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My main research interest lies in the development of human-centric machine learning, a rapidly
growing field of research that seeks to maximize the societal benefits of machine learning systems and
minimize their potential harms, risks and burdens.

Since I received tenure in March 2021, my main focus has been on developing human-centric ma-
chine learning models and algorithms for evaluating, supporting and enhancing decision making, spear-
headed by an ERC Starting Grant on “Human-Centric Machine Learning”. My research has introduced
conceptual innovations and technical breakthroughs along three different dimensions:

1. Probabilistic, causal, and game-theoretic models of decision making in specific contexts.

2. Algorithms that leverage these models to enhance decision making with provable guarantees.

3. Observational and interventional studies to evaluate such models and algorithms in practice.

Moreover, these conceptual innovations and technical breakthroughs have often uncovered previously
unexplored connections between fields, as exemplified by several of my current achievements and my
vision for the future.

Current Achievements

My research contributions to human-centric machine learning can be categorized in several distinctive
research themes. Since each of these themes entails their own technical challenges and application do-
mains, in what follows, I discuss each of them separately.

Human-AI Complementarity. In recent years, there has been increasing excitement about the po-
tential of machine learning models to help human experts make more accurate predictions in a variety
of application domains, including medicine, education and science. In this context, the ultimate goal is
human-AI complementarity—the predictions made by the human expert who uses a machine learning
model are more accurate than the predictions made by the expert or by the model on their own. How-
ever, this goal has been elusive, and it has been unclear how to design machine learning models that
consistently enable human-AI complementarity. In the last years, we have pursued two lines of research
to fill this gap.

In a first line of research, we have pursued the idea of algorithmic triage. Under algorithmic triage,
a machine learning model does not predict all instances but instead defers some of the instances to human
experts. As a result, one does not only have to find a machine learning model but also a triage policy which
determines who predicts each instance. Here, one of the main challenges is that, for each potential triage
policy, there is an optimal machine learning model, however, the triage policy is also something one seeks
to optimize. In a sequence of papers, we have developed some of the first algorithms with theoretical
guarantees to learn under algorithmic triage in regression [1], classification [2, 3] and reinforcement
learning [4] settings. In these pieces of work, we have conducted observational experiments showing that,
by using algorithmic triage, we can achieve human-AI complementarity, in average. However, we have
also realized that algorithmic triage cannot enable human-AI complementarity at an instance level. This
is because, by design, the per-instance performance is determined by either the performance of the human
experts or the performance of the machine learning model.

To avoid the above limitation, in a second line of research, we have pursued the design of machine
learning models that, rather than relying on algorithmic algorithmic triage, adaptively limit human
experts’ level of agency [5, 6]. More specifically, we have advocated for machine learning models which,
rather than providing single predictions, provide sets of predictions, namely prediction sets, and ask
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human experts to always predict label values from these prediction sets.1 The key rationale here is that,
by using the theory of conformal prediction to construct the above prediction sets, we can precisely
trade-off the probability that the ground truth label is not in the prediction set, which determines how
frequently the systems will mislead human experts, and the size of the prediction set, which determines
the difficulty of the prediction task the experts need to solve using the system. Further, we have developed
several bandit algorithms that leverage the nested structure of the prediction sets provided by any
conformal predictor and a natural counterfactual monotonicity assumption on the experts’ predictions
to find the conformal predictor under which experts would benefit the most from using such system
very efficiently. Finally, we have conducted a large-scale human subject study that suggest that machine
learning models based on prediction sets that adaptively limit experts’ level of agency can enable human-
AI complementarity at an instance level.

Strategic Machine Learning. As decision making is increasingly informed by machine learning mod-
els, there is an increasing pressure on the decision makers to be transparent about the decision policies,
the models, and the features they use. However, individuals may be incentivized to use this knowledge
to invest effort strategically in order to receive a beneficial decision. For example, in loan decisions, if a
bank discloses that it will use credit card debt to decide whether it offers a loan to a customer, she may
feel compelled to avoid credit card debt overall. Motivated by this observation, there has been a flurry
of work in the emerging field of strategic machine learning in very recent years and we have carried out
some of the early work in this field.

In a first piece of work [7], we were among the first to address the problem of finding decision policies
that incentivize individuals to invest in forms of effort that increase the utility of the policy. This
was in contrast with most, if not all, of the contemporary work, which had focused on the design of
accurate machine learning models in the above mentioned strategic setting. One of our key ideas was
the realization that individuals’ investment of effort induces a change in their features and, under some
technical assumptions, this change can be characterized analytically at a population level. Building upon
this characterization, we have studied the hardness of the problem and identified a natural monotonicity
assumption on the cost individuals pay to change features that allows for a highly effective polynomial
time heuristic search algorithm to find optimal decision policies.

In a second piece of work [8], we have uncovered a previously unexplored connection between strategic
machine learning and counterfactual explanations. In short, counterfactual explanations aim to help
individuals subject to decisions informed by machine learning models understand what would have to
change for these decisions to be beneficial ones. In this work, we have investigated how individuals may
use the knowledge gained by counterfactual explanations to invest effort strategically and maximize their
chances of receiving a beneficial decision. More specifically, we have developed several polynomial-time
algorithms with approximation guarantees to find near-optimal policies and counterfactual explanations
in such a strategic setting. Moreover, we have also shown that, by incorporating a matroid constraint
into the problem formulation, one can increase the diversity of the near-optimal set of counterfactual
explanations and incentivize individuals across the whole spectrum of the population to self improve.

Calibration in Machine Learning. Whenever a binary classifier is used to provide decision support,
it has been widely agreed that the classifier should also provide a confidence score together with each
prediction. Then, the decision maker is supposed to use this confidence score to calibrate how much to
trust the prediction. In this context, the conventional wisdom is that the confidence score should be
a well calibrated estimate of the probability that the predicted label matches the true label. In recent
years, we have shown that, in the context of decision support, this type of confidence scores may not be
as useful as thought previously.

In a first line of research, we have focused on a scenario in which human experts need to make
binary decisions assisted by a classifier who makes predictions about a binary outcome of interest, and
we have investigated why experts have often difficulties at developing a good sense on when to trust
these predictions using the above mentioned type of confidence scores. More specifically, in a recent
piece of work [9], we have shown that, for a broad class of utility functions, there exist data distributions
for which an expert who makes optimal decisions would need to sometimes place more (less) trust on
predictions with lower (higher) confidence scores. However, we have further shown that, if the confidence

1There are many systems used everyday by experts that, under normal operation, limit experts’ level of agency. For
example, think of a pilot who is flying a plane. There are automated, adaptive systems that prevent the pilot from taking
certain actions based on the monitoring of the environment.
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scores satisfy a natural human-alignment property with respect to the expert’s confidence on their own
predictions, there always exists an optimal decision policy under which the level of trust the expert
would need to place on predictions is monotone on the confidence scores, facilitating its discoverability.
Looking into the future, we are running a human subject study to investigate to what extent the above
human-alignment property influences the quality of the human decisions in practice.

In a second line of work, we have focused on a scenario in which human experts need to find a
subset of qualified candidates among those in a large pool of candidates and are assisted by a screening
classifier that estimate the probability that a candidate is qualified. In a first piece of work [10], we have
shown that, even if the estimated probabilities provided by the screening classifier are well-calibrated,
in general, there always exist specific pools of candidates for which any deterministic threshold rule that
shortlists candidates by thresholding the estimated probabilities will be significantly suboptimal. Then,
we have developed an efficient post-processing algorithm that is able to calibrate any given classifier
such that there is a deterministic threshold rule using the post-processed classifier is near-optimal in
expectation across all potential pools of candidates with high-probability. In a second piece of work [11],
we have shown that, even if the estimated probabilities provided by the screening classifier are well-
calibrated, any deterministic threshold rule that uses such classifier may be biased against qualified
candidates within demographic groups of interest. As a consequence, it may perpetuate historical biases
against minority groups by precluding the best candidates within these groups—the candidates who are
more likely to be qualified—to be shortlisted. Then, we have introduced an efficient post-processing
algorithm to minimally modify any given calibrated classifier so that it does not suffer from this type of
within-group unfairness.

Machine Learning for Counterfactual Reasoning. There is empirical evidence that humans im-
prove their decision making skills by means of counterfactual reasoning—reasoning about what might
have been had they made alternative decisions to those they actually took. However, in sequential deci-
sion making processes where multiple, dependent decisions are made sequentially over time, the number
of alternatives a human may need to reason about can be intractably large, particularly if there is un-
certainty on the dynamics of the environment. In the last years, we have initiated the development
of machine learning models and algorithms to help humans conduct counterfactual reasoning in such
settings.

In a first line of work, we have focused on Markov decision processes and developed algorithms to
identify optimal sequences of alternative decisions that, in comparison with the factual decisions, would
have counterfactually led to better outcomes. In a first piece of work [12], we have focused on discrete
state spaces and developed an algorithm based on dynamic programming that is guaranteed to solve the
problem in polynomial time. In a second piece of work [13], we have shown that, in continuous state
spaces, we cannot generally expect to solve the problem in polynomial time. However, under a natural
form of Lipschitz continuity of the environment’s dynamics, we have developed a practical A∗ algorithm
that is guaranteed to return the optimal solution to the problem. In both pieces of work, using real data
from the medical domain, we have shown that the alternative sequences found by these algorithms can
provide valuable insights to enhance sequential decision making.

In a second line of work, we have focused on temporal point processes, a popular type of processes for
modeling discrete event data in continuous time, and developed a first-of-a-kind temporal point process
model that, in contrast with existing models, can be used to answer counterfactual questions about these
type of processes [14]. For example, in epidemiology, assume that, during a pandemic, a government
decides to implement business restrictions every time the weekly incidence—the (relative) number of
new cases—is larger than certain threshold but unfortunately the incidence nevertheless spirals out of
control. Our model could help the government understand retrospectively to what extent the incidence
would have grown had a lower threshold been implemented.

COVID-19. Around the time I received tenure at MPI-SWS, the COVID-19 pandemic started and I
quickly branched out from my current focus at that time and, together with students, postdocs and col-
laborators from multiple MPIs, EPFL and ETH, we worked on several projects related to COVID-19 at
a furious pace. These efforts led to the development of an epidemiological model based on temporal point
processes that can be used to predict the spread of epidemics at an unprecedented spatiotemporal reso-
lution [15], a privacy-preserving and inclusive system for epidemic risk assessment and notification [16],
and a group testing method based on dynamic programming that is specifically designed to use the
information provided by contact tracing [17].
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Previous Achievements
During my PhD and my postdoctoral work, my research focused on understanding, predicting and
controlling information diffusion over the Web and social media. This led to a series of papers [18–30],
which significantly advanced the state of the art in the network inference and influence maximization
problems. Two of these papers [19, 24] received immediate international recognition by means of a best
paper award honorable mention at KDD, the flagship conference in data mining, and an outstanding best
paper award at NeurIPS, the flagship conference in machine learning. Since then, these series of papers
have stimulated a large amount of follow-up work (>3,000 citations) and have been the methodological
basis for two journal papers on malaria in collaboration with epidemiologists at Imperial College and
others [31, 32].

After I joined MPI-SWS as a tenure-track faculty, I realized that my doctoral and postdoctoral work
on network inference and influence maximization leveraged particular instances of a more general and
powerful type of random processes, marked temporal point processes, which could be potentially used
to design a new generation of models and algorithms to predict and optimize the functioning of social,
information and networked systems. In the years that followed, I leveraged this realization to lead the
design of:

(i) probabilistic models based on marked temporal point process to predict information propaga-
tion [33–35], product competition [36], opinion dynamics [37], information reliability [38–40], knowl-
edge content [41], and spatiotemporal processes [42, 43]. In all cases, by exploiting fine grained
user data, the models provide more accurate predictions than the state of the art.

(ii) a series of efficient off-line and online algorithms with provable guarantees to steer information
dissemination [44–50], detect and precent the spread of misinformation [51, 52], and design spaced
repetition algorithms for efficient memorization [53–55]. These algorithms exploit an alternative
representation of marked temporal point processes using SDEs with jumps and establish a previ-
ously unexplored connection between optimal control of SDEs with jumps and marked temporal
point processes.

At the beginning of 2020, my work on marked temporal point processes made my case for tenure at
MPI-SWS. However, around the same time, I started to shift focus spearheaded by an ERC Starting
Grant on “Human-Centric Machine Learning”.

Vision for the Future

Looking into the future, I will further pursue the development of human-centric machine learning by
means of conceptual innovations and technical breakthroughs across several distinctive research themes.
In what follows, I briefly elaborate on two research themes I will particularly focus on in the next years,
namely counterfactual reasoning and AI & HCI.

Counterfactual Reasoning. Had the physician initiated the antibiotic treatment for sepsis a day
earlier, the patient would have recovered. Had they taken an earlier train to the airport, they would not
have missed their flight. Had I clicked on the attachment of that strange email, my computer would have
been hacked. These are examples of counterfactual reasoning, a type of reasoning that is epitomized
by the phrase “what might have been,” which implicates a juxtaposition of an imagined versus factual
reality. Counterfactual reasoning is tightly connected to the way we attribute causality and responsibility,
and it has been shown to play a significant role in the ability that humans have to learn from limited past
experience and improve their decision making skills. Is counterfactual reasoning a human capacity that
machines cannot have? Surprisingly, recent advances at the interface of causality and machine learning
have demonstrated that it is possible to build machines that perform and benefit from counterfactual
reasoning, in a way similarly as humans do. However, these advances have predominantly comprised
machine learning systems designed to operate autonomously, without human supervision.

In the upcoming years, we will develop human-centric machine learning models and algorithms for
decision support that are able to perform and benefit from counterfactual reasoning in multiple ways. For
example, they will perform counterfactual reasoning about human behavior to anticipate how humans
incorporate algorithmic advice into their decisions. This will enable a new generation of decision support
systems that can only increase and never decrease the average quality of human decisions. Moreover, they
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will use the structural similarities and shared properties across different counterfactual decision making
scenarios to significantly reduce their computational and data requirements. In addition, these models
and algorithms will also help humans learn from their own past decisions by identifying alternative de-
cisions that would have led to better outcomes. I have laid out this vision on an ERC Consolidator
Grant proposal on “Counterfactuals in Minds and Machines”, which has recently passed to the Step 2
(interview) of the evaluation.

AI & HCI. Machine learning and artificial intelligence has made it to the mainstream thanks to Chat-
GPT, a chatbot powered by a family of language models that has been fine-tuned to target conversational
usage using a combination of supervised learning and reinforcement learning from human feedback. One
of the main reasons behind its success is the intuitive user interface, which allows laypersons to refine
and steer a conversation towards a desired length, format, style, level of detail, and language. On the
flip side, there are increasing concerns that some of its plausible-sounding answers contain incorrect or
nonsensical information and, depending on the context and the user’s expertise, these hallucinations are
difficult to detect. As a consequence, their potential to reliable enable human-AI complementarity is, in
general, not very well understood.

In the upcoming years, we will develop human-centric machine learning models and algorithms that
come with easy-to-use, simple interfaces that do not require humans to get a good sense on when to trust
their outputs to achieve human-AI complementarity. These models and algorithms will consistently help
humans with different skills and abilities solve tasks in specific contexts more efficiently and accurately.
Moreover, we will go beyond the status quo in the machine learning literature, which typically relies only
on benchmark datasets for evaluation, and conduct human subject studies with laypersons for evaluation,
similarly as in the human computer interaction literature. Along the way, we will not only use qualitative
evaluation metrics, as in most of the human computer interface literature, but also quantitative metrics
and this will allow us to demonstrate that our models and algorithms, together with their interfaces, can
consistently enable human-AI complementarity. Our starting point will be our recent work on machine
learning models based on prediction sets [6], where we have shown that these models do not require
humans to get a good sense on when to trust their predictions using a large-scale human subject study.
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