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1 Pure Whole Languages

1.1 Source Language S

1.1.1 Syntax

Pu=e

en=true|false |[e@e|n|x|ede|let x=-eine|if e then e else e | falil
v = true | false | n

f = n | fail

Ei=[]|e®E|E®n|letx=Einel|if Etheneelsee|e®E|E®n

v =2 | 5 [v /¥

The program state is just an expression e.

We assume some standard properties of substitutions 7, such as capture
avoidance, distributivity over terms, and weakening.

In the following, we assume: @ 1=+, —, .-+, @ u=<, >, ==.

1.1.2 Dynamic Semantics

Judgements: e —° ¢ e—e
(Eval-letin) (Eval-op) (Eval-bop)
nen =n" non =wv
let x=nine—=Ce[n/x naon 0 non 0y
(Eval-if-t) (Eval-if-f)
if true then e else &’ —0 e if false then e else &’ —0 ¢’
(Eval-ctx) (Eval-fail)
e —0¢ -
Ele] — E[¢/] E [fail] — fail

We can use evaluation contexts (which are not program contexts) to determine
where the reductions happen.

1.1.3 Static Semantics

Bool | Nat | Nat — Nat
Fe=g|Mx:r

lFe:T Well-typed expression e of type 7
F fn(x) — e : Nat — Nat Well-typed program e of type Nat to Nat



(T-true) (T-false) (T-n) (T-x)

x:T7 €l
[ true : Bool [k false : Bool Fn:Nat Fr-x:r
(T-bop) (T-op) (T-let)
Fl—el:Nat Fl—elzNat rl—elzﬁ
[+ e : Nat e : Nat Mx:mbe:T
[Fe ©®er: Bool Fe; ®er: Nat [Fletx=ejiney:T
(T-if)
[Fe:Bool (T-fail)

lep:7 The:7
[ if e then eg else &5 : 7
(T-prog)
x : Nat +e: Nat
fail ¢ e
F fn(x) — e : Nat — Nat

M fail: 7

1.2 Target Language T
1.2.1 Syntax

P:=e
v = n | true | false b ::= true | false
ex=n|x|ede|let x=-ein e|if e then e else e | fail

| true | false |e ©e | e has T
= Nat | Bool
= n| fail
s=[]|edE|E®v]|letx=Einel|if Etheneelsee|eOE|EGV
y = 2 |7 [v /X

H - H

1.2.2 Dynamic Semantics

Judgements: e < ¢’ e—e
(Eval-letin) (Eval-op) (Eval-bop)
non =n" noOn =wv
let x =vin e —=%elv /x| non —°n” non -0y
(Eval-if-t) (Eval-if-f)
if true then e else ¢’ —% e if false then e else e’ —9 €’
(Eval—ctx) (Eval—fail) (Eval_has_nN)
e —0¢
Ee] > E €] E [fail] — fail n has N < true
(Eval-hasOnB) (Eval-hasvN) (Eval-has-vB)
v = true or false v has B <9 true
n has B 9 false v has N <0 false



(Eval-op-fail) (Eval-bop-fail)
v=borv/ =b v=borv/ =b
v @ v =0 fail v O v =0 fail
(Eval-if-fail)

if n then e else e’ <9 fail

1.3 [[-]]STWW: Compiler from S" to TV

[[true}]rsrww = true
[[false]]STWw = false
[n]7 = n
5w = x
e ® e’]]STWW = [[e]]iww D He/HSTWW
[e® €T = [el © [T
[let x =e in e’]]?c’rww =let x = [[e]]STWw in HGIHSTWW
[if b then e else e’]]STWW = if [[bﬂsTww then [[eﬂrslivw else [[e/]]:c,rww
[fail]5, = fail
[v / <05 = M3/ K5

1.4 Compiler Correctness for [];..
Lemma 1.1 (Forward simulation).
if ey <" v then [e]u [1]ow < [V
Find the proof template in Appendix A.1.
Lemma 1.2 (Expression correctness).
if [ [V] e <" [f]o then ey —* f
Proof. By contradiction we assume: ey < v/ # v (the case for b is analogous).
By Lemma 1.1 (Forward simulation) we get that [[e]]STWW [[7]]STWW<—>*[[V/ ]]STWW
By determinism of the compiler we have [[v]]s+ww £ [V ]]STWW

So we have that the same term [e] STWW reduces to two different terms, which
contradicts the determinism of the semantics. (]

Theorem 1.3 (Compiler correctness for [[-]]waw (Whole Programs)).

if @ FP 7 and [Pl < [f]o then P—* f



Proof. By Lemma 1.2 (Expression correctness). t

2 Partial Languages
2.1 Source Language Additions: S_

Pu=fn(x)—e
Cu=lety=callfneine
Flet y = call fn e; in e; : Bool Well-typed context of type Bool
(T-ctx)
g+ (S Nat

y : Nat e : Bool
Flet y = call fn ey in ey : Bool

2.2 Target Language Additions: T

u

P:=fnkx)—e

Ci:=lety=callfneine

2.3 Common Definitions
Definition 2.1 (Contextual equivalence).
Py~ P, ¥ VC. C [P —* f and C[Py] —* f

Definition 2.2 (Plugging). Given that C' = let y = call fn eqrg in €cons and
P = fn(x) — epn.

C[P] et y = let x = €arg N Cfun N €cont

Example 2.3 (Equivalent and inequivalent programs).

X+ 2 x+1+1
if x> 0 then 0 else 1 X
letz=xinz+z X + X



2.4 [[]]STT Compiler from S_to T,

[fn(x) — e]]STT = fn(x) — [[e]]i:
s s
[[e]]TTu = et
[let y = call fn e in e’]]STT“ = let y = call fn [e]]ST’U in [e’]]STT"
2.5 Compiler Correctness for [[]]31
Theorem 2.4 (Compiler correctness for [[]]STT (Partial Programs)).

if@FP:7and - C:Bool and C = [C]5, and C {[[P]]STWW} [
then C[P] <™ f

Proof. Analogous to the proof of Theorem 1.3 (Compiler correctness for Hrsl:VW
(Whole Programs)).

3 Compiler Security: Fully Abstract Compila-
tion

Theorem 3.1 (Full abstraction of [[]]STT ).

VP1,P2. Pr~ P = [[PlﬂSTT Sy [[PzﬂSTT

Example 3.2 (Violations of full abtraction).

Cp = let y = call fn true in 2
Pi=fn(x) —»letz=xin1
P2 = fn(x) — 1

In this case, we have VC, 3f:
o C[Py]—=*f
o C[Py]—=*f
o O, {[[Pl]]STWW} —+*fail
o Cy [Pl 72

SO, I:)1 etx P2 but [[Pl]]i‘w ;ﬁum [[P2]]i‘w L]



3.1 Compiler Changes

[fn(x) — e]]:c’lf = fn(x) — if x has N then [[e]],sr" else fail

3.2 Fully Abstract Compilation via Context-based Back-
translation

3.2.1 Reflection
Lemma 3.3 (Equivalence reflection for [[]]ST*)
WP1,Pa. P1oe Po <= [P1]y ~ors [P]y,
Proof. We state this in contrapositive form:
P1%cta P2 = IIPl]]i‘T“ Eeto [Pzﬂsﬁ

and expand the definitions of ~,:

JC. C[P1]—=*f and C[Py] —"f and f #f

= 3C. C {[[Pl]]ST*J <*f and C {[Pz]]sd <t and £ # £

Picking C is simple, assuming [H]STT can be applied to context (as is generally the

case, like here), C=[C] STT . At this point, a clever usage of Lemma 1.1 (Forward
simulation) gives this result. O

3.2.2 Preservation

Lemma 3.4 (Equivalence preservation for [[]]?11)
WP1,Pa. P1oe P = [P1]y i [Pl

Proof attempt (this proof is not completed).. We state this in contrapositive form:
WP1,Po. [P1I% e [P, = P1bers P2

and expand the definitions of ~,:

VP1,P,. JC. C [[[Pl]]ST* } <" and C {[[Pﬂ]STT } " and £ A f
= JC. C[Py] =*f and C[P,] —~*f" and f # f'

We can try to build C starting from C as we cannot rely on any correctness
result.



3.3 (()¢": Context-based Backtranslation
3.3.1 The Universal Type

We need a universal type, something to backtranslate target expression to in
order for them to be valid.

Example 3.5 (Backtranslation type). We cannot backtranslate true to true
because when backtranslating 3 + true we would get 3 + true that is not a valid
source expression according to the grammar of a. Also, we need a mechanism
that scales for all operations quantified over by ®, e.g., 3 * 2 etc. ol

Anything that the target is backtranslated to, must be of this universal type.

This universal type is natural numbers.

3.3.2 Helper Functions

Then we need to convert to and from normal types and the universal type
in order to ensure proper communication occurs. In fact, if we backtranslate
call f true to call f 0, the former will fail (by the typecheck inserted by the
compiler) and the second will not.

Inject takes something of a type and injects it into the universal type, extract
takes from the universal type and extracts to a type.

injectnat(e) = e+ 2

let x = e in if x > 2 then x — 2 else fail

(e)
injectpooi(e) = if e then 1 else 0
extractyae(e)

()

extractgeol(€ let x = e in if x > 2 then fail else if x — 1 > 1 then false else true

3.3.3 Properties of the Helpers
Lemma 3.6 (The Helpers are well-typed). The following holds:

e If [ Fe: Nat then I F injectyat(e) : Nat
e If [+ e: Bool then I' F injectgooi(e) : Nat
e If [+ e: Nat then I - extractyac(e) : Nat

e If [ e: Nat then I I extractgeol(e) : Bool

Proof. Simple case analysis.

3.3.4 The Backtranslation

The backtranslation is based on the program context structure.

{let y = call fn € in c”>>gi“ = let y=injectn,t(call fn (extractNat«o’));F»”)) in <<c”>>g“

10



()s =n+2

(s = x
{trueg” =0
(falsefe =1

3

=
@
m\

>~

e
Il

let x1:extractNat<<e>>;r“ in
let x2:extractNat<<e/»rsru in
injectnacx1 @ x2
. / T T 1
(e ® e )g™ = let xl=extractnat{(e))s " in
let x2:extractNat<<e/>>§" in
injectgooix1l P x2
{let x =e in e/»;r: =let x = «e»;r: in <<e,>>;r:

{(if e then €’ else e’/>>;r“ = let x = extractBom«e));r“ in if x then <<e/>>;r“ else ((e”));r“

T T T

let x = <(e>);F in if x > 2 then 1 else 0

if T =Nat
{e has T))ST - aT o
i let x = ((e))g ™ inif x > 2 then 0 else 1
if T = Bool

(fail)s * = fail
(v /s = [(vhs / (hs]

The case for the e has T from should be injectgool(if x > 2 then true else false)
(in the case for Bool, swap true and false for the Nat case) but we shorten it to
the definition above because we already know how the “if” expression and the
subsequent inject will execute.

Remark 3.7 (Letin). The backtranslation of let x = e in € may seem con-
fusing, as it does not insert injecty, for its subexpressions.

We argue why it is right using this example, for which we indicate the re-
ductions:

ee;=letx=2inx+1 and t;—*3;
Currently, what we get is:
e e; = let x =4 in let x1 = extractya:x in let x2 = extractyat3 in injectnacxl + x2

If we unfold the reductions, we see that

11



let x =4 in let x1 = extractyaex in let x2 = extractya3 in injectyaix1 + x2
— let x1 = extractnat4 in let X2 = extractyae3 in injectyaexl + x2
er | <" let x2 = extracty,e3 in injectyat2 + x2
—" injectnat2 + 1
—*5
and these reductions proceed as expected.
However if we insert an additional extracty,: for the value bound to the
x, these reductions will not go right, as we get an additional +2. We could
eliminate it by adding an injecty,: when variables are backtranslated, but this
is hard to do correctly as we do not know if a variable will be used as a Nat or
as a Bool in the target, as in this other valid expression:

e e¢; = let x = true in if x then 3 else 0
This gets backtranslated to
e & = let x =0 in let z = extractgyox in if z==1 then 5 else 2

These expressions reduce correctly, but we would not know how to carry the
information that x is technically a Boolean (the true expression may be a lot
more complex than that and provide no help).

However, we know that when a variable is going to be used, e.g., inside a @
expression, the extract. will be there.

3.3.5 Properties of the Backtranslation

In order to use the context backtranslation, we need to prove that it is correct:

Lemma 3.8 (Backtranslation correctness).

ifey —=*f
then (s (1 Na* <" (Fha"

.

Find the proof template in Appendix A.2.

3.3.6 Fully Abstract Compilation Reflection
We resume our proof for the = direction of fully abstract compilation.

Proof of Lemma 3.4. What we have is:

ic. C {[[Pl]}STT } “+'f and C {[[PQ]]STT } ' and £ £
= JC. C[Py] —=*f and C[P,] —~*f" and f # '

We can instantiate C with <<C>>;r
So we can assume:

12



1. C {[[Pﬂ]?d * f

2. C {[[PQ]]%} r
and prove this

o (Chev[P1] <" f

.

o (Chg[Pa] <" f

-

If we unfold the definition of C [P] in the hypotheses, assuming that P; = fn(x) — e;
and P, = fn(x) — e, we obtain

1. let y =let x =€’ in if x has NAT then [[el]]if else fail in €’ —* f

2. let y =let x = €’ in if x has NAT then [[eg]]if else fail in e —* f’

We can unfold the reductions to see that: <
let y = let x = €’ in if x has NAT then [e;]f else fail in €”

[[P1]]§f —* let y = let x = v in if x has NAT then [[el]]lc’lf else fail in €”

< let y = if v/ has NAT then ([e;]57 [/ / x]) else fail in e”
We know that ¢’ must reduce to a value and not to fail because otherwise
both target executions would reduce to fail, contradicting the hypothesis f +# f’.
Also, by determinism and given that the program context is the same in
both cases, we know that until here, the reductions are the same for the second
program too, so:

(P2l o s N
* | <" let y =if v/ has NAT then ([ex]7 [v' / x]) else fail in e
Now we can perform a case analysis on v/ and rule out the case for booleans,
otherwise both target executions would reduce to fail, contradicting the hypoth-
esis f # {7,
So v’ really is a natural number n’:
let y = if n’ has NAT then ([[el]]ifu [n' / x]) else fail in €”

let y = let x = €’ in if x has NAT then [[EQ]]rSIT else fail in e”

— let y = ([[el]]rslfu [n' / x]) in €”

[P, | <" let y = ([m]y) in e

= e [Iml%, / ¥]

—*f

The execution of P,, instead, must differ, so, determinism of the semantics

let us conclude that these reductions happen, for a n, # ny:
let y = if n’ has NAT then ([[eg]]if [n" / x]) else fail in e”

[[P2]]§E“ —* e”[[[nz]]ST’u /y]

(_>* f/

13



Let us take a look at the source reductions. By Lemma 3.8 (Backtranslation
correctness), we know the following:

5 let y = injectnat(let x = extractyat{(e )>T inep) in {(& ))
. .
—* let y = injectyat(let x = extractyat (v )> “inep) in (€ ))

By inspecting the target reductions we know, extracty,: (v’ ))ST cannot fail,

as v’ is a natural number. Additionally, we know that v/={n’ )) —2. By
Lemma 1.2 (Expression correctness) we know:

let y = injectaer[v' / x] in (e " [<<v>>ST; / z}

P1
™ let y = injectyatny in <(0”));F“
So by definition of injecty,: we have that nj = n; + 2:

let y = injectyaeny in {(")e"
Pr| = lety=njin (e’ )s"

T
=" {e")s [ /]

So we need to show the reductions for P,, again by Lemma 3.8 (Backtrans-
lation correctness):

. let y = injectnat(let x = extractNat«e’));r” in ep) in ((e”))ST“
2
" let y = injectnaraz]V’ / x] in {(€”Ye
And by how the reductions proceded in the target and Lemma 1.2 (Expres-
sion correctness), we know that:

Ps ‘ — let y = injectyatna in <(0”));F“
We can define n, = ny + 2 and we getT:
— lety=n}in <<e”>);i“
< (" )s " [nb / ]
At this stage in the proof we make a simplification for the sake of clarity.
We lift this and show how to conclude this proof properly in Section 3.3.7.
For simplicity, we can assume that e” is if y == [[nl]]?r* then 0 else 1 and
thus f = 0 and ' = 1. ’

Given that we know €”, let us work out its backtranslation (modulo some
optimisation and elimination of bits that we know how will reduce):

14



let z = extractpoo{(y == n1))g " in if z==1 then (0)s " else {1}q"
= let z = extractgool let xlzextractNat«y))ST“ in inif z==1 then 2 else 3

let m2:extractNat<<n1>>g“ in

injectpooixl == x2
= let z = extractpool let x1=extractyaty in inif z==1 then 2 else 3
P1 & Po let x2=extractyatni + 2 in
injectpooixl == x2
= let z = extractgool let x1=y — 2 in in if z==1 then 2 else 3
let £2=nq in
injectgooixl == x2
= if y —2 == n; then 2 else 3
So we have
if y —2 ==n; then 2 else 3[n| /]
= if nj —2 == n; then 2 else 3
Prl Ny +2 — 2 ==n; then 2 else 3
— 2

Now we know <(e”>>;r“ and we know that n, # ny, so we have that
= if y — 2 == ny then 2 else 3[n} /]
=if np +2 —2 ==ny then 2 else 3

P> .
= if np == ny then 2 else 3
— 3
So f=2 and f’=3 and this proof holds. O

3.3.7 Proper Differentiation

Note that the assumption on what e’ looks like is a simplifying assumption just
for the sake of explanation. To conclude the proof properly we need to apply
again Lemma 3.8 and we need the following trivial lemma too:

Lemma 3.9 (Differentiation).

T

if £ 5 ' then (g # (f)e"

-

Proof. Trivial case analyisis.

Proper completion of Lemma 3.4. We have:
° e”[[[nl]ﬁf’ /y]%* f/
" S Y
o c [[[n2ﬂTT /y}°—> f

and we need to reason about

15



o (N5 It / v]

o (s [n /Y]

Since n} = ny + 2, n} = ny + 2, we can rewrite the last two items as

o (N [fmne / )e]

T T

o (e )ee [(na)2 /e

T T T

By how backtranslation works on substitutions, we can apply Lemma 3.8 (Back-
translation correctness) twice to conclude that:

o (s [nads [ hsr ] (s

T ks T

o (s [fnahs / vhs] = gids

T ks T

Finally, we apply Lemma 3.9 (Differentiation) to conclude <<f>>gr # ((f’))ST O

T T

3.3.8 Completing the Full Abstraction Proof

Proof of Theorem 3.1. By Lemma 3.4 (Equivalence preservation for [[]}STT ) and

Lemma 3.3 (Equivalence reflection for [[]]i: ) O

3.4 Fully Abstract Compilation via Trace-based Backtrans-
lation

3.4.1 Target Changes: T,

en=---|refle
(Eval-refl)
n = |e]
refl e—n
Function |-| returns a hash of its argument so each term has its numerical

representation.

Notice that this addition is only in the target. The compiler does not gen-
erate this expression, so only the context can use it. Moreover, by structure of
the context, it can only use that expression on its own expression, not on the
programs.

3.4.2 Target Trace Semantics

t ::= call n? - ret n!
Definition 3.10 (Traces of a program).

TR(P)={call n? -ret n’! | P=fn(x)—~eandlet x=nine —"n'}

16



3.4.3 Trace Equivalence

Definition 3.11 (Trace equivalence).
P; TP, £ TR(P;) = TR(Py)
Lemma 3.12 (Soundness of traces).
P, TP, = Py~ Py

Find the proof in Appendix A.3.

3.4.4 Compiler from S_ to T,
s S
[[PHTT,, = [[P]]TT”

3.5 ((()))STT Trace-based Backtranslation

At this point we are given two different traces which, by definition, agree on
the call.. parameters and we must build both a source program context C that
leads to the differentiation.

t; = call n? - ret n'! to = call n? - ret n?!

{{oher =n
(((tl.t2)>>ST" let y = call fn (((n)»i inif y == <<<nl>>>STk then 1 else 2

3.5.1 Properties of the Backtranslation of Traces
Lemma 3.13 (Correctness of the backtranslation of traces).

. . S,

if call n? - ret n'! € TR([P]y )

P=fn(x)—e
then let y = let x = ((n))e in e in ¢ <" ¢ [<<<H/>>>ST" / y]

Proof. This follows by unfolding the definitions of the trace semantics and by
Lemma 1.2 (Expression correctness). t
3.5.2 Fully Abstract Compilation

Theorem 3.14 (Full abstraction of [[]]STT)

¥P1,Pa. Pyve, Py <= [Pa]y ~o [Pl

Proof. Since the compiler has not changed, the reflection holds by Lemma 3.3 (Equiv-
alence reflection for [[]]?l: ). The preservation holds by Lemma 3.15 (Equivalence

preservation for [[]]STT) below. O
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3.5.3 Fully Abstract Compilation Preservation

Lemma 3.15 (Equivalence preservation for [[]]ST* ).
vplv P2~ Pl eta P2 = [[Pl]]STT, Xt [[P2]]i‘i
Proof. We can apply Lemma 3.12 (Soundness of traces) and we get:
WP1,Po. Py~ P = [P1]Y L [Pl
in contrapositive form:
S s
VP, Po. [[P1]]T’r ¥ [[Pz]]TTr = P12 P2
expanding the definitions:
¥P1,Po. 3t € TR([P1]Y ) and t ¢ TR([P2]Y)
= 3C. C[P1] =*n" and C[Py] —*n"

We pick another trace t’ from TR([[PQ]]% ) such that the first part is the same

as in t for the backtranslation. Knowing that [[nl]]STT‘ =n' and n' # n?, the
traces are

t = call n? - ret n'! t' = call n? - ret n?!

We can now use the backtranslation of traces with t and t’ to instantiate C.
The reductions proceed as follows. By Lemma 3.13 (Correctness of the
backtranslation of traces) we know:

let y = call fn (((11)>>STT inif y == <<<111>>>STT then 1 else 2

[[Pl]]ifr —Fif y == <<<nl>>>STT then 1 else 2[<<<H1>>>5TT /Y})
=if ny == <<<nl>>>; then 1 else 2

and

_— (let y = call fn ((n})g" in if y == (((n®)))g then 1 else 2
2 T,

—Fifny=1== <<<nz>>>;r then 1 else 2
The different reductions now are straightforward, so f= 1 and f'=2 so this
case holds. O

4 Stateful Languages

4.1 Source Heap: S,
4.1.1 Syntax

Pu=Hpfn(x) —e
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enx= ---|let x=neweine|let x=read eine|let x=write e at e in e
vi=v |/
E:= ---|let x=new Eine|let x=read Ein e |let x=write Eateine
| let x=write v at E in e
H:=o|H;{—n
Qu=Hpe
Programs have a global heap.
H(¢) returns the number n in H to which ¢ maps to.

H U/~ n updates H with a (possibly new) binding of the form ¢ — n. If ¢
is in the domain of H, the binding for ¢ is updated to point to n.

4.1.2 Dynamic Semantics

Judgement: Q — @’

(Eval-ctx) (Eval-new)
Hee—=OHpe t¢H
Hrews Hp e Holet x=newnine—=°HU/+— n>elx / /]
(Eval-read)

Ho let x=read £ in e =% He[H(¢) / X]

(Eval-write)

Holet x=writenat £ine” <°HU/— n>e’[n /]

The new context rule replaces the old one, and any old rule needs to be updated
to carry around the heap.

4.1.3 Static Semantics

Programs are now passed locations as input from the context. The related
typing rules are trivially changed accordingly.

7= ---| Ref Nat
Y == @ | X;¢: Ref Nat
F Hefn(x) — e: Ref Nat — Nat ~ Well-typed program e of type Ref Nat to Nat

(T-alloc)

NnYFe:Nat T[;x:Ref Nat,X ¢ :7
MYkFletx=neweine :7
(T-read)
NYFe:Ref Nat T;x:Nat,Zké:7

NYkletx=readeine : 7
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(T-write)
NYFe:Nat [, X ke :Ref Nat T;x:Nat,Xrke”:7

Y Fletx=writeeate ine:7

(T-prog)
(T-loc) x : Nat,> F e : Nat
¢ € dom(X) fail ¢ e
I, X F ¢ :Ref Nat Y =dom (H) : Ref Nat

F H>fn(x) — e: Ref Nat — Nat

4.2 Target Heap: T
4.2.1 Syntax

P:=Hpfn(x)—e

e

---|let x =new e in e | let x =read e in e | let x = write e at e in e
2= +--|let x=new Eine|let x=read E in e
| let x = write E at e in e | let x = write vat E in e
H:=¢|H;n—v
Q:=Hpe

4.2.2 Dynamic Semantics

Judgement: )< Q)

(Eval-ctx)
Hre —-°Hpe
Hre— Hbe
(Eval-new)
the cardinality of H =n
Hprlet x=newvine—HUn+1~ vre[x /n+1]
(Eval-read)
n—veH
Hprlet x =read nin e— Hpelv / x|
(Eval-read-no)
n ¢ dom (H)
Hr let x = read n in e H > e[false / x|

(Eval-write)
n—vecH

Hprlet x =write v atnine’ —<HUn+— v >e’[n / x]

Reading always succeeds, but if the location is not allocated, false is returned.

4.3 Common Definitions

Assume both languages also contain pairs (e, e) and projections e.1, e.2 as
standardly done.
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Also, we will use a shorthand ey ; ep for the expression let = e; in ep.
Definition 4.1 (Plugging).
if C=lety=call fnein e,
and P = Hv fn(z) — epun
then C[P]“:JHDZet y=let x = e in epn in e

4.3.1 Behaviours

We define a behaviour as a sequence of call/returns from the context to the pro-
gram. The behaviours of a program is the set of all behaviours it can generate.

Note that while this is analogous to traces, this is for whole programs. Also,
while traces capture a sort of context/program interaction, behaviours capture
a whole program/environment interaction, e.g., they would capture I/0 if our
language had any.

bu=calln H? - ret n H!

While we write this in black, there are really two behaviours, as the heaps are
different between S, and T',|. This will be relevant later.

C[P] ~ call ny H ?-ret n; H;!
if C=lety; =call fne; in e,
P=Hy»>fn(z) — eb
Hy>e; —=* Hy>ny
H;>let x=mn; in eb —=* H; >n/

Hi>let y; =n) in eg —=* H>n

Behav (C[P]) & {b | C[P]~ b}

4.4 [[]]ST‘ : Compiler from S, to T

The compiler maps a source location to a target number.

[H>fn(x) — e]]%’n = [[H]]% >fn(z) —let x = read z in
if x has Nat then [e, H]]?lf’n else fail
[let x=new e in ¢, H}]rSE = let x; = new [e, H]]ST‘ in [¢/, H]]?F‘
[let x=read e in ¢/, H]]STé’n = let [[x]]?r"n = read [e, H]]?r‘n in [¢, H]]?lf’n

[let x= write e at €’ in €”, H}]?lf = let [x]3 = write [e, H[3 at [¢/, H]]ST’ in [e”, H]]if
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[e, H]]rslfn =n
where indexof (¢,H) =n
o), =2
[H:i €= 0I5 = [HI3 in+ 1 [, 2]
where card (H) =n

We keep the heap around to know what number to compile a location to. Also,
we compile the program global heap giving each location its position in the heap
list.

4.4.1 Compiler Shortcomings

Even by typechecking the argument, the context can still guess a location and
write a boolean to it.

Pir=¢—2>fn(x)—lety=read £iny+1;3
P, =0+ 2>fn(x) — 3

Cp, = let y = call fn let z = write true at 1 in z in true

Obviously Py ~ .. P>.
The reductions of [[P1]]T will get stuck when doing [y + 1]]T since ﬂyﬂT will
contam the true value written there by Cy. On the other hand the reductions

of [[P2]]T will not get stuck, so [[P1]]T 2 [[P2]]T .

5 Compiler Security: Robustly Safe Compilation

5.1 Target Memory Protection: Capabilities T

In this case we do not extend the language T
new language T', .

but the language T, into the

n?

5.1.1 Syntax

vi= ok

eu= ---|let x=new e in e | let x=read e with e in e
| let x= write e at e with e in e | let x= hide e in e

C ::=let y = call fn e in e such that let x=hideeine ¢ e

E:= .-.|let x=new E in e | let x=read E with e in e
| let x= write E at e with e in e | let x= write v at E with e in e
| let x= hide E in e

H:=0 |H;n—n:n|Hk
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nu= 1]k
Q:=Hrpe

5.1.2 Dynamic Semantics

Judgement: Q< O

(Eval-new)
if the cardinality of H = n
Hpelet x=newn'ine—HUn+1—n'>e[x/n+1]
(Eval-read)
n—v:keH

Hp let x=read n with k in e— Hpe[v / x|

(Eval-read-nocap)

n—v:.leH
Hrv let x=read n with v in e~ Hpe[v / x|
(Eval-read-no)
n ¢ dom (H)
Hp let x=read n with v in e — H > e[false / x|

(Eval-write)
n—v:keH
Hp let x=write n’ at n with kine”—HUn — n'>e’[n/ x|
(Eval-write-nocap)
n— :1leH
Hplet x= write n’ at n with vine”—<HUn— n'>e’[n /x|

5.1.3 [[]]§er Compiler from S, to T,

The compiler translates source locations ¢ into pairs n, k of the natural number
n which is the target location and a capability k used to hide location n.

Thus, since programs expect locations, it expects a pair as input. It will
treat the first element of the pair as a location and try to read there with the
second element. Note that if the location is not allocated, or if it contains a
boolean, x will not pass the dynamic typecheck. Also, note that in the case
of programs, the compiler remaps x as z in order to perform the typecheck on
inputs.

Bu=@| 80— (nk)

getbeta () = @
getbeta (H;/+— n’) = getbeta (H);/ — (n + 1,k)
where card (H) = n and k ¢ getbeta (H).capabilities
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Function getbeta (H) inputs a heap and returns a partial bijection 8 where all
locations in the heap are bound to increasing numbers and fresh capabilities.

[H>fn(x) — e,ﬁ]]ifk = [[H,ﬁ]]ifk >fn(z) —let x=read z.1 with z.2 in
if x has Nat then [e, 6]];2k else fail
and f = getbeta (H)

[let x= new e in e’,B]]?er = let x;= new [[67/3]]%( in
let x.= hide x; in
S .
let [x, B]]Ték:<X1-Xc> m
S
[¢". 817,

let xp:[[e,ﬁ]]ifk in

[let x=read e in e’,,@]]rsr’k
let [x, ﬂ]]?r[k: read xp.1 with x,.2 in
[¢'. 81
[let x= write e at € in e",ﬂ]]ifk = let xp:[[e/,ﬁ]]ifk in
let [x, [3]]%1‘: write [[e”@ﬂfsp[k at xp.1 with xp.2 in
[¢', 1%
[0 815 = B(0)
[2: 817 =
[H: 00’ BT = [H. B3 in o [, Al <k
where { — (n. k) € 8

5.2 Compiler Correctness

To state this, we need to tell when two heaps are related (H ~g H), that is when
two B-related locations point to related values. Then, we need to tell when two
values (and final values) are related (vagv).

(Rel-fail) (Rel-val-true) (Rel-val-false) (Rel-val-n)
fail =g fail true~g true false =g false n=~gn
(Rel-val-loc) (Rel-heap-no)
(= (nk)ep H=0orH=ky; 1k,
lrg (n, k) orgH
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(Rel-heap)
HrgH (=g (n' k)
Hil —n~gH;n —n:k
(Rel-trace)
/~g(n k) HmgH nmgn’ "~ H'
call ¢ H? -ret " H'l=gcall (n,v) H? -ret n’ H'!

At this point, since we have added cases to the compiler, we need to add
the missing cases to the compiler correctness proof and to the auxiliary lemmas.
These additions are straightforward.

Theorem 5.1 (Compiler correctness for [[]]ST’k)

V38 DB ifOFP T
and + C: Bool
and C = [[C,B]]ifk
and C {[[P,B]]ST[J y* [[H,ﬂ/]]sTffk > [[ﬂﬂ/]]sfkk
then C[P]—" Hp>f

%B/f
H %g/ H

Proof. By Lemma 5.2 (Expression correctness for [[]]ifk)

Lemma 5.2 (Expression correctness for [[]]%J

. S, S, S * S S,
V.- Elﬁl 2 ﬂ Zf [[H~5]]Tfk > [[aﬁ]]’]fk[h/yﬁ]]']“lk — [[H/-,B/]]Tzk > [[ﬂ BIH’I/‘:(
zﬁH
then H>ey —* H' > f
f%lg/ f
H/ zﬁ, H/

Simple adaptation of the previous proof.

5.3 (((>>)ST;‘ Trace-based Backtranslation

In this case we have a single trace to backtranslate into a single source context.

{{call (n,v) H? - ret n’ H’!)»g" = let y=call fn e in €’
£
where e = let z=allocate (H,n) in z
e’ = update (H from H')

allocate (H,n) =10 if n ¢ dom (H)

25



= Xp if H =g
= let x,= new <<<v)>>ST1k in ifH=H;n—v:y
allocate (H')
update ( H from H') = true
When backtranslating the allocation, we stop if we see that the heap is not
going to be used anyway, otherwise we allocate it and make sure that the correct
variable is returned. Note that backtranslating the return is not necessary here,

the compiled code will do that. However, we keep that structure as it will be
useful later.

5.3.1 Properties of the Backtranslation

In order to use the context backtranslation, we need to prove that it is correct.
We must define when behaviours are related (b~gb), that is when their values
and heaps are related.

(Rel-trace)
/~p(n k) HmgH  n'mgn’ "mpH'
call ¢ H? -ret n” H'l=gcall (n,v) H?-ret n’ H'!

Additionally, we need to know that just before performing the “call”, heaps
are related.

Lemma 5.3 (Call correctness).
if P =Ho>fn(x)— ef
C {[[P,B]]?FT }<—>H > let y=1let x=(n,v) in

let x=read z.1 with z.2 in

if x has Nat then [[e,ﬁ]}?[f else fail

in e
then 38" 2 B {{call (n,v) H? ret n’ H’!>>>;F“ [Pl—"Hp>lety =let x = £ in ef in e
4
%5/ H
(=g (n,v)

Proof. Simple unfolding of definitions.

Expression correctness will then tell us that given related heaps and related
arguments, a program and its compilation produce related outputs with related
heaps. These two together will tell that the backtranslation is correct.

Theorem 5.4 (Correctness of the backtranslation of behaviours).

if b € Behav (C {[[P-, 5]]3:“})
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~gb
then b € Behav (((b)<" P])

Proofsketch. By Lemma 5.3 (Call correctness) and Lemma 5.2 (Expression cor-
rectness for [H]ifk)

5.3.2 Proving RSC

Theorem 5.5 (RSC for [[]]ST[k)

VP, C,b,3C, 5, b b.
) s,
if C[P.AIy |~ b
then C[P]~=b
Proof. This follows directly from Theorem 5.4 (Correctness of the backtransla-

tion of behaviours).

6 Compiler Security: Robustly Safe Compilation

6.1 Target Memory Protection: Isolation T,
6.1.1 Target Behaviour
6.1.2 Compiler Changes

7 Comparing Secure Compilation Proofs

7.1 Trace Difference
7.2 Proof Decomposition

7.3 Additional Backtranslation Steps
7.3.1 Masking
7.3.2 Maintaining a Local Heap Model

7.4 Discussion
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A Appendix: Proofs

The appendix provides general indications on how the proofs proceed and omits
some cases for students to practice proofs.

A.1 Proof of Lemma 1.1
Proof of Lemma 1.1. By structural induction over e.

Base case e=n
e—true
e—false

e=x
Inductive case In this case we identify these inductive hypotheses:
1. if e=—*n then [[e]]ST’U%“[[n]]i"“;
2. if e’<*n’ then [[e’]]ST*%[[n’]}STT,
3. if ep<—*v then [[eb]]STT“%* [[v]]STT (only in the “if” case).
The following cases arise:

e—let x==eine
e=if e, then e else &
e=ede

e=e (e

A.2 Proof of Lemma 3.8
Proof of Lemma 3.8. By structural induction over e.

Base case e=n

e=true
e=false
e=fail
e=x

Inductive case In this case we identify these inductive hypotheses:
1. if e==*f then <<e>>STk;>*<<f)>ST,
2. if e/« ' then ((e/))g " (f')s *;

3. if ’<»"f” then ((o”))?“%*((f”))sT“ (only needed in the “if” case).
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The following cases arise:

e=let x =e in €’

e=if e then €' else e’
. ™ /

e—ede

e=e (e

A.3 Proof of Lemma 3.12

Proof of Lemma 3.12. The proof proceeds by contradiction.

Assume the thesis is false: wlog we have: Py 2£.., P5, so 3C.C[P|l} and C[P5]{

Let us take a look at the traces of C[P;| and C[P5] respectively.

They are of the form call n? - ret n;! and call n? - ret n,!.

By determinism of the semantics, n must coincide since it comes from the
same C.

By analysing the semantics, the only way for C to behave differently is to
receive two different numbers n; and n».

This contradicts the assumption that traces are equal.
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