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Some Answers: CEQ with Randomisation

• Assume the language has rand

•
(Rand)

n ∈ N
rand→ n

• Oracles: infinite lists of random numbers

1 public Int random(){return rand;} // P1

1 public Int random(){rand; return rand;} // P2

1 public Int random(){return < rand;,rand;> } // P3

1 public Int random(){x=rand; return < x,x> ;} // P4

Intuitively P1 ≃ctx P2 and P3 /≃ctx P3

Q: are P1 and P2 equivalent?

Should they be?

CEQ:
P1 ≃ctx P2

def= ∀C.C [P1] ↓ ⇐⇒ C [P2] ↓

CEQ-with-rand, try 1:
P1 ≃ctx?P2

def= ∀C,∀O.O▷ C [P1] ↓ ⇐⇒
O▷ C [P2] ↓

No!
P1 and P2 are not equivalent with this

definition (but they should be)

Contextual Preorder:
(not an eq, not symmetric)

P1 ⊑ P2
def= ∀C,∀O1.O1▷ C [P1] ↓ ⇒
∃O2.O2▷ C [P2] ↓

Must also include P2 ⊑ P1 otherwise P3

and P4 are also equivalent (and they
should not be)

P1 ≃ctx P2
def= P1 ⊑ P2 ∩ P2 ⊑ P1
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Other Equivalences

• Contextual equivalence is not the only
notion of program equivalence

• Any semantics defines its notion of
equivalence

• Any notion of equivalence can be used in
the statement of fully abstract compilation

• Trace semantics or bisimilarity are widely
used
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Fully Abstract Compilation

J⋅KST is FAC def= ∀P1,P2

P1 ≃ctx P2 ⇐⇒ JP1K
S
T ≃ctx JP2K

S
T

• break the ⇐⇒ :
1. ⇒: ∀P1,P2. P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

2. ⇐: ∀P1,P2. JP1K
S
T ≃ctx JP2K

S
T⇒ P1 ≃ctx P2

• point 2 (should) follow from compiler
correctness

• point 1 is tricky, because of ≃ctx and its ∀C
This structure is called a backtranslation
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Trace Semantics

• we replace ≃ctx with something equivalent

• but simpler to reason about
• a semantics that abstracts from the context
(observer)

• and still describes the behaviour of a
program precisely

• a trace semantics
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Traces for PMA

main method
this is code written by
the attacker

function definition
of our code

private data of our program

other code
written by the attacker

(this is the context C!)

∎
• interest in the
behaviour of our
code (component)

• need to consider the
rest
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Trace Semantics for Our Program

main method
this is code written by
the attacker

function definition
of our code

private data of our program

other code
written by the attacker

(this is the context C!)

∎

• disregard the rest

• abstract its
behaviour from the
component
perspective:

1. jump to an
entry point ∎

• abstract the
component
behaviour from the
rest perspective:

1. call/return
outside
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Trace Semantics

• semantics for partial programs
(component)

• relies on the operational semantics
• denotational: describes the behaviour of a
component as sets of traces

• a trace is (typically) a sequence of actions
that describe how a component interacts
with an observer

• without needing to specify the observer
• indicated as TR(C ) = {α ∣ C αÔ⇒ _}
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Trace Actions

Labels L ∶∶= a ∣ ε
Observable actions α ∶∶= √ ∣ g? ∣ g!

Actions g ∶∶= call p (r) ∣ ret p r(r0)

9



Traces for PMA

We need to define:

• trace states (almost program states)
• labels that make traces
• rules for generating labels and traces ⋯
• the traces of a component TR(C ) = ⋯

10



Trace Equivalence

• all semantics yield a notion of equivalence

• the operational semantics gives us
contextual equivalence

C1 ≃ctx C2

• trace semantics gives us trace equivalence
the traces of C1 are the same of those of C2
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Proofs about Trace Semantics

• any trace semantics won’t just work
• it needs to be
correct and complete

(⇒)

C1 ≃ctx C2 ⇐⇒ C1
T=C2
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Proofs about Trace Semantics

• any trace semantics won’t just work
• it needs to be
correct (⇐) and complete (⇒)
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Fully Abstract Compilation & Target Traces

• we have:
• C1 ≃ctx C2 ⇐⇒ TR(C1) = TR(C2)

• we need to prove
• P1 ≃ctx P2⇒ JP1K

S
T ≃ctx JP2K

S
T

• generate C based on C

• if complex, apply Traces (folding ≃ctx )
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