
Extending While

Marco Patrignani

1 Letin

statements s ::= · · · | let x = a in s

The “letin” construct defines a new fresh variable x with scope s. There is no
need to track x in the environment because the substitution does this automat-
ically.

(While-letin)
Σ ` a ⇓ n

Σ . let x = a in s ↪→ Σ . s[n / x]

Substition:

• capture-avoiding: assume all names are distinct

• defined inductively on statements and expressions. We report only the
interesting cases.

x[n / y] = n if y = x

x[n / y] = x if y 6= x

(x := a)[n / y] = (x := a[n / y])

No overriding of left hand sides.

Letin lets us model local scope unlike x := a where all xs are globally available.

2 Named Functions

statements s ::= · · · | call f a

programs P ::= ∅ | P ; f(x) 7→ s

prog . states Ω ::= Σ;P . s

op. sem. judgements Ω ↪→ Ω

We need to change the notion of program state to account for a lookup table
where to find function implementations.

1

(While-call)
Σ ` a ⇓ n

f(x) 7→ s ∈ P

Σ;P . call f a ↪→ Σ;P . s[n / x]

The program state collects all that is necessary for the program to run.

• What does it mean to run a program now? Before we could just execute
the program, it was just s. Now?

• We need a notion of main.

• Also, we need to ensure that only defined functions are called. You cannot
enforce this at grammar level purely: you need a (very simple) form of
program analysis to do this. For now we assume this though and leave
this analysis for later.

Example 2.1 (Call reduction).

P = succ(x) 7→ y := x + 1

main(z) 7→ y := 0; call succ 3; call succ y;

Σ;P . call main0

↪→Σ;P . (y := 0; call succ 3; call succ y;)[0 / z]

≡Σ;P . y := 0; call succ 3; call succ y;

↪→Σ[y 7→ 0];P . skip; call succ 3; call succ y;

↪→Σ[y 7→ 0];P . call succ 3; call succ y;

↪→Σ[y 7→ 0];P . (y := x + 1)[3 / x]; call succ y;

≡Σ[y 7→ 0];P . y := 3 + 1; call succ y;

↪→Σ[y 7→ 4];P . skip; call succ y;

↪→Σ[y 7→ 4];P . call succ y;

↪→Σ[y 7→ 4];P . y := x + 1[4 / x];

≡Σ[y 7→ 4];P . y := 4 + 1;

↪→Σ[y 7→ 5];P . skip;

�

How to define equivalences then? Force the main to be defined in the ob-
server, outside the programs that are to be equated.

3 Breaking Returns

statements s ::= · · · | ret

2

runtime statements s ::= · · · | end

Runtime statements are statements that are not part of the grammar, the pro-
grammer cannot write them. However, the semantics use them in order to keep
track of particular things, in this case of the scope of function bodies.

(While-call-2)
Σ ` a ⇓ n

f(x) 7→ s ∈ P

Σ;P . call f a ↪→ Σ;P . s[n / x]; end

(While-end)

Σ;P . end ↪→ Σ;P . skip

(While-ret)

end /∈ s
Σ;P . ret; s; end ↪→ Σ;P . skip

Example 3.1 (Returns).

P = loop(x) 7→ while(x > 0){y := y + 1; if(y > 10) then ret else x := x + 1}
main(z) 7→ y := 11; call loop 2; y := 8;

We omit skipping reductions and perform substitions right away.

Σ;P . main(0)

↪→Σ;P . y := 11; call loop 2; y := 8;

↪→Σ[y 7→ 11];P . call loop 2; y := 8;

↪→Σ[y 7→ 11];P . while(2 > 0){y := y + 1; if(y > 10) then ret else x := x + 1}end; y := 8;

↪→Σ[y 7→ 11];P . y := y + 1; if(y > 10) then ret else x := x + 1;

while(2 > 0){y := y + 1; if(y > 10) then ret else x := x + 1}
end; y := 8;

↪→Σ[y 7→ 12];P . if(y > 10) then ret else x := x + 1;

while(2 > 0){y := y + 1; if(y > 10) then ret else x := x + 1}
end; y := 8;

↪→Σ[y 7→ 11];P . ret

while(2 > 0){y := y + 1; if(y > 10) then ret else x := x + 1}
end; y := 8;

↪→Σ[y 7→ 11];P . skip; y := 8;

↪→Σ[y 7→ 11];P . y := 8;

↪→Σ[y 7→ 8];P . skip

�

4 Returning Values

statements s ::= · · · | ret a | let x = call f a

3

prog . states Ω ::= Σ;P ;x . s

We need a special construct that tells us how to call a function and store its
returned value. Then we need to keep track of the names of the variables for
returned values in the program state

• Note: we need a list of such variables because of nested calls, a single
variable name would not work!

(While-call-3)

Σ ` a ⇓ n f(x) 7→ s ∈ P

Σ;P ;x . let y = call f a ↪→ Σ;P ;x, y . s[n / x]; end
(While-ret-2)

end /∈ s Σ ` a ⇓ n

Σ;P ;x, x . ret a; s; end ↪→ Σ;P . x := n

We cannot evaluate call f a with the big step semantics of expressions because
function bodies are impure statements. So we need a construction to remember
where to store the result of the call, and this is the x addition to the program
state.

Example 4.1 (Returning values).

P = succ(x) 7→ ret x + 1

main(z) 7→ let y = call succ 3; let y = call succ y;

Σ;P ;∅ . call main0

↪→Σ;P ;∅ . let y = call succ 3; let y = call succ y;

↪→Σ;P ; y . ret 3 + 1; end; let y = call succ y;

↪→Σ;P ;∅ . y := 4; let y = call succ y;

↪→Σ[y 7→ 4];P ;∅ . let y = call succ y;

↪→Σ[y 7→ 4];P ; y . ret 4 + 1

↪→Σ[y 7→ 4];P ;∅ . y := 5

↪→Σ[y 7→ 5];P ;∅ . skip

�

4

	Letin
	Named Functions
	Breaking Returns
	Returning Values

