Lecture 2: Proving Full Abstraction (+ Question)

CS350

Marco Patrignani

Some Answers: CEQ with Randomisation

- Assume the language has rand

Some Answers: CEQ with Randomisation

- Assume the language has rand
$\frac{(\text { Rand }}{\mathrm{n} \in \mathbb{N}} \mathrm{rand} \rightarrow \mathrm{n}$

Some Answers: CEQ with Randomisation

- Assume the language has rand
(Rand)
- $\frac{\mathrm{n} \in \mathbb{N}}{\text { rand } \rightarrow \mathrm{n}}$
public Int random()\{return rand;\} // P1
public Int random()\{rand; return rand;\} // P2
public Int random() \{return < rand; ,rand;> \} // P3
public Int random()\{x=rand; return <x,x> ;\} // P4

Some Answers: CEQ with Randomisation

- Assume the language has rand
(Rand)
- $\frac{\mathrm{n} \in \mathbb{N}}{\text { rand } \rightarrow \mathrm{n}}$
public Int random()\{return rand;\} // P1
public Int random()\{rand; return rand;\} // P2
public Int random() \{return < rand; ,rand;> \} // P3
public Int random()\{x=rand; return <x,x> ;\} // P4

Intuitively $P_{1} \simeq{ }_{c t x} P_{2}$ and $P_{3} \nsim c t x P_{3}$

Some Answers: CEQ with Randomisation

- Assume the language has rand
$\frac{(\text { Rand })}{n \in \mathbb{N}}$ rand $\rightarrow n$

publi	Q: are $P 1$ and $P 2$ equivalent?
publi	

public Int random()\{x=rand; return < x,x> ;\} // P4
Intuitively $P_{1} \simeq_{c t x} P_{2}$ and $P_{3} \not 千_{c t x} P_{3}$

Some Answers: CEQ with Randomisation

- Assume the language has rand

$\frac{$| (Rand) |
| :---: |
| $n \in \mathbb{N}$ |}{rand$\rightarrow n$}

Q: are $P 1$ and $P 2$ equivalent?
Should they be?
public Int random()\{x=rand; return < x,x> ;\} // P4

Intuitively $P_{1} \simeq{ }_{c t x} P_{2}$ and $P_{3} \nsim c t x P_{3}$

Some Answers: CEQ with Randomisation

- Assume the language has rand

$$
\frac{(\text { Rand })}{\mathrm{n} \in \mathbb{N}} O ; n \triangleright \operatorname{rand} \rightarrow O \triangleright \mathrm{n}
$$

- $\quad n \in \mathbb{N}$
- Oracles: infinite lists of random numbers

```
public Int random(){return rand;} // P1
```

public Int random()\{rand; return rand;\} // P2
public Int random()\{return < rand;,rand;> \} // P3
public Int random()\{x=rand; return < x,x> ;\} // P4

Intuitively $P_{1} \simeq{ }_{c t x} P_{2}$ and $P_{3} \not 千 c t x P_{3}$

Some Answers: CEQ with Randomisation

- Assume the language has rand

Some Answers: CEQ with Randomisation

- Assume the language has rand

Some Answers: CEQ with Randomisation

- Assume the language has rand

$$
\begin{gathered}
\text { CEQ: } \\
P_{1} \simeq c t x P_{2} \stackrel{\text { def }}{=} \forall \mathfrak{C} \cdot \mathfrak{C}\left[P_{1}\right] \downarrow \Longleftrightarrow \mathfrak{C}\left[P_{2}\right] \downarrow \\
\text { CEQ-with-rand, try 1: } \\
P_{1} \simeq c t x ? P_{2} \stackrel{\text { def }}{=} \forall \mathfrak{C}, \forall O \cdot O \triangleright \mathfrak{C}\left[P_{1}\right] \downarrow \Longleftrightarrow \\
O \triangleright \mathfrak{C}\left[P_{2}\right] \downarrow \\
\text { No! }
\end{gathered}
$$

P_{1} and P_{2} are not equivalent with this definition (but they should be)

Some Answers: CEQ with Randomisation

- Assume the language has rand

Contextual Preorder:
(not an eq, not symmetric)

$$
\begin{aligned}
P_{1} \sqsubseteq P_{2} & \stackrel{\text { def }}{=} \forall \mathfrak{C}, \forall O_{1} \cdot O_{1} \triangleright \mathfrak{C}\left[P_{1}\right] \downarrow \Rightarrow \\
& \exists O_{2} \cdot O_{2} \triangleright \mathfrak{C}\left[P_{2}\right] \downarrow
\end{aligned}
$$

Intuitively $P_{1} \simeq c t x P_{2}$ and $P_{3} \not{ }_{\text {q }}{ }_{c x} P_{3}$

Some Answers: CEQ with Randomisation

Contextual Preorder: (not an eq, not symmetric)
 $$
P_{1} \sqsubseteq P_{2} \stackrel{\text { def }}{=} \forall \mathfrak{C}, \forall O_{1} \cdot O_{1} \triangleright \mathfrak{C}\left[P_{1}\right] \downarrow \Rightarrow
$$
 $$
\exists O_{2} . O_{2} \triangleright \mathfrak{C}\left[P_{2}\right] \downarrow
$$

For $P_{1} \simeq c t x ~ P_{2}, O_{2}$ is O_{1} with every other element interleaved with random numbers

Some Answers: CEQ with Randomisation

- Assume the language has rand

Contextual Preorder:
(not an eq, not symmetric)

$$
P_{1} \sqsubseteq P_{2} \stackrel{\text { def }}{=} \forall \mathfrak{C}, \forall O_{1} \cdot O_{1} \triangleright \mathfrak{C}\left[P_{1}\right] \downarrow \Rightarrow
$$

$$
\exists O_{2} . O_{2} \triangleright \mathfrak{C}\left[P_{2}\right] \downarrow
$$

Must also include $P_{2} \sqsubseteq P_{1}$ otherwise P_{3} and P_{4} are also equivalent (and they should not be)

Some Answers: CEQ with Randomisation

- Assume the language has rand

Contextual Preorder:
(not an eq, not symmetric)

$$
P_{1} \sqsubseteq P_{2} \stackrel{\text { def }}{=} \forall \mathfrak{C}, \forall O_{1} . O_{1} \triangleright \mathfrak{C}\left[P_{1}\right] \downarrow \Rightarrow
$$

$$
\exists O_{2} . O_{2} \triangleright \mathfrak{C}\left[P_{2}\right] \downarrow
$$

publi
Must also include $P_{2} \sqsubseteq P_{1}$ otherwise P_{3} and P_{4} are also equivalent (and they should not be)

$$
P_{1} \simeq_{c t x} P_{2} \stackrel{\text { def }}{=} P_{1} \sqsubseteq P_{2} \cap P_{2} \sqsubseteq P_{1}
$$

Other Equivalences

- Contextual equivalence is not the only notion of program equivalence

Other Equivalences

- Contextual equivalence is not the only notion of program equivalence
- Any semantics defines its notion of equivalence

Other Equivalences

- Contextual equivalence is not the only notion of program equivalence
- Any semantics defines its notion of equivalence
- Any notion of equivalence can be used in the statement of fully abstract compilation

Other Equivalences

- Contextual equivalence is not the only notion of program equivalence
- Any semantics defines its notion of equivalence
- Any notion of equivalence can be used in the statement of fully abstract compilation
- Trace semantics or bisimilarity are widely used

Fully Abstract Compilation

$$
\begin{aligned}
& \llbracket \cdot \rrbracket_{T}^{S} \text { is } F A C \stackrel{\text { def }}{\stackrel{1}{*}} \forall \mathrm{P}_{1}, \mathrm{P}_{2} \\
& \quad \mathrm{P}_{1} \simeq_{c t x} \mathrm{P}_{2} \Longleftrightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq c t x\left[\mathrm{P}_{2} \rrbracket_{T}^{S}\right.
\end{aligned}
$$

Fully Abstract Compilation

$$
\begin{aligned}
\llbracket \cdot \rrbracket_{\mathrm{T}}^{\mathrm{S}} \text { is } \mathrm{FAC} & \stackrel{\text { def }}{=}
\end{aligned} \forall \mathrm{P}_{1}, \mathrm{P}_{2} .
$$

- break the \Longleftrightarrow :

$$
\begin{aligned}
& \text { 1. } \Rightarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \mathrm{P}_{1} \simeq c t x \mathrm{P}_{2} \Rightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \\
& \text { 2. } \Leftrightarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \sim_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \Rightarrow \mathrm{P}_{1} \simeq c t x \mathrm{P}_{2}
\end{aligned}
$$

- point 2 (should) follow from compiler correctness

Fully Abstract Compilation

$$
\begin{aligned}
& \llbracket \cdot \|_{\mathrm{T}}^{\mathrm{S}} \text { is } \mathrm{FAC} \stackrel{\text { def }}{=} \forall \mathrm{P}_{1}, \mathrm{P}_{2} \\
& \qquad \mathrm{P}_{1} \simeq{ }_{c t x} \mathrm{P}_{2} \Longleftrightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}
\end{aligned}
$$

- break the \Longleftrightarrow :

$$
\begin{aligned}
& \text { 1. } \Rightarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \mathrm{P}_{1} \simeq{ }_{c t x} \mathrm{P}_{2} \Rightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq{ }_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \\
& \text { 2. } \Leftarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \Rightarrow \mathrm{P}_{1} \simeq_{c t x} \mathrm{P}_{2}
\end{aligned}
$$

- point 2 (should) follow from compiler correctness
- point 1 is tricky, because of $\simeq_{c t x}$ and its $\forall \mathfrak{C}$

Fully Abstract Compilation

$$
\begin{aligned}
\llbracket \cdot \|_{\mathrm{T}}^{\mathrm{S}} \text { is } \mathrm{FAC} \stackrel{\text { def }}{=} & \forall \mathrm{P}_{1}, \mathrm{P}_{2} \\
& \mathrm{P}_{1} \simeq^{c_{c t x}} \mathrm{P}_{2} \Longleftrightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq{ }_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}
\end{aligned}
$$

- break the \Longleftrightarrow :

$$
\begin{aligned}
& \text { 1. } \Rightarrow: \forall \mathrm{P}_{1}, \mathrm{P}_{2} \cdot \mathrm{P}_{1} \simeq{ }_{c t x} \mathrm{P}_{2} \Rightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq c t x \\
& \text { 2. } \Leftarrow: \forall \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \\
& \text { 2. }
\end{aligned}
$$

- point 2 (should) follow from compiler correctness
- point 1 is tricky, because of $\simeq_{c t x}$ and its $\forall \mathfrak{C}$ This structure is called a backtranslation

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent
- but simpler to reason about

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)
- and still describes the behaviour of a program precisely

Trace Semantics

- we replace $\simeq_{c t x}$ with something equivalent
- but simpler to reason about
- a semantics that abstracts from the context (observer)
- and still describes the behaviour of a program precisely
- a trace semantics

Traces for PMA

main method
this is code written by
the attacker

```
function definition
    of our code
```

 private data of our program
 other code
written by the attacker (this is the context $\mathfrak{C}!$)

- interest in the behaviour of our code (component)

Traces for PMA

main method
this is code written by
the attacker
function definition
of our code
private data of our program
other code
written by the attacker (this is the context $\mathfrak{C}!$)

- interest in the behaviour of our code (component)
- need to consider the rest

Traces for PMA

main method
this is code written by
the attacker
function definition
of our code
private data of our program
other code
written by the attacker
(this is the context $\mathfrak{C}!$)

- interest in the behaviour of our code (component)
- need to consider the rest

Trace Semantics for Our Program

main method
this is code written by the attacker
function definition of our code
private data of our program
other code written by the attacker (this is the context $\mathfrak{C}!$)

- disregard the rest

Trace Semantics for Our Program

- disregard the rest
main method this is code written by the attacker
function definition of our code
private data of our program
other code
written by the attacker (this is the context $\mathfrak{C}!$)

Trace Semantics for Our Program

main method
this is code written by the attacker
function definition of our code
private data of our program
other code
written by the attacker (this is the context $\mathfrak{C}!$)

- disregard the rest
- abstract its behaviour from the component perspective:

Trace Semantics for Our Program

- disregard the rest
- abstract its behaviour from the component perspective:

1. jump to an entry point \quad -
other code
written by the attacker (this is the context $\mathfrak{C}!$)

Trace Semantics for Our Program

- disregard the rest
- abstract its behaviour from the component perspective:

1. jump to an entry point \quad -

- abstract the component behaviour from the rest perspective:

Trace Semantics for Our Program

- disregard the rest
- abstract its behaviour from the component perspective:

1. jump to an entry point \quad -

- abstract the component behaviour from the rest perspective:

1. call/return

Trace Semantics

- semantics for partial programs (component)

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer
- without needing to specify the observer

Trace Semantics

- semantics for partial programs (component)
- relies on the operational semantics
- denotational: describes the behaviour of a component as sets of traces
- a trace is (typically) a sequence of actions that describe how a component interacts with an observer
- without needing to specify the observer
- indicated as $\operatorname{TR}(C)=\{\bar{\alpha} \mid C \stackrel{\bar{\alpha}}{\Longrightarrow}-\}$

Trace Actions

Labels $L::=a \mid \epsilon$
Observable actions $\alpha::=\sqrt{ } \mid g$? $\mid g$!

$$
\text { Actions } g::=\operatorname{call} p(r) \mid \text { ret } p r\left(\mathrm{r}_{0}\right)
$$

Traces for PMA

We need to define:

- trace states (almost program states)
- labels that make traces
- rules for generating labels and traces ...
- the traces of a component $\operatorname{TR}(C)=\cdots$

Trace Equivalence

- all semantics yield a notion of equivalence

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$
C_{1} \simeq{ }_{c t x} C_{2}
$$

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$
C_{1} \simeq c t x C_{2}
$$

- trace semantics gives us trace equivalence

$$
C_{1} \xlongequal{Ð} C_{2}
$$

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$
C_{1} \simeq_{c t x} C_{2}
$$

- trace semantics gives us trace equivalence

$$
\operatorname{TR}\left(C_{1}\right)=\operatorname{TR}\left(C_{2}\right)
$$

Trace Equivalence

- all semantics yield a notion of equivalence
- the operational semantics gives us contextual equivalence

$$
C_{1} \simeq_{c t x} C_{2}
$$

- trace semantics gives us trace equivalence

$$
\left\{\bar{\alpha} \mid C_{1} \xlongequal{\bar{\alpha}}-\right\}=\left\{\bar{\alpha} \mid C_{2} \xlongequal{\bar{\alpha}}-\right\}
$$

the traces of C_{1} are the same of those of C_{2}

Proofs about Trace Semantics

- any trace semantics won't just work
- it needs to be correct and complete

Proofs about Trace Semantics

- any trace semantics won't just work
- it needs to be correct and complete

$$
C_{1} \simeq_{c t x} C_{2} \Longleftrightarrow C_{1} \stackrel{I}{=} C_{2}
$$

Proofs about Trace Semantics

- any trace semantics won't just work
- it needs to be correct (\Leftarrow) and complete (\Rightarrow)

$$
C_{1} \simeq_{c t x} C_{2} \Longleftrightarrow C_{1} \stackrel{I}{=} C_{2}
$$

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

Fully Abstract Compilation \& Target Traces

- we have:
- $\mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)$
- we need to prove
- $\mathrm{P}_{1} \simeq_{c t x} \mathrm{P}_{2} \Rightarrow \llbracket \mathrm{P}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \simeq_{c t x} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}$

Fully Abstract Compilation \& Target Traces

- we have:
- $\mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)$
- we need to prove
- $\mathrm{P}_{1} \simeq_{c t x} \mathrm{P}_{2} \Rightarrow \forall \mathrm{C} . \mathrm{C}\left[\llbracket \mathrm{C}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \Longleftrightarrow \mathrm{C}\left[\llbracket \mathrm{C}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow$
- unfold $\simeq_{c t x}$

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\text { - } \exists \mathrm{C} . \mathrm{C}\left[\llbracket \mathrm{C}_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \Longleftrightarrow \mathrm{C}\left[\llbracket \mathrm{C}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \Rightarrow \mathrm{P}_{1} \not \psi_{c t x} \mathrm{P}_{2}
$$

- unfold $\simeq_{c t x}$
- contrapositive

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\begin{aligned}
& \left.\left.\cdot \exists \mathrm{C} \cdot \mathrm{C}\left[\llbracket \mathrm{C}_{1}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \nLeftarrow \mathrm{C}\left[\llbracket \mathrm{C}_{2}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \Rightarrow \\
& \exists \mathrm{C} \cdot \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow \nLeftarrow \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow
\end{aligned}
$$

- unfold $\simeq_{c t x}$
- contrapositive
- unfold $\simeq_{c t x}$

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\begin{aligned}
\cdot & \left.\left.\exists \mathrm{C} \cdot \mathrm{C}\left[\llbracket \mathrm{C}_{1}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \downarrow \mathrm{C}\left[\llbracket \mathrm{C}_{2}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \Rightarrow \\
& \exists \mathrm{C} \cdot \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow \nLeftarrow \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow
\end{aligned}
$$

- unfold $\simeq_{c t x}$
- contrapositive
- unfold $\simeq_{c t x}$
- backtranslation!

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\begin{aligned}
\cdot & \left.\left.\exists \mathrm{C} \cdot \mathrm{C}\left[\llbracket \mathrm{C}_{1}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \downarrow \mathrm{C}\left[\llbracket \mathrm{C}_{2}\right]_{\mathrm{T}}^{\mathrm{S}}\right] \downarrow \Rightarrow \\
& \exists \mathrm{C} \cdot \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow \nLeftarrow \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow
\end{aligned}
$$

- generate C based on C

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\left.\cdot \llbracket \mathrm{P}_{1}\right]_{\mathrm{T}}^{\mathrm{S}} \nLeftarrow c t x\left[\mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \Rightarrow \exists \mathrm{C} . \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow \Longleftrightarrow \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow\right.
$$

- generate C based on C
- if complex, apply Traces (folding $\simeq c t x$)

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\cdot \llbracket P_{1} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \overline{\#} \llbracket \mathrm{P}_{2} \rrbracket_{\mathrm{T}}^{\mathrm{S}} \Rightarrow \exists \mathrm{C} \cdot \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow \nLeftarrow \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow
$$

- generate C based on C
- if complex, apply Traces (folding $\simeq{ }_{c t x}$)

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\text { - } \operatorname{TR}\left(\mathrm{C}_{1}\right) \neq \operatorname{TR}\left(\mathrm{C}_{2}\right) \Rightarrow \exists \mathrm{C} . \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow \Longleftrightarrow \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow
$$

- generate C based on C
- if complex, apply Traces (folding $\simeq c t x$)

Fully Abstract Compilation \& Target Traces

- we have:

$$
\text { - } \mathrm{C}_{1} \simeq_{c t x} \mathrm{C}_{2} \Longleftrightarrow \operatorname{TR}\left(\mathrm{C}_{1}\right)=\operatorname{TR}\left(\mathrm{C}_{2}\right)
$$

- we need to prove

$$
\begin{aligned}
& \cdot \exists \alpha \in \operatorname{TR}\left(\mathrm{C}_{1}\right), \alpha \notin \operatorname{TR}\left(\mathrm{C}_{2}\right) \Rightarrow \\
& \exists \mathrm{C} . \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow \Longleftrightarrow \mathrm{C}\left[\mathrm{C}_{2}\right] \downarrow
\end{aligned}
$$

- generate C based on C
- if complex, apply Traces (folding $\simeq_{c t x}$)

