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Example (FAC and safety preservation)

• S has booleans

• T has naturals
• Any C always return true

• coding true ≈ 1, false ≈ 0

• Compiler J⋅KST compiles C into
λx. if x < 2 then JCK x else 0

• J⋅KST is FA
• Safety property in S: never output false
• Safety property in T: never output 0

⊡

A FA compiler does not preserve
simple safety

under an intuitive translation

because of responses to invalid input
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Example (FAC and declassification)

• Same S and T

• C has a secret. For 9 interactions it behaves
like λx. x, then it returns the secret

• J⋅KST takes any C and returns
λx. if x < 2 then JCK x else leak secret

• J⋅KST is FA
• Property in S (and T): Do not output the
secret until the 10th input

• timing is key to failure here

⊡
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Different Trace Alphabets

• So far traces had the same alphabet
between S and T

• Often, this is not the case, so t and t can
have different forms
e.g., t deals with high-level values and t

with low-level addresses
• Assume the alphabet of t is larger than the
one for t
(otherwise no correct compilation is
possible)
call the set extra target actions η = {η1⋯ηn}

Q1: how do we bridge this gap?

Q2: how do we preserve the meaning
of properties across languages?

Recommended reading:
Patrignani and Garg. 2017. Secure Compilation

as Hyperproperty Preservation.
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Cross-language Relation

• Source property π, target property π

• We indicate that they capture the same
property as π ≈ π

• What does this mean?

• We only know for safety and hypersafety
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Safety Preservation with TPC

• safety = traces where something bad does
not happen

dually

• safety = set of bad prefixes

B B
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Safety, Visually
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Safety, Visually

α1?α2!α3?α4!

β1?β2!β3?β4!β5?β6!
γ1?γ2!B
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Extra Target Actions

• Actions η have no source-level counterpart

• What can they do?

• Good η: outgoing action (!), respect safety,
call them √

• Bad η: incoming action (?), can trigger
undesider behaviour
outgoing action (!), violate safety

We have no control over η?
But if we only use √for η! we can
preserve safety and hypersafety
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Recall

• π is a property: {t}
• if π is safety, we can express it dually via
the set of bad prefixes {m} such that
{m} ∶∶ π

• compact notation: {m} = m

• H is a hyperproperty: {π}, {{t}}
• if H is hypersafety we can express it dually
via the set of sets of bad prefixes {{m}}
such that {{m}} ∶∶H

• compact notation: {{m}} =M
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Safety Preservation

m SP≈m ifm includes:

• all prefixes that relate to prefixes in m

• all prefixes of the formmα?α! where
any bad input is not responded to with a √

• m may contain √, but it is otherwise related to
a m

• α? has no α? counterpart
• α! is no √

10
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Hypersafety Preservation

M SHP≈ M ifM includes:

• all sets of prefixes that relate to sets of
prefixes inM

• singleton sets whose single prefixmα?α!
• m may contain √, but is otherwise related to a
prefix inM

• α? has no α? counterpart
• α! is no √

as before!

Singletons: minimum addition s.t. any P not
responding even once as √ are bad

11
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NI stays NI

Q: How do we know that SHP≈ is correct?

We prove something!
Theorem (Non-interference is preserved)

LetM ∶∶ NI. LetM SHP≈ M and let S be a
hyperproperty such thatM ∶∶ S. Then,
∀t ∈ S, t ∈ NI.
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Preserving the Meaning (Hyper)Safety

• We know how to define when two
(hyper)safety properties encode the same
property

• Can we devise a compiler that preserves
hypersafety across languages?

• How will it differ from RSC / RHS ?
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Trace-Preserving Compilation

With these assumptions:

• reactive setting: only I/O traces
(implicitly robust)

• traces capture all form of behaviour
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Informal Trace-Preserving Compilation

TPC: ∀C ∈ S. TR(JCKST) = TR(C) ∪BC.

• all source traces
• plus all bad ones:

• any trace that to an input α? that has no
related source counterpart α?

• responds with a √
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Informal Trace-Preserving Compilation
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TPC Preserves Safety
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TPC and FAC and RC

• TPC is propositional
• FAC is relational
• RC has both kinds

• all are robust (TPC implicitly quantifies over
all C)

• RC criteria (except for RSC and RHS) deal
with properties

• TPC cannot handle properties
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