Lecture 2: Proving Full Abstraction (+ Question)

CS350

Marco Patrignani

• Assume the language has rand

- Assume the language has rand
- $\begin{array}{c} (Rand) \\ \bullet & n \in \mathbb{N} \\ \hline rand \rightarrow n \end{array}$

• Assume the language has rand

 $\begin{array}{c} (Rand) \\ \bullet & n \in \mathbb{N} \\ \hline rand \rightarrow n \end{array}$

public Int random(){return rand;} // P1

public Int random(){rand; return rand;} // P2

public Int random(){return < rand;,rand;> } // P3

public Int random(){x=rand; return < x,x> ;} // P4

• Assume the language has rand

 $\begin{array}{c} (Rand) \\ \bullet & n \in \mathbb{N} \\ \hline rand \rightarrow n \end{array}$

public Int random(){return rand;} // P1

public Int random(){rand; return rand;} // P2

public Int random(){return < rand;,rand;> } // P3

public Int random(){x=rand; return < x,x> ;} // P4

• Assume the language has rand

• Assume the language has rand

• Assume the language has rand

Intuitively
$$P_1 \simeq_{ctx} P_2$$
 and $P_3 \neq_{ctx} P_3$

Assume the language has rand

Assume the language has rand

• Assume the language has rand

• Assume the language has rand

• Assume the language has rand

• Assume the language has rand

• Contextual equivalence is not the only notion of program equivalence

- Contextual equivalence is not the only notion of program equivalence
- Any semantics defines its notion of equivalence

- Contextual equivalence is not the only notion of program equivalence
- Any semantics defines its notion of equivalence
- Any notion of equivalence can be used in the statement of fully abstract compilation

- Contextual equivalence is not the only notion of program equivalence
- Any semantics defines its notion of equivalence
- Any notion of equivalence can be used in the statement of fully abstract compilation
- Trace semantics or bisimilarity are widely used

$$\llbracket \cdot \rrbracket_{\mathbf{T}}^{\mathsf{S}} \text{ is FAC} \stackrel{\text{def}}{=} \forall \mathsf{P}_1, \mathsf{P}_2$$
$$\mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \iff \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}}$$

$$\llbracket \cdot \rrbracket_{\mathbf{T}}^{\mathsf{S}} \text{ is FAC} \stackrel{\text{\tiny def}}{=} \forall \mathsf{P}_1, \mathsf{P}_2$$
$$\mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \iff \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}}$$

- break the \iff : 1. $\Rightarrow: \forall P_1, P_2. P_1 \simeq_{ctx} P_2 \Rightarrow \llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \simeq_{ctx} \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathbf{S}}$ 2. $\iff: \forall P_1, P_2. \llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \simeq_{ctx} \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \Rightarrow P_1 \simeq_{ctx} P_2$
- point 2 (should) follow from compiler correctness

$$\llbracket \cdot \rrbracket_{\mathbf{T}}^{\mathsf{S}} \text{ is FAC} \stackrel{\text{\tiny def}}{=} \forall \mathsf{P}_1, \mathsf{P}_2$$

$$\mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \iff \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}}$$

- break the \iff : 1. $\Rightarrow: \forall P_1, P_2. P_1 \simeq_{ctx} P_2 \Rightarrow \llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \simeq_{ctx} \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathbf{S}}$ 2. $\iff: \forall P_1, P_2. \llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \simeq_{ctx} \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \Rightarrow P_1 \simeq_{ctx} P_2$
- point 2 (should) follow from compiler correctness
- point 1 is tricky, because of \simeq_{ctx} and its $\forall \mathfrak{C}$

$$\llbracket \cdot \rrbracket_{\mathbf{T}}^{\mathsf{S}} \text{ is FAC} \stackrel{\text{\tiny def}}{=} \forall \mathsf{P}_1, \mathsf{P}_2 \\ \mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \iff \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}}$$

- break the \iff : 1. $\Rightarrow: \forall P_1, P_2. P_1 \simeq_{ctx} P_2 \Rightarrow \llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \simeq_{ctx} \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathbf{S}}$ 2. $\iff: \forall P_1, P_2. \llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \simeq_{ctx} \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathbf{S}} \Rightarrow P_1 \simeq_{ctx} P_2$
- point 2 (should) follow from compiler correctness
- point 1 is tricky, because of \simeq_{ctx} and its $\forall \mathfrak{C}$ This structure is called a backtranslation

• we replace \simeq_{ctx} with something equivalent

- we replace \simeq_{ctx} with something equivalent
- but simpler to reason about

- we replace \simeq_{ctx} with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)

- we replace \simeq_{ctx} with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)
- and still describes the behaviour of a program precisely

- we replace \simeq_{ctx} with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)
- and still describes the behaviour of a program precisely
- a trace semantics

Traces for PMA

main method
 this is code written by
 the attacker

function definition of our code

private data of our program

```
other code
  written by the attacker
  (this is the context ℭ!)
```

 interest in the behaviour of our code (component)

Traces for PMA

main method this is code written by the attacker

function definition of our code

private data of our program

other code written by the attacker (this is the context Ct!)

- interest in the behaviour of our code (component)
- need to consider the rest

Traces for PMA

main method
 this is code written by
 the attacker

function definition of our code

private data of our program

other code
 written by the attacker
 (this is the context ℓ!)

- interest in the behaviour of our code (component)
- need to consider the rest

```
main method
  this is code written by
  the attacker
function definition
  of our code
 private data of our program
other code
  written by the attacker
  (this is the context \mathcal{C}!)
```

• disregard the rest

disregard the rest

function definition of our code

private data of our program

other code written by the attacker (this is the context ℭ!)

- disregard the rest
- abstract its behaviour from the component perspective:

- disregard the rest
- abstract its behaviour from the component perspective:
 - jump to an entry point ■

- disregard the rest
- abstract its behaviour from the component perspective:
 - jump to an entry point ■
- abstract the component behaviour from the rest perspective:

Trace Semantics for Our Program

- disregard the rest
- abstract its behaviour from the component perspective:
 - jump to an entry point ■
- abstract the component behaviour from the rest perspective:
 - 1. call/return

7

 semantics for partial programs (component)

- semantics for partial programs (component)
- relies on the operational semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer
- without needing to specify the observer

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer
- without needing to specify the observer
- indicated as $TR(C) = \left\{ \overline{\alpha} \mid C \stackrel{\overline{\alpha}}{\Longrightarrow} \right\}$

$$Labels \quad L ::= a \mid \epsilon$$

$$Observable \ actions \quad \alpha ::= \sqrt{\mid g? \mid g!}$$

$$Actions \quad g ::= call \ p \ (r) \mid ret \ p \ r(r_0)$$

We need to define:

- trace states (almost program states)
- labels that make traces
- rules for generating labels and traces …
- the traces of a component $TR(C) = \cdots$

• all semantics yield a notion of equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$C_1 \simeq_{ctx} C_2$$

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$C_1 \simeq_{ctx} C_2$$

trace semantics gives us trace equivalence

$$C_1 \, \underline{\mathrm{I}} \, C_2$$

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$C_1 \simeq_{ctx} C_2$$

• trace semantics gives us trace equivalence

$$\mathsf{TR}(C_1) = \mathsf{TR}(C_2)$$

the traces of C_1 are the same of those of C_2 in

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$C_1 \simeq_{ctx} C_2$$

trace semantics gives us trace equivalence

$$\left\{ \overline{\alpha} \mid C_1 \stackrel{\overline{\alpha}}{\Longrightarrow} _ \right\} = \left\{ \overline{\alpha} \mid C_2 \stackrel{\overline{\alpha}}{\Longrightarrow} _ \right\}$$

ne traces of C_1 are the same of those of C_2

Proofs about Trace Semantics

- any trace semantics won't just work
- it needs to be correct and complete

Proofs about Trace Semantics

- any trace semantics won't just work
- it needs to be correct and complete

$$C_1 \simeq_{ctx} C_2 \iff C_1 \stackrel{!}{=} C_2$$

Proofs about Trace Semantics

- any trace semantics won't just work
- it needs to be correct (⇐) and complete (⇒)

$$C_1 \simeq_{ctx} C_2 \iff C_1 \stackrel{!}{=} C_2$$

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \Rightarrow \llbracket \mathsf{P}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \simeq_{ctx} \llbracket \mathsf{P}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}}$

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- · we need to prove
 - $\mathsf{P}_1 \simeq_{ctx} \mathsf{P}_2 \Rightarrow \forall \mathbf{C}. \ \mathbf{C} \left[\llbracket \mathsf{C}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \right] \downarrow \iff \mathbf{C} \left[\llbracket \mathsf{C}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \right] \downarrow$
- unfold \simeq_{ctx}

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \mathbf{C} \cdot \mathbf{C} \left[\llbracket \mathbf{C}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \right] \downarrow \iff \mathbf{C} \left[\llbracket \mathbf{C}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \right] \downarrow \Rightarrow \mathsf{P}_1 \neq_{ctx} \mathsf{P}_2$
- unfold \simeq_{ctx}
- contrapositive

• we have:

• $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$

- we need to prove
 - $\exists \mathbf{C}. \mathbf{C} \begin{bmatrix} \llbracket \mathbf{C}_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \end{bmatrix} \downarrow \iff \mathbf{C} \begin{bmatrix} \llbracket \mathbf{C}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \end{bmatrix} \downarrow \Rightarrow \exists \mathbf{C}. \mathbf{C} \begin{bmatrix} \mathbf{C}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \end{bmatrix} \downarrow \Rightarrow \mathbf{C} \begin{bmatrix} \mathbf{C}_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \end{bmatrix} \downarrow \Rightarrow$
- unfold \simeq_{ctx}
- contrapositive
- unfold \simeq_{ctx}

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \mathbf{C}. \mathbf{C} \begin{bmatrix} \mathbf{I} & \mathbf{C} \\ \mathbf{I} & \mathbf{T} \end{bmatrix} \downarrow \iff \mathbf{C} \begin{bmatrix} \mathbf{I} & \mathbf{C} \\ \mathbf{I} & \mathbf{T} \end{bmatrix} \downarrow \Rightarrow \exists \mathbf{C}. \mathbf{C} \begin{bmatrix} \mathbf{C}_2 \end{bmatrix}_{\mathbf{T}}^{\mathsf{S}} \end{bmatrix} \downarrow \Rightarrow \mathbf{C} \begin{bmatrix} \mathbf{C}_2 \end{bmatrix}_{\mathbf{T}}^{\mathsf{S}} \downarrow \Rightarrow \mathsf{C} \begin{bmatrix} \mathbf{C}_2 \end{bmatrix} \downarrow \iff \mathsf{C} \begin{bmatrix} \mathbf{C}_2 \end{bmatrix} \downarrow$
- unfold \simeq_{ctx}
- contrapositive
- unfold \simeq_{ctx}
- backtranslation!

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \mathbf{C}. \mathbf{C} \left[\llbracket C_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \right] \downarrow \iff \mathbf{C} \left[\llbracket C_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \right] \downarrow \Rightarrow$ $\exists \mathsf{C}.\mathsf{C} \left[\mathsf{C}_2 \right] \downarrow \iff \mathsf{C} \left[\mathsf{C}_2 \right] \downarrow$
- ${\boldsymbol{\cdot}}$ generate C based on C

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \not\simeq_{ctx} \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \Rightarrow \exists \mathsf{C}.\mathsf{C} \llbracket \mathsf{C}_2 \rrbracket \downarrow \iff \mathsf{C} \llbracket \mathsf{C}_2 \rrbracket \downarrow$
- generate C based on C
- if complex, apply Traces (folding \simeq_{ctx})

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\llbracket P_1 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \not\sqsubseteq \llbracket P_2 \rrbracket_{\mathbf{T}}^{\mathsf{S}} \Rightarrow \exists \mathsf{C}.\mathsf{C} \llbracket \mathsf{C}_2 \rrbracket \downarrow \iff \mathsf{C} \llbracket \mathsf{C}_2 \rrbracket \downarrow$
- generate C based on C
- if complex, apply Traces (folding \simeq_{ctx})

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\mathsf{TR}(\mathbf{C_1}) \neq \mathsf{TR}(\mathbf{C_2}) \Rightarrow \exists \mathsf{C}.\mathsf{C}[\mathsf{C}_2] \downarrow \iff \mathsf{C}[\mathsf{C}_2] \downarrow$
- generate C based on C
- if complex, apply Traces (folding \simeq_{ctx})

- we have:
 - $\mathbf{C_1} \simeq_{ctx} \mathbf{C_2} \iff \mathsf{TR}(\mathbf{C_1}) = \mathsf{TR}(\mathbf{C_2})$
- we need to prove
 - $\exists \alpha \in \mathsf{TR}(\mathbf{C}_1), \alpha \notin \mathsf{TR}(\mathbf{C}_2) \Rightarrow$ $\exists \mathsf{C}.\mathsf{C}[\mathsf{C}_2] \downarrow \iff \mathsf{C}[\mathsf{C}_2] \downarrow$
- generate C based on C
- if complex, apply Traces (folding \simeq_{ctx})