that the compiled code produces behaviours that
refine source level behaviours robustly (taking contexts into account).
PF-RSC and RSC should, in general, be equivalent (Proposition 1).

Proposition 1 (PF-RSC and RSC are equivalent).
VIS F [15 : PF-RSC <= [5 : RSC

Informally, a property is safety if and only if it implies programs not having any
trace prefix from a given set of bad prefixes (i.e., finite traces). Hence, not having
a safety property robustly amounts to some context being able to induce a bad
prefix. Consequently, preserving all robust safety properties (RSC) amounts to
ensuring that all target prefixes can be generated (by some context) in the source
too (PF-RSC). Formally, since Definition 2 relies on the monitor relation, we
can prove Proposition 1 only after such a relation is finalised. We give such a
monitor relation and proof in Section 3.3 (see Theorem 3). However, in general
this result should hold for any cross-language monitor relation that correctly
relates safety properties. If the proposition does not hold, then the relation does
not capture how safety in one language is represented in the other.

Assuming Proposition 1, we can prove PF-RSC for a compiler in place of
RSC. PF-RSC can be proved with a backtranslation technique. This technique
has been often used to prove full abstraction [7, 8, 9, 33, 39, 50, 53, 54, 59] and
it aims at building a source context starting from a target one. In fact PF-RSC,
leads directly to a backtranslation-based proof technique since it can be rewritten
(eliding irrelevant details) as:

If 3A, 5.0 <A {[[C]]STD =



then 3A, @.Q (A[C]) —~  and relevant(a)~relevant(a)

Essentially, given a target context A, a compiled program [[C]]ST and a target

trace @ that A causes [C]]ST to have, we need to construct, or backtranslate to,
a source context A that will cause the source program C to simulate . Such
backtranslation based proofs can be quite difficult, depending on the features of
the languages and the compiler. However, backtranslation for RSC (as we show
in Section 3.3) is not as complex as backtranslation for FAC (Section 5.2).

A simpler proof strategy is also viable for RSC when we compile only those
source programs that have been verified to be robustly safe (e.g., using a type
system). The idea is this: from the verification of the source program, we can find
an invariant which is always maintained by the target code, and which, in turn,
implies the robust safety of the target code. For example, if the safety property
is that values in the heap always have their expected types, then the invariant
can simply be that values in the target heap are always related to the source
ones (which have their expected types). This is tantamount to proving type
preservation in the target in the presence of an active adversary. This is harder
than standard type preservation (because of the active adversary) but is still
much easier than backtranslation as there is no need to map target constructs
to source contexts syntactically. We illustrate this proof technique in Section 4.

RSC Implies Compiler Correctness. As stated in Section 1, RSC implies
(a form of) compiler correctness. While this may not be apparent from Defini-
tion 2, it is more apparent from its equivalent characterization in Definition 3.
We elaborate this here.

Whether concerned with whole programs or partial programs, compiler cor-
rectness states that the behaviour of compiled programs refines the behaviour of
source programs [18, 36, 40, 44, 49, 65]. So, if {a'--- } and {@- - - } are the sets of
compiled and source behaviours, then a compiler should force {av--- } G {a@- -},
where C is the composition of C and of the relation ~~".

If we consider a source component C that is whole, then it can only link
against empty contexts, both in the source and in the target. Hence, in this
special case, PF-RSC simplifies to standard refinement of traces, i.e., whole
program compiler correctness. Hence, assuming that the correctness criterion for
a compiler is concerned with the same observations as safety properties (values in
safety-relevant heap locations at component crossings in our illustrative setting),
PF-RSC implies whole program compiler correctness.

However, PF-RSC (or, equivalently, RSC) does not imply, nor is implied
by, any form of compositional compiler correctness (CCC) [40, 49, 65]. CCC
requires that the behaviours produced by a compiled component linked against
a target context that is related (in behaviour) to a source context can also be
produced by the source component linked against the related source context. In
contrast, PF-RSC allows picking any source context to simulate the behaviours.
Hence, PF-RSC does not imply CCC. On the other hand, PF-RSC universally
quantifies over all target contexts, while CCC only quantifies over target contexts
related to a source context, so CCC does not imply PF-RSC either. Hence,



compositional compiler correctness, if desirable, must be imposed in addition to
PF-RSC. Note that this lack of implications is unsurprising: PF-RSC and CCC
capture two very different aspects of compilation: security (against all contexts)
and compositional preservation of behaviour (against well-behaved contexts).

3 RSC via Trace-based Backtranslation

This section illustrates how to prove that a compiler attains RSC' by means of a
trace-based backtranslation technique [7, 53, 59]. To present such a proof, we first
introduce our source language LY, an untyped, first-order imperative language
with abstract references and hidden local state (Section 3.1). Then, we present
our target language L.”, an untyped imperative target language with a concrete
heap, whose locations are natural numbers that the context can compute. L*
provides hidden local state via a fine-grained capability mechanism on heap

accesses (Section 3.2). Finally, we present the compiler [[]]IEUI and prove that it
attains RSC (Section 3.3) by means of a trace-based backtranslation. The section
conclude with an example detailing why RSC' preserves security (Example 4).
To avoid focussing on mundane details, we deliberately use source and tar-
get languages that are fairly similar. However, they differ substantially in one
key point: the heap model. This affords the target-level adversary attacks like
guessing private locations and writing to them that do not obviously exist in the
source (and makes our proofs nontrivial). We believe that (with due effort) the
ideas here will generalize to languages with larger gaps and more features.

3.1 The Source Language LY

LY is an untyped imperative while language [51]. Components C are triples
of function definitions, interfaces and a special location written (,oo, so C ::=
lro0t; F: 1. Each function definition maps a function name and a formal argument
to a body s: F ::= f(x) — s;return;. An interface is a list of functions that the
component relies on the context to provide (similar to C’s extern declarations).
The special location /,..: defines the locations that are monitored for safety, as
explained below. Attackers A (program contexts) are function definitions that
represent untrusted code that a component interacts with. A function’s body
is a statement, s. Statements are rather standard, so we omit a formal syntax.
Briefly, they can manipulate the heap (location creation let x = new e in s, as-
signment x := e), do recursive function calls (call f €), condition (if-then-else),
define local variables (let-in) and loop. Statements use effect-free expressions,
e, which contain standard boolean expressions (e @ e), arithmetic expressions
(e @ e), pairing ((e,e)) and projections, and location dereference (le). Heaps H
are maps from abstract locations ¢ to values v.

As explained in Section 2.1, safety properties are specified by monitors. LY’s
monitors have the form: M := ({o---},~>, 00, lro0t, 0c). Note that in place of
the set {I---} of safety-relevant locations, the description of a monitor here (as
well as a component above) contains a single location /... The interpretation is



that any location reachable in the heap starting from /... is relevant for safety.
This set of locations can change as the program executes, and hence this is more
flexible than statically specifying all of {l---} upfront. This representation of
the set by a single location is made explicit in the following monitor rule:
(LY-Monitor Step)
M= ({o--},~,00,bloot;0c) M =({o--},~, 00, loot, 0f)
(0, H' o) € ~ H CH dom(H") = reach({o0t, H)
M:H ~ M’
Other than this small point, monitors, safety, robust safety and RSC are de-

fined as in Section 2. In particular, a monitor and a component agree if they

mention the same (oo M C oef M = ({o--},~,00,boot,0c)) and (C =

(groot:, F; l))

A program state C, H (s); (denoted with Q) includes the function bodies C,
the heap H, a statement s being executed and a stack of function calls f (often
omitted in the rules for simplicity). The latter is used to populate judgements of
the form | - f, ' : internal /in /out. These determine whether calls and returns are
internal (within the attacker or within the component), directed from the attacker
to the component (in) or directed from the component to the attacker (out). This
information is used to determine whether the semantics should generate a label,
as in Rules ELY-return to ELY-retback, or no label, as in Rules EL"-ret-internal
and ELY-call-internal since internal calls should not be observable. LY has a big-
step semantics for expressions (H>e < v) that relies on evaluation contexts, a

small-step semantics for statements (2 Yo% ) that has labels A ::= ¢ | @ and a

semantics that accumulates labels in traces (2 == Q') by omitting silent actions
¢ and concatenating the rest. Unlike existing work on compositional compiler
correctness which only rely on having the component [40], the semantics relies
on having both the component and the context.

(EL-alloc) ~ (ELY-retum)
Hre < v (¢ dom(H) fr=f7f Cintfskf,f :out
C,Hrletx =neweins — C,H > (return;)z. ret H!
CHil—ves[l /X C, Ho (skip)r
(ELY-call) (EL"-callback)
f'=f7f  f(x) — s;return; € C.funs fr=fr.f f(x) > s;return; € F
C.intfs -/, f :in Hpe —» v C.intfsHf f:out Hpe < v
C,Hb (call f e)y —22 I C,Hb (call f e)y —=22 1V
C,Hp (s;returns[v / x])q . C, H > (s;return;[v / XDF;f
o (ELLiretback) (EL"-ret-internal)
f=f7f Cintfstf, f :in f'=1f7f C.intfsF f,f :internal
ret H?

C,H > (return;)g C,Hp (return;)z, LN
C,H > (skip)s C,Hp (skip)s
(EL"-call-internal)
C.intfs - f,f' :internal ' =f7;f  f(x) — s;return; € C.funs Hpe < v

C,Hp (call f e)7 — C,Hp (s;return;[v / X))z



3.2 The Target Language 1"

L" is an untyped, imperative language that follows the structure of LY and it
has similar expressions and statements. However, there are critical differences
(that make the compiler interesting). The main difference is that heap loca-
tions in L" are concrete natural numbers. Upfront, an adversarial context can
guess locations used as private state by a component and clobber them. To sup-
port hidden local state, a location can be “hidden” explicitly via the statement
let x = hide e in s, which allocates a new capability k, an abstract token that
grants access to the location n to which e points [64]. Subsequently, all reads and
writes to n must be authenticated with the capability, so reading and writing
a location take another parameter as follows: e with e and x := e with e. In
both cases, the e after the with is the capability. Unlike locations, capabilities
cannot be guessed. To make a location private, the compiler can make the capa-
bility of the location private. To bootstrap this hiding process, we assume that
a component has one location that can only be accessed by it, a priori in the
semantics (in our formalization, we always focus on only one component and we
assume that, for this component, this special location is at address 0).
In detail, I.” heaps H are maps from natural numbers (locations) n to values
v and a tag 1) as well as capabilities, so H == @ | H;n+~ v :7 | H:k. The
tag 7) can be |, which means that n is globally available (not protected) or a
capability k, which protects n. A globally available location can be freely read
and written but one that is protected by a capability requires the capability to
be supplied at the time of read/write (Rule EL" -assign, Rule EL"-deref).
L" also has a big-step semantics for expressions, a labelled small-step se-
mantics and a semantics that accumulates traces analogous to that of LY.
(EL" -deref)
ne—v:neH (np=1)or (n=kand v =k)
Hpo!n with v/ < Hpov
(EL" -new)
H=H:;;n~ (v,n) Hpre «— v H=Hn+1—v:1l
C,Hrlet x=neweins — C,H >bs[n+1/x]
(EL" -hide)
Hre < n ké¢dom(H) H=H;;n—v:1;H, H =H;;n— v:k;Hsk

C,Hplet x = hide eins — C,H >s[k / x]
(EL" -assign)
Hpre «— v H=H:;n— :n;H2 H/:H1:nHv://:H2
(n=21)or (;: k and v/ = k)
C,Hovn := e with v/ — C,H’ > skip

A second difference between LY and LY is that L" has no booleans, while
LY has them. This makes the compiler and the related proofs interesting, as
discussed in the proof of Theorem 1.

In L"), the locations of interest to a monitor are all those that can be reached
from the address 0. O itself is protected with a capability k... that is assumed
to occur only in the code of the component in focus, so a component is defined
as C :i= K,oo: F; 1. We can now give a precise definition of component-monitor
agreement for 1" as well as a precise definition of attacker, which must care




about the k... capability.
def

MT™C=M=({o--},~,00,Kroot,0c)) and (C = (kmot;F:i))

def

CHA:atk®™ C = (keoot: F: 1), A = F/, kyoor ¢ £n(F)

3.3 Compiler from LY to L”

U
We now present [[-]]lip, the compiler from LY to L", detailing how it uses the
U
capabilities of L to achieve RSC. Then, we prove that Hlff’ attains RSC.

Compiler [[]]E; takes as input a LY component C and returns a L. component
(excerpts of the translation are shown below). The compiler performs a simple
pass on the structure of functions, expressions and statements. Each LY location
is encoded as a pair of a L.” location and the capability to access the location;
location update and dereference are compiled accordingly. The compiler codes
source booleans true to 0 and false to 1, and the source number n to the target
counterpart n.

— U — v T v
[[éroot; F; I]] il) = Kroot; [FH II_,": [[Iﬂ li"

LY LY . LY
[lelir = '[el;p.1 with [e]; .2
LU LU . . .
. = v
ins = i .
LP let X = (Xioc, Xcap) In [[S]]LP
LY . i - i
[x:= €] p = let Xjoc = X.1 in let Xcap = X.2 in Xjoc := [']pr With Xcap

This compiler solely relies on the capability abstraction of the target lan-
guage as a defence mechanism to attain RSC. Unlike existing secure compilers,

U
[[]]Il:p needs neither dynamic checks nor other constructs that introduce runtime
overhead to attain RSC [9, 32, 39, 53, 59].

Proof of RSC. Compiler [[]]I':Up attains RSC (Theorem 1). In order to set
up this theorem, we need to instantiate the cross-language relation for values,
which we write as ~g here. The relation is parametrised by a partial bijection
B : £ xnx1n from source heap locations to target heap locations which determines
when a source location and a target location (and its capability) are related.
On values, ~g is defined as follows: true~g 0; false~gn when n # 0; n~gn;

(k) if (4,n,k) € B; (=g(n. ) if ({,n, L) € B; (vi,va) =g (vi.va) if
vi~2gvi and vo R va. This relation is then used to define the heap, monitor
state and action relations. Heaps are related, written H~g I, when locations
related in B point to related values. States are related, written 2~z (2, when
they have related heaps. The action relation (o~ @) is defined as in Section 2.2.

Monitor Relation. In Section 2.2, we left the monitor relation abstract. Here,
we define it for our two languages. Two monitors are related when they can
simulate each other on related heaps. Given a monitor-specific relation o= o
on monitor states, we say that a relation R on source and target monitors is a



bisimulation if the following hold whenever M = ({o---},~, 00, lioot; 0c) and
M= ({o--},~,00,kroot,0c) are related by R:

1. og= 0y, and 0.~ 0., and
2. For all g containing (/ro0t, 0, kroot) and all H, H with H~g H:
(a) (oc,H, ) e~ iff (0.,H, )€~ and
(b) (oc,H,0") € ~ and (0., H,0") € ~~ imply
({U to } s 7 UO:£root: Ul)R(JlU c } , 7,00, kroot- ﬁ/)~

In words, R is a bisimulation only if MRM implies that M and M simulate each
other on heaps related by any 8 that relates ;oo to 0. In particular, this means
that neither M nor M can be sensitive to the specific addresses allocated during
the run of the program. However, they can be sensitive to the “shape” of the heap
or the values stored in the heap. Note that the union of any two bisimulations
is a bisimulation. Hence, there is a largest bisimulation, which we denote as .
Intuitively, M ~ M implies that M and M encode the same safety property (up
to the aforementioned relation on values ~g). With all the boilerplate for RSC
in place, we state our main theorem.

Theorem 1 ([H]ILJUP attains RSC). [[]]E; : RSC

We outline our proof of Theorem 1, which relies on a backtranslation <<>>[Ul

Intuitively, {(-)) JEL; takes a target trace @ and builds a set of source contexts such
that one of them when linked with C, produces a related trace @ in the source
(Theorem 2). In prior work, backtranslations return a single context [10, 11, 21,
28, 50, 53, 59]. This is because they all, explicitly or implicitly, assume that ~
is injective from source to target. Under this assumption, the backtranslation
is unique: a target value v will be related to at most one source value v. We
do away with this assumption (e.g., the target value 0 is related to both source
values 0 and true) and thus there can be multiple source values related to any
given target value. This results in a set of backtranslated contexts, of which at
least one will reproduce the trace as we need it.

We bypass the lengthy technical setup for this proof and provide an informal
description of why the backtranslation achieves what it is supposed to. As an

F
example, Figure 1 contains a trace @ and the the output of <<ﬁ>),'_u .

{-» ]Lﬁ; first generates empty method bodies for all context methods called by
the compiled component. Then it backtranslates each action on the given trace,
generating code blocks that mimic that action and places that code inside the
appropriate method body. Figure 1 shows the code blocks generated for each
action. Backtranslated code maintains a support data structure at runtime, a
list of locations denoted L where locations are added (::) and they are looked up
(L(n)) based on their second field n, which is their target-level address. In order
to backtranslate the first call, we need to set up the heap with the right values
and then perform the call. In the diagram, dotted lines describe which source
statement generates which part of the heap. The return only generates code that
will update the list L to ensure that the context has access to all the locations



main(z) —
let x =new 4 in L :: (x,1);

Wecall fO (1o 4: 0,253 1)? let x = new 3in L :: {x,2);

call f 0;
@2ret(1—4:1,2—(3,k): 1,3+—11:k)! let x =IL(2) in L:: (x,3);
3 call f2 (155: 1,2 (3, k): 1,3 15:k)? :let x=new L(1) in x := 55;
| S — —_———
let x = new L(3) in x := 15;
call f 2;

Fig. 1: Example of a trace and its backtranslated code.

it knows in the target too. In order to backtranslate the last call we lookup the
locations to be updated in L so we can ensure that when the call f 2 statement
is executed, the heap is in the right state.

For the backtranslation to be used in the proof we need to prove its correct-

8
ness, i.e., that (@), generates a context A that, together with C, generates a
trace @ related to the given target trace a.

Theorem 2 (<<>>I|_JUP is correct).

if A {[[C]];“p} O then IA € (ANl LA[C] == Q and Grpa and Qrvg O

This theorem immediately implies that - []]l]:up : PF-RSC, which, by Theorem 3
below, implies that [[]]Iiur : RSC.

Theorem 3 (PF-RSC and RSC are equivalent for [[]]]l:up)
F ]S s PF-RSC <= []"» : RSC

Ezample 4 (Compiling a secure program). To illustrate RSC at work, let us
consider the following source component C,, which manages an account whose
balance is security-relevant. Accordingly, the balance is stored in a location (o0t
that is tracked by the monitor. C, provides functions to deposit to the account
as well as to print the account balance.

deposit(x) +— let g=abs(x) in let amt = o0t in lroor := amt + g
balance() — o0t

C, never leaks any sensitive location (/,o0t) to an attacker. Additionally, an
attacker has no way to decrement the amount of the balance since deposit only
adds the absolute value abs(x) of its input x to the existing balance.

By compiling C, with [[]]lfﬁ, we obtain the following target program.
deposit(x) — let g=abs(x) in
let amt=!0 with k..ot in 0 := amt + q with Koot
balance() — !0 with kyoot

Recall that location /... is mapped to location 0 and protected by the k.ot
capability. In the compiled code, while location O is freely computable by a



target attacker, capability k...t is not. Since that capability is not leaked to
an attacker, an attacker will not be able to tamper with the balance stored in
location 0. B

4 RSC via Bisimulation

If the source language has a verification system that enforces robust safety,
proving that a compiler attains RSC can be simpler than that of Section 3—it
may not require a back translation. To demonstrate this, we consider a specific
class of monitors, namely those that enforce type invariants on a specific set of
locations. Our source language, L7, is similar to LY but it has a type system
that accepts only those source programs whose traces the source monitor never
rejects. Our compiler [H]'L} is directed by typing derivations, and its proof of RSC
establishes a specific cross-language invariant on program execution, rather than
a backtranslation. A second, independent goal of this section is to show that RSC
is compatible with concurrency. Consequently, our source and target languages
include constructs for forking threads.

4.1 The Source Language L™

L™ extends LY with concurrency, so it has a fork statement (|| s), processes and
process soups [19]. Components define a set of safety-relevant locations A, so
C = A;F;l and heaps carry type information, so H ::= & | H; £+ v : 7. A also
specifies a type for each safety-relevant location, so A := @ | A;(£: 7).

L™ has an unconventional type system that enforces robust type safety |1,
14, 31, 34, 45, 58|, which means that no context can cause the static types of
sensitive heap locations to be violated at runtime. Using a special type UN that
is described below, a program component statically partitions heap locations it
deals with into those it cares about (sensitive or “trusted” locations) and those
it does not care about (“untrusted” locations). Call a value shareable if only
untrusted locations can be extracted from it using the language’s elimination
constructs. The type system then ensures that a program component only ever
shares shareable values with the context. This ensures that the context cannot
violate any invariants (including static types) of the trusted locations, since it
can never gets direct access to them.

Technically, the type system considers the types 7 ::= Bool | Nat | 7 x 7 |
Ref 7 | UN and the following typing judgements (I maps variables to types).

F C:UN Component C is well-typed. A,['+e:7 Expression e has type 7.
Tko Type 7 is shareable. C,A,l'Fs Statement s is well-typed.

(TL"-bool-pub)  (TL"-nat-pub) (TL"-pair-pub) (TL"-un-pub)  (TL"-references-pub)
Tho T1'ko
Bool - o Nat o rx 7 Fo UNF o Ref UNF o




Type UN stands for “untrusted” or “shareable” and contains all values that
can be passed to the context. Every type that is not a subtype of UN is im-
plicitly trusted and cannot be passed to the context. Untrusted locations are
explicitly marked UN at their allocation points in the program. Other types are
deemed shareable via subtyping. Intuitively, a type is safe if values in it can only
yield locations of type UN by the language elimination constructs. For example,
UN x UN is a subtype of UN. We write 7 |- o to mean that 7 is a subtype of UN.

Further, L™ contains an endorsement statement (endorse x = e as ¢ in s) that
dynamically checks the top-level constructor of a value of type UN and gives it
a more precise superficial type ¢ ::= Bool | Nat | UN x UN | Ref UN [24]. This
allows a program to safely inspect values coming from the context. It is similar
to existing type casts [48] but it only inspects one structural layer of the value
(this simplifies the compilation).

The operational semantics of L™ updates that of LY to deal with concurrency
and endorsement. The latter performs a runtime check on the endorsed value [62].

Monitors M = ({o---},~,00,A,0.) check at runtime that the set of
trusted heap locations A have values of their intended static types. Accordingly,
the description of the monitor includes a list of trusted locations and their ex-
pected types (in the form of an environment A). The type 7 of any location in A
must be trusted, so 7 t# o. To facilitate checks of the monitor, every heap loca-
tion carries a type at runtime (in addition to a value). The monitor transitions
should therefore be of the form (o, A, o), but since A never changes, we write

the transitions as (o, o).

A monitor and a component agree if they have the same A: M C «f

({o-},~,00,A,00) " (A;F;1). Other definitions (safety, robust safety and ac-
tions) are as in Section 2. Importantly, a well-typed component generates traces
that are always accepted, so every component typed at UN is robustly safe.

Theorem 4 (Typability Implies Robust Safety in L7).
If FC:UN and C™ M then M C:rs

Richer Source Monitors. In L7, source language monitors only enforce the
property of type safety on specific memory locations (robustly). This can be
generalized substantially to enforce arbitrary invariants other than types on lo-
cations. The only requirement is to find a type system (e.g., based on refinements
or Hoare logics) that can enforce robust safety in the source (cf. [68]). Our com-
pilation and proof strategy should work with little modification. Another easy
generalization is allowing the set of locations considered by the monitor to grow
over time, as in Section 3.

4.2 The Target Language L™

Our target language, L.”, extends the previous target language ", with support
for concurrency (forking, processes and process soups), atomic co-creation of a
protected location and its protecting capability (let x = newhide e in s) and
for examining the top-level construct of a value (destruct x = e as B in s or s')
according to a pattern (B ::= nat | pair).



(EL " -destruct-nat)
Hre < n

C,Hp>destruct x = easnat insors’ — C,H>s[n / x]
(EL" -new)
H=Hi;;n— (v,n) Hpe <» v ké¢dom(H) s =s[(n+1,k)/x]
C,Hplet x = newhideeins — C,H;n+1+— v:k;k>s'

Monitors are also updated to consider a fixed set of locations (a heap Hy), so
M:= ({o---},~,00,Hp, o). The atomic creation of capabilities is provided
to match modern security architectures such as Cheri [71] (which implement
capabilities at the hardware level). This atomicity is not strictly necessary and
we prove that RSC is attained both by a compiler relying on it and by one that
allocates a location and then protects it non-atomically. The former compiler
(with this atomicity in the target) is a bit easier to describe, so for space reasons,
we only describe that here and defer the other one to the companion report [61].

4.3 Compiler from L™ to L™

The high-level structure of the compiler, [H]i:, is similar to that of our earlier

compiler [[]]E; (Section 3.3). However, [[]]II:T is defined by induction on the type
derivation of the component to be compiled. The case for allocation (presented
below) explicitly uses type information to achieve security efficiently, protecting
only those locations whose type is not UN.

let xo =new [A,TFe: T]]Ii;
ATke:r L in let x = (x0,0) if 7=UN
C,A,T;x:Ref ks B in [C,A,T;x: Ref 7 F ]k,
C,ATH N
let x = new, eins [ let x = newhide [A,TFe: T]]iT .
] LT otherwise
in [C,A,T;x: Ref 7 s];.

New Monitor Relation. As monitors have changed, we also need a new mon-
itor relation M~ IVI. Informally, a source and a target monitor are related if
the target monitor can always step whenever the target heap satisfies the types
specified in the source monitor (up to renaming by the partial bijection j).

We write - H : A to mean that for each location ¢ € A, - H(¢) : A(¢). Given
a partial bijection 8 from source to target locations, we say that a target monitor
M= ({0}, ,~, 00, Hp,0c) is good, written - M : 8, A, if forall o € {o--}
and all H~g H such that - H : A, there is a ¢’ such that (¢, H,0’) € ~~. For
a fixed partial bijection By between the domains of A and Hp, we say that
the source monitor M and the target monitor M are related, written M~ M, if
F M : By, A for the A in M. With this setup, we define RSC' as in Section 2.

Theorem 5 (Compiler [[]]IL; attains RSC). [[-}]IL; : RSC

To prove that [[]]5. attains RSC we do not rely on a backtranslation. Here,
we know statically which locations can be monitor-sensitive: they must all be



trusted, i.e., must have a type 7 satisfying 7 ¥ o. Using this, we set up a simple
cross-language relation and show it to be an invariant on runs of source and
compiled target components. The relation captures the following:

— Heaps (both source and target) can be partitioned into two parts, a trusted
part and an untrusted part;

— The trusted source heap contains only locations whose type is trusted (7 ¥ o);

— The trusted target heap contains only locations related to trusted source
locations and these point to related values; more importantly, every trusted
target location is protected by a capability;

— In the target, any capability protecting a trusted location does not occur
in attacker code, nor is it stored in an untrusted heap location.

We need to prove that this relation is preserved by reductions both in com-
piled and in attacker code. The former follows from source robust safety (The-
orem 4). The latter is simple since all trusted locations are protected with ca-
pabilities, attackers have no access to trusted locations, and capabilities are
unforgeable and unguessable (by the semantics of L™). At this point, know-
ing that monitors are related, and that source traces are always accepted by
source monitors, we can conclude that target traces are always accepted by tar-
get monitors too. Note that this kind of an argument requires all compilable
source programs to be robustly safe and is, therefore, impossible for our first

U
compiler [[]}%, Avoiding the backtranslation results in a proof much simpler
than that of Section 3.

5 Fully Abstract Compilation

Our next goal is to compare RSC to FAC at an intuitive level. We first define
fully abstract compilation or FAC (Section 5.1). Then, we present an example
of how FAC may result in inefficient compiled code and use that to present in
Section 5.2 what would be needed to write a fully abstract compiler from LY to
LY (the languages of our first compiler). We use this example to compare RSC
and FAC concretely, showing that, at least on this example, RSC permits more
efficient code and affords simpler proofs that FAC.

However, this does not imply that one should always prefer RSC to FAC
blindly. In some cases, one may want to establish full abstraction for reasons
other than security. Also, when the target language is typed [10, 11, 21, 50]
or has abstractions similar to those of the source, full abstraction may have
no downsides (in terms of efficiency of compiled code and simplicity of proofs)
relative to RSC. However, in many settings, including those we consider, target
languages are not typed, and often differ significantly from the source in their
abstractions. In such cases, RSC' is a worthy alternative.

5.1 Formalising Fully Abstract Compilation

As stated in Section 1, FAC requires the preservation and reflection of observa-
tional equivalence, and most existing work instantiates observational equivalence



with contextual equivalence (=~ ). Contextual equivalence and FAC are defined
below. Informally, two components C; and Cs are contextually equivalent if no
context A interacting with them can tell them apart, i.e., they are indistin-
guishable. Contextual equivalence can encode security properties such as con-
fidentiality, integrity, invariant maintenance and non-interference [6, 9, 53, 60].
We do not explain this well-known observation here, but refer the interested
reader to the survey of Patrignani et al. [54]. Informally, a compiler [H]rsr is fully
abstract if it translates (only) contextually-equivalent source components into
contextually-equivalent target ones.

Definition 4 (Contextual equivalence and fully abstract compilation).

Ci ~ et Co “fva. A [Ci]fh <= A[C2] 1, where {t means execution divergence
LIS FACEVC,, Co. Gy G =[Gl ~ i [Co]

The security-relevant part of FAC is the = implication [29]. This part is
security-relevant because the proof thesis concerns target contextual equivalence
(~c12). Unfolding the definition of ~;, on the right of the implication yields a
universal quantification over all possible target contexts A, which captures ma-
licious attackers. In fact, there may be target contexts A that can interact with
compiled code in ways that are impossible in the source language. Compilers
that attain FAC with untyped target languages often insert checks in compiled
code that detect such interactions and respond to them securely [60], often by
halting the execution [6, 9, 29, 37, 39, 42, 53, 54]. These checks are often ineffi-
cient, but must be performed even if the interactions are not security-relevant.
We now present an example of this.

Ezample 5 (Wrappers for heap resources). Consider a password manager written
in an object-oriented language that is compiled to an assembly-like language. The
password manager defines a private List object where it stores the passwords
locally. Shown below are two implementations of the newList method inside
List which we call Cy, and Cy,o. The only difference between C,, and Cy,o is
that Cy,o allocates two lists internally; one of these (shadow) is used for internal
purposes only.

public newList(): List{ public newList(): List{
shadow = new List(); // diff
ell = new List();

return ell;

&
N

ell = new List();
return ell;

r,} '*}

B
NI

Cone and Cy,, are equivalent in a source language that does not allow pointer
comparison (like our source languages). To attain FAC when the target al-
lows pointer comparisons (as in our target languages), the pointers returned
by newList in the two implementations must be the same, but this is very dif-
ficult to ensure since the second implementation does more allocations. A sim-
ple solution to this problem is to wrap ell in a proxy object and return the
proxy [9, 47, 53, 59]. Compiled code needs to maintain a lookup table mapping



the proxy to the original object and proxies must have allocation-independent
addresses. Proxies work but they are inefficient due to the need to look up the
table on every object access. o

In this example, FAC forces all privately allocated locations to be wrapped
in proxies. However, RSC does not require this. Our target languages L* and
L™ support address comparison (addresses are natural numbers in their heaps)
but [H]Iiur and []% . just use capabilities to attain security efficiently while [-]}
relies on memory isolation. On the other hand, for attaining FAC, capabilities
alone would be insufficient since they do not hide addresses. We explain this in
detail in the next subsection.

Remarks. Our technical report lists many other cases of FAC forcing security-
irrelevant inefficiency in compiled code [61]. All of these can be avoided by just
replacing contextual equivalence with a different notion of equivalence in the
statement of FAC. However, it is not clear how this can be done generally for
any given kind of inefficiency, and what the security consequences of such in-
stantiations of the statement of FAC are. On the other hand, RSC is uniform
and it does not induce any of these inefficiencies.

A security issue that cannot be addressed just by tweaking equivalences is
information leaks on side channels, as side channels are, by definition, not ex-
pressible in the language. Neither FAC nor RSC deals with side channels.

5.2 Towards a Fully Abstract Compiler from LY to L"

To further compare FAC and RSC, we now sketch what would be needed to
construct a fully abstract compiler from LY to L. In particular, this compiler
should not suffer from the “attack” described in Example 5.

u

Inefficiency. We denote with [[D]] ip a (hypothetical) new compiler from LY
to LY that attains FAC. We describe informally what code generated by this
compiler would have to do. We know that fully abstract compilation preserves all
source abstractions in the target language. One abstraction that distinguishes
L" from LY is that locations are abstract in L.”, but concrete natural numbers in
LY. Thus, locations allocated by compiled code must not be passed directly to the
context as this would reveal the allocation order. Instead of passing the location
(n, k) to the context, the compiler arranges for an opaque handle (n’, k.o, ) (that
cannot be used to access any location directly) to be passed. Such an opaque
handle is often called a mask or seal in the literature [66].

U

To ensure that masking is done properly, [[D]] ip can insert code at entry
and exit points of compiled code, wrapping the compiled code in a way that
enforces masking [32, 59]. The wrapper keeps a list L. of component-allocated
locations that are shared with the context in order to know their masks. When a
component-allocated location is shared, it is added to the list L. The mask of a
location is its index in this list. If the same location is shared again it is not added
again but its previous index is used. To implement lookup in L. we must compare
capabilities too, so we need to add that expression to the target language. To



ensure capabilities do not leak to the context, the second field of the pair is a
constant capability k..., which compiled code does not use otherwise. Clearly,
this wrapping can increase the cost of all cross-component calls and returns.

However, this wrapping is not sufficient to attain FAC'. A component-allocated
location could be passed to the context on the heap, so before passing control
to the context the compiled code needs to scan the whole heap where a location
can be passed and mask all found component-allocated locations. Dually, when
receiving control the compiled code must scan the heap to unmask any masked
location so it can use the location. The problem now is determining what parts
of the heap to scan and how. Specifically, the compiled code needs to keep track
of all the locations (and related capabilities) that are shared, i.e., (i) passed from
the context to the component and (ii) passed from the component to the con-
text. Both keeping track of these locations as well as scanning them on every
cross-component control transfer is likely to be very expensive.

Finally, masked locations cannot be used directly by the context to be read
and written. Thus, compiled code must provide a read and a write function that
implement reading and writing to masked locations. The additional unmasking
in these functions (as opposed to native reads and writes) adds to the inefficiency.

It should be clear as opposed to the RSC compiler [[]]I':Ur (Section 3), the FAC

U
compiler [[D]] ip just sketched is likely to generate far more inefficient code.

Proof difficulty. Proving that [[D]] Il:ul attains FAC can only be done by back-
translating traces, not contexts alone, since the newly-added target expressions
cannot be directly backtranslated to valid source ones [7, 9, 59|. For this, we
need a trace semantics that captures all information available to the context.
This is often called a fully abstract trace semantics [38, 55, 56]. However, the
trace semantics we defined for L” is not fully abstract, as its actions record
the entire heap in every action, including private parts of the heap. Hence, we
cannot use this trace semantics for proving FAC and so we design a new one.
Building a fully abstract trace semantics for L is challenging because we have
to keep track of locations that have been shared with the context in the past.
This substantially complicates both the definition of traces and the proofs that
build on the definition.

Finally, the source context that the backtranslation constructs from a target
trace must simulate the shared part of the heap at every context switch. Since
locations in the target may be masked, the source context has to maintain a
map from the source locations to the corresponding masked target ones, which
complicates the backtranslation and the proof substantially.

U
To summarize, it should be clear that the proof of FAC for [[D]] i,) would be

U
much harder than the proof of RSC for [[-]]Il:p, even though the source and target
languages are the same and so is the broad proof technique (backtranslation).



6 Related Work

Recent work [8, 33] presents new criteria for secure compilation that ensure
preservation of subclasses of hyperproperties. Hyperproperties [25] are a formal
representation of predicates on programs, i.e., they are predicates on sets of
traces. Hyperproperties capture many security-relevant properties including not
just conventional safety and liveness, which are predicates on traces, but also
properties like non-interference, which is a predicate on pairs of traces. Modulo
technical differences, our definition of RSC' coincides with the criterion of “robust
safety property preservation” in [8, 33]. We show, through concrete instances,
that this criterion can be easily realized by compilers, and develop two proof
techniques for establishing it. We further show that the criterion leads to more
efficient compiled code than does FAC. Additionally, the criteria in [8, 33] assume
that behaviours in the source and target are represented using the same alphabet.
Hence, the definitions (somewhat unrealistically or ideally) do not require a
translation of source properties to target properties. In contrast, we consider
differences in the representation of behaviour in the source and in the target and
this is accounted for in our monitor relation M = V. A slightly different account
of this difference is presented by Patrignani and Garg [60] in the context of
reactive black-box programs.

Abate et al. [7] define a variant of robustly-safe compilation called RSCC
specifically tailored to the case where (source) components can perform unde-
fined behaviour. RSCC does not consider attacks from arbitrary target contexts
but from compiled components that can become compromised and behave in
arbitrary ways. To demonstrate RSCC, Abate et al. [7] rely on two backends
for their compiler: software fault isolation and tag-based monitors. On the other
hand, we rely on capability machines and memory isolation (the latter in the
companion report). RSCC also preserves (a form of) safety properties and can
be achieved by relying on a trace-based backtranslation; it is unclear whether
proofs can be simplified when the source is verified and concurrent, as in our
second compiler.

ASLR [6, 37], protected module architectures [9, 42, 53, 59|, tagged architec-
tures [39], capability machines [69] and cryptographic primitives [4, 5, 22, 26]
have been used as targets for FAC. We believe all of these can also be used
as targets of RSC-attaining compilers. In fact, some targets such as capability
machines seem to be better suited to RSC than FAC, as we demonstrated.

Ahmed et al. prove full abstraction for several compilers between typed lan-
guages [10, 11, 50|. As compiler intermediate languages are often typed, and as
these types often serve as the basis for complex static analyses, full abstraction
seems like a reasonable goal for (fully typed) intermediate compilation steps.
In the last few steps of compilation, where the target languages are unlikely to
be typed, one could establish robust safety preservation and combine the two
properties (vertically) to get an end-to-end security guarantee.

There are three other criteria for secure compilation that we would like to
mention: securely compartmentalised compilation (SCC) [39], trace-preserving
compilation (TPC) [60] and non-interference-preserving compilation (NIPC) [12,



15, 16, 27]. SCC is a re-statement of the “hard” part of full abstraction (the
forward implication), but adapted to languages with undefined behaviour and a
strict notion of components. Thus, SCC suffers from much of the same efficiency
drawbacks as FAC. TPC is a stronger criterion than FAC, that most existing
fully abstract compilers also attain. Again, compilers attaining TPC also suffer
from the drawbacks of compilers attaining FAC.

NIPC preserves a single property: noninterference (NI). However, this line of
work does not consider active target-level adversaries yet. Instead, the focus is
on compiling whole programs. Since noninterference is not a safety property, it
is difficult to compare NIPC to RSC directly. However, noninterference can also
be approximated as a safety property [20]. So, in principle, RSC (with adequate
massaging of observations) can be applied to stronger end-goals than NIPC.

Swamy et al. [67] embed an F* model of a gradually and robustly typed
variant of JavaScript into an F* model of JavaScript. Gradual typing supports
constructs similar to our endorsement construct in L”. Their type-directed com-
piler is proven to attain memory isolation as well as static and dynamic memory
safety. However, they do not consider general safety properties, nor a specific,
general criterion for compiler security.

Two of our target languages rely on capabilities for restricting access to sen-
sitive locations from the context. Although capabilities are not mainstream in
any processor, fully functional research prototypes such as Cheri exist [71]. Ca-
pability machines have previously been advocated as a target for efficient secure
compilation [30] and preliminary work on compiling C-like languages to them
exists, but the criterion applied is FAC [69].

7 Conclusion

This paper has examined robustly safe compilation (RSC'), a soundness criterion
for compilers with direct relevance to security. We have shown that the criterion
is easily realizable and may lead to more efficient code than does fully abstract
compilation wrt contextual equivalence. We have also presented two techniques
for establishing that a compiler attains RSC. One is an adaptation of an existing
technique, backtranslation, and the other is based on inductive invariants.
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