
Lecture: RSC

Marco Patrignani

1 Languages
We extend the languages from the Backtranslation lecture notes with a (first
order) heap. That is, the heap can not contain locations, just other values.

1.1 Source

e ::= · · · | let x= new e in e | let x= read e in e | let x= write e at e in e

v ::= v | `
E ::= · · · | let x= new E in e | let x= read E in e | let x= write E at e in e

| let x= write v at E in e

H ::= ? | H; ` 7! n

⌦ ::= H . e

H(`) returns the number n in H to which ` maps to.
H [` 7! n updates H with a (possibly new) binding of the form ` 7! n. If `

is in the domain of H, the binding for ` is updated to point to n.

1.1.1 Static Semantics (Typing)

Programs are now passed locations as input from the context. The related
typing rules are trivially changed accordingly.

⌧ ::= · · · | Ref Nat
` f(x) 7! e : Ref Nat ! Nat Well-typed program e of type Ref Nat to Nat

(T-alloc)

� ` e : Nat �, x : Ref Nat ` e0 : ⌧

� ` let x= new e in e0 : ⌧
(T-read)

� ` e : Ref Nat �, x : Nat ` e0 : ⌧

� ` let x= read e in e0 : ⌧
(T-write)

� ` e : Nat � ` e0 : Ref Nat �, x : Nat ` e00 : ⌧

� ` let x= write e at e0 in e00 : ⌧

1.1.2 Dynamic Semantics

Judgement: ⌦ ,! ⌦0

H . e ,! H . e0 if e ,! e0

1

H . let x= new n in e ,! H [` 7! n . e[x / `] if ` /2 H

H . let x= read ` in e ,! H . e[H(`) / x]

H . let x= write n at ` in e00 ,! H [` 7! n . e00[n / x]

1.2 Target

v ::= · · · | k
e ::= · · · | let x= new e in e | let x= read e with e in e

| let x= write e at e with e in e | let x= hide e in e

O ::= let y = call f e in e such that let x= hide e in e /2 e

E ::= · · · | let x= new E in e | let x= read E with e in e

| let x= write E at e with e in e | let x= write v at E with e in e

| let x= hide E in e

H ::= ? | H;n 7! n : ⌘ | H;k

⌘ ::= ? | k
⌦ ::= H . e

Semantics.

Judgement: ⌦ ,!⌦0

H . e ,!H . e0 if e ,! e0

H . let x= new n0 in e ,!H [n+ 1 7! n0 . e[x / n+ 1] if the cardinality of H = n

H . let x= read n with k in e ,!H . e[H(n) / x] if n 7! n0 : k 2 H

H . let x= read n with v in e ,!H . e[H(n) / x] if n 7! _ : ? 2 H

H . let x= write n0 at n with k in e00 ,!H [n 7! n0 . e00[n / x] if n 7! v : k 2 H

H . let x= write n0 at n with v in e00 ,!H [n 7! n0 . e00[n / x] if n 7! _ : ? 2 H

1.3 Common

Assume both languages also contain pairs he, ei and projections e.1 , e.2 as
standardly done.

Also, we will use a shorthand e
1

; e
2

for the expression let _ = e
1

in e
2

.
To ensure state is carried forward in letins, their semantics is changed to:

H . let x = e 0 in e ,! H 0 . let x = e 00 in e if H . e 0 ,! H 0 . e 00

H . let x = v in e ,! H . e[v / x]

Definition 1.1 (Plugging). Given that O = let y = call f e
arg

in e
cont

and
P = f(x) 7! e

fun

.

O [P]
def
= ? . let y = let x = e

arg

in e
fun

in e
cont

2

1.3.1 Behaviours

We define a behaviour as a sequence of call/returns from the context to the pro-
gram. The behaviours of a program is the set of all behaviours it can generate.

Note that while this is analogous to traces, this is for whole programs. Also,
while traces capture a sort of context/program interaction, behaviours capture
a whole program/environment interaction, e.g., they would capture I/O if our
language had any. See later for this addition.

b ::= call n H ? · ret n H !

While we write this in black, there are really two behaviours, as the heaps are
different between S and T. This will be relevant later.

O [P] call n H ? · ret n 0 H 0! if O [=] let y = call f e in ec

P = f (x) 7! eb

? . e ,!⇤ H . n

H . let x = n in eb ,!⇤ H 0 . n 0

H 0 . let y = n 0 in ec ,!⇤ H 00 . n 00

Behav (O [P])
def
= {b | O [P] b}

2 Compiler
The compiler translates source locations ` into pairs n,k of the natural number
n which is the target location and a capability k used to hide location n.

Thus, since programs expect locations, it expects a dereferenceable pair as
input. Also, note that in the case of programs, the compiler remaps x as z in
order to perform the typecheck on inputs.

· · ·

Jf(x) 7! eKST = f(z) 7!let x= read z.1 with z.2 in

if x has NAT then JeKST else fail

Jlet x= new e in e0KST = let xl= new JeKST in

let xc= hide xl in

let JxKST=hxl,xci in

Je0KST
Jlet x= read e in e0KST = let xp=JeKST in

let JxKST= read xp.1 with xp.2 in

Je0KST

3

Jlet x= write e at e0 in e00KST = let xp=Je0KST in

let JxKST= write JeKST at xp.1 with xp.2 in

Je0KST

2.1 Compiler Properties

At this point, since we have added cases to the compiler, we need to add the
missing cases to the compiler correctness proof and to the auxiliary lemmas.
These additions are straightforward.

3 Backtranslation
In this case we have a single trace to backtranslate into a single source context.

hhcall n H? · ret n0 H0!iiTS = let y=call f e in e0 where e = let z=hhallocate HiiTS in

hhniiTS
e0 = hhupdate H from H0iiTS

hhallocate HiiTS = false if H = ?
= let xn= new hhviiTS in

hhallocate H0iiTS

if H = H0;n 7! v : ⌘

hhupdate H from H0iiTS = true

Note that backtranslating the return is not necessary here, the compiled code
will do that. However, we keep that structure as it will be useful later.

3.1 Properties of the Backtranslation

In order to use the context backtranslation, we need to prove that it is correct:

Theorem 3.1 (Correctness of the backtranslation of behaviours).

if b 2 Behav

⇣
O
h
JPKST

i⌘

b ⇡ b

P = f(x) 7! e

then b 2 Behav

⇣
hhbiiTS [P]

⌘

In order to state this, we need a partial bijection � to relate source locations
and target numbers that are locations. Moreover, we need to tell when two
heaps are related (H ⇡ H), that is when two �-related locations point to related
values. Then, we need to tell when two values are related (v ⇡ v), but this is

4

simple as this is the same relation for compiler correctness: a value is related
to its compilation. Finally, we can define when behaviours are related (b ⇡ b),
that is when their values and heaps are related.

With this boilerplate, we can understand Theorem 3.1 and define the neces-
sary auxiliary lemmas. One lemma tells that just before performing the “call”,
heaps are related. Compiler correctness will then tell us that given related heaps
and related arguments, a program and its compilation produce related outputs
with related heaps. These two together will tell that the behaviours are related
since the first lemma tells that the parameters of the call are related and the
second tells that the parameters of the return are related.

4 Proving RSC
The RSC statement already is in backtranslation form and follows directly from
Theorem 3.1 (Correctness of the backtranslation of behaviours).

Theorem 4.1. 8P,O,b, 9O, b ⇡ b.O
h
JPKST

i
 b) O[P] b

5 Calling Programs Multiple Times
We now implement programs that can be called multiple times. For the back-
translation, traces become a finite sequence of calls to the program and returns
from said calls. Thus, in this case we need to update locations that the program
may have had access to.

O
def
= let x = e in Y

Y
def
= let x = call f e in e;Y | e

Formally, there is no recursion and therefore the whole program will necessarily
terminate.

Definition 5.1 (Plugging).

O [P]
def
= let x = e in let x

1

= let x = e in e
1

in · · · let x
k

= let x = e in e
k

in e 0

O = let x = e in let x
1

= call f e
1

in · · · let x
k

= call f e
k

in e 0

P = f (x) 7! e

Behaviours now (a) concatenations of actions b (the behaviours from before),
which are sequences of call-returns.

a ::= ? | b · a

5

At the top level, the behaviour of a whole program is the concatenation of
its sequence of call/returns.

O [P] b · a if O = let x = e in let x
1

= call f e
1

in Y

P = f (x) 7! e 0

? . e ,!⇤ H
p

. n

H
p

. let x
1

= e
1

[n / x] in e 0 b,H 0

H 0 .Y ,P a,H 00

Given a sequence of call/returns, we can calculate its behaviour by decom-
posing its sequence of individual calls. In this case, we rely on the semantics,
so we need to carry around the heap to ensure the call is correct. At the end of
the sequence of call/returns, we return the empty behaviour.

H
p

. let x
1

= call f e
1

in Y ,P a,H 00 if P = f (x) 7! e 0

H
p

. let x
1

= e
1

[n / x] in e 0 b,H 0

H 0 .Y ,P a,H 00

H
p

. e,P ?,H 00 if H
p

. e ,!⇤ H 00 . n

Given a single call to the program, starting from a heap H
p

it generates a
call/return sequence and a new heap H 0.

H
p

. let x = e 0 in e call n H ? · ret n 0 H 0!,H 0 if H
p

. e 0 ,!⇤ H . n

H . let x = n in e 0 ,!⇤ H 0 . n 0

The set of behaviours of a whole program is calculated as expected.

Behav (O [P])
def
= {a | O [P] a}

5.1 Backtranslation of Behaviours

To define the backtranslation of behaviours we can reuse the idea of the pre-
vious backtranslation. We, mainly, need to carry forward the heap between
subsequent calls.

Take a close look at the types of the different backtranslation parts to un-
derstand what part relies on what subpart. We overload the backtranslation
symbol for all subparts.

hh·iiTS : a ! O

hh?iiTS
def
= let x=true in x

hhb · aiiTS
def
= let x=true in hh?,b,Hf ,YiiTS where

Y = hhHf ,a,H
0, trueiiTS

The backtranslation of a single action is analogous to before. The main
change is that we have a previous heap to consider. That is used before the call

6

to understand what parts of H are new and must be allocated and what parts
are old and must be updated.

hh·iiTS : H⇥ b⇥H⇥ Y ! Y

hhHp, call n H? · ret n0 H0!,H0,YiiTS
def
= simple adaptation from Section 3

The recursive definition decomposes a behaviour into small subcalls to indi-
vidual call/returns.

hh·iiTS : H⇥ a⇥H⇥ Y ! Y

hhHp,b · a,Hf ,YiiTS
def
= hhHp,b,H

0,Y0iiTS where Y0 = hhH0,a,Hf ,Yii
T
S

hhHp,?,Hf ,YiiTS
def
= Y

5.2 Correctness of the Backtranslation and Proving RSC

Again, RSC follows directly from backtranslation correctness. The same boiler-
plate concerning related values, heaps and behaviours is needed here as well.

6 Second-order Heap
If we allow the source and the target to have higher-order heaps, the backtrans-
lation complicates even more. Specifically, program and context now can share
locations. Thus, when a program has returned, it can update a location that
the context passed to it, or it can pass a new location to the context.

In the backtranslation, this affects how the returns are translated. There we
now need to keep track of what new locations are made available to the context
from the program. In fact, later on the context can update that location and
pass it to the program, possibly altering its behaviour this way.

6.1 (semi)-Formal Details

For simplicity, we can study this in a second order heap, where locations can
store naturals or locations that point to naturals.

6.1.1 Source Changes

To lift the first-order imposition on the heap, we simply change the source types:

⌧ ::= · · ·Ref Ref Nat

Otherwise, the source does not change.

6.1.2 Target Changes

The target does not change, we keep the simplification that the context cannot
protect its locations with capabilities for simplicity.

7

6.1.3 Compiler Changes

The compiler does noes not change. Crucially, when we share a location with
the context, we know we will share it as a pair hn,ki including both the location
n and the capability k used to protect it.

6.1.4 Backtranslation Changes

The backtranslation needs to change as follows. The general structure is the
same: we will generate code that sets up the heap correctly and then performs
the related call with the related argument. In this case, however, the program
can communicate to the context locations, which are now accessible to the
context. The context may change the value of these locations, so we need
to have a way to access all locations that are accessible to the context in order
to modify them.

For this, the source context needs to keep a list where it stores all locations
it knows of. However, this list is in the source, so it is just a list of abstract
identifiers, and we need to relate them to target locations. Luckily, target
locations are natural numbers, so we can store a map in the source list, from
source natural numbers to source locations. For convenience, this map is a pair
of type Nat⇥ Ref ⌧ . So when we are registering a target location n we will see
a source location ` and we store the pair hn, `i. This way we can perform lookup
of a certain target location m looking for element hm, `i in the list.

At the top level, before we start the first call, we need to set up the list of
known locations.

Additionally, at the top level we keep track of the index of the action we are
translating to ensure we generate non-conflicting variable names. This means
passing around variable n and annotating all variable names with n in the
following subcalls. We avoid doing that to avoid polluting the code too much,
be aware that this is ensures that we can then assume that all identifiers are
distinct in the backtranslated context.

hh·iiTS : a ! O

hh?iiTS
def
= let y=true in y

hhb · aiiTS
def
= let y=estart in Y where

Y = hh?,b,Hf ,Y
0iiTS

Y0 = hhHf ,a,H
0, true,niiTS

n = length (b · a)
estart = let x= h0, 0i in x

We know that the source context will evaluate estart, so y will contain the pointer
where we store the list.

The subcalls are primarily unchanged.

hh·iiTS : H⇥ a⇥H⇥ Y ⇥ Nat ! Y

8

hhHp,b · a,Hf ,Y,niiTS
def
= hhHp,b,H

0,Y0,n-1 iiTS where Y0 = hhH0,a,Hf ,Y,nii
T
S

hhHp,?,Hf ,Y,niiTS
def
= Y

At each call we need to extend the list the context keeps track of with the
new locations it creates. At each return, we need to extend that list to store
the new locations created by the program and shared with us. Finally, at each
call we need to modify the contents of existing locations according to what the
target level trace tells, and we need to lookup those locations from the list.

For all of this, recall that we have the full target level trace. So we have the
trace that the compiled program will produce and we can inspect that to know
both what known locations it changed and what new locations it revealed to
the context. This way we can, at runtime in the source, starting from known
pointers, traverse the heap to access new pointers and then register those new
pointers in the list.

Then, in order to update a known location, we need to lookup the location
based on the target identifier and update its value. Notice that we are not
feeding complete heaps to the subroutines but either the new heap (\) or the
existing one (\).

hh·iiTS : H⇥ b⇥H⇥ Y ⇥ Nat ! Y

**Hp,

call n H? · ret n0 H0!,

H0,Y,m

++T

S

def
= let ym=call f e in

e0; e00;Y

where

e = let _=hhallocate H \HpiiTS in

hhniiTS
e0 = hhupdate H \Hp, z iiTS
e00 = hhregister H0 \H in H0, z iiTS
z = ||dom (H0)||

hhallocate HiiTS = false if H = ?
= let xn= new hhviiTS in

let xe=hn, xni in
let xc= read y in

let _= write hxe, xci at y in

hhallocate H0iiTS

if H = H0;n 7! v : ⌘

The inductive case of hhallocate HiiTS allocates a new location xn, that corre-
sponds to target location n. Then it creates an entry for the list of context
known locations of the form hn, xni. Then it prepends that entry to the list,
knowning that the list starts from y (so it reads the contents of y and then
writes the new list in y).

9

hhupdate H, z iiTS = false if H = ?
hhupdate H, z iiTS = let xl=LOOKUP(n, y, z) in

let _= write hhviiTS at xl in hhupdate H0iiTS

if
H = H0;n 7! v : ⌘

z = z

We write LOOKUP(n, y, z) for the expression that traverses the list starting
from y and returns the pair whose first element is n. Even if we do not have
recursion, we know that the size of the list at this time is at most z, so we can
simply lookup z elements when doing this. Since the language is very simple,
this is a bit convoluted to write, so we leave this abstract.

hhregister H in H0, z iiTS =false if H = ?

hhregister H in H0, z iiTS = let xm=LOOKUP(m, y, z) in

let xr= read xm in

let xe=
D
hhniiTS , xr

E
in

let xc= read y in

let _= write hxe, xci at y in

hhregister H0iiTS

if
H = H0;n 7! v : ⌘

m 7! hn, ⌘i 2 H0

z = z

Here we use the information from the whole heap H0 to see how the new location
n 7! v : ⌘ is reachable from an old location. Because the heap is second order,
we know that there can only be a location m that contains hn, ⌘i (since it’s
generated by the compiled program).

For simplicity we assume that m is a known location. In a more concrete
case, m itself may be not accessible, but it may be revealed via location l which
is the accessible one. We simplify this and assume we know this ordering or the
locations we lookup are known.

6.2 Properties of the Backtranslation

The properties of the backtranslation are unchanged, the proofs however get
more complex due to all the additional boilerplate.

To a slightly higher degree of complexity, doing this for full higher-order
heaps is discussed precisely and proven formally in [1].

References
[1] Marco Patrignani and Deepak Garg. Robustly Safe Compilation. In Pro-

gramming Languages and Systems - 28th European Symposium on Program-
ming, ESOP 2019, ESOP’19, 2019.

10

	Languages
	Source
	Static Semantics (Typing)
	Dynamic Semantics

	Target
	Common
	Behaviours

	Compiler
	Compiler Properties

	Backtranslation
	Properties of the Backtranslation

	Proving RSC
	Calling Programs Multiple Times
	Backtranslation of Behaviours
	Correctness of the Backtranslation and Proving RSC

	Second-order Heap
	(semi)-Formal Details
	Source Changes
	Target Changes
	Compiler Changes
	Backtranslation Changes

	Properties of the Backtranslation

