
Lecture: Backtranslation

Marco Patrignani

thanks to: Akram El-Korashy, Dominique Devriese, Daniel Patterson

1 Languages

1.1 Source

P ::= f(x) 7! e

e ::= true | false | e� e | n | x | e� e | let x = e in e | if e then e else e | fail
v ::= true | false | n
O ::= let y = call f e in e

f ::= n | fail
E ::= [·] | e� E | E� n | let x = E in e | if E then e else e | e� E | E� n

� ::= ? | �; [v / x]

The program state is just an expression e.

1.1.1 Static Semantics (Typing)

⌧ ::= Bool | Nat | Nat ! Nat

� ::= ? | �; x : ⌧

� ` e : ⌧ Well-typed expression e of type ⌧

` f(x) 7! e : Nat ! Nat Well-typed program e of type Nat to Nat

` let y = call f e1 in e2 : Bool Well-typed context of type Bool

(T-true)

� ` true : Bool

(T-false)

� ` false : Bool

(T-n)

� ` n : Nat

(T-x)

x : ⌧ 2 �
� ` x : ⌧

(T-bop)

� ` e1 : Nat
� ` e2 : Nat

� ` e1 � e2 : Bool

(T-op)

� ` e1 : Nat
� ` e2 : Nat

� ` e1 � e2 : Nat

(T-let)

� ` e1 : ⌧1
�; x : ⌧1 ` e2 : ⌧

� ` let x = e1 in e2 : ⌧
(T-if)

� ` e : Bool
� ` e1 : ⌧ � ` e2 : ⌧

� ` if e then e1 else e2 : ⌧

(T-fail)

� ` fail : ⌧

(T-prog)

x : Nat ` e : Nat
fail /2 e

` f(x) 7! e : Nat ! Nat

(T-ctx)

? ` e1 : Nat
y : Nat ` e2 : Bool

` let y = call f e1 in e2 : Bool

1

1.1.2 Dynamic Semantics

Judgement: e ,! e0

let x = n in e ,! e[n / x]

n� n0 ,! n00 where n� n0 = n00

n� n0 ,! v where n� n0 = v

if true then e else e0 ,! e

if false then e else e0 ,! e0

E [e] ,! E [e0] if e ,! e0

E [fail] ,! fail

We can use evaluation contexts (which are not observers) to determine where
the reductions happen.

1.2 Target

P ::= f(x) 7! e

v ::= n | true | false b ::= true | false
e ::= n | x | e� e | let x = e in e | if e then e else e | fail

| true | false | e� e | e has T

T ::= NAT | BOOL

O ::= let y = call f e in e

f ::= n | fail
E ::= [·] | e�E | E� v | let x = E in e | if E then e else e | e�E | E� v

� ::= ? | �; [v / x]

Semantics.

Judgement: e ,! e0

let x = n in e ,! e[n / x]

n� n0 ,! n00 where n� n0 = n00

n� n0 ,! b where n� n0 = b

if true then e else e0 ,! e

if false then e else e0 ,! e0

E [e] ,!E [e0] if e ,! e0

E [fail] ,! fail

v � v0 ,! fail if v = b or v0 = b

v � v0 ,! fail if v = b or v0 = b

if n then e else e0 ,! fail

2

1.3 Common
We assume some standard properties of substitutions �, such as capture avoid-
ance, distributivity over terms, and weakening.

In the following, we assume: � ::= +,�, · · · , � ::=<,>,==.

Definition 1.1 (Contextual equivalence).

P1 'ctx

P2
def
= 8O. O [P1] ,!⇤ f ^O [P2] ,!⇤ f

Definition 1.2 (Plugging). Given that O = let y = call f e

arg

in e

cont

and
P = f(x) 7! e

fun

.

O[P]
def
= let y = let x = e

arg

in e

fun

in e

cont

Example 1.3 (Equivalent and inequivalent programs).

x+ 2 x+ 1+ 1

if x > 0 then 0 else 1 x

let z = x in z+ z x+ x

⇢

2 Compiler

Jf(x) 7! eKST = f(x) 7! if x has NAT then JeKST else fail

JtrueKST = true

JfalseKST = false

JnKST = n

JxKST = x

Je� e0KST = JeKST � Je0KST
Jlet x = e in e0KST = let x = JeKST in Je0KST

Jif b then e else e0KST = if JbKST then JeKST else Je0KST
JfailKST = fail

Je� e0KST = JeKST � Je0KST
J[v / x]KST =

h
JvKST

.
JxKST

i

2.1 Compiler Correctness (Lemma 2.2)
We rely on a helper lemma for this result, as explained by Leroy.

3

Lemma 2.1 (Forward simulation).

if e� ,!⇤ v then JeKSTJ�KST ,!⇤ JvKST
Lemma 2.2 (Expression correctness).

if JeKSTJ�KST ,!⇤ JfKST then e� ,!⇤ f

Proof. By contradiction we assume: e� ,! v0 6= v (the case for b is analogous).
By Lemma 2.1 (Forward simulation) we get that JeKSTJ�KST,!⇤Jv0KST.
By determinism of the compiler we have JvKST 6= Jv0KST.
So we have that the same term JeKST reduces to two different terms, which

contradicts the determinism of the semantics.

3 Compiler Full Abstraction

Theorem 3.1 (Full abstraction of J·KST).

8P1,P2. P1 'ctx

P2 () JP1KST '
ctx

JP2KST
Proof. The (case:

JP1KST '
ctx

JP2KST (P1 'ctx

P2

in contrapositive form:

P1 6'ctx

P2) JP1KST 6'
ctx

JP2KST
and expand the definitions of '

ctx

:

9O. O [P1] ,!⇤f ^ O [P2] ,!⇤f 0) 9O. O
h
JP1KST

i
,!⇤f ^O

h
JP2KST

i
,!⇤f 0

Picking O is simple, assuming J·KST can be applied to context (as is generally the
case, like here), O=JOKST. At this point, a clever usage of Lemma 2.1 (Forward
simulation) gives this result.

The) case:

8P1,P2. P1 'ctx

P2) JP1KST '
ctx

JP2KST
in contrapositive form:

8P1,P2. JP1KST 6'
ctx

JP2KST) P1 6'ctx

P2

and expand the definitions of '
ctx

:

8P1,P2. 9O. O
h
JP1KST

i
,!⇤f ^O

h
JP2KST

i
,!⇤f 0) 9O. O [P1] ,!⇤f ^ O [P2] ,!⇤f 0

We can try to build O starting from O as we cannot rely on any correctness
result.

4

4 Backtranslation of Contexts

4.1 The Universal Type
We need a universal type, something to backtranslate target expression to in
order for them to be valid.

Example 4.1 (Backtranslation type). We cannot backtranslate true to true
because when backtranslating 3+ true we would get 3+ true that is not a valid
source expression according to the grammar of a. Also, we need a mechanism
that scales for all operations quantified over by �, e.g., 3 ⇤ 2 etc. ⇢

Anything that the target is backtranslated to, must be of this universal type.

This universal type is natural numbers.

4.2 Helper Functions
Then we need to convert to and from normal types and the universal type
in order to ensure proper communication occurs. In fact, if we backtranslate
call f true to call f 0, the former will fail (by the typecheck inserted by the
compiler) and the second will not.

Inject takes something of a type and injects it into the universal type, extract
takes from the universal type and extracts to a type.

injectNAT(e) = e+ 2

injectBOOL(e) = if e then 1 else 0

extractNAT(e) = let x = e in if x � 2 then x� 2 else fail

extractBOOL(e) = let x = e in if x � 2 then fail else if x� 1 � 1 then false else true

4.2.1 Properties of these Helpers

Lemma 4.2 (The Helpers are well-typed). The following holds:

• If � ` e : Nat then � ` injectNAT(e) : Nat

• If � ` e : Bool then � ` injectBOOL(e) : Nat

• If � ` e : Nat then � ` extractNAT(e) : Nat

• If � ` e : Nat then � ` extractBOOL(e) : Bool

4.3 The Backtranslation
The backtranslation is based on the observer structure.

hhlet y = call f e0 in e00iiTS = let y = injectNAT(call f (extractNAThhe0ii
T
S)) in hhe00iiTS

hhniiTS = n+ 2

5

hhxiiTS = x

hhtrueiiTS = 0

hhfalseiiTS = 1

hhe� e0iiTS = let x1 = extractNAThheiiTS in

let x2 = extractNAThhe0ii
T
S in

injectNATx1� x2

hhe� e0iiTS = let x1 = extractNAThheiiTS in

let x2 = extractNAThhe0ii
T
S in

injectBOOLx1� x2

hhlet x = e in e0iiTS = let x = hheiiTS in hhe0iiTS
hhif e then e0 else e00iiTS = let x = extractBOOLhheiiTS in if x then hhe0iiTS else hhe00iiTS

hhe has TiiTS =

8
>>><

>>>:

let x = hheiiTS in if x � 2 then 1 else 0

if T = NAT

let x = hheiiTS in if x � 2 then 0 else 1

if T = BOOL

hhfailiiTS = fail

hh[v / x]iiTS =
h
hhviiTS

.
hhxiiTS

i

The case for the e has T from should be injectBOOL(if x � 2 then true else false)
(in the case for BOOL, swap true and false for the NAT case) but we shorten
it to the definition above because we already know how the “if” expression and
the subsequent inject will execute.

Remark 4.3 (Letin). The backtranslation of let x = e in e0 may seem con-
fusing, as it does not insert injectNAT for its subexpressions.

We argue why it is right using this example, for which we indicate the re-
ductions:

• t1 = let x = 2 in x+ 1 and t1,!⇤3;

Currently, what we get is:

• t1 = let x = 4 in let x1 = extractNATx in let x2 = extractNAT3 in injectNATx1+ x2

If we unfold the reductions, we see that

t1

let x = 4 in let x1 = extractNATx in let x2 = extractNAT3 in injectNATx1+ x2

,! let x1 = extractNAT4 in let x2 = extractNAT3 in injectNATx1+ x2

,!⇤ let x2 = extractNAT3 in injectNAT2+ x2

,!⇤ injectNAT2+ 1

,!⇤ 5

6

and these reductions proceed as expected.
However if we insert an additional extractNAT for the value bound to the

x, these reductions will not go right, as we get an additional +2. We could
eliminate it by adding an injectNAT when variables are backtranslated, but this
is hard to do correctly as we do not know if a variable will be used as a Nat or
as a Bool in the target, as in this other valid expression:

• t2 = let x = true in if x then 3 else 0

This gets backtranslated to

• t2 = let x = 0 in let z = extractBOOLx in if z == 1 then 5 else 2

These expressions reduce correctly, but we wouldn’t know how to carry the
information that x is technically a Boolean (the true expression may be a lot
more complex that that and provide no help).

However, we know that when a variable is going to be used, e.g., inside a �
expression, the extract· will be there.

4.3.1 Properties of the Backtranslation

In order to use the context backtranslation, we need to prove that it is correct:

Lemma 4.4 (Backtranslation correctness).

if e� ,!⇤ f

then hheiiTS hh�ii
T
S ,!⇤ hhfiiTS

5 Using the Context Backtranslation

We resume our proof for the) direction of fully abstract compilation.
What we have is:

• 9O. O
h
JP1KST

i
,!⇤ f ^O

h
JP2KST

i
,!⇤ f 0) 9O. O [P1] ,!⇤ f ^ O [P2] ,!⇤ f 0

We can instantiate O with hhOiiTS .
So we can assume:

1. O
h
JP1KST

i
,!⇤ f

2. O
h
JP2KST

i
,!⇤ f 0

and prove this

• hhOiiTS [P1] ,!⇤ f

• hhOiiTS [P2] ,!⇤ f 0

7

If we unfold the definition of O[P] in the hypotheses, assuming that P1 = f(x) 7! e1
and P2 = f(x) 7! e2 we obtain

1. let y = let x = e0 in if x has NAT then Je1KST else fail in e00 ,!⇤ f

2. let y = let x = e0 in if x has NAT then Je2KST else fail in e00 ,!⇤ f 0

We can unfold the reductions to see that:

JP1KST

let y = let x = e0 in if x has NAT then Je1KST else fail in e00

,!⇤ let y = let x = v0 in if x has NAT then Je1KST else fail in e00

,! let y = if v0 has NAT then (Je1KST[v0 / x]) else fail in e00

Also, by determinism and given that the observer is the same in both cases,
we know that until here, the reductions are the same for the second program
too, so:

JP2KST
let y = let x = e0 in if x has NAT then Je2KST else fail in e00

,!⇤ let y = if v0 has NAT then (Je1KST[v0 / x]) else fail in e00

Given that the two executions must differ, we know that v0 really is a natural
number n0, so:

JP1KST

let y = if n0 has NAT then (Je1KST[n0 / x]) else fail in e00

,! let y = (Je1KST[n0 / x]) in e00

,!⇤ let y = (Jn1KST) in e00

,! e00
h
Jn1KST

.
y
i

,!⇤ f
The execution of P2, instead, must differ, so for a n2 6= n1:

JP2KST

let y = if n0 has NAT then (Je2KST[n0 / x]) else fail in e00

,!⇤ e00
h
Jn2KST

.
y
i

,!⇤ f 0

So we can assume that e00 is if y == Jn1KST then 0 else 1 and thus f = 0
and f 0 = 1.

Let’s take a look at the source reductions. By Lemma 4.4 (Backtranslation
correctness), we know the following:

P1

let y = injectNAT(let x = extractNAThhe0ii
T
S in e1) in hhe00iiTS

,!⇤ let y = injectNAT(let x = extractNAThhv0iiTS in e1) in hhe00iiTS
By inspecting the target reductions we know, extractNAThhv0iiTS cannot fail,

as v0 is a natural number. Additionally, we know that v0=hhn0iiTS � 2. By
Lemma 2.2 (Expression correctness) we know:

P1

let y = injectNATe1[v
0 / x] in hhe00iiTS

h
hhviiTS

.
z
i

,!⇤ let y = injectNATn1 in hhe00iiTS
So by definition of injectNAT we have that n01 = n1 + 2:

8

P1

let y = injectNATn1 in hhe00iiTS
,! let y = n01 in hhe00iiTS
,!⇤ hhe00iiTS [n

0
1 / y]

So we need to show the reductions for P2, again by Lemma 4.4 (Backtrans-
lation correctness):

P2

let y = injectNAT(let x = extractNAThhe0ii
T
S in e2) in hhe00iiTS

,!⇤ let y = injectNATa2[v
0 / x] in hhe00iiTS

And by how the reductions proceded in the target and Lemma 2.2 (Expres-
sion correctness), we know that:

P2 ,! let y = injectNATn2 in hhe00iiTS
We can define n02=n2 + 2 and we get:

P2

,! let y = n02 in hhe00iiTS
,! hhe00iiTS [n

0
2 / y]

Given that we know e00, let’s work out its backtranslation (modulo some
optimisation and elimination of bits that we know how will reduce):

P1 & P2

let z = extractBOOLhhy == n1iiTS in if z == 1 then hh0iiTS else hh1iiTS
= let z = extractBOOL let x1 = extractNAThhyiiTS in

let x2 = extractNAThhn1iiTS in

injectBOOLx1 == x2

in if z == 1 then 2 else 3

= let z = extractBOOL let x1 = extractNATy in

let x2 = extractNATn1 + 2 in

injectBOOLx1 == x2

in if z == 1 then 2 else 3

= let z = extractBOOL let x1 = y � 2 in

let x2 = n1 in

injectBOOLx1 == x2

in if z == 1 then 2 else 3

= if y � 2 == n1 then 2 else 3
So we have

P1

if y � 2 == n1 then 2 else 3[n01 / y]

= if n01 � 2 == n1 then 2 else 3

= if n1 + 2� 2 == n1 then 2 else 3

,! 2

Now we know hhe00iiTS and we know that n2 6= n1, so we have that

P2

= if y � 2 == n1 then 2 else 3[n02 / y]

= if n2 + 2� 2 == n1 then 2 else 3

= if n2 == n1 then 2 else 3

,! 3
So f=2 and f 0=3 and this proof holds.

9

5.1 Proper differentiation
Note that the assumption on what e0 looks like is a simplifying assumption just
for the sake of explanation. To conclude the proof properly we need to apply
again Lemma 4.4 (but in the more general case with substitutions) and we need
the following trivial lemma too:

Lemma 5.1 (Differentiation).

if f 6= f 0 then hhfiiTS 6= hhf 0iiTS

6 Trace-Based Backtranslation

The source language, the compiler and the definitions of contextual equivalence
and full abstraction do not change.

6.1 Target

e ::= · · · | refl e

refl e ,!n where n = ||e||

Function ||·|| returns a hash of its argument so each term has its numerical
representation.

6.2 Target Traces

t ::= call n? · ret n!

Definition 6.1 (Traces of a program).

TR(P) = {call n? · ret n0! | P = f(x) 7! e and let x = n in e ,!⇤ n0}

Definition 6.2 (Trace equivalence).

P1
T
=P2

def
= TR(P1) = TR(P2)

6.2.1 Properties of the Target Traces

Lemma 6.3 (Soundness of traces).

P1
T
=P2) P1 'ctx

P2

10

6.3 Backtranslation of Traces
At this point we are given two different traces which, by definition, agree on the
call.. parameters and we must build both a source observer O that leads to the
differentiation.

t1 = call n? · ret n1! t2 = call n? · ret n2!

hhniiTS = n

hht1, t2iiTS = let y = call f hhniiTS in if y ==
⌦⌦
n1

↵↵T
S

then 1 else 2

6.3.1 Properties of the Backtranslation of Traces

Lemma 6.4 (Correctness of the backtranslation of traces).

if call n? · ret n0! 2 TR(JPKST)
P = f(x) 7! e

then let y = let x = hhniiTS in e in e0 ,!⇤ e0
h
hhn0iiTS

.
y
i

Proof. This follows by unfolding the definitions of the trace semantics and by
Lemma 2.2 (Expression correctness).

6.4 Using the Backtranslation of Traces
Back to proving compiler full abstraction:

The) case:

8P1,P2. P1 'ctx

P2) JP1KST '
ctx

JP2KST

We can apply Lemma 6.3 (Soundness of traces) and we get:

8P1,P2. P1 'ctx

P2) JP1KST T
= JP2KST

in contrapositive form:

8P1,P2. JP1KST T
=/ JP2KST) P1 6'ctx

P2

expanding the definitions:

8P1,P2. 9t 2 TR(JP1KST) ^ t /2 TR(JP2KST)
) 9O. O [P1] ,!⇤n0 ^ O [P2] ,!⇤n00

We pick another trace t0 from TR(JP2KST) such that the first part is the same as
in t for the backtranslation.

We can now use the backtranslation of traces with t and t0 to instantiate O.

11

The reductions proceed as follows. By Lemma 6.4 (Correctness of the back-
translation of traces) we know:

JP1KST

let y = call f hhniiTS in if y ==
⌦⌦
n1

↵↵T
S

then 1 else 2

,!⇤if y ==
⌦⌦
n1

↵↵T
S

then 1 else 2
h
hhn1iiTS

.
y
i
)

⌘if n1 ==
⌦⌦
n1

↵↵T
S

then 1 else 2
and

JP2KST
(let y = call f hhniiTS in if y ==

⌦⌦
n1

↵↵T
S

then 1 else 2

,!⇤if n2 ==
⌦⌦
n1

↵↵T
S

then 1 else 2
The different reductions now are straightforward, so f= 1 and f 0=2 so this

case holds.

12

Appendix

The appendix provides general indications on how the proofs proceed and omits
some cases for students to practice proofs.

A Proof of Lemma 2.1

Proof. By structural induction over e.

Base case e=n

e=true

e=false

e=x

Inductive case In this case we identify these inductive hypotheses:

1. if e,!⇤n then JeKST,!⇤JnKST;

2. if e0,!⇤n0 then Je0KST,!⇤Jn0KST;

3. if eb,!⇤v then JebKST,!⇤JvKST (only in the “if” case).

The following cases arise:

e=let x = e in e

e=if eb then e else e0

e=e� e0

e=e� e0

B Proof of Lemma 4.2

Proof. Simple case analysis.

C Proof of Lemma 4.4

Proof. By structural induction over e.

Base case e=n

e=true

e=false

e=fail

e=x

Inductive case In this case we identify these inductive hypotheses:

13

1. if e,!⇤f then hheiiTS ,!⇤hhfiiTS ;

2. if e0,!⇤f 0 then hhe0iiTS ,!⇤hhf 0iiTS ;

3. if e00,!⇤f 00 then hhe00iiTS ,!⇤hhf 00iiTS (only needed in the “if” case).

The following cases arise:

e=let x = e in e0

e=if e then e0 else e00

e=e� e0

e=e� e0

D Proof of Lemma 6.3

Proof. The proof proceeds by contradiction.
Assume the thesis is false: wlog we have: P1 6'ctx

P2, so 9C.C[P1]+^C[P2]*
Let us take a look at the traces of C[P1] and C[P2] respectively.
They are of the form call n? · ret n1! and call n? · ret n2!.
By determinism of the semantics, n must coincide since it comes from the

same C.
By analysing the semantics, the only way for C to behave differently is to

receive two different numbers n1 and n2.
This contradicts the assumption that traces are equal.

14

	Languages
	Source
	Static Semantics (Typing)
	Dynamic Semantics

	Target
	Common

	Compiler
	Compiler Correctness (thm:expr-corr)

	Compiler Full Abstraction
	Backtranslation of Contexts
	The Universal Type
	Helper Functions
	Properties of these Helpers

	The Backtranslation
	Properties of the Backtranslation

	Using the Context Backtranslation
	Proper differentiation

	Trace-Based Backtranslation
	Target
	Target Traces
	Properties of the Target Traces

	Backtranslation of Traces
	Properties of the Backtranslation of Traces

	Using the Backtranslation of Traces

	Proof of thm:fow-sim
	Proof of thm:helpers-well-typed
	Proof of thm:backtr-corr
	Proof of thm:sound-traces

