
Lecture: RSC & I/O

Marco Patrignani

1 Languages
We extend the languages from the Backtranslation lecture notes with I/O prim-
itives, specifically with a print n primitive that writes a number in an external
buffer. That buffer is not readable from either the program of the context. That
buffer is readable from the so-called environment.

All the recent additions such as heap, multiple calls etc are orthogonal to
this development, so they are rolled back for simplicity.

1.1 Source

e ::= · · · | print e

E ::= · · · | print E

1.1.1 Static Semantics (Typing)

(T-print)
Γ ` e : Nat

Γ ` print e : Nat

1.1.2 Dynamic Semantics

We need to accumulate the prints as they happen as the program executes.
This means turning the regular semantics into a labelled semantics, where each
reduction is labelled with a label λ describing it. This is analogous to traces.

λ ::= ε | print n

The semantics accumulates labels in a sequence which we call a behaviour λ,
where we implicitly assume that silent labels ε are pruned. The empty behaciour,
i.e., those done by the program that never prints, is marked as ∅.

Judgement: e
λ−−→ e′

e
ε−−→ e′ if e ↪→ e′

print n
print n−−−−−−→ n

1



1.1.3 First Concern: Behaviour Origin

Since print e happens both in programs and context, the first concern is that we
cannot blindly accumulate them.

A first solution to this is to assume this expression cannot occur in contexts.
Another solution is to annotate the label with an annotation of the form

program or context and then eliminate the context ones when calculating be-
haviours.

In this document we assume the first solution. Both are equivalent, the
only difference is whether the resulting model is a faithful model of a realistic
scenario.

1.2 Target
The same primitive is added to the target and a semantic rule is added too.

1.3 Common
Plugging in unchanged. The notion of program equivalence is also unchanged:
we still want to know if a context can tell two programs apart, not whether an
environment can.

Definition 1.1 (Contextual equivalence).

P1'ctx P2
def
= ∀O, λ, λ′. O [P1]

λ−−→ f ∧O [P2]
λ′
−−→ f

As for the previous case of RSC, we define the behaviour of a single program
as what the environment can observe.

Behav (O [P ])
def
=

{
λ

∣∣∣∣ O [P ]
λ−−→ _

}

2 Compiler
The compiler translates source print to the target level analogous.

· · ·

Jprint eKST = print JeKST

2.1 Compiler Properties
At this point, since we have added cases to the compiler, we need to add the
missing cases to the compiler correctness proof and to the auxiliary lemmas.
These additions are straightforward.

2



3 Backtranslation
In this case we have a single behaviour to backtranslate into a single source
context.

Consider this program and its compilation

f(x) 7→ let y=if x > 2 then print 3 else print 4 in 0

f(x) 7→ if x has Nat then let y=if x > 2 then print 3 else print 4 in 0 else fail

Its behaviours are: {∅,print 3,print 4}.
If we try to backtranslate based simply on the behaviours, we can create a

context but we cannot be sure that the context will perform the right interaction
with the source program. For example, the backtranslation of print 3 should
generate a context that calls function f with argument 3 (or more). On the
other side, the backtranslation of print 4 should generate a context that calls
function f with argument 1 (or less). Unfortunately, the behaviours themselves
do not carry any information that lets us know what argument to use.

While in this trivial example we could come up with a program analysis
to address this issue, this is not true for arbitrary languages. In fact, in more
complex programs, understanding which statement will lead to which behaviour
is reconducible to the halting problem.

So, in order to address this issue, the most common trick is to emply so-
called informative traces. This means extending behaviours to record context-
program interaction as well as behaviours. The backtranslation then uses those
informative traces.

Informative traces are conceptually like those we have already seen, so we
do not present them here.

3


	Languages
	Source
	Static Semantics (Typing)
	Dynamic Semantics
	First Concern: Behaviour Origin

	Target
	Common

	Compiler
	Compiler Properties

	Backtranslation

