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Abstract

Diffusion of information, ideas, behaviors and diseases are ubiquitous in nature and

modern society. One of the main goals of this dissertation is to shed light on the

hidden underlying structure of diffusion. To this aim, we developed flexible proba-

bilistic models and inference algorithms that make minimal assumptions about the

physical, biological or cognitive mechanisms responsible for diffusion. We avoid mo-

deling the mechanisms underlying individual activations, and instead develop a data-

driven approach which uses only the visible temporal traces diffusion generates.

We first developed two algorithms, NetInf and Multitree, that infer the net-

work structure or skeleton over which diffusion takes place. However, both algorithms

assume networks to be static and diffusion to occur at equal rates across different

edges. We then developed NetRate, an algorithm that allows for static and dy-

namic networks with different rates across different edges. NetRate infers not only

the network structure but also the rate of every edge. Finally, we develop a general

theoretical framework of diffusion based on survival theory.

Our models and algorithms provide computational lenses for understanding the

structure and temporal dynamics that govern diffusion and may help towards fore-

casting, influencing and retarding diffusion, broadly construed. As an application, we

study information propagation in the online media space. We find that the informa-

tion network of media sites and blogs tends to have a core-periphery structure with

a small set of core media sites that diffuse information to the rest of the Web. These

sites tend to have stable circles of influence with more general news media sites acting

as connectors between them. Information pathways for general recurrent topics are

more stable across time than for on-going news events. Clusters of news media sites

iv



and blogs often emerge and vanish in matter of days for on-going news events. Major

social movements and events involving civil population, such as the Libyan’s civil war

or Syria’s uprise, lead to an increased amount of information pathways among blogs

as well as in the overall increase in the network centrality of blogs and social media

sites.

Additionally, we apply our probabilistic framework of diffusion to the influence

maximization problem and develop the algorithm InfluMax. Experiments on syn-

thetic and real diffusion networks show that our algorithm outperforms other state

of the art algorithms by considering the temporal dynamics of diffusion.
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Chapter 1

Introduction

Many interacting systems can be fruitfully recast in terms of signals propagating over

networks. In recent years, there has been an increasing effort to uncover, understand,

and influence a broad range of propagation processes arising over a wide variety

of network structures: information propagation (Katz and Lazarsfeld, 1955; Adar

and Adamic, 2005), social networks (Kempe et al., 2003; Lappas et al., 2010; Math-

ioudakis et al., 2011), viral marketing (Domingos and Richardson, 2001; Watts and

Dodds, 2007; Aral and Walker, 2012), technical innovations (Rogers, 1995), computer

viruses (Wang et al., 2000), human travel (Brockmann et al., 2006) and epidemiolo-

gy (Lipsitch et al., 2003; Hufnagel et al., 2004; Wallinga and Teunis, 2004).

Abstractly, we think of a contagion that appears at some node of a network and

then spreads like an epidemic from node to node over the edges of the network.

For example, in information propagation, the contagion corresponds to a piece of

information (Liben-Nowell and Kleinberg, 2008; Leskovec et al., 2009), the nodes

correspond to people and infection events are the times when nodes learn about the

information. Similarly, we can think about the spread of a new type of behavior or

an action, e.g., purchasing a new product (Leskovec et al., 2006a), or the propagation

of a contagious disease over social network of individuals (Bailey, 1975).

In this context, many research problems have been raised in the last years, rang-

ing from network inference based on diffusion traces (Gomez-Rodriguez et al., 2010,

2011), finding culprits or end effectors from diffusion traces (Lappas et al., 2010;

1
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Shah and Zaman, 2011; Prakash et al., 2012a) and reconstructing incomplete diffusion

traces (Chierichetti et al., 2011; Sadikov et al., 2011) to influence spread minimiza-

tion (Budak et al., 2011; Blume et al., 2011) and maximization (Kempe et al., 2003;

Aral and Walker, 2012).

This dissertation is mainly devoted to one of the fundamental research problems in

the context of network diffusion: inference of hidden or implicit networks over which

various types of contagions spread (Gomez-Rodriguez et al., 2010, 2011, 2012; Gomez-

Rodriguez and Schölkopf, 2012b,c; Gomez-Rodriguez et al., 2013). Additionally, it

also tackles the influence (spread) maximization over networks (Gomez-Rodriguez

and Schölkopf, 2012a) from a novel perspective, in which influence or information can

spread at different rates across different edges, as in real-world examples.

1.1 Inference of diffusion networks

Observing a diffusion process often reduces to noting when nodes (people, blogs, etc.)

reproduce a piece of information, get infected by a virus, or buy a product. Epidemio-

logists can observe when a person becomes ill but they cannot tell who infected her or

how many exposures and how much time was necessary for the infection to take hold.

In information propagation, we observe when a blog mentions a piece of information.

However if, as is often the case, the blogger does not link to her source, we do not

know where she acquired the information or how long it took her to post it. Finally,

viral marketers can track when customers buy products or subscribe to services, but

typically cannot observe who influenced customers’ decisions, how long they took to

make up their minds, or when they passed recommendations on to other customers.

In all these scenarios, we observe where and when but not how or why information

(be it in the form of a virus, a meme, or a decision) propagates through a population

of individuals. The mechanism underlying the process is hidden. However, the me-

chanism is of outstanding interest in all three cases, since understanding diffusion is

necessary for stopping infections, predicting meme propagation, or maximizing sales

of a product.

To the best of our knowledge, we were among the first to study the inference
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of diffusion networks from diffusion traces or cascade data, and to develop an effi-

cient network inference algorithm, NetInf (Gomez-Rodriguez et al., 2010, 2012).

This work received a best research paper award honorable mention at ACM KDD

2010 and by March 2013, accumulated more than 170 citations, according to Google

Scholar. We devote Chapter 3 of this dissertation to this first approach and a follow-up

algorithm, Multitree (Gomez-Rodriguez and Schölkopf, 2012c). Both algorithms

assume that networks do not change over time and diffusion along different edges of a

network occur at the same transmission rate. In other words, they assume networks to

be static and unweighted. Both NetInf and Multitree are scalable approximation

algorithms with provable near-optimal performance based on submodular maximiza-

tion. We apply both algorithms to information diffusion among mainstream media

and blogs sites and experiment with more than 170 million blogs and news articles.

We find that the diffusion network of news for the top 1,000 media sites and blogs

tends to have a core-periphery structure with a small set of core media sites that

diffuse information to the rest of the Web. These sites tend to have stable circles of

influence with more general news media sites acting as connectors between them.

In Chapter 4, we consider weighted networks, where diffusion occurs at different

rates across different edges so that we can infer temporally heterogeneous interactions

within a network, as found in real-world examples, by developing NetRate (Gomez-

Rodriguez et al., 2011) and InfoPath (Gomez-Rodriguez et al., 2013). Both methods

allow for static and dynamic networks that change over time, depending upon the

contagions that propagate through them (Myers et al., 2012; Romero et al., 2011a).

This is important since, for example, a blog can increase its popularity abruptly after

one of its posts turns viral, this may create new edges in the information transmission

network and so the content the blog produces in the future will likely spread to

larger parts of the network. Similarly, at any given time a particular unexpected

event may occur and a topic or piece of news may become very popular for a limited

period of time. This again will lead to different emerging and vanishing information

pathways, and thus to a dynamic underlying network. Both algorithms involve convex

programming, naturally (without heuristics) imposes sparse solutions and requires

no parameter tuning. We apply both algorithms to information diffusion among
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mainstream media and blog sites and experiment with more than 170 million different

pieces of information spreading over the network in a one year period. We find that

information pathways for general recurrent topics are more stable across time than

for on-going news events. Clusters of news media sites and blogs often emerge and

vanish in matter of days for on-going news events. Major social movements and

events involving civil population, such as the Libyan’s civil war or Syria’s uprise, lead

to an increased amount of information pathways among blogs as well as in the overall

increase in the network centrality of blogs and social media sites.

Finally, Chapter 6 presents a general theoretical framework for studying informa-

tion propagation over networks based on survival theory, which allow us to generalize

previous methods.

1.2 Influence maximization in diffusion networks

Influence spread maximization tackles the problem of selecting the most influential

source node set of a given size in a diffusion network. A diffusion process that starts

in such an influential set of nodes is expected to reach the greatest number of nodes

in the network. In information propagation, the problem reduces to choosing the

set of blogs and news media sites that together are expected to spread a piece of

news to the greatest number of sites. In viral marketing, it consists of identifying the

most influential set of trendsetters that together may influence the greatest number

of customers. Finally, in epidemiology, the influence maximization problem reduces

to finding the set of individuals that together are most likely to spread an illness or

virus to the greatest percentage of the population. In this latter case, the solution

of the influence maximization problem would help with developing vaccination and

quarantine policies.

In Chapter 5, we build on the continuous time model of diffusion which we ori-

ginally developed to tackle the network inference problem over weighted networks,

described in Chapter 5. As noted in the previous section, this model accounts for

temporally heterogeneous interactions within a diffusion network – it allows infor-

mation (or influence) to spread at different rates across different edges, as shown in
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real-world examples. We develop a method for influence maximization, InfluMax,

that accounts for the temporal dynamics underlying diffusion processes. The method

evaluates influence analytically using continuous time Markov chains (CTMCs) and

finds a suboptimal set of source nodes with provable guarantees in terms of the average

influence.

To the best of our knowledge, previous work on influence maximization has ignored

the underlying temporal dynamics governing diffusion networks – once a transmission

occurs, it always occurs at the same rate or temporal scale (Richardson and Domingos,

2002; Kempe et al., 2003; Bharathi et al., 2007; Carnes et al., 2007; Chen et al., 2009,

2010; Goyal et al., 2010b; Budak et al., 2011; Chen et al., 2011; Irfan and Ortiz,

2011). In contrast, we consider heterogeneous pairwise transmission rates since this

is a key point in many real-world examples. In information propagation, news media

sites and professional bloggers typically report news faster than people that maintain

personal blogs. In epidemiology, people meet each other with different frequencies and

then the pairwise transmission rates between individuals within a population differ.

Finally, in viral marketing, some customers make up their minds about a product or

service quicker than others, and then pass recommendations on to other customers

at different rates.

The main contribution of our work on influence maximization is twofold. First, it

considers a novel continuous time formulation of the influence maximization problem

in which information or influence can spread at different rates across different edges,

as in real-world examples. Second, this continuous time approach allows us to ana-

lytically compute and optimize the influence (i.e., average total number of infections)

using CTMCs and submodular maximization, avoiding the use of heuristics (Chen

et al., 2010, 2009) or Monte Carlo simulations (Kempe et al., 2003).

1.3 Thesis organization

The remainder of this dissertation is organized as follows. Chapter 2 provides rele-

vant background and concepts used throughout the thesis. Chapter 3 is devoted to

inferring unweighted static diffusion networks from cascade data, and presents two
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inference algorithms based on submodular optimization: NetInf and Multitree.

Chapter 4 introduces the problem of inferring weighted static and dynamic diffusion

networks from cascade data, and presents an inference algorithm based on convex

optimization: NetRate. Chapter 5 tackles the problem of maximizing the influ-

ence in a diffusion network, and presents an influence maximization algorithm based

on Continuous Time Markov Chains (CTMC) and submodularity: InfluMax. In

Chapter 6, we propose a general theoretical framework to model propagation and in-

fer hidden or unobserved networks using survival theory. Finally, Chapter 7 concludes

this dissertation.
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Chapter 2

Background and basic concepts

2.1 General network-theoretic concepts

In this section, we briefly revisit basic graph-theoretic concepts that we will use

throughout this dissertation.

Network. A network (or graph) is an ordered pair G = (V , E) comprising a set V of

nodes or vertices together with a set E of edges, links or lines, which are 2-element

subsets of V (i.e., an edge is related with two vertices). In the remainder of this

thesis, we will use network and graph indistinctly.

Undirected and directed networks. An undirected network is a network in which

edges have no orientation, i.e., the edges are unordered pairs of nodes. In contrast,

in a directed network, edges have orientation, i.e., (i, j) 6= (j, i), and for every node,

we can distinguish out-edges (out-links) and in-edges (in-links).

Node degree. The degree of a node of a network is the number of edges incident to

the node. For directed networks, we distinguish between in-degree and out-degree of

a node. In-degree is the number of edges pointing towards the node, and out-degree

is the number of edges pointing from the node.

Path. A path in a network is a sequence of edges which connect a sequence of nodes.

For directed networks, we distinguish between undirected and directed paths. In a

directed path, all edges go into the same direction, and in a undirected path, the

8
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directions may differ.

Weakly and strongly connected networks. A directed network is weakly connec-

ted if there exists an undirected path connecting any pair of nodes, and is strongly

connected is there exists a directed path connecting any pair of nodes in network.

Diameter. Network G has a diameter d if the maximum length of the undirected

shortest paths over all connected pairs of nodes is d. The length of the path is the

number of edges it contains.

Community. Perhaps surprisingly, there is not a real consensus on the definition of

community. However, a community is often defined as a set of nodes in a network

G that has more and/or better -connected edges between its members than between

members of the set and the remainder of the network. This definition matches the

traditional definition of cluster.

Complete network. An undirected network is complete if all pairs of nodes are

connected. A directed network is complete if all pairs of nodes are connected by a

pair of edges, one in each direction.

Empty network. A network is empty if it has no edges.

Subnetwork. A subnetwork Gs = (Vs, Es) of a network G = (V , E) is a network

whose edge set is a subset of that of G and its vertex set is a subset of that of G
restricted to the endpoints in the edge subset: Es ⊆ E and Vs = {i, j : (i, j) ∈ Es}.

Induced subnetwork. An induced (or full) subnetwork Gs = (Vs, Es) of a graph

G = (V , E) is a network whose vertex set is a subset of that of G, and its vertex

set is composed of all edges in G between nodes in the vertex subset: Vs ⊆ V and

Es = {(i, j) : (i, j) ∈ E ∧ i, j ∈ Vs}.

Directed tree. A directed tree T = (VT , ET ) is a directed network in which, for

a node u called the root and any other node v, there is exactly one directed path

from u to v. Our definition of directed tree is equivalent to the standard definition of

arborescence.

Directed spanning tree. A directed spanning tree T = (VT , ET ) of a directed

network G = (V , E) is a directed tree that contains all nodes of G: VT = V and
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ET ⊆ E .

Directed acyclic network. A directed acyclic network (or directed acyclic graph,

DAG) is a directed network with no directed cycles. In other words, there is no way

to start at some node v and follow a directed path of edges that eventually loops back

to v again.

Dominated node set. Given a network G = (V , E), a set of nodes B ⊆ V , and a

node n ∈ V , we define the dominated node set: Sn(B) = {u ∈ V : any directed path

from u to n in G visits at least one node in B}.

Self dominant node set. Given a network G = (V , E) and a node n ∈ V , a set B
is self dominant if and only if Sn(B) = B or, equivalently, if and only if the node set

dominated by B is B itself.

2.2 Models of network structure

Erdős and Rényi (1960) were among the first to introduce a probabilistic generative

model for (undirected) networks. In their random graph model, each pair of nodes

has an i.i.d. probability of being connected by an edge. Since then, there has been

a great amount of work on the theoretical properties of their model. Unfortunately,

their model is not able to generate network properties that appear in real-world

networks such as heavy-tailed in-degrees and out-degrees, communities (or clusters),

densification power-law, and shrinking diameter.

Many recent network models build on the idea of preferential attachment (Barabási

and Albert, 1999; Albert and Barabási, 2002; Winick and Jamin, 2002; Kleinberg

et al., 1999; Kumar et al., 2000; Flaxman et al., 2006): a network is generated gree-

dily and at each iteration, a new node u joins the network, and creates a link to an

existing node v with the probability proportional to the degree of the node v. This

leads to a ”rich get richer” phenomena, and heavy-tailed degree distributions, but not

necessarily to communities, densification power-law and shrinking diameter. In order

to overcome this limitation, several variations of preferential attachment have been

proposed: the copying model (Kleinberg et al., 1999; Kumar et al., 2000), the ”winner
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does not take all model Pennock et al. (2002), the Community Guided Attachment

model (CGA) (Leskovec et al., 2005), the random surfer model Blum et al. (2006)

and the Forest Fire model Leskovec et al. (2005). Interestingly, the latter is able

to generate networks with heavy-tailed in-degrees and out-degrees, communities (or

clusters), densification power-law, and shrinking diameter.

However, there are also models that do not rely on preferential attachment, such as

the small-world model (Watts and Strogatz, 1998) and the Waxman generator (Wax-

man, 1988), which result in networks with small diameter and local clustering, and the

Kronecker Graph model (Leskovec et al., 2010), which are able to generate networks

with heavy-tailed in-degrees and out-degrees, communities (or clusters), densification

power-law, and shrinking diameter. Importantly, the Kronecker Graph model is ana-

lytically tractable and allows for a rigorous analysis, in contrast with models that

build on the idea of preferential attachment.

Throughout this thesis, we consider two models of directed real-world social and

information networks: the Forest Fire (scale free) model and the Kronecker Graph

model, which we briefly introduce next.

2.2.1 Forest Fire model

In this section, we provide a brief introduction to the Forest Fire model, and we refer

the reader to Leskovec et al. (2005) for a more extensive overview.

The Forest Fire model combines the intuition behind several older models, such as

the Community Guided Attachment model (CGA) and the copying model, to produce

synthetic networks that exhibit several properties that has been observed in real

networks. In particular, they satisfy the network properties mentioned above: heavy-

tailed in-degrees and out-degrees, communities (or clusters), densification power-law,

and shrinking diameter.

In the basic Forest Fire model, we need to set two parameters: a forward burning

probability p and a backward burning ratio r, whose roles we describe below. The

model generates a network greedily. The process starts with a single node network

G1. Then, at every iteration t, it adds a new node v to the network Gt and creates its
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out-links as follows:

1. Node v first chooses an ambassador node w uniformly at random and forms a

link to w.

2. Two random numbers, x and y, are drawn from geometric distributions with

means p/(1 − p) and rp/(1 − rp), respectively. Node v selects x out-links and

y in-links of w which are incident to nodes that have not yet been visited. Let

w1, w2, . . . , wx+y denotes the other ends of these selected links. If there are not

enough in- or out-links in the current network, v selects as many as it can.

3. We apply step (2) recursively to each of w1, w2, . . . , wx+y. As the process con-

tinues, nodes cannot be visited a second time, preventing the construction from

cycling.

A rigorous analysis of the Forest Fire model appears to be quite difficult. How-

ever, it has been shown experimentally to result in the desirable network properties

mentioned above (Leskovec et al., 2005). Interestingly, depending on the forward and

backward burning parameters, p and r, the model is capable of generating sparse or

dense networks with diameters that either increase or decrease, while also producing

heavy-tailed in- and out-degree distributions.

Throughout this dissertation, we use a more flexible extension of the Forest Fire

model which includes orphans and multiple ambassadors. Orphans are nodes with no

links. Nodes with multiple ambassadors can choose more than one ambassador with

some positive probability when generating their out- and in-links.

2.2.2 Kronecker Graph model

In this section, we provide a brief introduction to the Kronecker Graph model, and

we refer the reader to Leskovec et al. (2010) for a more extensive overview.

The Kronecker Graph model matches multiple properties of real networks: heavy-

tailed in-degrees and out-degrees, communities (or clusters), densification power-law,

and shrinking diameter, but at the same time it is analytically tractable and allows for

a rigorous analysis, in contrast with the Forest Fire model. The main intuition behind
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the model is to create self-similar graphs, recursively. We begin with an initiator

graph K1, with N1 nodes and E1 edges, and by recursion we produce successively

larger graphs K2, K3, . . . such that Nk = Nk
1 and Ek = Ek

1 . The Kronecker Graph

model achieves this by using Kronecker products between matrices.

Definition 1 (Kronecker product of matrices). Given two matrices An×m and

Bn′×m′, the Kronecker product matrix Cn·n′×m·m′ is given by:

C = A⊗B
.
=


a1,1B a1,2B . . . a1,mB

a2,1B a2,1B . . . a2,mB
...

...
. . .

...

an,1B an,1B . . . an,mB


The deterministic Kronecker Graph model proposes to produce a network by buil-

ding a growing sequence of matrices using the Kronecker product:

Definition 2 (Kronecker power). The kth power of K1 is defined as:

K
[k]
1 = Kk = K1 ⊗K1 ⊗ . . .⊗K1︸ ︷︷ ︸

k times

= Kk−1 ⊗K1

Definition 3 (Kronecker network). A Kronecker network of order k is defined by

the adjacency matrix K
[k]
1 , where K1 is the Kronecker initiator adjacency matrix.

For a number of reasons, discussed in Leskovec et al. (2010), it is desirable to

include stochasticity in the process. To this aim, the entries of the initiator matrix

are allowed to take values on the interval [0, 1] and each entry encodes the probability

of that particular edge appearing. Importantly, after applying the Kronecker power

to such initiator matrix, we obtain a larger stochastic adjacency matrix, where again

each entry of the large matrix gives the probability of that particular edge appearing in

a larger network. Such a stochastic adjacency matrix denes a probability distribution

over all networks. To obtain a network, an instance from this distribution by sampling

individual edges is drawn. This leads to the following definition:

Definition 4 (Stochastic Kronecker network). A Kronecker network of order k
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is defined by the adjacency matrix K
[k]
1 , where K1 is the Kronecker initiator adjacency

matrix.

Throughout this dissertation, we use the stochastic Kronecker network model.

Importantly, by varying the initiator matrix, we obtain different network topologies:

• Random networks (Erdős and Rényi, 1960), with initiator matrix [0.5, 0.5; 0.5, 0.5].

• Core-Periphery networks (Leskovec et al., 2008), with initiator matrix [0.9, 0.5; 0.5, 0.1].

• Networks with hierarchical community structure (Clauset et al., 2008), with

initiator matrix [0.9, 0.1; 0.1, 0.9]

2.3 General diffusion-theoretic concepts

In this section, we introduce basic diffusion-theoretic concepts that we will use through-

out this dissertation.

Contagion. Given a network G = (V , E), a contagion c is the item (be it in the form

of a disease, a piece of information, an idea or a behavior) which propagates through

the nodes in the network G. Any node u ∈ G may get activated, infected, or hit by

the contagion c at an activation (infection) time tcu. In an information propagation

setting, the activation time of a node (website) is simply the time when the node first

heard of or mentioned the piece of information. In epidemiology, it is the time when

the node (person) got infected by a virus or in marketing, it is the time when the

node (customer) purchased a product.

Given a directed network G = (V , E) and a contagion c, we define:

Source set and source node. The source set Sc ∈ G is the set of nodes that first

got activated by the contagion c. We assume that all nodes in the source set got

activated at the same activation time tc0. The source set may be composed of a single

source node.

Observation window. Given the activation time tc0 of the source(s) for the contagion

c, we define the observation window [tc0, t
c
0 + T c] as the time interval during which
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node activations are recorded. T c is called the observation window cut-off or time

horizon.

Transmission time. Assume node i got activated at time tci and then activates

node j at time tcj. The transmission time (tcj − tci) quantifies how long it took for the

contagion to spread from node i to node j.

Cascade. Given an observation window [tc0, t
c
0 + T c], a cascade tc = (tc1, . . . , t

c
|V|) is a

|V|-dimensional vector recording when each of the nodes in the network G got acti-

vated during the observation window. Symbol ∞ labels nodes that are not activated

by the contagion c during observation window – it does not imply that nodes are

never activated, except if T c →∞.

Given a network G = (V , E), we define:

Transmission rate. The transmission rate αi,j of an edge (i, j) ∈ E quantifies how

frequently any contagion spreads from node i to node j or, in other words, the latency

of the edge (i, j). We consider the transmission rate of every edge of the network G
to be positive and transmission rates between disconnected nodes to be zero: αi,j > 0

if (i, j) ∈ E , otherwise αi,j = 0.

Given a network G = (V , E) and a matrix of transmission rates A
.
= [αi,j] such

that αi,j > 0 if (i, j) ∈ E , we define:

Diffusion network. A diffusion network is the pair (G,A). In a diffusion network,

a contagion appears at some node(s) of the network and then spreads from node

to node over the edges of the network, following directed paths. In other words, a

diffusion network is a ‘skeleton’ for the spread of information, ideas, behaviors and

diseases.

Unweighted diffusion network. An unweighted diffusion network is a diffusion

network in which contagions spread at the same rate α across different edges. That

means, A
.
= [α].

Weighted diffusion network. A weighted diffusion network is a diffusion network

in which contagions spread at possibly different rates αi,j across different edges. In
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other words, they allow for temporally heterogeneous interactions within the network,

A
.
= [αi,j].

Pairwise transmission likelihood. The pairwise transmission likelihood f(tj|ti;αi,j)
of an edge (i, j) ∈ E is the conditional likelihood of transmission from node i, acti-

vated at time ti, to node j. The transmission likelihood depends on the activation

times (ti, tj) and the transmission rate αi,j. A node cannot be activated by another

node activated later in time. In other words, a node i that has been activated at a

time ti may activate a node j at a time tj only if ti < tj, otherwise f(tj|ti;αi,j) = 0.

In the remainder of this dissertation, for simplicity, we consider several paramet-

ric time shift invariant transmission likelihoods, which result in parametric pairwise

transmission models. We summarize them in Table 2.1.

In the power-law model, to have a bounded likelihood, we set δ as the minimum

allowed time difference. Power-law and exponential are monotonic models that have

been argued for in the literature (Barabási, 2005; Leskovec et al., 2007b; Malmgren

et al., 2008). Power-laws model activations with long-tails. The Rayleigh and Weibull

models are non-monotonic parametric models previously used in epidemiology (Ka-

plan, 1989; Wallinga and Teunis, 2004). They are well-adapted to modeling fads,

where transmission likelihood rises to a peak and then drops extremely rapidly. In all

four models, as αj,i → 0, the likelihood of transmission tends to zero. Rigorously, our

power-law model is a Pareto model. However, in the remainder of this dissertation,

for clarity of exposition, we will name it power-law.

Pairwise survival function. The survival function S(tj|ti;αi,j) of an edge (i, j) ∈ E
is the probability that node i, activated at time ti, does not cause node j to activate

by time tj:

S(tj|ti;αi,j) = 1− F (tj|ti;αi,j),

where F (tj|ti;αi,j) is the cumulative density function computed from the pairwise

transmission likelihood. The pairwise survival function for the pairwise transmission

models that we consider are simple, Table 2.1.

Hazard function. The hazard function, or instantaneous activation rate, of an edge
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Model
Transmission likelihood Log survival Hazard

f(ti|tj ;αj,i) logS(ti|tj ;αj,i) H(ti|tj ;αj,i)

Exponential

{
αj,i · e−αj,i(ti−tj)

0
if tj < ti
otherwise

−αj,i(ti − tj) αj,i

Power-law

{
αj,i

δ

(
ti−tj
δ

)−1−αj,i

0

if tj + δ < ti
otherwise

−αj,i log
(
ti−tj
δ

)
αj,i

1
ti−tj

Rayleigh

{
αj,i(ti − tj)e−

1
2αj,i(ti−tj)2

0

if tj < ti
otherwise

−αj,i (ti−tj)
2

2 αj,i(ti − tj)

Weibull

{
kαj,i(ti − tj)k−1e−αj,i(ti−tj)k

0

if tj < ti
otherwise

−αj,i(ti − tj)k kαj,i(ti − tj)k−1

Table 2.1: Pairwise transmission models

(i, j) ∈ E is the ratio

H(tj|ti;αi,j) = −S
′(tj|ti;αi,j)
S(tj|ti;αi,j)

=
f(tj|ti;αi,j)
S(tj|ti;αi,j)

.

The pairwise hazard function for the pairwise transmission models that we consider

are simple, Table 2.1.

Prior transmission probability. The prior transmission probability βi,j of an edge

(i, j) quantifies the probability that a contagion would eventually spread from node i

to node j for arbitrarily large tj. The prior transmission probability and the pairwise

survival function are related through the equation βi,j = limtj→T 1 − S(T |ti;αi,j),
where T is large.

Influence function. Given a source set S and a time horizon T , the influence

function σ(S;T ) is defined as the average total number of nodes in G infected up to

time T , i.e., σ(S;T ) = EN(S;T ).

2.4 Sets, functions and distributions

In this section, we introduce several types of sets, functions and distributions that we

will use throughout this dissertation.
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Convex set. A set C ⊆ Rn is convex if, for any x1, x2 ∈ C and any t ∈ [0, 1], the

point (1− t)x1 + tx2 ∈ C.

Convex and concave function. A real valued function f : Rn → R is called convex

if its domain is a convex set and for any x1, x2 ∈ domf and any t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

A function f is concave if −f is convex.

Log-convex and log-concave function. A non-negative function f : Rn → R+ is

log-convex if its domain is a convex set and for any x1, x2 ∈ domf and any θ ∈ [0, 1],

log f(θx1 + (1− θ)x2) ≤ θ log f(x1) + (1− θ) log f(x2).

Similarly, a non-negative function f is log-concave if its domain is a convex set and

for any x1, x2 ∈ domf and any θ ∈ [0, 1],

log f(θx1 + (1− θ)x2) ≥ θ log f(x1) + (1− θ) log f(x2).

Finite set. A set W is called finite if there exists a bijection f : W → {1, . . . , n}
for some natural number n. The number n is called the cardinality of the set, and is

denoted |W|.

Submodular function. A set function f : 2W → R mapping subsets of a finite set

W to the real numbers is submodular if whenever A ⊆ B ⊆ W and s ∈ W \ B, it

holds that

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B),

or, in words, adding s to the set A provides a bigger marginal gain than adding s to

the set B.

Heavy-tailed distributions. Heavy-tailed distributions are probability distribu-

tions whose tails are not exponentially bounded (Asmussen, 2003), i.e., they have

heavier tails than the exponential distribution. Mathematically, a random variable
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X with cumulative distribution function F (X) is said to have a heavy right tail if:

lim
x→∞

eλx(1− F (X)) =∞,∀λ > 0.

Heavy-tailed distributions coincides with social, scientific, geophysical, actuarial, and

many other types of observable phenomena (Ijiri and Simon, 1975; Seal, 1980; Falout-

sos et al., 1999; Reed and Jorgensen, 2004; Schroeder et al., 2010). Throughout this

dissertation, we use two types of heavy-tailed distributions, power-law and Weibull,

to model pairwise interactions between nodes in a diffusion network, Table 2.1.

Phase-type distribution. A phase-type distribution is a probability distribution

that results from a system of one or more inter-related Poisson processes occurring

in sequence. Given any phase-type distribution, we can always find at least one (or

more) Markov process(es) with one absorbing state in which the time until absorption

follows such distribution. The cumulative distribution F (x) and density function f(x)

of a phase-type distribution can be expressed as:

f(x) = [10]′eBxS0 and F (x) = 1− [10]′eBx1,

where Q = [BB0; 0′ 0] is the generator matrix of a Markov process, B0 = −B1,

where 1 denotes an all 1’s column vector and 0 an all 0’s column vector and the

matrix B results from removing the column and row associated to the last state of

the underlying Markov process from Q. We can compute the mean as:

E(X) = −[10]′S−11.

2.5 Real data

2.5.1 Memes and hyperlinks

We trace information spread on the Web using two types of contagions: memes

and hyperlinks. A meme is a short unit text, a short distinctive phrase, a unit of
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information, or more generally an idea. Here, the collection of distinctive phrases that

will act as tracers for memes are the set of quoted phrases and sentences that we find in

articles, often attributed to individuals. Memes act as signatures of topics and events

which propagate and diffuse over the web. We refer the reader to Leskovec et al. (2009)

for a more extensive overview on memes on the context of information diffusion over

the Web. Hyperlinks are used by blog or news sites to refer to other posts published

by other sites. Therefore, we can consider them as events of information transmission.

For each type of contagion, we develop a different methodology:

1. Hyperlink-based cascades We use hyperlinks between blog posts to trace the

flow of information (Leskovec et al., 2007b). When a blog publishes a piece

of information and uses hyper-links to refer to other posts published by other

blogs we consider this as events of information transmission. A cascade tc starts

when a blog publishes a post P and the information propagates recursively to

other blogs by them linking to the original post or one of the other posts. By

following the chains of hyperlinks in the reverse direction we identify hyperlink

cascades (Leskovec et al., 2007b). A cascade is thus composed of the time-

stamps of the hyperlink/post creation times.

2. Meme-based cascades We use the MemeTracker (Leskovec et al., 2009) metho-

dology to extract short textual phrases or memes (like, “Joe, the plumber”

or “lipstick on a pig”). We then consider each textual phrases as a separate

cascade tc. Since all documents are time stamped, a cascade tc is simply a set

of time-stamps when blogs first mentioned phrase c. So, we observe the times

when blogs mention particular phrases but not where they copied or obtained

the phrases from. Note that cascades in general do not spread over all the sites,

which our methodology can successfully handle.

Figure 2.1 further illustrates the concept of hyperlink and meme cascades.

2.5.2 MemeTracker dataset (2008/09/01 → 2009/08/31)

The original MemeTracker dataset contains more than 172 million news articles and

blog posts from 1 million online sources over a period of one year from September 1
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Figure 2.1: Hyperlink-based cascades versus meme-based cascades. In hyper-link
cascades, if post j linked to post k, we consider this as a contagion transmission
event with the post creation time as the corresponding infection time. In meme
cascades, we follow the spread of a short textual phrase and use post creation times
as infection times.

2008 till August 31 20091.

In this dataset, we trace the flow of information using memes and hyperlinks.

We use the MemeTracker (Leskovec et al., 2009) methodology to extract more than

343 million short textual phrases or memes. Out of these, 8 million distinct phrases

appeared more than 10 times, with the cumulative number of mentions of over 150

million. We refer the reader to Leskovec et al. (2009) for extensive overview and

statistics on the original MemeTracker dataset.

2.5.3 Topic-based dataset (2011/03/01 → 2012/02/28)

The topic-based MemeTracker dataset contains more than 300 million news articles

and blog posts from 3.3 million online sources over a period of one year, from March

2011 till February 20122.

1Data available at http://memetracker.org
2Data available at the http://snap.stanford.edu/infopath/

http://memetracker.org
http://snap.stanford.edu/infopath/


CHAPTER 2. BACKGROUND AND BASIC CONCEPTS 22

Table 2.2: Topic and news world event statistics

Topic or news event # sites # recorded cascades

Amy Winehouse 1,207 109,650

Fukushima 1,666 383,745

Gaddafi 1,358 440,646

Kate Middleton 1,427 191,777

NBA 2,087 1,543,630

Occupy 1,875 655,183

Strauss-Kahn 1,263 204,238

Syria 1,565 615,176

In this dataset, we also trace the flow of information using memes and hyperlinks.

We used the MemeTracker (Leskovec et al., 2009) methodology to extract more than

179 million memes, longer than four words. Out of these, 34 million distinct memes

appeared at least twice.

In contrast with the original MemeTracker dataset, described in the previous

section, we assume we are also given a keyword query Q related to the event/topic of

interest. When inferring a network for a given query Q, we only consider documents

(and the memes they mention) that include keywords Q. Then, we build information

cascades using only those memes and apply our algorithm to infer the edges and

evolving edge transmission rates. The edge transmission rates explain the propagation

of information related to a given topic or real world event Q. For each query Q we

infer one network per day. Table 2.2 lists the number of sites and meme cascades for

several topics and real world events that we used in Section 5.3.5. A comprehensive

complete list for 38 different topics and real world events can be found at at the

supporting website (InfoPath, 2013).
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2.6 Table of symbols

Table 2.3 lists symbols which denote general network- and diffusion-theoretic concepts

throughout this dissertation. Additionally, in every chapter, a chapter-specific table

of symbols is included. A comprehensive complete list of symbols is included in the

Appendix A.

Symbol Description

G(V , E) Directed network with node set V and edge set E
A Pairwise transmission rates for all pair of nodes (i, j)
(G,A) Diffusion network: directed network G and transmission rates A
αi,j Pairwise transmission rate of edge (i, j)
c Contagion
tc Cascade: activation times for contagion c
C Set of all recorded cascades
tci Activation time of node i in cascade tc

T c Observation window cut-off or time horizon for cascade tc

f(tj|ti, αi,j) Pairwise transmission likelihood of edge (i, j)
F (tj|ti, αi,j) Cumulative density function of edge (i, j)
S(tj|ti;αi,j) Survival function of edge (i, j)
H(tj|ti;αi,j) Hazard function, or instantaneous activation rate, of edge (i, j)

Table 2.3: Table of symbols for general network- and diffusion-theoretic concepts.



Chapter 3

Survey of related work

3.1 Inference of diffusion networks

In recent years, information diffusion in on-line settings has received considerable

attention (Gruhl et al., 2004; Kumar et al., 2004; Adar and Adamic, 2005; Leskovec

et al., 2006a,b, 2007b; Liben-Nowell and Kleinberg, 2008), only a few studies were

able to study the actual shapes of cascades (Leskovec et al., 2007b; Liben-Nowell and

Kleinberg, 2008; Ghosh and Lerman, 2011; Romero et al., 2011b; Ver Steeg et al.,

2011). The problem of inferring links of diffusion was first studied by Adar and

Adamic (Adar and Adamic, 2005), who formulated it as a supervised classification

problem and used Support Vector Machines combined with rich textual features to

predict the occurrence of individual links. Although rich textual features are used,

links are predicted independently and thus their approach is similar to the baseline

method we introduced in Section 4.3.2 in the sense that it picks a threshold (i.e.,

hyperplane in case of SVMs) and predicts individually the most probable links.

More recently, several diffusion network inference algorithms from cascade data,

more closely related to our work, have been proposed (Saito et al., 2009; Myers and

Leskovec, 2010; Saito et al., 2011; Snowsill et al., 2011; Netrapalli and Sanghavi, 2012;

Wang et al., 2012; Du et al., 2012; Fyson et al., 2012). Some approaches consider un-

weighted networks, and infer only the network structure (Snowsill et al., 2011), while

others consider weighted networks, and they do not only infer the network structure

24
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but also the strength or the average latency of every edge in the network (Saito et al.,

2009; Myers and Leskovec, 2010; Wang et al., 2012; Du et al., 2012). Some of the ap-

proaches use submodular optimization (Gomez-Rodriguez et al., 2010), while others

use convex optimization (Myers and Leskovec, 2010; Wang et al., 2012; Du et al.,

2012) or expectation maximization (Saito et al., 2009, 2011). Most of the approaches

use only temporal information while a few methods (Netrapalli and Sanghavi, 2012;

Wang et al., 2012) consider both temporal information and additional non temporal

features. Moreover, there have been also attempts to model information diffusion

without assuming the existence of an underlying network (Yang and Leskovec, 2010,

2011; Bießmann et al., 2012).

Network structure learning has been also considered for estimating the dependency

structure of probabilistic graphical models (Friedman and Koller, 2003; Friedman

et al., 1999). However, there are fundamental differences between diffusion network

inference and graphical models structure learning. First, diffusion network inference

methods typically make no assumptions about the network structure (they allow

cycles, reciprocal edges) and are thus able to learn general directed networks. In

directed graphical models, reciprocal edges and cycles are not allowed, and the inferred

network is a directed acyclic graph (DAG). In undirected graphical models, there

are typically no assumptions about the network structure, but the inferred network

is undirected. Second, Bayesian network structure inference methods are generally

heuristic approaches without any approximation guarantees. Network structure lear-

ning has also been used for estimating epidemiological networks (Wallinga and Teunis,

2004) and for estimating probabilistic relational models (Getoor et al., 2003). In both

cases, the problem is formulated in a probabilistic framework. However, since the

problem is intractable, heuristic greedy hill-climbing or stochastic search that offer

no performance guarantee were usually used in practice. In contrast, some diffu-

sion network inference algorithms, including our work in Chapters 4 and 5, provide

tractable solutions together with theoretical guarantees.

Diffusion network inference relates to static sparse graph estimation using graphi-

cal Lasso methods (Wainwright et al., 2006; Schmidt et al., 2007; Friedman et al.,

2008; Meinshausen and Buehlmann, 2006), unsupervised structure network inference
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using kernel methods (Lippert et al., 2009), mutual information relevance network

inference (Butte and Kohane, 2000), inference of influence probabilities (Goyal et al.,

2010a), and extensions to time evolving graphical models (Ahmed and Xing, 2009;

Ghahramani, 1998; Song et al., 2009). It is also related to a link prediction pro-

blem (Jansen et al., 2003; Taskar et al., 2003; Liben-Nowell and Kleinberg, 2003;

Backstrom and Leskovec, 2011a; Vert and Yamanishi, 2005) but different in a sense

that this line of work assumes that part of the network is already visible to us.

Last, although submodular function maximization has been previously considered

for sensor placement (Leskovec et al., 2007a) and finding influencers in viral marke-

ting (Kempe et al., 2003), to the best of our knowledge, NetInf and Multitree,

which we describe in Chapter 4, are among the first that consider submodular function

maximization in the context of network structure learning.

3.2 Influence maximization in diffusion networks

Richardson and Domingos (2002) were the first to study influence maximization as

an algorithmic problem, motivated by marketing applications. In their work, they

proposed heuristics for choosing a set of influential customers with a large overall effect

on a network, and methods to infer the influence of each customer were developed.

Kempe, Kleinberg and Tardos (Kempe et al., 2003) posed influence maximiza-

tion in a social network as a discrete optimization problem. They showed that the

optimal solution is NP-hard for several models of influence, and obtained the first

provable approximation guarantees for efficient algorithms based on a natural dimi-

nishing property of the problem, submodularity.

Since then there have been substantial developments that build on their seminal

work. Efficient influence maximization that uses heuristics to speed up the optimiza-

tion problem has been proposed (Chen et al., 2010, 2009) and influence maximization

on the context of competing cascades (Bharathi et al., 2007; Budak et al., 2011; Carnes

et al., 2007) or when negative opinions emerge (Chen et al., 2011) has been studied.

Influence maximization has also been considered under additional constraints (Goyal
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et al., 2010b). It has been shown that minimizing the amount of available time (ite-

rations) for the spread of influence or setting a coverage threshold on the number of

influenced nodes also leads to discrete optimization problems with NP-hard optimal

solutions. Recently, influence maximization has been studied in the context of game

theory by introducing influence games (Irfan and Ortiz, 2011).

However, to the best of our knowledge, previous work on influence maximization

has ignored the underlying temporal dynamics governing diffusion networks – once a

transmission occurs, it always occurs at the same rate or temporal scale. In contrast,

in our work (Chapter 6), we consider heterogeneous pairwise transmission rates since

this is a key point in many real-world examples. In information propagation, news

media sites and professional bloggers typically report news faster than people that

maintain personal blogs. In epidemiology, people meet each other with different

frequencies and then the pairwise transmission rates between individuals within a

population differ. Finally, in viral marketing, some customers make up their minds

about a product or service quicker than others, and then pass recommendations on

to other customers at different rates.



Chapter 4

Inference of unweighted diffusion

networks

4.1 Introduction

This chapter presents NetInf and Multitree, two methods for inferring static

unweighted diffusion networks based on observed activations (Gomez-Rodriguez et al.,

2010, 2012; Gomez-Rodriguez and Schölkopf, 2012c). To do so, we construct a pro-

babilistic model incorporating some basic assumptions about the temporal structures

that generate diffusion processes over unweighted networks. The assumptions are as

follows:

A. activations are binary, i.e., a node is either activated or it is not; we do not model

partial activations or the partial propagation of information;

B. activations along edges of the network occur independently of each other;

C. information propagates through the network due only to diffusion, while ignoring

any external sources;

D. cascades propagates independently of each other;

E. a node gets activated only by action of one parent; cascades of activations map

to directed trees;

28
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F. activation along edges of the network occur at the same activation rate; and,

G. we observe all activations occurring in the network during an arbitrarily large

observation time window.

Assumptions (A-D) are common to our approach to inferring weighted diffusion net-

works in Chapter 5. However, assumptions (E-G) differ. Our aim is to infer the

connectivity of the network after observing the times at which nodes in the network

become activated.

In more detail, we formulate a generative probabilistic model in which, on a fixed

hypothetical network, contagions spread as directed trees through the network. The

model considers the information which propagates through the network due only to

diffusion, while ignoring any external sources (Myers et al., 2012). Since we only

observe the times when nodes are reached by a diffusion process, there are many

possible propagation trees that explain a set of cascades. In order to infer the net-

work we have to consider all possible ways of the contagion spreading through the

network. Unfortunately, naive computation of the model takes exponential time since

there is a combinatorially large number of propagation trees. We show that, perhaps

surprisingly, computations over this super-exponential set of trees can be performed

in quadratic time. We then propose two methods based on different approximations:

NetInf and Multitree. Both methods rely on submodularity to find a near-

optimal network with provable guarantees that best explain the observed cascades.

Lazy evaluation (Leskovec et al., 2007a) and the local structure of the problem can

be used to speed-up our method.

Our results on synthetic datasets show that we can reliably infer an unweighted

network, regardless of the overall network structure. Validation on synthetic datasets

shows that NetInf and Multitree outperforms a baseline heuristic by an order of

magnitude and correctly discovers more than 90% of the edges. Moreover, Multi-

tree outperforms NetInf when the number of observed cascades is small compared

to the network size. We apply our algorithms to a real Web information propagation

dataset of 170 million blog and news articles over a one year period. Our results show

that online news propagation networks tend to have a core-periphery structure with
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Figure 4.1: We observe a set of cascades (right) within an unknown unweighted
diffusion network (left). For each contagion c, we observe the times in which nodes
get infected but not who infected whom. Our goal is to infer the network G based on
the observed cascades.

a small set of core blog and news media websites that diffuse information to the rest

of the Web, news media websites tend to diffuse the news faster than blogs and blogs

keep discussing about news longer time than media websites.

The remainder of the chapter is organized as follows: in Section 4.2, we describe

our continuous time model of diffusion over unweighted networks and state the un-

weighted network inference problem. In Sections 4.3 and 4.4, we present two efficient

inference algorithms for unweighted static network, NetInf and Multitree, and

evaluate them on synthetic and real diffusion data. We conclude with a summary of

our results in Section 4.5.

4.2 Problem formulation

In this section, we first describe the diffusion data our inference algorithms for un-

weighted diffusion networks are designed for and continue describing the generative

model of diffusion. We conclude with a statement of the unweighted network inference

problem.
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G

Figure 4.2: Panel (a) shows a cascade tc = {t1, . . . , t5} on network G, where ti−1 < ti.
Panel (b) shows all connected spanning trees induced by cascade tc on G, i.e., all
possible ways in which a diffusion process spreading over G can create the cascade.

4.2.1 Data

We observe multiple waves of contagions that propagate on a fixed population of N

nodes. As the contagion spreads from activated to non-activated nodes it creates a

cascade. For each contagion c, we observe a cascade tc, which is simply a record of

observed node activation times. In an information propagation setting, each cascade

corresponds to a different piece of information and the activation time of a node is

simply the time when the node first heard of or mentioned the piece of information.

We record a set C of cascades {t1, . . . , t|C|}. A cascade tc = (tc1, . . . , t
c
N) is an N -

dimensional vector recording when each of N nodes got activated by the contagion c

during a time interval of length arbitrarily large, T c →∞. Thus, tck ∈ [t0,∞)∪{∞},
where t0 is the activation time of the first node. Symbol ∞ labels nodes that are

not activated by the contagion c. We assume contagions spread at the same rate α

over different edges of the underlying unobserved network G. Thus, we consider the

network to be unweighted. Contagions often propagate simultaneously (Myers and

Leskovec, 2012; Prakash et al., 2012b) over the same network but we assume each

contagion to propagate independently of each other. We illustrate this process in

Figure 4.1.

Given a set of node activation times of many different contagions, our goal is to
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Symbol Description

G(V , E) Directed network with node set V and edge set E
A = [α] Pairwise transmission rates for all pair of nodes (i, j)
(G,A) Diffusion network: directed network G and transmission rates A
αi,j = α Pairwise transmission rate of edge (i, j)
βi,j = β Prior transmission probability of edge (i, j)
f(tj|ti, α) Pairwise transmission likelihood of edge (i, j)
c Contagion
tc Cascade: activation times for contagion c
C Set of all recorded cascades
tci Activation time of node i in cascade tc

T c =∞ Observation window cut-off or time horizon for cascade tc

Eε Set of ε-edges, E ∩ Eε = ∅ and E ∪ Eε = V × V
Tc(G) Set of all possible propagation trees of cascade tc on network G
T = (VT , ET ) Cascade propagation tree, T ∈ Tc(G)
VT Node set of T , VT = {i | i ∈ Vand tc[i] <∞}
ET Edge set of T , ET ⊆ E ∪ Eε

Table 4.1: Table of symbols for Chapter 4.

discover the unknown, unobserved network G over which cascades originally propa-

gated. Importantly, the time-stamps assigned to nodes in each cascade induce the

structure of a directed acyclic graph (DAG) on the network (which is not acyclic in

general). Thus, it is meaningful to refer to parents and children within a cascade, but

not on the network. The DAG structure dramatically simplifies the computational

complexity of the inference problem.

4.2.2 Pairwise interactions

We describe the pairwise interactions between nodes using three concepts: pairwise

transmission rates αi,j, prior probabilities of transmission βi,j, and pairwise trans-

mission likelihoods f(ti|tj, αi,j). The transmission rate αi,j of an edge (i, j) ∈ E
quantifies how frequently any contagion spreads from node i to node j or, in other

words, the latency of the edge (i, j). The prior transmission probability βi,j of an

edge (i, j) quantifies the probability that a contagion would eventually spread from

node i to node j for arbitrarily large tj. Finally, the pairwise transmission likelihood
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f(tj|ti;αi,j) of an edge (i, j) ∈ E is the conditional likelihood of transmission from

node i, activated at time ti, to node j. We refer the reader to Section 2.3 for an

in-depth discussion of all three concepts. Now, we highlight the key assumptions on

the pairwise interactions of our model of diffusion over unweighted networks:

First, since we assume networks to be unweighted, we consider activations to occur

at the same rate over different edges of a network. That means, αj,i = α for every

edge (i, j) ∈ E .

Second, for any contagion c, we observe activations up to an arbitrarily large time

horizon T c →∞. Then, we need to assume the prior probability of transmission βi,j

to be typically smaller than 1. Otherwise, given a node i, activated at ti, and an edge

(i, j), we would always observe node j to get infected at some (arbitrarily large) time

tj. This contrasts with our approach to diffusion over weighted networks in Section 5,

where we consider finite time horizons T c <∞.

Third, the transmission likelihood for every edge (i, j) depends on the activation

times (ti, tj) and a unique transmission rate α. The shape of the conditional likeli-

hood of transmission may depend on the particular setting (information, influence,

diseases, etc.) in which propagation takes place. In some scenarios, it may be possi-

ble to estimate a non-parametric likelihood while in others, expert knowledge may

be used to decide upon a parametric model. For simplicity, we consider well-known

parametric models used previously in the literature (refer to Table 2.1). However, our

approach to inference of unweighted networks allows for the transmission likelihood

to be arbitrarily complicated and only requires f(tj|ti; ·) = 0 for ti > tj.

4.2.3 Likelihood of a cascade for a given tree

We assume that contagions propagate as directed trees, i.e., a node gets activated by

action of a single node or parent. Then, for a given tree T and cascade tc, we can

compute the likelihood of the cascade given the tree as follows:

f(tc|T ) =
∏

(i,j)∈ET

f(tj|ti;α), (4.1)



CHAPTER 4. INFERENCE OF UNWEIGHTED DIFFUSION NETWORKS 34

where ET is the edge set of tree T . Considering a specific tree T for a cascade tc

means to set which edges have spread successfully the information. Therefore, given

the tree T , we can compute the likelihood of the activation times of the nodes in the

cascade tc by using simply the pairwise transmission likelihood of each edge of the

tree.

4.2.4 Probability of a tree in a given network

In order to compute the likelihood of a cascade tc for a given tree T , we have con-

sidered the tree T to be given. We now compute the probability of a tree T in a

network G as follows:

P (T |G) =
∏

(i,j)∈ET

β
∏

u∈VT ,(u,x)∈E\ET

(1− β) = βq(1− β)r, (4.2)

where VT is the vertex set of tree T , ET is the edge set of tree T , E is the edge set of the

network G, q = |ET | = |VT |− 1 is the number of edges in T and counts the edges over

which the diffusion process successfully propagated, and r counts the number of edges

that did not activate and failed to transmit the contagion: r =
∑

u∈VT dout(u)−q, and

dout(u) is the out-degree of node u in graph G. For a particular cascade tc and tree

T , VT is the set of nodes whose activation times ti <∞. The first product accounts

for the active edges in G, i.e., edges that define the tree T , and the second product

accounts for the inactive edges in G, i.e., edges where the contagion did not spread.

4.2.5 Likelihood of a cascade in a given network

Now, for a cascade tc, we consider all possible propagation trees T that are supported

by the network G, i.e., all possible ways in which a diffusion process spreading over

G can create cascade tc:

f(tc|G) =
∑
T ∈Tc(G)

f(tc|T )P (T |G), (4.3)
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where Tc(G) is the set of all the directed connected spanning trees on the subnetwork

of G induced by the nodes that got activated in cascade tc, i.e., ti ∈ tc : ti < ∞.

Figure 4.2 illustrates the notion of a cascade and all the connected spanning trees T
induced by its nodes.

Now, assuming conditional independence between cascades given the network G,

we compute the joint likelihood of a set of cascades C occurring in the network G as

follows:

f(t1, . . . , t|C||G) =
∏
tc∈C

f(tc|G). (4.4)

Importantly, the likelihood of a cascade tc under our diffusion model for weighted

networks, given by Eq. 5.8, relates to likelihood under our diffusion model for un-

weighted networks, given by Eq. 4.3, by considering arbitrarily large time horizons

T c and equal transmission rates αi,j = α. We refer the reader to Section 5.2.5 for

further details on the actual relationship.

4.2.6 The unweighted network inference problem

Given a set of cascades C = {t1, . . . , tN}, a prior probability of transmission β and a

pairwise transmission likelihood f(tv|tu;α), we aim to find the network Ĝ such that

Ĝ = argmax
|G|≤k

f(t1, . . . , tN |G), (4.5)

where the maximization is over all directed networks G of at most k edges. We

include the constraint on the number of edges in Ĝ simply because we seek for a

sparse solution, since real networks are sparse. We discuss how to choose k in further

sections of the chapter.
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4.3 NetInf

4.3.1 Algorithm

At first, the optimization problem in Eq. 4.5 seems wildly intractable. We now

propose an alternative formulation of the problem that is tractable both to compute

and also to optimize. We use the same tree cascade formation model as in the previous

section. However, we compute an approximation of the likelihood of a single cascade

by considering only the most likely tree instead of all possible propagation trees.

We show that this approximate likelihood is tractable to compute. Moreover, we

also devise an algorithm that provably finds networks with near optimal approximate

likelihood. In the remainder of this section, we informally write likelihood and log-

likelihood even though they are approximations. However, all approximations are

clearly indicated.

First we introduce the concept of ε-edges to account for the fact that nodes may

get activated for reasons other than the network influence. For example, in online

media, not all the information propagates via the network, as some is also pushed

onto the network by the mass media (Katz and Lazarsfeld, 1955; Watts and Dodds,

2007) and thus a disconnected cascade can be created. Similarly, in viral marketing,

a person may purchase a product due to the influence of peers (i.e., network effect)

or for some other reason (e.g., seing a commercial on TV) (Leskovec et al., 2006a).

Modeling external influence via ε-edges

To account for such phenomena when a cascade “jumps” across the network we can

think of creating an additional node x that represents an external influence and can

activate any other node u with small probability. We then connect the external

influence node x to every other node u with an ε-edge. And then every node u can

get activated by the external source x with a very small probability ε. For example,

in case of information diffusion in the blogosphere, such a node x could model the

effect of blogs getting activated by the mainstream media.

However, if we were to adopt this approach and insert an additional external
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influence node x into our data, we would also need to infer the edges pointing out of

x, which would make our problem even harder. Thus, in order to capture the effect

of external influence, we introduce a concept of ε-edge. If there is not a network edge

between a node i and a node j in the network, we add an ε-edge and then node i can

activate node j with a small probability ε. Even though adding ε-edges makes our

network G a clique (i.e., the union of network edges and ε-edges creates a clique), the

ε-edges play the role of external influence node. It is important to remark that adding

ε-edges results in a tradeoff between false positives and false negatives when detecting

cascades. The higher the value of ε, the larger the number of nodes that are assumed

to be activated by an external source. We will study this tradeoff experimentally in

Section 4.3.2.

Thus, we now think of network G as a fully connected network of two disjoint

sets of edges, the network edge set E and the ε-edge set Eε, i.e., E ∩ Eε = ∅ and

E ∪ Eε = V × V .

Now, any cascade propagation tree T is a combination of network and ε-edges.

As we model the external influence via the ε-edges, the probability of a tree (i.e., the

analog of Eq. 4.2) can now be computed as products of edge-types:

P (T |G) = βq εq
′

(1− β)s (1− ε)s′ ≈ βq εq
′

(1− ε)s+s′ , (4.6)

where q is the number of network edges in T (type (a) edges in Fig. 4.3(b)), q′ is the

number of ε-edges in T , s is the number of network edges that did not transmit and

s′ is the number of ε-edges that did not transmit. Note that the above approximation

is valid since real networks are sparse and cascades are generally small, and hence

s′ � s. Thus, even though β � ε we expect (1 − β)s to be of about same order of

magnitude as (1− ε)s′ .
Note that above we distinguish four type of edges: network and ε-edges that

participated in the diffusion of the contagion and network and ε-edges that did not

participate in the diffusion.

Figure 4.3 further illustrates this concept. First, Figure 4.3(a) shows an example

of a network G on five nodes and four network edges E (solid lines), and any other
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(a) Network G on five vertices and four
network edges (solid edges). ε-edges
shown as dashed lines.

(b) Cascade propagation tree T =
{(a, b), (b, c), (b, d)}

Figure 4.3: (a) Network G: Network edges E are shown as solid, and ε-edges are
shown as dashed lines. (b) Propagation tree T = {(a, b), (b, c), (b, d)}. Four types
of edges are labeled: (i) network edges that transmitted the contagion (solid bold),
(ii) ε-edges that transmitted the contagion (dashed bold), (iii) network edges that
failed to transmit the contagion (solid), and (iv) ε-edges that failed to transmit the
contagion (dashed).

possible edge is the ε-edge (dashed lines). Then, Figure 4.3(b) shows an example of a

propagation tree T = {(a, b), (b, c), (b, d)} in network G. We only show the edges that

play a role in Eq. 4.6 and label them with four different types: (a) network edges that

transmitted the contagion, (b) ε-edges that transmitted the contagion, (c) network

edges that failed to transmit the contagion, and (d) ε-edges that failed to transmit

the contagion.

We can now rewrite the likelihood of a cascade in a given network f(tc|G) by

combining Eq. 4.1 and Eq. 4.6:

f(tc|G) ≈
∏

(i,j)∈ET

βq εq
′

(1− ε)s+s′f(tj|ti;α) =
∏

(i,j)∈ET

f ′(tj|ti;α, β, ε), (4.7)

where we introduce f ′(tj|ti;α, β, ε) = βq εq
′

(1 − ε)s+s
′
f(tj|ti;α) for mathematical
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convenience.

The formulation in Equation 4.7 has several benefits. Due to the introduction of

ε-edges the likelihood f(tc|T ) is always positive. For example, even if we consider

network G with no edges, f(tc|T ) is still well defined as we can explain the tree T
via the diffusion over the ε-edges. A second benefit that will become very useful later

is that the likelihood now becomes monotonic in the network edges of G. This means

that adding an edge to G (i.e., converting ε-edge into a network edge) only increases

the likelihood.

Considering only the most likely propagation tree

So far we introduced the concept of ε-edges to model the external influence or diffusion

that is exogenous to the network, and introduce an approximation to treat all edges

that did not participate in the diffusion as ε-edges.

Now we consider the last approximation, where instead of considering all possible

cascade propagation trees T , we only consider the most likely cascade propagation

trees T :

f(t1, . . . , t|C||G) ≈
∏
c∈C

max
T∈Tc(G)

∏
(i,j)∈ET

f ′(tj|ti;α, β, ε) (4.8)

Thus now we aim to solve the network inference problem by finding a network G

that maximizes Equation 4.8.

This formulation simplifies the original network inference problem by considering

the most likely (best) propagation tree T per cascade tc instead of considering all

possible propagation trees T for each cascade c. Although in some cases we expect

the likelihood of tc with respect to the true tree T ′ to be much higher than that with

respect to any competing tree T ′′ and thus the probability mass will be concentrated

at T ′, there might be some cases in which the probability mass does not concentrate

on one particular T . However, we run extensive experiments on small networks with

different structures in which both the original network inference problem and the

alternative formulation can be solved using exhaustive search. Our experimental
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results looked really similar and the results were indistinguishable. Therefore, we

consider our approximation to work well in practice.

For convenience, we work with the log-likelihood log f(tc|G) rather than likelihood

f(tc|G). Moreover, instead of directly maximizing the log-likelihood we equivalen-

tly maximize the following objective function that defines the improvement of log-

likelihood for cascade tc occurring in network G over tc occurring in an empty network

K̄ (i.e., network with only ε-edges and no network edges):

F (tc|G) = max
T∈Tc(G)

log f ′(tj|ti;α, β, ε)− max
T∈Tc(K̄)

log f ′(tj|ti;α, β, ε). (4.9)

Maximizing Eq. (4.8) is equivalent to maximizing the following log-likelihood func-

tion:

F (C|G) = F (t1, . . . , t|C||G) =
∑
c∈C

F (tc|G). (4.10)

We now expand Eq. (4.9) and obtain an instance of a simplified diffusion network

inference problem:

Ĝ = arg max
G

F (C|G) =
∑
c∈C

max
T∈Tc(G)

∑
(i,j)∈ET

logwc(i, j), (4.11)

where wc(i, j) = ε−1f ′(tj|ti;α, β, ε) is a non-negative weight which can be interpreted

as the improvement in log-likelihood of edge (i, j) under the most likely propagation

tree T in G. Note that by the approximation in Equation 4.7 one can ignore the

contribution of edges that did not participate in a particular cascade tc. The con-

tribution of these edges is constant, i.e., independent of the particular shape that

propagation tree T takes. This is due to the fact that each spanning tree T of G
with node set VT has |VT | − 1 (network and ε-) edges that participated in the cas-

cade, and all remaining edges stopped the cascade from spreading. The number of

non-spreading edges depends only on the node set VT but not the edge set ET . Thus,

the tree T that maximizes f(tc|G) also maximizes
∑

(i,j)∈ET logwc(i, j).

Since T is a tree that maximizes the sum of the edge weights this means that the

most likely propagation tree T is simply the maximum weight directed spanning tree

of nodes VT , where each edge (i, j) has weight logwc(i, j), and F (tc|G) is simply the
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sum of the weights of edges in T .

We also observe that since edges (i, j) where ti ≥ tj have weight 0 (i.e., such edges

are not present) then the outgoing edges of any node u only point forward in time,

i.e., a node can not activate already activated nodes. Thus for a fixed cascade c, the

collection of edges with positive weight forms a directed acyclic network or directed

acyclic graph (DAG).

Now we use the fact that the collection of edges with positive weights forms a

directed acyclic graph by observing that the maximum weight directed spanning tree

of a DAG can be computed efficiently:

Proposition 1. In a DAG D(V , E , w) with vertex set V and nonnegative edge weights

w, the maximum weight directed spanning tree can be found by choosing, for each node

v, an incoming edge (u, v) with maximum weight w(u, v).

Proof. The score

S(T ) =
∑

(i,j)∈T

w(i, j) =
∑
i∈V

w(ParT (i), i)

of a tree T is the sum of the incoming edge weights w(ParT (i), i) for each node i,

where ParT (i) is the parent of node i in T (and the root is handled appropriately).

Now,

max
T

S(T ) = max
T

∑
(i,j)∈T

w(i, j) =
∑
i∈V

max
ParT (i)

w(ParT (i), i).

Latter equality follows from the fact that since G is a DAG, the maximization can

be done independently for each node without creating any cycles.

This proposition is a special case of the more general maximum spanning tree

(MST) problem in directed networks (Edmonds, 1967). The important fact now is

that we can find the best propagation tree T in time O(|VT |Din), i.e., linear in the

number of edges and the maximum in-degree Din = maxu∈VT din(u) by simply select-

ing an incoming edge of highest weight for each node u ∈ VT . Algorithm 1 provides

the pseudocode to efficiently compute the maximum weight directed spanning tree of

a DAG.
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Algorithm 1 Maximum weight directed spanning tree of a DAG

Require: Weighted directed acyclic graph D(V , E , w)
T ← {}
for all i ∈ V do
ParT (i) = arg maxj w(j, i)
T ← T ∪ {(ParT (i), j)}

end for
return T

Putting it all together we have shown how to efficiently evaluate the log-likelihood

F (C|G) of a network G. To find the most likely tree T for a single cascade takes

O(|VT |Din), and this has to be done for a total of |C| cascades. Interestingly, this is

independent of the size of network G and only depends on the amount of observed

data (i.e., size and the number of cascades).

Now we aim to find network G that maximizes the log-likelihood F (C|G). First

we notice that by construction F (C|K̄) = 0, i.e., the empty network has score 0.

Moreover, we observe that the objective function F (·|G) is non-negative and mono-

tonic. This means that F (C|G) ≤ F (C|G ′) for networks G(V , E) and G ′(V , E ′), where

E ⊆ E ′. Hence adding more edges to G does not decrease the solution quality, and thus

the complete network maximizes F (·|G). Monotonicity can be shown by observing

that, as edges are added to G, ε-edges are converted to network edges, and therefore

the weight of any tree (and therefore the value of the maximum spanning tree) can

only increase. However, since real-world social and information networks are usually

sparse, we are interested in inferring a sparse network G, that only contains some

small number k of edges. Thus we aim to solve:

Problem 1. Given the activation times of a set of cascades C, probability of propa-

gation β and the pairwise transmission likelihood f(tj|ti;α), find Ĝ that maximizes:

G∗ = argmax
|G|≤k

F (C|G), (4.12)

where the maximization is over all networks G of at most k edges, and F (C|G) is

defined by Eqs. 4.10 and 4.11.
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Naively searching over all k edge networks would take time exponential in k, which

is intractable. Moreover, finding the optimal solution to Eq. (4.12) is NP-hard, so we

cannot expect to find the optimal solution:

Theorem 1. The network inference problem defined by equation (4.12) is NP-hard.

Proof. By reduction from the MAX-k-COVER problem (Khuller et al., 1999). In

MAX-k-COVER, we are given a finite set W , |W| = n and a collection of subsets

S1, . . . ,Sm ⊆ W . The function

FMC(A) = | ∪i∈A Si|

counts the number of elements of W covered by sets indexed by A. Our goal is to

pick a collection of k subsets A maximizing FMC . We will produce a collection of n

cascades C over a network G such that max|G|≤k F (C|G) = max|A|≤k FMC(A). Network

G will be defined over the set of vertices V = {1, . . . ,m}∪{r}, i.e., there is one vertex

for each set Si and one extra vertex r. For each element s ∈ W we define a cascade

which has time stamp 0 associated with all nodes i ∈ V such that s ∈ Si, time stamp

1 for node r and ∞ for all remaining nodes.

Furthermore, we can choose the transmission model such that logwc(i, r) = 1

whenever s ∈ Si and logwc(i
′, j′) = 0 for all remaining edges (i′, j′), by choosing the

parameters ε, α and β appropriately. Since a directed spanning tree over a network G
can contain at most one edge incoming to node r, its weight will be 1 if G contains any

edge from a node i to r where s ∈ Si, and 0 otherwise. Thus, a network G of at most

k edges corresponds to a feasible solution AG to MAX-k-COVER where we pick sets

Si whenever edge (i, r) ∈ G, and each solution A to MAX-k-COVER corresponds to

a feasible solution GA of (4.12). Furthermore, by construction, FMC(AG) = F (C|G).

Thus, if we had an efficient algorithm for deciding whether there exists a network G,

|G| ≤ k such that F (C|G) > c, we could use the algorithm to decide whether there

exists a solution A to MAX-k-COVER with value at least c.

While finding the optimal solution is hard, we now show that F (·|G) satisfies

submodularity, a natural diminishing returns property. Refer to Section 2.4 for a
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definition of submodularity. Submodularity allows us to efficiently find a provably

near-optimal solution to this otherwise NP-hard optimization problem:

Theorem 2. Let V be a set of nodes, and C be a collection of cascades hitting the

nodes V. Then F (C|G) is a submodular function F : 2W → R defined over subsets

W ⊆ V × V of directed edges.

Proof. Fix a cascade tc, networks G ⊆ G ′ and an edge e = (r, s) not contained in G ′.
We will show that F (C|G∪{e})−F (C|G) ≥ F (C|G ′∪{e})−F (C|G ′). Since nonnegative

linear combinations of submodular functions are submodular, the function F (C| =∑
c∈C F (tc|G) is submodular as well. Let wi,j be the weight of edge (i, j) in G ∪ {e},

and w′i,j be the weight in G ′ ∪ {e}. As argued before, the maximum weight directed

spanning tree for DAGs is obtained by assigning to each node the incoming edge

with maximum weight. Let (i, s) be the edge incoming at s of maximum weight in

G, and (i′, s) the maximum weight incoming edge in G ′. Since G ⊆ G ′ it holds that

wi,s ≤ w′i′,s. Furthermore, wr,s = w′r,s. Hence,

F (tc|G ∪ {(r, s)})− F (tc|G) = max(wi,s, wr,s)− wi,s
≥ max(w′i′,s, w

′
r,s)− w′i′,s

= F (tc|G ′ ∪ {(r, s)})− F (tc|G ′),

proving submodularity of F (tc|G) on G.

Maximizing submodular functions in general is NP-hard (Khuller et al., 1999). A

commonly used heuristic is the greedy algorithm, which starts with an empty network

K̄, and iteratively, in step i, adds the edge ei which maximizes the marginal gain:

ei = argmax
e∈G\Gi−1

F (C|Gi−1 ∪ {e})− F (C|Gi−1). (4.13)

The algorithm stops once it has selected k edges, and returns the solution Ĝ =

{e1, . . . , ek}. The stopping criteria, i.e., value of k, can be based on some threshold

of the marginal gain, of the number of estimated edges or another more sophisticated

heuristic.
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In our context we can think about the greedy algorithm as starting on an empty

network K̄ with no network edges. In each iteration i, the algorithm adds to G the

edge ei that currently improves the most the value of the log-likelihood. Another

way to view the greedy algorithm is that it starts on a fully connected network K̄
where all the edges are ε-edges. Then adding an edge to network G corresponds to

that edge changing the type from ε-edge to a network edge. Thus our algorithm

iteratively swaps ε-edges to network edges until k network edges have been swapped

(i.e., inserted into the network G).

Guarantees on the solution quality

Considering the NP-hardness of the problem, we might expect the greedy algorithm to

perform arbitrarily bad. However, we will see that this is not the case. A fundamental

result of Nemhauser et al. (1978) proves that for monotonic submodular functions,

the set Ĝ returned by the greedy algorithm obtains at least a constant fraction of

(1− 1/e) ≈ 63% of the optimal value achievable using k edges.

Moreover, we can acquire a tight online data-dependent bound on the solution

quality:

Theorem 3 (Leskovec et al. (2007a)). For a network Ĝ, and each edge e /∈ Ĝ, let

δe = F (C|Ĝ ∪{e})−F (C|Ĝ). Let e1, . . . eB be the sequence with δe in decreasing order,

where B is the total number of edges with marginal gain greater than 0. Then,

max
|G|≤k

F (C|G) ≤ F (C|Ĝ) +
k∑
i=1

δei .

Theorem 3 computes how far a given Ĝ (obtained by any algorithm) is from the

unknown NP-hard to find optimum.
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Algorithm 2 The NetInf Algorithm

Require: Cascades C = {t1, . . . , t|C|}, number of edges k
G ← K̄
for all c ∈ C do
Tc ← dag tree(c) {Find most likely tree (Algorithm 1)}

end for
while |G| < k do

for all (j, i) /∈ G do
δj,i = 0 {Marginal improvement of adding edge (j, i) to G}
Mj,i ← ∅
for all c : tj < ti in tc do

Let wc(m,n) be the weight of (m,n) in G ∪ {(j, i)}
if wc(j, i) ≥ wc(ParTc(i), i) then
δj,i = δj,i + wc(j, i)− wc(ParTc(i), i)
Mj,i ←Mj,i ∪ {c}

end if
end for

end for
(j∗, i∗)← arg max(j,i)∈C\G δj,i
G ← G ∪ {(j∗, i∗)}
for all c ∈Mj∗,i∗ do
ParTc(i

∗)← j∗

end for
end while
return G;

Speeding-up the NetInf algorithm

To make the algorithm scale to networks with thousands of nodes we speed-up the

algorithm by several orders of magnitude by considering two following two improve-

ments:

Localized update: Let Ci be the subset of cascades that go through the node i (i.e.,

cascades in which node i is activated). Then consider that in some step n the greedy

algorithm selects the network edge (j, i) with marginal gain δj,i,and now we have to

update the optimal tree of each cascade. We make a simple observation that adding

the network edge (j, i) may only change the optimal trees of the cascades in the set Ci
and thus we only need to revisit (and potentially update) the trees of cascades in Ci.
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Since cascades are local (i.e., each cascade hits only a relatively small subset of the

network), this localized updating procedure speeds up the algorithm considerably.

Lazy evaluation: It can be used to drastically reduce the number of evaluations of

marginal gains F (C|G∪{e})−F (C|G) (Leskovec et al., 2007a). This procedure relies on

the submodularity of F (·|G). The key idea behind lazy evaluations is the following.

Suppose G1, . . . ,Gk is the sequence of networks produced during iterations of the

greedy algorithm. Now let us consider the marginal gain

∆e(Gi) = F (C|Gi ∪ {e})− F (C|Gi)

of adding some edge e to any of these networks. Due to the submodularity of F (·|G)

it holds that ∆e(Gi) ≥ ∆e(Gj) whenever i ≤ j. Thus, the marginal gains of e can only

monotonically decrease over the course of the greedy algorithm. This means that ele-

ments which achieve very little marginal gain at iteration i cannot suddenly produce

large marginal gain at subsequent iterations. This insight can be exploited by main-

taining a priority queue data structure over the edges and their respective marginal

gains. At each iteration, the greedy algorithm retrieves the highest weight (priority)

edge. Since its value may have decreased from previous iterations, it recomputes its

marginal benefit. If the marginal gain remains the same after recomputation, it has

to be the edge with highest marginal gain, and the greedy algorithm will pick it. If

it decreases, one reinserts the edge with its new weight into the priority queue and

continues. Formal details and pseudo-code can be found in Leskovec et al. (2007a).

As we will show later, these two improvements decrease the run time by sev-

eral orders of magnitude with no loss in the solution quality. We call the algorithm

that implements the greedy algorithm on this alternative formulation with the above

speedups the NetInf algorithm (Algorithm 2). In addition, NetInf nicely lends

itself to parallelization as likelihoods of individual cascades and likelihood improve-

ments of individual new edges can simply be computed independently. This allows

us to tackle even bigger networks in shorter amounts of time.

A space and runtime complexity analysis of NetInf depends heavily of the struc-

ture of the network, and therefore it is necessary to make strong assumptions on the
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(a) True network G∗

(b) Inferred network Ĝ using heuristic baseline method

(c) Inferred network Ĝ using NetInf algorithm

Figure 4.4: Diffusion network inference problem. There is an unknown network (a)
over which contagions propagate. We are given a collection of node infection times and
aim to recover the network in figure (a). Using a baseline heuristic (see Section 4.3.2)
we recover network (b) and using the proposed NetInf algorithm we recover network
(c). Red edges denote mistakes.
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structure. Due to this, it is out of the scope of this dissertation to include a for-

mal complexity analysis. Instead, we include an empirical runtime analysis in the

following section.

4.3.2 Experiments on synthetic data

The first goal of the experiments on synthetic data is to understand how the under-

lying network structure, the propagation model, the cascade coverage, the exogenous

factors and the noise affect the performance of our algorithm. The second goal is to

evaluate the effect of simplification we had to make in order to arrive to an efficient

network inference algorithm. Namely, we assume the contagion propagates in a tree

pattern T (i.e., exactly ET edges caused the propagation), consider only the most

likely tree T (Eq. 4.8), and treat non-propagating network edges as ε-edges (Eq. 4.7).

In general, in all our experiments we proceed as follows: We are given a true

diffusion network G∗, and then we simulate the propagation of a set of contagions c

over the network G∗ for a choice of α and β. Diffusion of each contagion creates a

cascade and for each cascade, we record the node activation times ti. Then, given

these node hit times, we aim to recover the network G∗ using the NetInf algorithm.

For example, Figure 4.4(a) shows a network G∗ of 20 nodes and 23 directed edges.

Using the exponential transmission time model with α = 1 and β = 0.2 we generated

24 cascades. Now given the node infection times, we aim to recover G∗. A base-

line method (b) (described below) performed poorly while NetInf (c) recovered G∗

almost perfectly by making only two errors (red edges).

Experimental setup

Our experimental methodology is composed of the following steps:

1. Ground truth network G∗.

2. Cascade generation: Probability of propagation β, and the transmission time

model with parameter α.

3. Number of cascades.
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(1) Ground truth network G∗: We consider two models of directed real-world net-

works to generate G∗, namely, the Forest Fire model (Leskovec et al., 2005) and

the Kronecker Graphs model Leskovec et al. (2010). For Kronecker networks, we

consider three sets of parameters that produce networks with a very different global

network structure: a random network (Erdős and Rényi, 1960), a core-periphery

network (Leskovec et al., 2008) and a network with hierarchical community struc-

ture (Clauset et al., 2008). A brief introduction to Forest Fire and Kronecker Graph

models can be found in Section 2.2.2.

(2) Cascade generation: We then simulate cascades on G∗ using the generative model

defined in Section ??. For the simulation we need to choose the transmission time

model (i.e., pairwise transmission likelihood and parameter α). We also need to fix

the parameter β, that controls probability of a cascade propagating over an edge.

Intuitively, α controls how fast the cascade spreads (i.e., how long the transmission

times are), while β controls the size of the cascades. Large β means cascades will

likely be large, while small β makes most of the edges fail to transmit the contagion

which results in small infections.

(3) Number of cascades: Intuitively, the more data our algorithm gets the more

accurately it should infer G∗. To quantify the amount of data (number of different

cascades) we define El to be the set of edges that participate in at least l cascades. This

means El is a set of edges that transmitted at least l contagions. It is important to

note that if an edge of G∗ did not participate in any cascade (i.e., it never transmitted

a contagion) then there is no trace of it in our data and thus we have no chance to

infer it. In our experiments we choose the minimal amount of data (i.e., l = 1) so

that we at least in principle could infer the true network G∗. Thus, we generate as

many cascades as needed to have a set El that contains a fraction f of all the edges of

the true network G∗. In all our experiments we pick cascade starting nodes uniformly

at random and generate enough cascades so that 99% of the edges in G∗ participate

in at least one cascade, i.e., 99% of the edges are included in E1.

Table 4.2 shows experimental values of number of cascades that let E1 cover diffe-

rent percentages of the edges. To have a closer look at the cascade size distribution,

for a Forest Fire network on 1,024 nodes and 1,477 edges, we generated 4,038 cascades.
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Figure 4.5: Number of cascades per edge and cascade sizes for a Forest Fire network
(1, 024 nodes, 1, 477 edges) with forward burning probability 0.20, backward burning
probability 0.17 and exponential transmission time model with parameter α = 1 and
propagation probability β = 0.5. The cascade size distribution follows a power-law.
We found the power-law coefficient using maximum likelihood estimation (MLE).

The majority of edges took part in 4 to 12 cascades and the cascade size distribution

follows a power law (Figure 4.5(b)). The average and median number of cascades per

edge are 9.1 and 8, respectively (Figure 4.5(a)).

Baseline method

To infer a diffusion network Ĝ, we consider the a simple baseline heuristic where we

compute the score of each edge and then pick k edges with highest score.

More precisely, for each possible edge (i, j) of G, we compute w(i, j) =
∑

c∈C f(tj|ti;α),

i.e., overall how likely were the cascades tc ∈ C to propagate over the edge (i, j). Then

we simply pick the k edges (i, j) with the highest score w(i, j) to obtain Ĝ. For exam-

ple, Figure 4.4(b) shows the results of the baseline method on a small network.

Solution quality

We evaluate the performance of the NetInf algorithm in two different ways. First,

we are interested in how successful NetInf is at optimizing the objective function

F (C|G) that is NP-hard to optimize exactly. Using the online bound in Theorem 3,
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Type of network f |C| r BEP AUC

Forest Fire

0.5 388 2,898 0.393 0.29
0.9 2,017 14,027 0.75 0.67
0.95 2,717 19,418 0.82 0.74
0.99 4,038 28,663 0.92 0.86

Hierarchical Kronecker

0.5 289 1,341 0.37 0.30
0.9 1,209 5,502 0.81 0.80
0.95 1,972 9,391 0.90 0.90
0.99 5,078 25,643 0.98 0.98

Core-periphery Kronecker

0.5 140 1,392 0.31 0.23
0.9 884 9,498 0.84 0.80
0.95 1,506 14,125 0.93 0.91
0.99 3,110 30,453 0.98 0.96

Flat Kronecker

0.5 200 1,324 0.34 0.26
0.9 1,303 7,707 0.84 0.83
0.95 1,704 9,749 0.89 0.88
0.99 3,652 21,153 0.97 0.97

Table 4.2: Performance of synthetic data. Break-even Point (BEP) and Receiver
Operating Characteristic (AUC) when we generated the minimum number of |C|
cascades so that f -fraction of edges participated in at least one cascades |El| ≥ f |E|.
These |C| cascades generated the total of r edge transmissions, i.e., average cascade
size is r/|C|. All networks have 1,024 nodes and 1,446 edges. We use the exponential
transmission time model with parameter α = 1, and in each case we set the probability
β such that r/|C| is neither too small nor too large (i.e., β ∈ (0.1, 0.6)).

we can assess at most how far from the unknown optimal the NetInf solution is

in terms of the log-likelihood score. Second, we also evaluate the NetInf based on

accuracy, i.e., what fraction of edges of G∗ NetInf managed to infer correctly.

Figure 4.6(a) plots the value of the log-likelihood improvement F (C|G) as a func-

tion of the number of edges in G. In red we plot the value achieved by NetInf

and in green the upper bound using Theorem 3. The plot shows that the value of

the unknown optimal solution (that is NP-hard to compute exactly) is somewhere

between the red and the green curve. Notice that the band between two curves, the

optimal and the NetInf curve, is narrow. For example, at 2,000 edges in Ĝ, NetInf

finds the solution that is least 97% of the optimal network. Moreover, also notice

a strong diminishing return effect. The value of the objective function flattens out
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(b) Real MemeTracker data

Figure 4.6: Score achieved by NetInf in comparison with the online upper bound
from Theorem 3. In practice NetInf finds networks that are at 97% of NP-hard to
compute optimal.

after about 1,000 edges. This means that, in practice, very sparse solutions (almost

tree-like diffusion networks) already achieve very high values of the objective function

close to the optimal.

Accuracy of NetInf

We also evaluate our approach by studying how many edges inferred by NetInf are

actually present in the true network G∗. We measure the precision and recall of our

method. For every value of k (1 ≤ k ≤ n(n− 1)) we generate Ĝk on k edges by using

NetInf or the baseline method. We then compute precision (which fraction of edges

in Ĝk is also present G∗) and recall (which fraction of edges of G∗ appears in Ĝk). For

small k, we expect low recall and high precision as we select the few edges that we

are the most confident in. As k increases, precision will generally start to drop but

the recall will increase.

Figure 4.7 shows the precision-recall curves of NetInf and the baseline method

on three different Kronecker networks (random, hierarchical community structure and

core-periphery structure) with 1024 nodes and two transmission time models. The

cascades were generated with an exponential transmission time model with α = 1,

or a power law transmission time model with α = 2 and a value of β low enough to
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(b) Core-Periph. Kronecker (Exp)
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(c) Flat Kronecker (Exp)
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(d) Hier. Kronecker (Pow)
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(e) Core-Periph. Kronecker (Pow)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

c
is

io
n

Recall

NetInf

Baseline

(f) Flat Kronecker (Pow)
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(g) Forest Fire (Pow, α = 1.1)
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(h) Forest Fire (Pow, α = 3)

Figure 4.7: Precision and recall for three 1024 node Kronecker and Forest Fire network
networks with exponential (Exp) and power law (Pow) transmission time model.
The plots are generated by sweeping over values of k, that controls the sparsity of
the solution.
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avoid generating too large cascades (in all cases, we pick a value of β ∈ (0.1, 0.6)).

For each network we generated between 2,000 and 4,000 cascades so that 99% of the

edges of G∗ participated in at least one cascade. We chose cascade starting points

uniformly at random.

First, we focus on Figures 4.7(a), 4.7(b) and 4.7(c) where we use the exponential

transmission time model on different Kronecker networks. Notice that the baseline

method achieves the break-even point1 between 0.4 and 0.5 on all three networks. On

the other hand, NetInf performs much better with the break-even point of 0.99 on

all three datasets.

We view this as a particularly strong result as we were especially careful not to

generate too many cascades since more cascades mean more evidence that makes the

problem easier. Thus, using a very small number of cascades, where every edge of G∗

participates in only a few cascades, we can almost perfectly recover the underlying

diffusion network G∗. Second important point to notice is that the performance of

NetInf seems to be strong regardless of the structure of the network G∗. This means

that NetInf works reliably regardless of the particular structure of the network of

which contagions propagated (refer to Table 4.2).

Similarly, Figures 4.7(d), 4.7(e) and 4.7(f) show the performance on the same three

networks but using the power law transmission time model. The performance of the

baseline now dramatically drops. This is likely due to the fact that the variance of

power-law (and heavy tailed distributions in general) is much larger than the variance

of an exponential distribution. Thus the diffusion network inference problem is much

harder in this case. As the baseline pays high price due to the increase in variance

with the break-even point dropping below 0.1 the performance of NetInf remains

stable with the break even point in the high 90s.

We also examine the results on the Forest Fire network (Figures 4.7(g) and 4.7(h)).

Again, the performance of the baseline is very low while NetInf achieves the break-

even point at around 0.90.

Generally, the performance on the Forest Fire network is a bit lower than on the

Kronecker networks. However, it is important to note that while these networks have

1The point at which recall is equal to precision.
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Figure 4.8: Performance of NetInf as a function of the amount of cascade data. The
units in the x-axis are normalized. x = 1 means that the total number of transmission
events used for the experiment was equal to the number of edges in G∗. On average
NetInf requires about two propagation events per edge of the original network in
order to reliably recover the true network structure.

very different global network structure (from hierarchical, random, scale free to core

periphery) the performance of NetInf is remarkably stable and does not seem to

depend on the structure of the network we are trying to infer or the particular type

of cascade transmission time model.

Finally, in all the experiments, we observe a sharp drop in precision for high values

of recall (near 1). This happens because the greedy algorithm starts to choose edges

with low marginal gains that may be false edges, increasing the probability to make

mistakes.

Performance vs. cascade coverage

Intuitively, the larger the number of cascades that spread over a particular edge the

easier it is to identify it. On one hand if the edge never transmitted then we can not

identify it, and the more times it participated in the transmission of a contagion the

easier should the edge be to identify.

In our experiments so far, we generated a relatively small number of cascades.

Next, we examine how the performance of NetInf depends on the amount of available

cascade data. This is important because in many real world situations the data of
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Figure 4.9: Average time per edge added by our algorithm implemented with lazy
evaluation (LE) and localized update (LU).

only a few different cascades is available.

Figure 4.8 plots the break-even point of NetInf as a function of the available

cascade data measured in the number of contagion transmission events over all cas-

cades. The total number of contagion transmission events is simply the sum of cascade

sizes. Thus, x = 1 means that the total number of transmission events used for the

experiment was equal to the number of edges in G∗. Notice that as the amount of

cascade data increases the performance of NetInf also increases. Overall we notice

that NetInf requires a total number of transmission events to be about 2 times the

number of edges in G∗ to successfully recover most of the edges of G∗.
Moreover, the plot shows the performance for different values of edge transmission

probability β. As noted before, big values of β produce larger cascades. Interestingly,

when cascades are small (small β) NetInf needs less data to infer the network than

when cascades are larger. This occurs because the larger a cascade, the more difficult

is to infer the parent of each node, since we have more potential parents for each

the node to choose from. For example, when β = 0.1 NetInf needs about 2|E|
transmission events, while when β = 0.5 it needs twice as much data (about 4|E|
transmissions) to obtain the break even point of 0.9.
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Stopping criterion

In practice one does not know how long to run the algorithm and how many edges to

insert into the network Ĝ. Given the results from Figure 4.6, we found the following

heuristic to give good results. We run the NetInf algorithm for k steps where

k is chosen such that the objective function is “close” to the upper bound, i.e.,

F (C|Ĝ) > x · OPT, where OPT is obtained using the online bound. In practice

we use values of x in range 0.8–0.9. That means that in each iteration k, OPT is

computed by evaluating the right hand side expression of the equation in Theorem 3,

where k is simply the iteration number. Therefore, OPT is computed online, and

thus the stopping condition is also updated online.

Scalability

Figure 4.9 shows the average computation time per edge added for the NetInf algo-

rithm implemented with lazy evaluation and localized update. We use a hierarchical

Kronecker network and an exponential transmission time model with α = 1 and

β = 0.5. Localized update speeds up the algorithm for an order of magnitude (45×)

and lazy evaluation further gives a factor of 6 improvement. Thus, overall, we achieve

two orders of magnitude speed up (280×), without any loss in solution quality.

In practice the NetInf algorithm can easily be used to infer networks of 10,000

nodes in a matter of hours.

Performance vs. transmission time noise

In our experiments so far, we have assumed that the transmission time values between

infections are not noisy and that we have access to the true distribution from which

the transmission times are drawn. However, real data may violate any of these two

assumptions.

We study the performance of NetInf (break-even point) as a function of the

noise of the waiting time between infections. Thus, we add Gaussian noise to the

waiting times between infections in the cascade generation process.

Figure 4.10 plots the performance of NetInf (break-even point) as a function of
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Figure 4.10: Break-even point of NetInf as a function of the amount of additive
Gaussian noise in the transmission time.

the amount of Gaussian noise added to the transmission times between infections for

both an exponential transmission time model with α = 1, and a power law trans-

mission time model with α = 2. The break-even point degrades with noise but once

a high value of noise is reached, an additional increment in the amount of noise does

not degrade further the performance of NetInf. Interestingly, the break-even point

value for high values of noise is very similar to the break-even point achieved later in

a real dataset (Figures 4.12(a) and 4.12(b)).

Performance vs. infections by the external source

In all our experiments so far, we have assumed that we have access to complete cascade

data, i.e., we are able to observe all the nodes taking part in each cascade. Thereby,

except for the first node of a cascade, we do not have any “jumps” or missing nodes

in the cascade as it spreads across the network. Even though techniques for coping

with missing data in information cascades have recently been investigated (Sadikov

et al., 2011), we evaluate NetInf against both scenarios.

First, we consider the case where a random fraction of each cascade is missing.

This means that we first generate a set of cascades, but then only record node infection

times of f -fraction of nodes. We first generate enough cascades so that without

counting the missing nodes in the cascades, we still have that 99% of the edges in G∗
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Figure 4.11: Break-even point of NetInf as (a) function of the fraction of missing
nodes per cascade, and as (b) function of the fraction of nodes that are activated by
an external source per cascade.

participate in at least one cascade. Then we randomly delete (i.e., set infection times

to infinity) f -fraction of nodes in each cascade.

Figure 4.11(a) plots the performance of NetInf (break-even point) as a function

of the percentage of missing nodes in each cascade. Naturally, the performance drops

with the amount of missing data. However, we also note that the effect of missing

nodes can be mitigated by an appropriate choice of the parameter ε. Basically, higher

ε makes propagation via ε-edges more likely and thus by giving a cascade a greater

chance to propagate over the ε-edges NetInf can implicitly account for the missing

data.

Second, we also consider the case where the contagion does not spread through

the network via diffusion but rather due to the influence of an external source. Thus,

the contagion does not really spread over the edges of the network but rather appears

almost at random at various nodes of the network.

Figure 4.11(b) plots the performance of NetInf (break-even point) as a function

of the percentage of nodes that are activated by an external source for different

values of ε. In our framework, we model the influence due to the external source

with the ε-edges. Note that appropriately setting ε can appropriately account for the

exogenous infections that are not the result of the network diffusion but due to the
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Figure 4.12: Precision and recall for a 500 node hyperlink network using (a) hyperlinks
cascades and (b) MemeTracker cascades.

external influence. The higher the value of ε, the stronger the influence of the external

source, i.e., we assume a greater number of missing nodes or number of nodes that

are activated by an external source. Thus, the break-even is more robust for higher

values of ε.

4.3.3 Experiments on real data

Dataset description

We use the original MemeTracker dataset, which contains more than 172 million

news articles and blog posts from 1 million online sources over a period of one year

from September 1 2008 till August 31 20092. Based on this raw data, we use two

different methodologies to trace information on the Web and then create two different

datasets: hyperlink cascade dataset and MemeTracker cascade dataset. We refer the

reader to Section 2.5.2 for more details on the MemeTracker dataset and an in-depth

description of the two methodologies we used to trace information on the Web.

2Data available at http://memetracker.org and http://snap.stanford.edu/netinf

http://memetracker.org
http://snap.stanford.edu/netinf
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Accuracy on real data

As there is not ground truth network for both datasets, we use the following way to

create the ground truth network G∗. We create a network where there is a directed

edge (i, j) between a pair of nodes i and j if a post on site i linked to a post on site j.

To construct the network we take the top 500 sites in terms of number of hyperlinks

they create/receive. We represent each site as a node in G∗ and connect a pair of

nodes if a post in first site linked to a post in the second site. This process produces

a ground truth network G∗ with 500 nodes and 4,000 edges.

First, we use the blog hyperlink cascades dataset to infer the network Ĝ and

evaluate how many edges NetInf got right. Figure 4.12(a) shows the performance of

NetInf and the baseline. Notice that the baseline method achieves the break-even

point of 0.34, while our method performs better with a break-even point of 0.44,

almost a 30% improvement.

NetInf is basically performing a link-prediction task based only on temporal

linking information. The assumption in this experiment is that sites prefer to create

links to sites that recently mentioned information while completely ignoring the au-

thority of the site. Given such assumption is not satisfied in real-life, we consider the

break even point of 0.44 a good result.

Now, we consider an even harder problem, where we use the Memetracker dataset

to infer G∗. In this experiment, we only observe times when sites mention particular

textual phrases and the task is to infer the hyperlink structure of the underlying

web graph. Figure 4.12(b) shows the performance of NetInf and the baseline. The

baseline method has a break-even point of 0.17 and NetInf achieves a break-even

point of 0.28, more than a 50% improvement

To have a fair comparison with the synthetic cases, notice that the exponential

transmission time model is a simplistic assumption for our real dataset, and NetInf

can potentially gain additional accuracy by choosing a more realistic transmission

time model.
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Figure 4.13: Small part of a news media (red) and blog (blue) diffusion network. We
use the blog hyperlink cascades dataset, i.e., hyperlinks between blog and news media
posts to trace the flow of information.

Solution quality

Similarly as with synthetic data, in Figure 4.6(b) we investigate the value of the

objective function and compare it to the online bound. Notice that the bound is

almost as tight as in the case of synthetic networks, finding the solution that is least

84% of optimal and both curves are similar in shape to the synthetic case value.

Again, as in the synthetic case, the value of the objective function quickly flattens

out which means that one needs a relatively few number of edges to capture most of

the information flow on the Web.

In the remainder of the section, we use the top 1,000 media sites and blogs with

the largest number of documents.
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Figure 4.14: Small part of a news media (red) and blog (blue) diffusion network. We
use the MemeTracker dataset, i.e., textual phrases from MemeTracker to trace the
flow of information.
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Visualization of diffusion networks

We examine the structure of the inferred diffusion networks using both datasets: the

blog hyperlink cascades dataset and the MemeTracker dataset.

Figure 4.13 shows the largest connected component of the diffusion network after

100 edges have been chosen using the first dataset, i.e., using hyperlinks to track the

flow of information. The size of the nodes is proportional to the number of articles

on the site and the width of the edge is proportional to the probability of influence,

i.e., stronger edges have higher width. The strength of an edge across all cascades is

simply defined as the marginal gain given by adding the edge in the greedy algorithm

(and this is proportional to the probability of influence). Since news media articles

rarely use hyperlinks to refer to one another, the network is somewhat biased towards

web blogs (blue nodes). There are several interesting patterns to observe.

First, notice that three main clusters emerge: on the left side of the network

we can see blogs and news media sites related to politics, at the right top, we have

blogs devoted to gossip, celebrity news or entertainment and on the right bottom,

we can distinguish blogs and news media sites that deal with technological news.

As Huffington Post and Political Carnival play the central role on the political side

of the network, mainstream media sites like Washington Post, Guardian and the

professional blog Salon.com play the role of connectors between the different parts

of the network. The celebrity gossip part of the network is dominated by the blog

Gawker and technology news gather around blogs Gizmodo and Engadget, with CNet

and TechChuck establishing the connection to the rest of the network.

Figure 4.14 shows the largest connected component of the diffusion network after

300 edges have been chosen using the second methodology, i.e. using short textual

phrases to track the flow of information. In this case, the network is biased towards

news media sites due to its higher volume of information.

Insights into the diffusion on the web. The inferred diffusion networks also allow

for analysis of the global structure of information propagation on the Web. For this

analysis, we use the MemeTracker dataset and analyze the structure of the inferred

information diffusion network.
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First, Figure 4.15(a) shows the distribution of the influence index. The influence

index is defined as the number of reachable nodes from w by traversing edges of the

inferred diffusion network (while respecting edge directions). Nevertheless, we are

also interested in the distance from w to its reachable nodes, i.e. nodes at shorter

distances are more likely to be activated by w. Thus, we slightly modify the definition

of influence index to be
∑

u 1/d(w, u) where we sum over all the reachable nodes from

w and d(w, u) is the distance between w and u. Notice that we have two types of

nodes. There is a small set of nodes that can reach many other nodes, which means

they either directly or indirectly propagate information to them. On the other side

we have a large number of sites that only get influenced but do not influence many

other sites. This hints at a core periphery structure of the diffusion network with a

small set of sites directly or indirectly spreading the information in the rest of the

network.

Figure 4.15(b) investigates the number of links in the inferred network that point

between different types of sites. Here we split the sites into mainstream media and

blogs. Notice that most of the links point from news media to blogs, which says that

most of the time information propagates from the mainstream media to blogs. Then

notice how at first many media-to-media links are chosen but in later iterations the

increase of these links starts to slow down. This means that media-to-media links tend

to be the strongest and NetInf picks them early. The opposite seems to occur in

case of blog-to-blog links where relatively few are chosen first but later the algorithm

picks more of them. Lastly, links capturing the influence of blogs on mainstream

media are the rarest and weakest. This suggests that most information travels from

mass media to blogs.

Last, Figure 4.15(c) shows the median time difference between mentions of diffe-

rent types of sites. For every edge of the inferred diffusion network, we compute the

median time needed for the information to spread from the source to the destination

node. Again, we distinguish the mainstream media sites and blogs. Notice that media

sites are quick to activate one another or even to get activated from blogs. However,

blogs tend to be much slower in propagating information. It takes a relatively long

time for them to get “activated” with information regardless whether the information
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Figure 4.15: (a) Distribution of node influence index. Most nodes have very low
influence (they act as sinks). (b) Number and strength of edges between different
media types. Edges of news media influencing blogs are the strongest. (c) Median
time lag on edges of different type.

comes from the mainstream media or the blogosphere.

Finally, we have observed that the insights into diffusion on the web using the

inferred network are very similar to insights obtained by simply taking the hyperlink

network. However, our aim here is to show that (i) although the quantitative results

are modest in terms of precision and recall, the qualitative insights makes sense, and

that (ii) it is surprising that using simply timestamps of links, we are able to draw

the same qualitative insights as using the hyperlink network.
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4.4 Multitree

4.4.1 Algorithm

We initially considered the optimization problem defined by Eq. (4.5) to be intracta-

ble and left as an interesting open problem (Gomez-Rodriguez et al., 2010). In this

section, we show how to efficiently find a solution with provable sub-optimality gua-

rantees by exploiting a natural diminishing returns property of the network inference

problem: submodularity.

To evaluate Eq. (4.4), we need to compute Eq. (4.8) for each cascade tc. In other

words, for each cascade tc, we need to compute a sum of likelihoods over the set Tc(G)

of all possible connected spanning trees induced by the nodes activated in the cascade.

Although the number of trees can be super-exponential in the number of nodes in the

cascade tc, this super-exponential sum can be performed in time polynomial in the

number n of nodes in tc, by applying Kirchhoff’s matrix tree theorem:

Theorem 4 (Tutte (1948)). Given a directed graph W with non negative edge weights

wi,j, construct a matrix A such that ai,j =
∑

k wk,j if i = j and ai,j = −wi,j if i 6= j

and denote the matrix created by removing any row x and column y from A as Ax,y.

Then,

(−1)x+y det(Ax,y) =
∑

T∈T (W )

∏
(i,j)∈T

wi,j, (4.14)

where T is each directed spanning tree in W that starts in y.

In our case, we compute Eq. (4.8) by setting wi,j to f(tj|ti;α) and computing the

determinant in Eq. (4.14). We then compute Eq. (4.4) by multiplying the determi-

nants of |C| matrices, one for each cascade. For a fixed cascade tc, edges with positive

weights form a directed acyclic graph (DAG) (only edges (i, j) such that ti < tj have

positive weights) and a DAG with a time-ordered labeling of its nodes has an upper

triangular connectivity matrix. Thus, the matrix Ax,y of Theorem 4, by construction,

is also upper triangular. Fortunately, the determinant of an upper triangular matrix
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Algorithm 3 The Multitree algorithm

Require: C, k
G ← K̄;
while |G| < k do

for all (j, i) /∈ G : ∃tc ∈ C with tj < ti do
δj,i = 0, Mj,i ← ∅;
for all tc : tj < ti do
wc(m,n)← weight of (m,n) in G ∪ {(j, i)};
for all tm : tm < ti,m 6= j do
δc,j,i = δc,j,i + wc(m, i);

end for
δj,i = log(δc,j,i + wc(j, i))− log(δc,j,i + 1)

end for
end for
(j∗, i∗)← arg max(j,i)/∈G δj,i;
G ← G ∪ {(j∗, i∗)};

end while
return G;

is simply the product of the elements of its diagonal and then,

f(tc|G) ∝
∏
tj∈tc

∑
ti∈tc:ti≤tj

f(tj|ti;α).

This means that instead of using super-exponential time, we are now able to

evaluate Eq. 4.4 in time O(|C| · N2), where N is the size of the largest cascade, i.e.,

the time required to build Ax,y and compute the determinant for each of the |C|
cascades.

Following a similar reasoning to NetInf, in Section 4.3.1, we introduce the con-

cept of ε-edges to account for the fact that nodes may get activated for reasons other

than the network influence. For example, in online media, not all the information

propagates via the network, as some is also pushed onto the network by the mass

media (Katz and Lazarsfeld, 1955; Watts and Dodds, 2007) and thus a disconnected

cascade can be created. Similarly, in viral marketing, a person may purchase a pro-

duct due to the influence of peers (i.e., network effect) or for some other reason (e.g.,

seing a commercial on TV) (Leskovec et al., 2006a). As noted before, adding ε-edges
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results in a tradeoff between false positives and false negatives when detecting cas-

cades. The higher the value of ε, the larger the number of nodes that are assumed to

be activated by an external source.

We then define the improvement of log-likelihood for cascade tc under network G
over an empty network K̄ (i.e., network with only ε-edges and no network edges):

F (tc|G) =
∑
tj∈tc

log

 ∑
ti∈tc:ti≤tj

wc(i, j)

 , (4.15)

where wc(i, j) = ε−1f(tj|ti;α) ≥ 0 and
∑

i∈G:tj≥ti wc(i, j) ≥ 1. Finally, maximizing

Eq. (4.5) is equivalent to maximizing the following objective function:

F (C|G) = F (t1, . . . , t|C||G) =
∑
tc∈C

F (tc|G), (4.16)

where G is the variable.

Efficient optimization. By construction, the empty network K̄ has score 0, F (C|K̄) =

0, and the objective function F (·|G) is non-negative monotonic, F (C|G) ≤ F (C|G ′), for

any G ⊆ G ′. Therefore, adding more edges to G never decreases the solution quality,

and thus the complete network maximizes F (·|G). However, in real-world scenarios,

we are interested in inferring sparse networks with a small number of edges. Thus,

we would like to solve:

G∗ = argmax
|G|≤k

F (C|G), (4.17)

where the maximization is over all directed networks G of at most k edges. Naively

searching over all k edge networks would take time exponential in k, which is in-

tractable. Moreover, finding the optimal solution to Eq. 4.17 is NP-hard:

Theorem 5. The diffusion network inference problem defined by Eq. 4.17 is NP-hard.

Proof. By reduction from the MAX-k-COVER problem (Khuller et al., 1999), simi-

larly to the proof of Th. 1.

While finding the optimal solution is hard, we will now show that F (·|G) satisfies
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submodularity on the set of directed edges in G, a natural diminishing returns pro-

perty. Refer to Section 2.4 for a definition of submodularity. Fortunately, submodu-

larity allow us to efficiently find a provable near-optimal solution to the optimization

problem:

Theorem 6. Let V be a set of nodes, and C be a collection of cascades hitting the

nodes V. Then F (t1, . . . , t|C||G) is a submodular function F : 2W → R defined over

subsets W ⊆ V × V of directed edges.

Proof. Fix a cascade tc, networks G ⊆ G ′ and an edge e = (r, s) not contained in G ′.
We will show that F (tc|G ∪{e})−F (tc|G) ≥ F (tc|G ′∪{e})−F (tc|G ′). Let wi,j be the

weight of edge (i, j) in G, and w′i,j in G ′. Since G ⊆ G ′, it holds that w′i,j ≥ wi,j ≥ 0.

If (i, j) is contained in G and G ′, then wi,j = w′i,j. Let TA,e =
∑

i∈A\{r}:tj≥ti wc(i, s).

It holds that TG′,e ≥ TG,e. Hence,

F (tc|G ∪ {e})− F (tc|G) = log

(
TG,e + wc(r, s)

TG,e

)
≥ log

(
TG′,e + wc(r, s)

TG′,e

)
= F (tc|G ′ ∪ {e})− F (tc|G ′),

proving submodularity of F (tc|G). Now, since nonnegative linear combinations of

submodular functions are submodular, the function

F (C|G) =
∑
c∈C

F (tc|G)

is submodular as well.

We now proceed as in Section 4.3.1 and optimize F (C|G) by using the greedy

algorithm, a well-known efficient heuristic with provable performance guarantees. The

algorithm starts with an empty network K̄ and it adds edges that maximize the

marginal gain sequentially. That means, at iteration i we choose the edge

ei = argmax
e∈G\Gi−1

F (C|Gi−1 ∪ {e})− F (C|Gi−1).
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The algorithm stops once it has selected k edges, and returns the solution Ĝ =

{e1, . . . , ek}. The greedy algorithm is guaranteed to find a set Ĝ which achieves at least

a constant fraction (1−1/e) (of the optimal value achievable using k edges (Nemhauser

et al., 1978). Starting from the near-optimal solution given by the greedy algorithm,

we could possibly improve the solution by applying a local search procedure.

As in NetInf formulation, Multitree also allows for two speeds-up: localized

updates and lazy evaluation (Algorithm 3), and we can also obtain an on-line bound

based simply on the submodularity of the objective function (Leskovec et al., 2007a).

4.4.2 Experiments on synthetic data

The goal of the experiments on synthetic data is understanding to what extent Mul-

titree benefits from considering all propagation trees per cascade, in contrast with

NetInf, which considers only the most likely tree per cascade. We will show that,

by considering all trees, we are able to infer a network more accurately than NetInf

when the number of observed cascades is small compared to the network size.

Experimental setup. We follow the same experimental methodology that we used

in the experiments on synthetic data for NetInf, in Section 4.3.2:

1. Ground truth network G∗.

2. Cascade generation: Probability of propagation β, and the transmission time

model with parameter α.

3. Number of cascades.

However, we would like to give empirical evidence that, by considering all pro-

pagation trees, Multitree is able to infer networks more accurately than NetInf

when the number of observed cascades is small compared to the network size. Other-

wise, their performance is surprisingly similar. Therefore, we simulate and record

a relatively small set of propagating cascades over several synthetic networks, in

contrast with the experimental setup in Section 4.3.2. There are several reasons

why we consider small set of cascades in comparison to the network size. First, both
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Figure 4.16: Precision against recall (PR). To control the solution sparsity or
precision-recall tradeoff, we sweep over k (number of edges). (a): 1,024 node ran-
dom Kronecker network with Rayleigh (Ray) model. (b): 1,024 node hierarchical
Kronecker network with power-law (Pow) model. (c): 1,024 node core-periphery
Kronecker network with exponential (Exp) model. In all three networks, we recorded
200 cascades.

NetInf and Multitree assume that cascades propagate over a fixed network. Since

social networks are highly dynamic (Backstrom and Leskovec, 2011b), changing and

growing rapidly, we can only expect to record a small number of cascades over a

fixed network. Second, tracking and recording cascades is a difficult and expensive

process (Leskovec et al., 2009). Therefore, it is desirable to develop network inference

methods that work well with a small number of observed cascades.

Accuracy. We compare the inferred and true networks via two measures: precision

and recall. Precision is the fraction of edges in the inferred network Ĝ present in the

true network G∗ . Recall is the fraction of edges of the true network G∗ present in

the inferred network Ĝ.

Figure 4.16 compares our method the precision, recall and accuracy of our method

with for three different 1,024 node Kronecker networks: a random network (Erdős and

Rényi, 1960) (parameter matrix [0.5, 0.5; 0.5, 0.5]), a hierarchical network (Clauset

et al., 2008) ([0.9, 0.1; 0.1, 0.9]) and a core-periphery network (Leskovec et al., 2008)

([0.9, 0.5; 0.5, 0.3]), and 200 observed cascades. In terms of recall, Multitree is

able to reach higher values than NetInf, i.e., it is able to discover more true edges

from a small number of cascades than NetInf. For recall values that are reachable

using NetInf, Multitree offer a very similar precision value. Multitree allows
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Figure 4.17: Gain in Area Under the ROC curve (AUC) of our method compared to
NetInf vs number of cascades for (a) a random Kronecker network, (b) a hierarchical
Kronecker network and (c) a core-periphery Kronecker network with 1,024 nodes and
1,024 edges for all three transmission models. Our method is able to more accurately
infer a network for small number of cascades and it exhibits similar performance to
NetInf for larger number of cascades.

for higher recall in comparison with NetInf because it gets exhausted3 later for

considering all possible trees per cascade instead of only the most probable one.

Performance vs. cascade coverage. Intuitively, the more cascades we observe,

the more accurately any algorithm infers a network. Actually, when the number of

cascades is large in comparison to the network size, we expect differences in perfor-

mance between NetInf and Multitree become negligible. Figure 4.17 plots the

gain in Area Under the ROC curve (AUC) for our method in comparison with Net-

Inf, (AUCour method− AUCNetInf)/AUCNetInf, against number of observed cascades for

several Kronecker networks and transmission models (β = 0.5 and α ∼ U(0.5, 1.5) in

all models). We observe that the difference in performance between Multitree and

NetInf is greater for small number of cascades and for a large enough number of cas-

cades, both methods perform similarly or NetInf slightly outperforms Multitree.

Scalability. Figure 4.18 plots the average computation time per edge added against

number of cascades. Both Multitree and NetInf have a comparable performance

in terms of scalability. None of them depends on the network size but the number of

3A greedy method gets exhausted at iteration k when there are not any more edges with marginal
gain larger than zero.
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Figure 4.18: Average running time per edge added against number of cascades. We
used a 1,024 node random Kronecker with exponential transmission model.

cascades and cascade size. As an experimental validation, we run our Multitree in

two networks with 100, 000 and 200, 000 nodes and an average of two edges per node

using 10, 000 cascades and our algorithm took only 10.12 ms and 12.14 ms per edge

added.

4.4.3 Experiments on real data

Experimental setup. We use the original MemeTracker dataset, which contains

more than 172 million news articles and blog posts from 1 million online sources over

a period of one year from September 1 2008 till August 31 20094, as in Section 4.3.3.

We trace information on the Web using hyperlinks, building a hyperlink cascade

dataset. We refer the reader to Section 2.5.2 for more details on the MemeTracker

dataset and an in-depth description of the hyperlink cascade dataset.

In our experiments, we extract the top 1,000 media sites and blogs with the

largest number of documents, 10,000 hyperlinks and 500 longest hyperlink cascades.

We create a ground truth network G which contains an edge between a site u and a

site v if there is at least a site post in the site u that links to a post on the site v. We

then infer a network Ĝ from the hyperlink cascades and evaluate precision, recall and

accuracy with respect to G. We consider a power law pairwise transmission likelihood.

4Data available at http://memetracker.org

http://memetracker.org
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Figure 4.19: Real data. Panel (a) plots precision-recall and panel (b) accuracy on a
1,000 node hyperlink network with 10,000 edges using 1,000 cascades and a power-law
model. To control the solution sparsity or precision-recall tradeoff, we sweep over k
(number of edges).

Note that we trace the flow of information and create a ground truth network using

hyperlinks because we are interested in a quantitative evaluation of our method in

comparison with the state of the art. For richer qualitative insights, cascades based

on short textual phrases should be considered, but that goes beyond the scope of this

thesis.

Accuracy. Figure 4.19 shows precision and recall of Multitree in comparison with

NetInf. Multitree reaches higher recall values than NetInf, as expected, given

the small number of hyperlink cascades.

4.5 Summary

In this chapter, we have formalized the problem of inferring unweighted diffusion

networks, and developed two scalable algorithms: NetInf and Multitree. Both

algorithms make minimal assumptions about the physical, biological or cognitive

mechanisms responsible for diffusion. Instead, the algorithms choose provable sub-

optimal set of k edges maximizing two different approximations to the likelihood of

the observed data – temporal traces left by cascades of activations, which we show is
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a NP-hard problem. Qualitative assumptions about activations (e.g., are they long-

tailed or faddish?) determine the choice of nonparametric or parametric model on

the edges. Importantly, both methods allows for the transmission likelihood to be ar-

bitrarily complicated. This provides tremendous flexibility in fitting real data which

may combine long-tailed, faddish and other qualitative behaviors.

We evaluated NetInf and Multitree on a wide range of synthetic unweighted

diffusion static networks which aim to mimic the structure of real-world social and

information networks. Our algorithms are able to accurately recover the underlying

networks. In our experiments, NetInf and Multitree drastically outperformed a

naive maximum weight baseline heuristic. Their performance is very similar, however,

Multitree is able to infer networks more accurately than NetInf when the number

of observed cascades is small compared to the network size.

Most importantly, our algorithms allow us to study properties of real networks in

online media. We found that the inferred network exhibits a core-periphery structure

with mass media influencing most of the blogosphere. Clusters of sites related to

similar topics emerge (politics, gossip, technology, etc.), and a few sites with social

capital interconnect these clusters allowing a potential diffusion of information among

sites in different clusters.



Chapter 5

Inference of weighted diffusion

networks

5.1 Introduction

This chapter presents NetRate, a method for inferring static and dynamic weighted

diffusion networks based on observed activations (Gomez-Rodriguez et al., 2011),

including a highly efficient implementation of NetRate, called InfoPath (Gomez-

Rodriguez et al., 2013). To do so, we construct a probabilistic model incorporating

some basic assumptions about the temporal structures that generate diffusion pro-

cesses, as in Chapter 4. The assumptions are as follows:

A. activations are binary, i.e., a node is either activated or it is not; we do not model

partial activations or the partial propagation of information;

B. activations along edges of the network occur independently of each other;

C. information propagates through the network due only to diffusion, while ignoring

any external sources;

D. cascades propagates independently of each other;

E. a node gets activated once the first parent activates the node;

78
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F. activation along edges of the network occur at different transmission rates;

G. we observe all activations occurring in the network during a limited observation

time window; and,

H. in the dynamic setting, we assume unused edges (j, i) decay exponentially §5.3.3.

Assumptions (A-D) are common to our approach to inferring unweighted diffusion

networks in Chapter 4. However, assumptions (E-H) differ. Our aim is to infer not

only the connectivity of the network but also the transmission rates across its edges

after observing the times at which nodes in the network become activated.

In more detail, we first formulate a generative probabilistic model of diffusion that

aims to realistically describe how activations occur over time in a static network. The

model considers contagions to spread as directed acyclic networks (DAGs) through the

network. The model considers the information which propagates through the network

due only to diffusion, while ignoring any external sources (Myers et al., 2012). We then

generalize the model to support dynamic networks whose structure and transmission

rates changes over time. Solving both the static and dynamic network inference

problem reduces to solving convex problems. The convex problem decouples into

many smaller problems, allowing for natural parallelization. We develop an efficient

implementation which uses stochastic gradient (Robbins and Monro, 1951) and allows

us to infer networks with hundreds of thousands of nodes.

We apply our algorithm to synthetic data and to a real Web information prop-

agation dataset of 179 million different information contagions spreading among 3.3

million blog and news media sites over a one year period, from March 2011 till Febru-

ary 2012, described in Section 2.5. Results on synthetic data show that our method

is robust across network topologies, transmission models and variations in the trans-

mission rate over time.

Experiments on large-scale real news and social media data lead to interesting

qualitative insights and findings. For example, we find that information pathways for

general recurrent topics are more stable across time than for on-going news events.

Clusters of news media sites and blogs often emerge and vanish in matter of days
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Figure 5.1: We observe a set of cascades (right) within an unknown diffusion network
(left). For each contagion c, we only observe the times in which nodes get infected
up to time T c but not who infected whom. Our goal is to infer the network G and
transmission rates αi,j based on the observed cascades.

for on-going news events. Major social movements and events involving civil popula-

tion, such as the Libyan’s civil war or Syria’s uprise, lead to an increased amount of

information pathways among blogs as well as in the overall increase in the network

centrality of blogs and social media sites.

The remainder of the chapter is organized as follows: in Section 5.2, we describe

our continuous time model of diffusion over weighted static and dynamic networks

and state three weighted network inference problems. In Sections 5.3, we present an

efficient inference algorithm for weighted static and dynamic networks, NetRate,

and evaluate it on synthetic and real diffusion data. We conclude with a summary of

our results in Section 5.4.

5.2 Problem formulation

In this section, we first describe the diffusion data our inference algorithm for weighted

diffusion networks is designed for and continue describing the generative model of

diffusion. We conclude with a statement of the weighted network inference problem

for static and dynamic networks.
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Symbol Description

G(V , E) Directed network with node set V and edge set E
(G,A) Diffusion network: directed network G and transmission rates A
A = [αi,j] Pairwise transmission rates for all pair of nodes (i, j)
αi,j Pairwise transmission rate of edge (i, j)
c Contagion
tc Cascade: activation times for contagion c
C Set of all recorded cascades
Ct Set of recorded cascades by time t
tci Activation time of node i in cascade tc

T c Observation window cut-off or time horizon for cascade tc

t≤T
c

Observed activation times for cascade tcc up to T c

f(tj|ti, αi,j) Pairwise transmission likelihood of edge (i, j)
F (tj|ti, αi,j) Cumulative density function of edge (i, j)
S(tj|ti;αi,j) Survival function of edge (i, j)
H(tj|ti;αi,j) Hazard function, or instantaneous activation rate, of edge (i, j)
g(A) Prior likelihood on the transmission rates A
A Support of the prior likelihood on the transmission rates g(A)

Table 5.1: Table of symbols for Chapter 5.

5.2.1 Data

We observe multiple waves of contagions that propagate on a fixed population of N

nodes. As the contagion spreads from activated to non-activated nodes it creates a

cascade. For each contagion c, we observe a cascade tc, which is simply a record of

observed node activation times. In an information propagation setting, each cascade

corresponds to a different piece of information and the activation time of a node is

simply the time when the node first heard of or mentioned the piece of information.

We record a set C of cascades {t1, . . . , t|C|}. A cascade tc = (tc1, . . . , t
c
N) is an

N -dimensional vector recording when each of N nodes got activated by the contagion

c during a time interval of finite length T c. Thus, tck ∈ [t0, t0 + T c]∪ {∞}, where t0 is

the activation time of the first node. Symbol∞ labels nodes that are not activated by

the contagion c during observation window [t0, t0 +T c] – it does not imply that nodes

are never activated. Lengthening the observation window T c increases the number of
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observed activations within a cascade c and results in a more representative sample

of the underlying dynamics. However, these advantages must be weighed against the

cost of observing for longer periods. For simplicity we assume T c = T for all cascades;

the results generalize trivially. We assume contagions spread at different rates αi,j

across different edges of the underlying unobserved network G. Thus, we consider

the network to be weighted. Contagions often propagate simultaneously (Myers and

Leskovec, 2012; Prakash et al., 2012b) over the same network but we assume each

contagion to propagate independently of each other. We illustrate this process in

Figure 5.1.

Given a set of node activation times of many different contagions, our goal is to

infer the transmission rates A = [αj,i] and underlying network over which contagions

propagated. Importantly, the time-stamps assigned to nodes in each cascade induce

the structure of a directed acyclic graph (DAG) on the network (which is not acyclic in

general). Thus, it is meaningful to refer to parents and children within a cascade, but

not on the network. The DAG structure dramatically simplifies the computational

complexity of the inference problem.

5.2.2 Pairwise interactions

As previously for unweighted networks (Section 4.2), we describe the pairwise inte-

ractions between nodes using three concepts: pairwise transmission rates αi,j, prior

probabilities of transmission βi,j, and pairwise transmission likelihoods f(ti|tj, αi,j).
The transmission rate αi,j of an edge (i, j) ∈ E quantifies how frequently any contagion

spreads from node i to node j or, in other words, the latency of the edge (i, j). The

prior transmission probability βi,j of an edge (i, j) quantifies the probability that

a contagion would eventually spread from node i to node j for arbitrarily large tj.

Finally, the pairwise transmission likelihood f(tj|ti;αi,j) of an edge (i, j) ∈ E is the

conditional likelihood of transmission from node i, activated at time ti, to node j.

We refer the reader to Section 2.3 for an in-depth discussion of all three concepts.

Now, we highlight the key assumptions on the pairwise interactions of our model of

diffusion over weighted networks:
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First, since we assume networks to be weighted, we account for the general case

of heterogeneous pairwise transmission rates, i.e., activations can occur at different

transmission rates over different edges of a network.

Second, for any contagion c, we observe activations up to a finite time horizon

T c →∞. This contrasts with our approach to diffusion over unweighted networks in

Section 4, where we consider arbitrarily large time horizons T c →∞. Then, given a

node i, activated at ti, and a transmission rate αi,j > 0, the probability of survival

of node j up to the time horizon T c will be always greater than 0, S(tj|ti;αi,j) =∫∞
T c f(tj|ti;αi,j) > 0. Then, we can assume, for simplicity, the prior probability of

transmission βi,j to be 1 and yet not always observe node j to get infected before T c.

Third, the transmission likelihood for every edge (i, j) depends on the activation

times (ti, tj) and a transmission rate αi,j. For simplicity, we consider well-known

parametric models used previously in the literature (refer to Table 2.1). Importantly,

as αj,i → 0, the likelihood of transmission tends to zero and the expected transmission

time becomes arbitrarily long and always larger than the time horizon T c. We will

later allow transmission rates αj,i to change over time. In particular, we will allow the

transmission rates αj,i to change across cascades but not within a cascade. Allowing

edge transmission rates to dynamically increase and decay over time will enable us

to infer dynamic, time-varying, diffusion networks.

We recall some additional standard notation, defined in Section 2.3: the cumula-

tive density function, denoted F (tj|ti;αi,j), the survival function, S(tj|ti;αi,j) = 1 −
F (tj|ti;αj,i), and the hazard function, or instantaneous activation rate, H(ti|tj;αj,i) =

−S ′(ti|tj;αj,i)/S(ti|tj;αj,i) = f(ti|tj;αj,i)/S(ti|tj;αj,i). Importantly, the log-survival

and hazard functions of the parametric models we consider throughout this disser-

tation are simple (see Table 2.1). We refer the reader to Lawless (1982) for a more

extensive discussion of survival and hazard functions.

5.2.3 Probability of survival given a cascade

We compute the probability that a node survives unactivated until time ti, given

that some of its parents are already activated. Consider a cascade t := (t1, . . . , tN).
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Since each activated node k may activate i independently, the probability that nodes

1 . . . N do not activate node i by time ti is the product of the survival functions of

the activated nodes 1 . . . N |tk ≤ ti targeting i,

S(ti|t1, . . . , tN \ ti; A) =
∏
tk≤ti

S(ti|tk;αk,i), (5.1)

where A := {αi,j | i, j = 1, . . . , n, i 6= j}.

5.2.4 Likelihood of a cascade

Consider a cascade t := (t1, . . . , tN). We first compute the likelihood of the observed

activations t≤T = (t1, . . . , tN |ti ≤ T ). Since we assume activations are conditionally

independent given the parents of the activated nodes, the likelihood factorizes over

nodes as

f(t≤T ; A) =
∏
ti≤T

f(ti|t1, . . . , tN \ ti; A). (5.2)

Computing the likelihood of a cascade thus reduces to computing the conditional

likelihood of activating each node given the rest of the cascade. As in the independent

cascade model (Kempe et al., 2003), we assume that a node gets activated once the

first parent activates the node. Given an activated node i, we compute the probability

of a potential parent j to be the first parent by applying Eq. 5.1,

f(ti|tj;αj,i)×
∏

j 6=k,tk<ti

S(ti|tk;αk,i). (5.3)

We now compute the conditional likelihoods of Eq. 5.2 by summing over the

likelihoods of the mutually disjoint events that each potential parent is the first parent,

f(ti|t1, . . . , tN \ ti; A) =
∑
j:tj<ti

f(ti|tj;αj,i)×
∏

j 6=k,tk<ti

S(ti|tk;αk,i). (5.4)
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By Eq. 5.2 the likelihood of the activations in a cascade is

f(t≤T ; A) =
∏
ti≤T

∑
j:tj<ti

f(ti|tj;αj,i)×
∏

k:tk<ti,k 6=j

S(ti|tk;αk,i). (5.5)

Removing the condition k 6= j makes the product independent of j,

f(t≤T ; A) =
∏
ti≤T

∏
k:tk<ti

S(ti|tk;αk,i)×
∑
j:tj<ti

f(ti|tj;αj,i)
S(ti|tj;αj,i)

, (5.6)

and we can replace the ratios in Eq. 5.6 with hazard functions:

f(t≤T ; A) =
∏
ti≤T

∏
k:tk<ti

S(ti|tk;αk,i)×
∑
j:tj<ti

H(ti|tj;αj,i). (5.7)

Now, we note that Eq. 5.7 only considers activated nodes. However, the fact that

some nodes are not activated during the observation window is also informative. We

therefore add the multiplicative survival term from Eq. 5.1:

f(t; A) =
∏
ti≤T

∏
tm>T

S(T |ti;αi,m)×
∏

k:tk<ti

S(ti|tk;αk,i)
∑
j:tj<ti

H(ti|tj;αj,i). (5.8)

Assuming independent cascades, the likelihood of a set of cascades C = {t1, . . . , t|C|}
is the product of the likelihoods of the individual cascades given by Eq. 5.8:

f({t1, . . . , t|C|}; A) =
∏
tc∈C

f(tc; A). (5.9)

5.2.5 Relation to unweighted networks

In this section, we show how the likelihood of a cascade tc under our diffusion model

for weighted networks, given by Eq. 5.8, relates to likelihood under our diffusion

model for unweighted networks, given by Eq. 4.3, by considering arbitrarily large

time horizon T and equal transmission rates αi,j = α.

Consider equal transmission rates αi,j = α for every edge (i, j) ∈ E and an arbitra-

rily large time horizon T , as in Section 4.2. Then, by definition of β, limT→∞ S(T |ti;α) =
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(1− β) if (i, j) ∈ E . Now, we can rewrite Eq. 5.8 as:

f(t|G) =
∏
ti≤T

∑
(j,i)∈E : tj<ti

f(ti|tj;α)
∏

(k,i)∈E : k 6=j,tk<ti

S(ti|tk;α)×
∏
tn≤T

∏
(n,m)∈E : tm>T

(1− β).

(5.10)

By definition, f(ti|tj;αj,i) = 0 and S(ti|tj;αj,i) = 1 for either (j, i) /∈ E or (j, i) ∈ E
and tj > ti. Then, we can rewrite Eq. 5.10 as:

f(t|G) =
∑
j∈V

∏
ti≤T

f(ti|tj;α)
∏

(k,i)∈E:k 6=j

S(ti|tk;α)

× ∏
tn≤T

∏
(n,m)∈E : tm>T

(1− β)

=
∑
T ∈Tc(G)

∏
(j,i)∈ET

f(ti|tj;α)
∏

(k,i)∈E\ET

S(ti|tk;α)

× (1− β)r,

where r counts the number of edges that did not activate and failed to transmit

the contagion: r =
∑

u∈VT dout(u) − q, and dout(u) is the out-degree of node u in

graph G. However, this equation still differs from the likelihood of a cascade tc under

our diffusion model for unweighted networks, given by Eq. 4.3. In order to recover

it, we need to further assume that the prior transmission probability β of an edge

(j, i) matches the probability of survival of node i to the rest of potential parents k:∏
(k,i)∈E\ET S(ti|tk;α) ≈ β. Then,

f(t|G) ≈
∑
T ∈Tc(G)

∏
(j,i)∈ET

f(ti|tj;α)× βq(1− β)r

=
∑
T ∈Tc(G)

f(tc|T )P (T |G),

where q = |ET | = |VT | − 1 is the number of edges in T and counts the edges over

which the diffusion process successfully propagated.

5.2.6 Three weighted network inference problems

Given a static weighted network with constant transmission rates αj,i, the network

inference problem reduces to solving a maximum likelihood problem:
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Problem 2 (Static Network Inference). Given an observed set of cascades C =

{t1, . . . , t|C|}, our goal is to find the underlying transmission rates αj,i by solving

the following maximum likelihood (ML) optimization problem:

minimizeA −
∑

c∈C log f(tc; A)

subject to αj,i ≥ 0, i, j = 1, . . . , N, i 6= j,
(5.11)

where A := {αj,i | i, j = 1, . . . , n, i 6= j} are the variables. The edges of the network

are those pairs of nodes with transmission rates αj,i > 0.

Now, we generalize the network inference problem to dynamic networks with trans-

mission rates αj,i(t) that may change over time.

Problem 3 (Dynamic Network Inference). Given a time t and a set of recorded

cascades by time t, Ct = {t1, . . . , t|Ct|}, our goal is to find the optimal transmission

rates αj,i(t) by solving the following maximum likelihood (ML) optimization problem:

minimizeA(t) −
∑

c∈Ct wc(t) log f(tc; A(t))

subject to αj,i(t) ≥ 0, i, j = 1, . . . , N, i 6= j,
(5.12)

where wc(t) ≥ 0 is a weight that penalizes how old cascade c is at time t and A(t) :=

{αj,i(t) | i, j = 1, . . . , n, i 6= j} are the variables. The intuition here is that diffusion

network smoothly changes over time and that recent cascades have higher importance

in determining current network structure than old cascades. Thus at any point in time

we can solve the above optimization problem to obtain the structure of the diffusion

network at that particular time.

The dynamic network inference problem defined by Eq. 5.12 reduces to the static

network inference problem defined by Eq. 5.11 when we set all weights wc(t) to be

equal and constant over time.

Finally, in some scenarios we may have access to additional information that

lets us estimate a prior likelihood on the transmission rates αj,i(t). For example,

in information networks, a blog may sometimes link its sources, and therefore we

can compute a prior on the transmission rates from the sources to the blog using
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those links. In such cases, we can solve instead a maximum a posteriori optimization

problem.

Problem 4 (Network Inference with Prior Likelihood). Given a time t and a set of

recorded cascades by time t, Ct = {t1, . . . , t|Ct|}, and a prior likelihood g(A(t)) on the

transmission rates αj,i(t), our goal is to find the optimal transmission rates αj,i(t) by

solving the following maximum a posteriori (MAP) optimization problem:

minimizeA(t) −
∑

c∈Ct wc(t) log f(tc; A(t))− log g(A(t))

subject to A(t) ∈ A,
αj,i(t) ≥ 0, i, j = 1, . . . , N, i 6= j,

(5.13)

where wc(t) ≥ 0 is a weight that penalize how old cascade c is at time t, A(t) :=

{αj,i(t) | i, j = 1, . . . , n, i 6= j} are the variables and A is the support of the prior

likelihood g(·).

5.3 NetRate

5.3.1 Algorithm

Perhaps surprisingly, the solutions to the static and the dynamic network inference

problems defined by Eqs. 5.11 and 5.12 are unique, computable and consistent:

Theorem 7. Given log-concave survival functions and concave hazard functions in the

parameter(s) of the pairwise transmission likelihoods, the static and dynamic network

inference problem defined by Eqs. 5.11 and 5.12 are convex in A.

Proof. By Eq. 5.8, the log-likelihood of a cascade is

L(tc; A) = Ψ1(tc; A) + Ψ2(tc; A) + Ψ3(tc; A), (5.14)
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where,

Ψ1(tc; A) =
∑
i:ti≤T

∑
tm>T

logS(T |ti;αi,m),

Ψ2(tc; A) =
∑
i:ti≤T

∑
j:tj<ti

logS(ti|tj;αj,i),

Ψ3(tc; A) =
∑
i:ti≤T

log

 ∑
j:tj<ti

H(ti|tj;αj,i)

 .

If all pairwise transmission likelihoods between pairs of nodes in the network have

log-concave survival functions and concave hazard functions in the parameter(s) of

the pairwise transmission likelihoods, then convexity of Eqs. 5.11 and 5.12 follows

from linearity, composition rules for concavity, and concavity of the logarithm.

Corollary 8. The static and dynamic network inference problem defined by Eqs. 5.11

and 5.12 are convex for the exponential, power-law and Rayleigh models.

Theorem 9. The maximum likelihood estimator α̂ given by the solution of Eq. 5.11

is consistent.

Proof Sketch. We check the criteria for consistency of identification, continuity and

compactness (Newey and McFadden, 1994). The log-likelihood in Eq. 5.14 is a con-

tinuous function of A for any fixed set of cascades {t1 . . . t|C|}, and each α defines a

unique function log f(·|A) on the set of cascades. Finally, note that L → −∞ for

both αij → 0 and αij → ∞ for all i, j so we lose nothing imposing upper and lower

bounds thus restricting to a compact subset.

Similarly, the solution to the maximum a posteriori optimization problem defined

by Eq. 5.13 is also unique, computable and consistent if the prior likelihood on A is

log-concave. In the remainder of the chapter, we focus on the maximum likelihood

approach for both static and dynamic networks, and we call our network inference

method NetRate.
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Figure 5.2: Accuracy of NetRate in a small core-periphery Kronecker network.
Panel (a) shows the true network G and panel (b) shows the inferred network by
NetRate from 200 cascades. Red edges denote mistakes and the number over each
edge denotes the (inferred) pairwise transmission rate. NetRate recovers all the
true edges and outputs only four false edges.

5.3.2 Properties of NetRate

We highlight some common features of the solutions to the network inference pro-

blem for the exponential, power-law and Rayleigh models. First, to illuminate the

discussion, we revisit the terms constituting the log-likelihood Eq. 5.14 for the four

transmission models in Table 2.1.



CHAPTER 5. INFERENCE OF WEIGHTED DIFFUSION NETWORKS 91

The Ψ1 and Ψ2 terms contribute a positively weighted l1-norm on vector A that

encourages sparse solutions (Boyd and Vandenberghe, 2004). The penalty arises

naturally within the probabilistic model so that heuristic penalty terms to encourage

sparsity are not necessary. Each term of the l1-norm is positively weighted by a

linear function (exponential model), a logarithm (power-law), a quadratic function

(Rayleigh) or a monomial of degree k of the activation times. Sparse solutions are

desirable since real networks are usually sparse, as argued for unweighted networks

in Section 4.

The Ψ2 term penalizes edges k → i based on the activation time difference ti− tk.
Edges transmitting activations slowly are heavily penalized and conversely. The Ψ1

term penalizes edges i → j targeting unactivated nodes j based on the time T − ti
till the observation window cutoff. Lengthening the observation window produces

harsher penalties – however, it also allows further activations. The penalties are

finite, i.e., if no activation of node j is observed, we can only say that it has survived

until time T . There is insufficient evidence to claim j will never be activated since

our data is right-censored (Aalen et al., 2008). NetRate does not use empirically

ungrounded parameters (such as number of edges k and penalty factor ρ used by Net-

Inf and ConNIe respectively) to leap from not observing an activation to inferring

it is impossible. Instead, NetRate infers that the most likely explanation of the

observed data does not require transmission across certain edges.

The Ψ3 term ensures activated nodes have at least one parent since otherwise

the objective function would be negatively unbounded, i.e., log 0 = −∞. Moreover,

our formulation encourages a natural diminishing property on the number of parents

of a node – since the logarithm grows slowly, it weakly rewards activated nodes for

having many parents. We have found a similar diminishing property on the number

of parents, submodularity, on our approach to unweighted networks in Section 4.

5.3.3 Solving NetRate

Initially, we solved both the static and dynamic network inference problem using

CVX, a general purpose package for specifying and solving convex programs (Grant
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Figure 5.3: Accuracy and mean square error (MSE) against running time for a 1,024
node, 3,161 edge static core-periphery Kronecker network with exponential model for
10,000 cascades. Longer running times correspond to more iterations. A stochastic
gradient implementation of NetRate is approximately one order of magnitude faster
than a full gradient implementation.

and Boyd, 2010), and we publicly released an open source implementation1. Then, in

order to increase scalability, we developed a stochastic gradient (SG) descent imple-

mentation of our method, which we called InfoPath, and we also publicly released

an open source implementation2. Figure 5.3 illustrates how our stochastic gradient

implementation of NetRate (a.k.a. InfoPath) is approximately one order of mag-

nitude faster than a full gradient implementation. For the sake of fairness, since

InfoPath was coded in C++, we compared with a full gradient (non-stochastic)

descent implementation of NetRate in C++ instead of the Matlab code which uses

CVX, which was slower.

Stochastic gradient (SG) descent

Stochastic gradient (SG) descent methods have been shown to be extremely success-

ful for taking advantage of the structure exhibited by the optimization problems

stated in Eqs. 5.11 and 5.12. They have received increasing attention in the machine

1A Matlab implementation of NetRate using CVX is available in a supporting website (Ne-
tRate, 2011)

2A C++ stochastic gradient (SG) descent implementation of NetRate, which we called Info-
Path, is available in a supporting website (InfoPath, 2013)
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learning literature (Agarwal and Duchi, 2011; Bach et al., 2011; Blatt et al., 2008;

Duchi et al., 2011). Although many convex optimization methods based on stochas-

tic gradient descent have been proposed, we have found that in practice the basic

projected stochastic gradient method (Robbins and Monro, 1951) works well enough

for our problem. Other more sophisticated methods, like the stochastic average gra-

dient (Roux et al., 2012) or incremental average gradient (Blatt et al., 2008) do not

offer a significant advantage. Therefore, we proceed with the basic stochastic gradient

method in the remainder of the chapter.

In the static network inference problem defined by Eq. 5.11, the projected SG

method (Robbins and Monro, 1951) uses iterations of the form:

αkj,i =
(
αk−1
j,i − γk∇αj,i

Lck(Ak−1)
)+
, (5.15)

where ∇αj,i
Lck(·) is the gradient of the log-likelihood Lc(·) with respect to the trans-

mission rate αj,i, γk is a step-size, (z)+ = max(0, z), and cascade ck is sampled (with

replacement) uniformly at random from C. The gradients for all four edge trans-

mission models are given in Table 5.2.

In the dynamic network inference problem defined by Eq. 5.12, the projected SG

method (Robbins and Monro, 1951) uses iterations of the form:

αkj,i(t) =
(
αk−1
j,i (t)− γk∇αj,i

Lck(Ak−1(t))
)+
, (5.16)

where ∇αj,i
Lck(·) is the gradient of the log-likelihood Lc(·) with respect to the trans-

mission rate αj,i, γk is a step-size, (z)+ = max(0, z), and cascade ck is sampled (with

replacement, not uniformly) from Ct. In this case, instead using all historic data and

then explicitly penalizing each cascade by a different weighting factor wc(t), we use

a different, more scalable approach. We sample cascades with replacement where the

probability of a cascade being sampled decays with the age of the cascade. This way

recent cascades get sampled more often and thus implicitly hold higher importance

when inferring the network. In practice, we achieve a significant speed up using this

approach. Moreover, in our dynamic network inference problem, the transmission

rates usually vary smoothly. This means that stochastic gradient descent is a natural
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Model
Cascade gradient for unactivated Cascade gradient for activated

∇αj,iLc(A) ∇αj,iLc(A)

Exponential T − tcj (tci − tcj)− 1∑
l:tc

l
<tc

i
αl,i

Power-law log
(
T−tcj
δ

)
log
(
tci−tcj
δ

)
− (tci−tcj)−1∑

l:tc
l
<tc

i
αl,i(t

c
i−tcl )−1

Rayleigh
(T−tcj)2

2

(tci−tcj)2

2 − tci−tcj∑
l:tc

l
<tc

i
αl,i(t

c
i−tcl )

Weibull (T − tcj)k (tci − tcj)k −
k(tci−tcj)k−1∑

l:tc
l
<tc

i
kαl,i(t

c
i−tcl )k−1

Table 5.2: Cascade gradients for transmission models.

method since we can use the inferred network from the previous time step as initiali-

zation for the inference procedure in the current time step. We find that setting the

starting point α0
j,i of each transmission rate αj,i to the last outputted estimate of the

transmission rate allow us to further speed up the algorithm.

Importantly, in each iteration k of the projected stochastic gradient method for

both static and dynamic networks, we only need to compute the gradients∇αj,i
Lck(Ak)

for edges (j, i) such that node j has been activated in cascade ck, and the itera-

tion cost and convergence rate are independent of |C| (Bach et al., 2011; Nemirovski

et al., 2009). Rigorous theoretical analysis of convergence turns out to be a challen-

ging problem which we leave for future work. However, we would like to point out

that such analysis typically assumes the gradients ∇ALc(A
k) to be either bounded

above by a constant M , ||∇ALc(A)|| ≤ M , or Lipschitz-continuous with constant

L, ||∇ALc(A2) −∇ALc(A1)|| ≤ L||A2 −A1||. In our problem, these conditions are

violated if at any iteration k, there is a node i activated in cascade ck such that

H(tcki |t
ck
j ;αk−1

j,i ) = 0 ∀j : tckj < tcki , i.e., node i has no parents that explain the ac-

tivation at tcki , and the objective function is positively unbounded. In practice, we

avoid this scenario by introducing a lower bound on feasible transmission rates, so

that αj,i ≥ ε. A transmission rate αj,i is feasible if there is at least one cascade in

which both node j and i get activated. When outputting a solution, we simply omit

transmission rates with value ε.
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Algorithm 4 Stochastic gradient implementation of NetRate for static networks

Require: C,K
while k < K do
ck ← uniform-sampling(C);
for all (j, i) : tckj < tcki do

αkj,i =
(
αk−1
j,i − γk∇αj,i

Lck(Ak−1)
)+

;
end for
k = k+1;

end while
A∗ ← AK−1;
return A∗;

Aging edges in dynamic networks

Our algorithm automatically penalizes edges (j, i) when the source node j gets ac-

tivated and the target node i does not. In other words, in each iteration k of the

(stochastic) gradient descent method, we update transmission rates αkj,i if node j gets

activated in cascade ck. Therefore, an edge (j, i) gets penalized if node j gets acti-

vated in at least one cascade ck. In the dynamic setting, we introduce the additional

assumption that unused edges decay exponentially. In online media, for example,

bloggers typically pay less attention to news sites or blogs that have not been acti-

vated recently. If a node j has not been activated recently, we would like the unused

edges (j, i) to decay and eventually vanished, or equivalently the transmission rates

αj,i to converge to zero. We incorporate this observation by multiplying the trans-

mission rates of unused edges by an aging factor ρ every time t we solve the dynamic

network inference problem. Our implementation penalizes edges (j, i) where node j

never gets activated. We use an aging factor ρ = 0.95 in our experiments.

Cascade sampling in dynamic networks

In Eq. 5.16, instead of sampling cascades uniformly at random and explicitly pe-

nalizing each cascade by a different weighting factor wc(t), we achieve a significant

speed up by sampling cascades using a procedure that penalizes old cascades and

sets wc(t) = 1 for all cascades. There are many different sampling procedures. For
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Algorithm 5 Stochastic gradient implementation of NetRate for dynamic networks

Require: Ct, K, T, ρ
while k < K do
ck ← cascade-sampling(Ct, T );
for all (j, i) : tckj < tcki do

αkj,i =
(
αk−1
j,i − γk∇αj,i

Lck(Ak−1)
)+

;
end for
for all (j, i) : αk−1

j,i > 0, tckj →∞ do

αkj,i = ραk−1
j,i ;

end for
k = k+1;

end while
A∗ ← AK−1;
return A∗;

simplicity, we use windowed uniform or windowed exponential sampling. Windowed

means that when solving the network inference problem for time t, we only sample

cascades that started in the time window (t− Ts, Ts). Here, we encounter an impor-

tant tradeoff. The shorter the sampling time window Ts in the stochastic gradient

descent, the quicker our algorithm tracks changes in transmission rates. However, a

short sampling time window results in less reliable estimates because we sample fewer

cascades. To track changes quickly, we therefore need to observe many cascades over

time.

Distributed optimization

The optimization problem splits into N subproblems, one for each node i, in which

we find N − 1 rates αj,i, j = 1, . . . , N \ i. The computation can be performed in

parallel, obtaining local solutions that are globally optimal. Importantly, each node’s

computation only requires the activation times of other nodes in cascades it belongs

to. This may allow us to scale NetRate beyond hundred of thousands of nodes.
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Unfeasible rates

If a pair (j, i) is not in any common cascades, αj,i only arises in the non-positive

term Ψ3 in Eq. 5.14, so the optimal αj,i is zero. We therefore simply modify the

optimization problem by setting αj,i to zero – we remove αj,i from the optimization

problem. In a network with hundreds of thousands of nodes (and in principle billion

of edges), this tweak can speed up inference by several orders of magnitude.

5.3.4 Experiments on synthetic data

In this section, we validate NetRate by evaluating its performance on synthetic

static and dynamic weighted networks. First, we compare the performance of Net-

Rate in static weighted networks against one of our network inference algorithms

for unweighted networks, NetInf, described in Section 4.3.1, and one state of the

art network inference algorithm for weighted networks, ConNIe Myers and Leskovec

(2010). Second, we analyze the performance of our algorithm in static networks

as a function of cascade coverage, time horizon, transmission rates distributions,

exogenous factors, and noise. Finally, we analyze its performance in dynamic networks

as a function of the transmission rate temporal trend and the sampling window when

using the stochastic gradient descent implementation, InfoPath.

In general, in all our experiments we proceed as follows: We are given a true

diffusion static (dynamic) network G∗ (G∗(t)) and fixed (variable) transmission rates

A (A(t)), and then we simulate the propagation of a set of contagions c over the

network. Diffusion of each contagion creates a cascade and for each cascade, we

record the node activation times ti. Root nodes of cascades are chosen at random.

Once a node is activated, the transmission likelihoods of outgoing edges determine

the activation times of its neighbors. We record the time of the first activation if a

node is activated more than once. Activations are not observed after a pre-specified

time horizon T . Then, given these activation times (i.e., set of cascades), we aim to

recover the static (dynamic) network using NetRate. For example, Figure 5.2(a)

shows a small static diffusion network G of 23 nodes and 30 directed edges. Using the

exponential model we generated 200 cascades. Now given the cascades, NetRate
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returns the network Ĝ in Figure 5.2(b). Our method recovered G almost perfectly

by making only four errors (red edges), and it outputs pairwise transmission rates

(numbers over edges) that are very close to the true values.

Experimental setup

Our experimental methodology for static networks with fixed transmission rates over

time is composed of the following steps:

1. Ground truth network G∗.

2. Cascade generation: transmission time model with parameters αi,j and time

horizon T .

(1) Ground truth network G∗: As in Section 4.3.2, we consider two models of di-

rected real-world networks to generate G∗, namely, the Forest Fire model (Leskovec

et al., 2005) and the Kronecker Graphs model Leskovec et al. (2010). For Kronecker

networks, we consider three sets of parameters that produce networks with a very

different global network structure: a random network (Erdős and Rényi, 1960), a

core-periphery network (Leskovec et al., 2008) and a network with hierarchical com-

munity structure (Clauset et al., 2008). A brief introduction to Forest Fire and

Kronecker Graph models can be found in Section 2.2.2.

(2) Cascade generation: For cascade generation, we need both a ground truth net-

work structure and transmission rates for each edge (i, j). Therefore, we draw trans-

mission rates each edge (i, j) from a uniform distribution, a Gaussian distribution or

a Rayleigh distribution. We control the transmission rate variance across edges in

the network by tuning the parameters values of the distributions. The transmission

rate for an edge (i, j) models how fast the information spreads from node i to node j

in social networks. If not specified, α ∼ U(0.01, 1) for the exponential and Rayleigh

models and α ∼ U(0.01, 2) for the power law. Then, we simulate cascades on G∗

using the generative model defined in Section 4.2, and we record activations up to a

pre-specified time horizon T . Then, given these activation times (i.e., set of cascades),

we aim to recover the static network G∗ using NetRate.
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Our experimental methodology for dynamic networks with variable transmission

rates over time is composed of the following steps:

1. Ground truth network G∗(t).

2. Cascade generation: transmission time model with parameters αi,j(t) and time

horizon T .

3. Length of the sampling time window.

(1) Ground truth network G∗(t): Instead of generating dynamic network structures

directly, we proceed as follows. We generate static networks, as before, and make

every edge of each network G∗ to follow a particular edge transmission rate evolution

pattern, to obtain dynamic networks G∗(t). Then, an edge (i, j) ∈ E∗(t) exists at

time t if αi,j(t) > 0, and disappears otherwise.

(2) Cascade generation: We consider five edge evolution patterns: Slab, Square,

Chainsaw, Hump and Constant (see Figure 5.12). Slab and Hump patterns model

outgoing connections of sites that become popular for a short period of time. Square

and Chainsaw patterns model incoming connections to sites that perform updates

periodically at specific times of the day or days of the week. Constant pattern repre-

sents connections between sites that interact at any time and during a long period

of time, usually large media sites. We consider Chainsaw, Hump and Constant to

be examples of Type I pattern, without discontinuities, and Slab and Square to be

examples of Type II patterm, with discontinuities. Then, we assign to each edge in

the network an evolution pattern chosen uniformly at random from the set of the

above five patterns. Then, we generate transmission rate values α∗j,i(t) for each edge

according to its chosen evolution pattern, using the generative model defined in Sec-

tion 4.2. The evolving edge transmission rate α∗j,i(t) models how quickly information

spreads from one node to another. Finally, we generate 1,000 information cascades

per time step. For each cascade we randomly pick the cascade root node. Given

the node activation times from the recorded cascades, our goal then is to find the

true edges of the network and for each edge discover its transmission rate evolution
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pattern. In other words, inferring how each edge transmission rate α(t) evolves over

time.

(3) Length of the sampling time window: Intuitively, the shorter the sampling time

window Ts in the stochastic gradient descent implementation, the quicker our algo-

rithm tracks changes in transmission rates in a dynamic network. However, a short

sampling time window results in less reliable estimates because we sample fewer cas-

cades. In our experiments on synthetic data, we set the time window to Ts = 5 time

units, and we allow transmission rates to change value per time unit.

Performance in static networks

First, we compare the performance of NetRate in static weighted networks against

one of our network inference algorithms for unweighted networks, NetInf, and one

state of the art network inference algorithm for weighted networks, ConNIe Myers

and Leskovec (2010), by comparing the inferred and true networks via three measures:

precision, recall and accuracy. Precision is the fraction of edges in the inferred network

Ĝ present in the true network G∗. Recall is the fraction of edges of the true network

G∗ present in the inferred network Ĝ. Accuracy is 1 −
∑

i,j |I(α∗i,j)−I(α̂i,j)|∑
i,j I(α

∗
i,j)+

∑
i,j I(α̂i,j)

, where

I(α) = 1 if α > 0 and I(α) = 0 otherwise. Inferred networks with no edges or

only false edges have zero accuracy. Second, we evaluate how accurately NetRate

infers transmission rates over edges by computing the normalized mean absolute error

(MAE), E
[
|α∗− α̂|/α∗

]
, where α∗ is the true transmission rate and α̂ is the estimated

transmission rate.

Figure 5.4 compares the precision, recall and accuracy of NetRate with Net-

Inf and ConNIe for two types of static Kronecker networks: hierarchical community

structure with exponential model for 5,000 cascades and random with Rayleigh model

for 2,000 cascades, and a static Forest Fire network with power law model for 5,000

cascades over an observation window of length T = 10. In terms of precision-recall,

NetRate outperforms ConNIe and NetInf for all the synthetic examples in the

Pareto sense (Boyd and Vandenberghe, 2004). More specifically, if we set ConNIe

and NetInf’s tunable parameters to provide solutions with the same precision as
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Figure 5.4: Panels (a,c,e) plot precision against recall; panels (b,d,f) plot accuracy.
For ConNIe and NetInf we sweep over parameters ρ (penalty factor) and k (number
of edges) respectively to control the solution sparsity in both algorithms, thereby
generating a family of inferred models. NetRate has no tunable parameters and
therefore yields a unique solution. (a,b): 1,024 node hierarchical Kronecker network
with exponential model for 5,000 cascades. (c,d): 1,024 node random Kronecker
network with Rayleigh model for 2,000 cascades. (e,f): 1,024 node Forest Fire network
with power law model for 5,000 cascades.
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Figure 5.5: Normalized mean absolute error (MAE) of NetRate for three types of
Kronecker networks (1,024 nodes and 2,048 edges) and a Forest Fire network (1,024
edges and 2,422 edges) for 5,000 cascades. We consider three models of transmission
likelihoods: exponential (Exp), power-law (Pow) and Rayleigh (Ray).

NetRate, NetRate’s recall is always higher than the other two methods. Striking-

ly, ConNIe and NetInf do not achieve NetRate’s recall for any precision value.

NetRate outperforms ConNIe with respect to accuracy for any penalty factor ρ in

all the synthetic examples. It is also more accurate than NetInf for most values of

k (number of edges). Importantly, NetInf and ConNIe yield a curve of solutions

from which have to select a point blindly (or at best heuristically), whereas NetRate

yields a unique solution without any tuning. However, considering that NetRate

and ConNIe have more degrees of freedom than NetInf, it is surprising how well

NetInf performs in comparison with them despite assuming uniform transmission

rates and priors.

Figure 5.5 shows the normalized MAE of the estimated transmission rates for

the same networks, computed on 5,000 cascades. The normalized MAE is under

25% for almost all networks and transmission models – surprisingly low given we are

estimating more than 2,000 non-zero real numbers.
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Figure 5.6: Distribution of the log-likelihood of the cascades for (a) 5,000 cascades in
a hierarchical Kronecker network (1,024 node, 2,048 edges) with exponential model,
(b) 2,000 cascades in a random Kronecker network (1,024 node, 2,048 edges) with
Rayleigh model and (c) 5,000 cascades in a Forest Fire network (1,024 edges and
2,422 edges) with power law model over an observation window of length T = 10. We
compare the log-likelihoods of the cascades for true networks and inferred networks.
All networks are static.
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Figure 5.7: Performance of NetRate vs. amount of cascade data
Performance of NetRate vs. cascade coverage for a static hierarchical Kronecker
network (1,024 nodes and 2,048 edges) with exponential, power-law and Rayleigh

transmission models over an observation window of length T = 10.

Solution quality

Given a diffusion network, we may expect that some cascades are more likely than

others. Moreover, we would like that NetRate outputs inferred networks that pro-

duce the same cascades’ likelihoods as the ones given by the true networks. Therefore,

we now compare the log-likelihood per cascade for the true networks and the inferred

networks for different networks and transmission model.

Figure 5.6 plots the distribution of log-likelihoods of the set of cascades that we

used for network inference in the previous section. We compute the distribution

of the log-likelihoods of the cascades for true networks and inferred networks. We

observe that the distribution of log-likelihoods across cascades depends on the type of

network and transmission model. Both the hierarchical Kronecker with exponential

model and the Forest Fire with power law model result in many cascades having a

high likelihood, specially in the case of the Forest Fire with power law model, and a

rapid decay of the number of cascades with the log-likelihood value. In contrast, the

random Kronecker with Rayleigh model produce a set of cascades with log-likelihood

values covering uniformly a much wider range. The distribution of the log-likelihoods

of the cascades are always very similar for the real and the inferred networks.
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Figure 5.8: Performance of NetRate vs. time horizon for a static hierarchical
Kronecker network (1,024 nodes and 2,048 edges) with exponential, power-law and
Rayleigh transmission models.

Performance vs. cascade coverage

Observing more cascades leads to higher precision-recall and more accurate estimates

of the transmission rates. Figure 5.7 plots the accuracy and normalized MAE of the

estimated transmission rates against the number of observed cascades for a static

hierarchical Kronecker network with three transmission models over an observation

window of length T = 10. Estimating transmission rates is considerably harder

than simply discovering edges and therefore more cascades are needed for accurate

estimates. As many as 5,000 cascades are required to obtain normalized MAE values

lower than 20%. Up to 5,000 cascades, the normalized MAE decreases quickly as a

function of the number of cascades. Beyond 5,000 cascades, it becomes more difficult

to decrease further the normalized MAE by adding cascades.

Performance vs. time horizon

Intuitively, the longer the observation window, the more accurately NetRate infers

transmission rates. Figure 5.8 confirms this intuition by showing the accuracy and

normalized MAE of the estimated transmission rates for different time horizons T for a

static hierarchical Kronecker with exponential, power-law and Rayleigh transmission
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Figure 5.9: Performance of NetRate vs. transmission rate distribution. Panels plot
(a) accuracy and (b) normalized MAE of the estimated transmission rates against the
transmission rate distribution for a hierarchical Kronecker network (1,024 nodes and
2,048 edges) with exponential model for 5,000 cascades, a random Kronecker network
(1,024 nodes and 2,048 edges) with Rayleigh model for 2,000 cascades and a Forest
Fire network (1,024 edges and 2,422 edges) with power law model for 5,000 cascades
over an observation window of length T = 10. All networks are static.

models for 5,000 cascades. The longer is the time horizon T , the weaker is the

right-censoring in the diffusion data and the more accurately NetRate infers the

transmission rates. However, once we reach a sufficiently long time horizon T , further

increasing the recording time does not increase the performance significantly since

there are not unrecorded activations anymore.

Performance vs. transmission rate distribution

We have carried out experiments using synthetic networks in which the transmission

rates of the edges are always drawn from a uniform distribution. Since this assumption

may be often violated in real networks we now consider networks in which we set the

transmission rates of the edges by drawing samples from (i) a uniform distribution,

(ii) a Gaussian distribution (µ = 0.5, σ = 0.5; we reject any negative samples) and

(iii) a Rayleigh distribution (σ = 0.25).

Figure 5.9 plots accuracy and normalized MAE of the estimated transmission rates

against the transmission rate distribution for a static hierarchical Kronecker network
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Figure 5.10: Performance of NetRate vs. amount of additive Gaussian noise (stan-
dard deviation σ) in the transmission times for a static random Kronecker network
(1,024 nodes and 2,048 edges) with exponential, power-law and Rayleigh transmission
models over an observation window of length T = 10.

with exponential model for 5,000 cascades, a static random Kronecker network with

Rayleigh model for 2,000 cascades and a static Forest Fire network with power law

model for 5,000 cascades over an observation window of length T = 10. In all net-

works, the accuracy remains relatively stable across transmission rate distributions.

However, the more skewed the transmission rate distribution is, the greater is the nor-

malized MAE (i.e., it is easier to estimate transmission rates drawn from a uniform

distribution than from a Gaussian or Rayleigh).

Performance vs. transmission time noise

When we work with real data, it may happen that the true pairwise transmission

likelihoods differ from the parametric models we assume or that the observed acti-

vation times may have been corrupted by noise. We then study the accuracy and

normalized MAE of NetRate as a function of the noise of the transmission times

between activations. To this end, we add Gaussian noise to the transmission times

between activations in the cascade generation process.

Figure 5.10 shows the accuracy and normalized MAE against the amount of
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Figure 5.11: Performance of NetRate vs. fraction of missing nodes per cascade for
a static random Kronecker network (1,024 nodes and 2,048 edges) with exponential,
power-law and Rayleigh transmission models over an observation window of length
T = 10.

Gaussian noise added to the transmission times between activations for a static ran-

dom Kronecker network with exponential, power-law and Rayleigh transmission mo-

dels for 5,000 cascades. In all three transmission models, the normalized MAE (i.e.,

transmission rate inference) is more robust against noise than the accuracy (i.e.,

network structure inference).

Performance vs. missing activations

In many real world scenarios, we do not observe all nodes that become activated

during the observation window. For example, media sites and blogs may publish

contents that only subscribers can read and members of a social network can restrict

the visibility of certain posts. Therefore, we consider collections of cascades where a

random fraction of each cascade is missing. This means that we first generate a set

of cascades, but then only record node activation times of a fraction of nodes.

Figure 5.11 shows the accuracy and normalized MAE against the fraction of

missing nodes per cascade for a static random Kronecker network with exponen-

tial, power-law and Rayleigh transmission models for 5,000 cascades. Missing data

degrades the performance of NetRate significantly more than noise. Although there
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Figure 5.12: True and inferred transmission rate over time for edges with different
transmission rate trends for a 512 node, 1,024 edge core-periphery Kronecker network
with exponential model for 200 time units with 1,000 cascades per time unit. Our
method is able to track the changing transmission rate values over time. It works
better when the transmission rate trend is continuous (c,d) than when there is a
discontinuity (a,b).

has been increasing effort devoted to correcting for missing data in information cas-

cades, previous algorithms attempt to output cascades with the same structural pro-

perties of the original (complete) cascades from the incomplete cascades (Sadikov

et al., 2011) or to simply estimate the cascade width and length (Chierichetti et al.,

2011) but the inferred cascades may be actually very different to the original cascades.

It remains an open problem how to correct for missing data in the context of network
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inference.

An interesting open question is whether localized missing observations can be

detected. For example, is it possible to detect when certain memes are suppressed on

specific websites or in specific regions?

Performance in dynamic networks

In this section, we evaluate the performance on NetRate in dynamic networks. We

first show qualitatively how our algorithm performs for different transmission rate

trends, and then evaluate quantitatively its performance.

Figure 5.12 shows the true and inferred transmission rates for four different edges,

each with a different evolution pattern: Slab, Square, Chainsaw and Humb, in a 512

node, 1,024 edge core-periphery Kronecker network with 20% of the edges following

each of the five rate trends. We generated and recorded an average of 1,000 cascades

per time unit using an exponential pairwise transmission model. Our method is able

to track the evolving edge transmission rate over time for all evolution patterns.

It gives near perfect performance when edge transmission rate evolves continuously

(Chainsaw, Hump). Interestingly, even when the edge transmission rate evolves dis-

continuously (Slab, Square), InfoPath manages to track it.

Now, we compute four different measures: Precision, Recall and Accuracy of

inferred edges as well as Mean Squared Error (MSE) in the edge transmission rate,

in order to evaluate the performance of our algorithm quantitatively. Precision at

time t is the fraction of edges in the inferred network Ĝ(t) present in the true network

G∗(t). Recall at time t is the fraction of edges of the true network G∗(t) present in

the inferred network Ĝ(t). Accuracy at time t is defined as

1−
∑

i,j |I(α∗i,j(t))− I(α̂i,j(t))|∑
i,j I(α∗i,j(t)) + I(α̂i,j(t))

,

where α∗(t) is the true transmission rate at time t, α̂(t) is the estimated transmission

rate at time t, and I(α(t)) = 1 if α(t) > 0 and I(α(t)) = 0 otherwise. Inferred

networks with no edges or only false edges have zero accuracy. Last, Mean Squared

Error (MSE) at time t is defined as E
[
||α∗(t) − α̂(t)||2

]
, where α∗(t) is the true



CHAPTER 5. INFERENCE OF WEIGHTED DIFFUSION NETWORKS 111

 0

 0.25

 0.5

 0.75

 1

 0  50  100  150  200

Time

Recall (Type I trend)
Recall (Type II trend)

Precision (Type I trend)
Precision (Type II trend)

(a) P-R (C-P, Exp)

 0

 0.25

 0.5

 0.75

 1

 0  50  100  150  200

Time

Recall (Type I trend)
Recall (Type II trend)

Precision (Type I trend)
Precision (Type II trend)

(b) P-R (HI, Ray)

 0

 0.25

 0.5

 0.75

 1

 0  50  100  150  200

A
c
c
u
ra

c
y

Time

Type I trend
Type II trend

(c) Accuracy (C-P, Exp)

 0

 0.25

 0.5

 0.75

 1

 0  50  100  150  200

A
c
c
u
ra

c
y

Time

Type I trend
Type II trend

(d) Accuracy (HI, Ray)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  50  100  150  200

M
S

E

Time

Type I trend
Type II trend

(e) MSE (C-P, Exp)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  50  100  150  200

M
S

E

Time

Type I trend
Type II trend

(f) MSE (HI., Ray)

Figure 5.13: Precision and recall (P-R), accuracy and mean square error (MSE) of
our stochastic method against time. (a,c,e): 1,024 node, 2,048 edge dynamic core-
periphery (C-P) Kronecker network with exponential model, (b,d,f): 1,024 node,
2,048 edge dynamic hierarchical (HI) Kronecker network with Rayleigh model. In
both networks, type I (Chainsaw, Hump) and type II (Slab, Square) trends for trans-
mission rates were generated, and 1,000 cascades per unit time were recorded.
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Figure 5.14: Performance vs sampling time window. Panel (a) shows the true and
inferred transmission rates for a transmission rate with a Slab evolution pattern for
different sampling time window lengths. Panel (b) shows accuracy across time for
different sampling time window length for a 512 node, 1,024 edge dynamic core-
periphery Kronecker network. Half the edges have transmission rates that follow a
Slab evolution pattern, and half the edges have a constant transmission rate. We ge-
nerated and recorded an average of 1,000 cascades per time unit using an exponential
pairwise transmission model.

transmission rate at time t and α̂(t) is the estimated transmission rate.

Figure 5.13 shows Precision, Recall, Accuracy, and MSE over time for two 1,024

node, 2,048 edge dynamic kronecker networks, core-periphery (parameter matrix

[0.9, 0.5; 0.5, 0.3]) and hierarchical (Clauset et al., 2008) ([0.9, 0.1; 0.1, 0.9]), with ex-

ponential and Rayleigh pairwise transmission models respectively. We generated con-

tinuous (Chainsaw, Hump) and discontinuous (Slab, Square) evolution patterns for

transmission rates, α∗j,i(t) ∈ [0, 1] for all t, and we recorded 1,000 cascades per unit

time. The performance of our method is stable across time, and as noticed qualita-

tively, continuous trends are easier to track and estimate than discontinuous ones.

Performance vs. sampling time window

Intuitively, the shorter the sampling time window Ts in the stochastic gradient descent

implementation, the quicker our algorithm tracks changes in transmission rates in a
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dynamic network. However, a short sampling time window results in less reliable

estimates because we sample fewer cascades.

Figure 5.14(a) shows the true and inferred transmission rates for a transmission

rate which evolves as a Slab for different sampling time window lengths. The experi-

mental results support the intuition. We observe that the shorter the sampling time

window, the quicker we are able to track the step up. However, when the sampling

time window is too short, stochastic gradient descend do not sample cascades with

activations of the source of the edge and the rate decays only by aging.

Figure 5.14(b) shows accuracy across time for different sampling time window

length for a 512 node, 1,024 edge dynamic core-periphery Kronecker network. Half

the edges have transmission rates that evolve as a Slab, and half the edges have a

constant transmission rate. We generated and recorded an average of 1,000 cascades

per time unit using an exponential pairwise transmission model. Too short or too

long sampling time windows result in lower accuracy.

5.3.5 Experiments on real data

In this section we analyze dynamic networks based on real diffusion data, since in-

formation pathways change over time, depending upon the information content that

propagate through them (Romero et al., 2011a; Myers et al., 2012). For example, a

real world event may occur for a limited period of time and thus news related to the

event spread quicker and to larger parts of the network around such time period. At

any given time, there are many different real world events, topics, and content that

propagates through the Web, leading to different emerging and vanishing information

pathways, and thus an underlying dynamic network. In order to better understand

these temporal changes, we aim to reconstruct dynamic networks and the information

pathways for particular real world events and topics. All the data, code and addi-

tional results are available at the supporting websites (NetRate, 2011; InfoPath,

2013).
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Dataset description

We use the topic-based MemeTracker dataset, which contains more than 300 million

news articles and blog posts from 3.3 million online sources over a period of one year,

from March 2011 till February 20123. Based on this raw data, we use two different

methodologies to trace information on the Web and then create two different datasets:

hyperlink cascade dataset and MemeTracker cascade dataset. We refer the reader to

Section 2.5.3 for more details on the topic-based MemeTracker dataset and an in-

depth description of the two methodologies we used to trace information on the Web.

Our aim is to consider sites that actively spread memes over the Web. We achieve

this by selecting top 5,000 sites in terms of the number of memes they mentioned.

Moreover, we are interested in inferring dynamic networks related to particular to-

pics or events. So, we assume we are also given a keyword query Q related to the

event/topic of interest. When inferring a network for a given query Q, we only

consider documents (and the memes they mention) that include keywords Q. Then,

we build information cascades using only those memes and apply our algorithm to

infer the edges and evolving edge transmission rates. The edge transmission rates

explain the propagation of information related to a given topic or real world event Q.

For each query Q we infer one network per day. Table 2.2 summarizes the number of

sites and meme cascades for several topics and real world events.4.

Implementation and scalability

We developed an efficient distributed implementation of our algorithm using stochas-

tic gradient descend in C++, which uses the graph library SNAP (SNAP, 2012). We

deployed the implementation in a cluster with 1000 CPU cores and 6 TB of RAM.

With this setup, we inferred 38 dynamic networks, one per topic or news world event,

with a daily resolution for a period of one year from March 2011 to February 2012,

with thousands of nodes using hundreds of thousands of cascades in less than 4 hours.

3Data available at the http://snap.stanford.edu/infopath/
4Additional dynamic diffusion networks for other topics and news events are available at the

supporting website (InfoPath, 2013)

http://snap.stanford.edu/infopath/


CHAPTER 5. INFERENCE OF WEIGHTED DIFFUSION NETWORKS 115

Note that inferring 38 dynamic with a daily resolution for a one year period is equi-

valent to solving Eq. 5.12 more than 13,000 times (38 x 365) for millions of pairwise

transmissions transmission rates. We also tested our algorithm on larger datasets.

For example, for “Occupy Wall Street movement”, we were able to infer a 43,415-

node dynamic network over a period of 18 months, from January 2011 to June 2012,

using 1,381,793 information cascades.

Visualizing the information pathways

Figures 5.15, 5.16 and 5.17 plot diffusion networks for three different 2011 world

events: Fukushima nuclear disaster, UK royal wedding, and civil uprise in Syria.

Each network is shown at three different time points. Red nodes represent mainstream

media sites, and blue nodes represent blogs (Leskovec et al., 2009).

Based on the figures, we draw several interesting observations. Most often, in-

formation propagates through a core-periphery network structure. Such structure

emerges by few central media sites and blogs driving the adoption of memes across the

Web (Gomez-Rodriguez et al., 2010). However, the network structure often changes

dramatically over time, and we find clusters that emerge and vanish in short periods

of time. For example, the information networks for Syria’s uprise illustrated in Fi-

gure 5.17, do not have any clear clustering structure. However, on December 2, 2011

(Figure 5.17(c)) a cluster suddenly emerges in the network. Further investigation

reveals that the cluster is composed of UK news sites and blogs that discuss recently

implemented EU sanctions against Syria. Generally, it is common to observe sudden

formation of clusters of sites from specific geographical areas. This is specially no-

ticeable in the information network for Fukushima’s disaster, in Figure 5.15. Such

clusters often form due to language boundaries, since such boundaries prevent memes

to flow across countries or continents. Moreover, we often observe that such clusters

are caused by a common external event (Myers et al., 2012), like in the case of UK

discussion on EU sanctions against Syria. Inferred dynamic networks can thus be

used to investigate the flow of information as well as to detect external events that

cause sudden perturbations to the diffusion network structure.
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Figure 5.15: Snapshots of the dynamic diffusion networks for Fukushima at three
different times. Red nodes are mainstream media, and blue nodes are blogs.
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Figure 5.16: Snapshots of the dynamic diffusion networks for UK royal wedding at
three different times. Red nodes are mainstream media, and blue nodes are blogs.
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(a) Syria’s uprise (2011-04-05)

(b) Syria’s uprise (2011-06-02)

UK
sites

(c) Syria’s uprise (2011-12-02)

Figure 5.17: Snapshots of the dynamic diffusion networks for Syria’s uprise at three
different times. Red nodes are mainstream media, and blue nodes are blogs.
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Evolution of edge transmission rates

Next, we aim to study the evolution of links among different types of sites. We label

the nodes in our network as mainstream media and blog, and compute the number

of links between different types of sites over time. Figure 5.18 gives the results for

several inferred diffusion networks for different topics and world events. We note

several interesting patterns.

The connectivity changes tend to reflect the amount of attention that a news

event or a topic triggers over time. Unexpected news events, like the sex scandal

of the director of the International Monetary Fund Strauss-Kahn on May 14, 2011

in Fig. 5.18(g) or the death of British singer Amy Winehouse on July 23, 2011 in

Fig. 5.18(a), result in a dramatic increase in the number of edges over a short period

of time. More general topics, like the NBA in Fig. 5.18(e), result in a network with

more stable connectivity over time. Certain types of news are sometimes spreading

earlier among blogs than mainstream media. This is especially the case for population

wide events like the Fukushima nuclear disaster, civil war in Libya and civil uprise in

Syria (Fig. 5.18(b, c, h). However, it happens more frequently that the largest amount

of links are mainstream media-to-mainstream media and the fewest links point from

blogs to mainstream media. These results are intuitive and consistent with previous

work (Gomez-Rodriguez et al., 2010; Leskovec et al., 2009) that observed most often

information flows from mainstream media to blogs (and rarely the other way around).

However, as we see here for population level events and social movements (like, in case

of the civil unrest in the Middle East) social media plays crucial role in information

dissemination and organization of civil movements.

Evolution of node centrality

Having studied the dynamics of edges in the network we now move towards investiga-

ting the network centrality of blogs and mainstream media sites over time for different

topics and world events. To measure network centrality of node S in the network at

time t, we first compute shortest path length from S to any other node R in the

network. Then centrality of node S is defined as
∑

R 1/d(S,R), where d(S,R) is the
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Figure 5.18: Number of links that point between different types of sites across time
for several inferred diffusion networks for eight different topics or 2011 world events.
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shortest path length from S to R (if R is not reachable from S then d(S,R) = ∞).

For networks with core-periphery structure, nodes with high centrality are typically

located in the “central” core of the network.

Figure 5.19 plots the percentage of blogs among the top 100 most central sites over

time for eight different topics/events of 2011. Perhaps surprisingly, we observe there is

a about the same number of mainstream media and blogs in the top-100 most central

nodes for most networks – the number of blogs in the top-100 does not typically

decreases below 30% or increases over 70%. For some topics, mainstream media are

always more central (e.g., baseball and NBA in Figures 5.19(a, b)). In contrast, for

other topics, blogs dominate mainstream media over a significant amounts of time

(e.g., Gaddafi in Fig. 5.19(c)). Centrality of mainstream media and blogs can be

relatively constant (Fig. 5.19(a,b)) or more time-varying (Fig. 5.19(c,h)). We find

that a significant rise in the number of central blogs is often temporally correlated

with an increasing social unrest (e.g., the Occupy Wall Street movement in Sept-Nov

2011 in Fig. 5.19(f)).

Accuracy on real data

So far, we have used memes to trace the flow of information over the Web and have

made several qualitative observations about the structure and dynamics of informa-

tion pathways in online media. We now proceed and attempt to also quantitatively

evaluate our algorithm on real data. In case of real data the ground-truth information

diffusion network is impossible to obtain. However, we can use the temporal dynamics

of hyperlinks created between news sites as a proxy for real information flow. Thus,

by observing the times when sites create hyperlinks, our goal is to infer the ‘targets’

of the links (i.e., infer the hyperlink network from the hyperlinks times).

We proceed as follows. First, we discretize the time in days, we generate one

network G∗(t) per day t, in which we add an edge (u, v) if a document on a site u

linked to a document on a site v within the last day. Then, we build a set of hyperlink

cascades. A hyperlink cascade ch starts when a site publishes a piece of information

and then other sites use hyper-links to refer to it. Since all our documents/posts

are time stamped, we can trace the hyperlinks in the reverse direction and obtain
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Figure 5.19: Percentage of blogs and mainstream media in top-100 most influential
sites for eight different topic or 2011 world event inferred diffusion networks. Main-
stream media are represented in red, and blogs in blue.
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Figure 5.20: Precision, recall, and accuracy of our stochastic method against time
for a dynamic hyperlink network with 11,461 nodes and 19,915 total number of edges
across time, using 495,655 hyperlink cascades from July 2011 to December 2011.

information cascades. We extracted almost 0.5 million hyperlink cascades from 3.3

million websites from July 2011 till December 2012. Our aim is to use the hyperlink

cascades to infer the dynamic network G∗(t). We then evaluate how many edges our

algorithm estimates correctly by computing Accuracy, Precision and Recall for each

day.

Figure 5.20 shows Precision, Recall, and Accuracy over time for a dynamic hy-

perlink network with 11,461 nodes and 19,915 edges created over time, using 495,655

hyperlink cascades from July 2011 to December 2011. We assume an exponential

edge transmission model. We observe weekly periodicity and the overall encouraging

performance of around 0.4 to 0.5 for all three performance metrics.

5.4 Summary

We have developed a flexible model of the temporal structure underlying diffusion

processes over weighted static and dynamic networks. The model makes minimal

assumptions about the physical, biological or cognitive mechanisms responsible for

diffusion. Instead, fitting the model reduces to inferring transmission rates between

nodes of a network by finding the rates that maximizes the likelihood of the observed

data – temporal traces left by cascades of activations. Qualitative assumptions about
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activations (e.g., are they long-tailed or faddish?) determine the choice of parametric

model on the edges. The model allows to mix exponential, power law, Rayleigh

or other models, including multimodal likelihoods (Du et al., 2012), within a single

inference algorithm. This provides tremendous flexibility in fitting real data which

may combine long-tailed, faddish and other qualitative behaviors.

Remarkably, introducing continuous temporal dynamics, allowing variable trans-

mission rates across edges, and avoiding further assumptions dramatically simplifies

the problem compared our approach to the network inference problem for unweighted

networks presented in Chapter 4. The model’s parameters have natural interpreta-

tions, and it leads to a well-defined, convex maximum likelihood problem that can be

solved efficiently. Importantly, we do not need to hand tune parameters to control

the sparsity of the inferred network (i.e., number of edges to infer or penalty terms).

Indeed, heuristic l1-like penalty terms, such as the ones used in Myers and Leskovec

(2010), are unnecessary since the probabilistic model naturally imposes sparse solu-

tions. Importantly, other research problems, as the influence maximization problem,

described in Chapter 6, also get simplified under our continuous time model of diffu-

sion.

We evaluated NetRate on a wide range of synthetic diffusion networks – both

static and dynamic – with heterogeneous temporal dynamics which aim to mimic the

structure of real-world social and information networks. NetRate provides a unique

solution to the network inference problem with high recall, precision and accuracy. A

direct comparison with the current state of the art in synthetic networks is difficult,

since these methods include a parameter controlling the sparsity of the inferred net-

work that requires blind tuning. Nevertheless, NetRate is typically better in terms

of accuracy than previous methods across the full range of their tunable parameters.

In addition, NetRate accurately estimates transmission rates, which other methods

cannot estimate at all. The performance of ConNIe appears significantly worse than

reported in Myers and Leskovec (2010); a possible explanation for the degradation is

that in our work, we consider networks with heterogeneous temporal dynamics. It is

surprising how well NetInf, described in Chapter 4, performs in comparison with

NetRate despite assuming uniform temporal dynamics and priors. Additionally, we
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showed that NetRate is able to track changes in the topology of dynamic networks

and provide on-line accurate estimates of the time-varying transmission rates.

Importantly, we run our algorithm on real data from online media and study how

real networks and information pathways evolve over time. We found that information

pathways over which general recurrent topics propagate remain relatively stable across

time. In contrast, unexpected events lead to dramatic changes on the information

pathways. We observed that clusters of mainstream news and blogs often emergence

and vanish in matter of days. We discovered that there is an early greater increase

in information transfer among blogs than among mainstream for news involving an

increasing dramatic civil unrest, as the Libyan civil war, Egypt’s revolution or the

Syrian uprising. Finally, although we found that the amount of mainstream media and

blogs among the most influential nodes for most topics or news events are comparable,

the number of influential blogs on some topics or news events grows when there exists

an increasing social unrest (e.g., the Occupy Wall Street movement in Sept-Nov 2011).



Chapter 6

Influence maximization in diffusion

networks

6.1 Introduction

This chapter presents InfluMax, a method for maximizing influence on informa-

tion spread on static weighted diffusion networks (Gomez-Rodriguez and Schölkopf,

2012a), which build on the fully continuous time model of diffusion for weighted

networks introduced in Chapter 4.

In more detail, we first describe how, given a set of source nodes, we can com-

pute the average total number of activated nodes analytically using continuous time

Markov chains (CTMCs). Later, we show that finding the optimal influential set of

source nodes in the continuous time influence maximization problem is a NP-hard

problem. We then provide an approximation algorithm that finds a suboptimal set

of source nodes with provable guarantees in terms of the average total number of

activated nodes.

Our results on synthetic weighted diffusion networks show that InfluMax is

remarkably stable across different network topologies and transmission rates distri-

butions. It outperforms state of the art methods in terms of influence (i.e., average

number of infected nodes) for different network topologies, transmission rates distri-

butions, time horizons and source set sizes. InfluMax typically gives an influence

126
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Symbol Description

G(V , E) Directed network with node set V and edge set E
(G,A) Diffusion network: directed network G and transmission rates A
A = [αi,j] Pairwise transmission rates for all pair of nodes (i, j)
αi,j Pairwise transmission rate of edge (i, j)
f(tj|ti, αi,j) Pairwise transmission likelihood of edge (i, j)
F (tj|ti, αi,j) Cumulative density function of edge (i, j)
T Time horizon
S Node source set
si Source node i
N(S;T ) Number of activated nodes at time t given a node source set S
σ(S;T ) = EN(S;T ) Influence function
n Sink node
Sn(B) Set of nodes dominated by B with respect to a sink node n
Ω∗n Set of self dominant node sets with respect to a sink node n
I(t|S) Activated node set at time t given S
Un(t|S) Useless node set at time t given S and n
Xn(t|S) Set of disable nodes at time t given S and n

Table 6.1: Table of symbols for Chapter 6.

gain of ∼ 25% and it achieves the greatest improvement for small time horizons; in

such scenarios, considering heterogeneous transmission rates play a dramatic role.

We also evaluate InfluMax on two real diffusion networks that we inferred from the

MemeTracker dataset (refer to Section 2.5.2), using NetRate, described in Chap-

ter 4. Again, InfluMax drastically outperformed the state of the art by ∼ 30%.

The remainder of the chapter is organized as follows: in Section 6.2, we revisit the

continuous time model of diffusion over weighted networks introduced in Chapter 4

and state the continuous time influence maximization problem. In Section 6.3, we

first introduce our influence maximization method, InfluMax, describing how the

method evaluates and maximizes influence, and we then evaluate our method on

synthetic and real diffusion networks. We conclude with a summary of our results in

Section 6.4.
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6.2 Problem formulation

In this section, we build on the fully continuous time model of diffusion for weighted

networks introduced in Chapter 4. We start by describing how the diffusion model

accounts for pairwise interactions and then continue discussing some basic implicit

assumptions about diffusion processes. We conclude with a statement of the contin-

uous time influence maximization problem.

6.2.1 Pairwise interactions

We describe the pairwise interactions between nodes using three concepts, as previous-

ly in Section 4.2: pairwise transmission rates αi,j, prior probabilities of transmission

βi,j, and pairwise transmission likelihoods f(ti|tj, αi,j). The transmission rate αi,j

of an edge (i, j) ∈ E quantifies how frequently any contagion spreads from node i

to node j or, in other words, the latency of the edge (i, j). The prior transmission

probability βi,j of an edge (i, j) quantifies the probability that a contagion would

eventually spread from node i to node j for arbitrarily large tj. Finally, the pairwise

transmission likelihood f(tj|ti;αi,j) of an edge (i, j) ∈ E is the conditional likelihood

of transmission from node i, activated at time ti, to node j. We refer the reader to

Section 2.3 for an in-depth discussion of all three concepts. Now, we highlight the

key assumptions on the pairwise interactions to tackle the influence maximization

problem:

First, we assume networks to be weighted, we account for the general case of he-

terogeneous pairwise transmission rates, i.e., activations can occur at different trans-

mission rates over different edges of a network.

Second, for any contagion c, we observe activations up to a finite time horizon

T c → ∞. Then, given a node i, activated at ti, and a transmission rate αi,j > 0,

the probability of survival of node j up to the time horizon T c will be always greater

than 0, S(tj|ti;αi,j) =
∫∞
T c f(tj|ti;αi,j) > 0. Then, we can assume, for simplicity, the

prior probability of transmission βi,j to be 1 and yet not always observe node j to get

activated before T c.

Third, we consider exponential transmission likelihoods f(tj|ti;αi,j). Importantly,
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(a) t1: |I| = 2, |Un| = 2, |Xn| =
4

(b) t2: |I| = 3, |Un| = 4, |Xn| =
7

{3 5 6 7} 
{3 5 6 7 8} 
{3 5 6 7 8 9} 
{3 5 6 7 4} 
{3 5 6 7 4 8} 
{3 5 6 7 4 8 9} 
{3 5 6 7 4 2 1} 
{3 5 6 7 4 2 1 8} 
{3 5 6 7 4 2 1 8 9} 
{3 5 6 7 4 2 1 8 9 n} 

(c) X ∈ Ω∗
n : A ⊆ X

Figure 6.1: Panels (a,b): Sets of activated nodes (I; in red) and useless nodes (Un;
in orange) at two different times for a diffusion process that starts in the source node
set S = {3, 5} relative to a particular sink node (n; in black) . Any path from a
useless node to the sink node is blocked by an activated node. The set of disabled
(Xn) nodes is simply the union of the sets of activated and useless nodes. Panel (c):
Sets of disabled nodes X ∈ Ω∗n such that S ⊆ X . They represent the states that we
need to describe the temporal evolution of a diffusion process towards the sink node
n that starts in the set of sources S.

our results can easily be extended to diffusion networks with phase-type pairwise

transmission likelihoods. This is important since phase-type distributions can appro-

ximate power-laws (Horvath and Telek, 2000), Rayleigh distributions (Asmussen and

Nerman, 1996), and also subprobability distributions, which enable us to describe two

step traditional generative models, in which with probability (1 − β) an activation

will never occur, as in Section 3. We refer the reader to Section 2.3 for a definition

of phase-type distributions.

6.2.2 Continuous time diffusion process

We consider diffusion and propagation processes that occur over weighted static net-

works with known (or inferred, using NetRate, from Section 4) connectivity and

transmission rates. A diffusion process starts when a source node set S becomes acti-

vated at time t = 0 by action of an external source to the network. Then, source nodes

try to activate their children (i.e., neighbors that they can reach directly through an

outgoing edge). Once a child i gets activated at time ti, it tries to activate her own
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children, and so on. For some pairwise transmission likelihoods, it may happen that

ti → ∞ and child i is never activated. Here, we assume that a node i becomes ac-

tivated as soon as one of her parents (i.e., neighbors that are able to reach node i

through an outgoing edge) activates it, and later activations by other parents do not

contribute anymore towards the evolution of the diffusion process. As a consequence

of this assumption, at any time t ≥ 0 there may be some nodes and edges in the

network that are useless for the spread of the information (be it in the form of a

meme, a sales decision or a virus) towards a specific node n. If these nodes get acti-

vated and transmit the information to other nodes, this information can only reach n

through previously activated nodes. Therefore, the activation time tn of node n does

not depend on these nodes.

By construction, a diffusion process is time-ordered and it induces the structure

of a directed acyclic graph (DAG) on the diffusion network (which is not acyclic

in general). In other words, nodes that are activated later in time cannot infect

previously activated nodes.

Finally, given a diffusion process that started in the set of source nodes S, we

define N(S;T ) as the number of nodes activated up to time T and then define the

influence function σ(S;T ) as the average total number of nodes activated up to time

T , i.e., σ(S;T ) = EN(S;T ).

6.2.3 Continuous time influence maximization problem

Our goal is to find the set of source nodes S in a diffusion network (G,A) that

maximizes the influence function σ(S;T ). In other words, the set of source nodes S
such that a diffusion process in G reaches, on average, the greatest number of nodes

before a window cut off T . Thus, we aim to solve:

S∗ = argmax
|S|≤k

σ(S;T ), (6.1)

where the source set S is the variable to optimize and the time horizon T and the set

cardinality k are constants. We consider a cardinality constraint on S since in many

real-world scenarios, including a node in the set of source nodes entails a cost.
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6.3 InfluMax

6.3.1 Influence evaluation

The influence function depends on the probability of activation of every node in the

network as follows:

σ(S;T ) = EN(S;T ) =
N∑
n=1

P (tn ≤ T |S), (6.2)

where tn is the activation time of node n, S is the set of source nodes, and T is the

time horizon or time window cut-off. Therefore, we need to compute the probability

of activation P (tn ≤ T |S) for each node n in the network. Note that whenever n ∈ S,

the probability of activation P (tn ≤ T |S) is trivially 1. We will refer to the node n

as sink node.

Revisiting the basic assumptions about a diffusion process that we presented in

Section 6.2, we recall some definitions to describe its temporal evolution. Given a

network G = (V , E), a set of nodes B ⊂ V , and a node n ∈ V , we define the set of

nodes blocked by or dominated by B:

Sn(B) ={u ∈ V : any path from u to n in G visits

at least one node in B}.
(6.3)

By definition, B ⊆ Sn(B) and Sn(Sn(B)) = Sn(B). We now define the set Ω∗n as:

Ω∗n = {X ⊂ V : X = Sn(X )}. (6.4)

In words, all nodes in X ∈ Ω∗n block only themselves relative to the sink node

n. We can find all sets in Ω∗n efficiently (Georgiadis et al., 2006; Provan and Shier,

1996). In particular, we are able to find each X ∈ Ω∗n in time O(|V|) and although in

dense networks |Ω∗n| can be large, we are interested in real networks, typically sparse,

in which |Ω∗n| is significantly smaller.

Given a diffusion process that starts in a set of source nodes S, a sink node n and
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any time t ≥ 0, we denote the set of activated nodes as I(t|S), the set of useless nodes

as Un(t|S), and the set of disabled nodes (i.e., activated or useless) as Xn(t|S). Useless

nodes are nodes that if they get activated and transmit the information to other

nodes, this information can only reach the sink node n through previously activated

nodes. Figures 6.1(a) and 6.1(b) illustrate the set of activated nodes (I) and the set

of useless nodes (Un) for a diffusion process in a small network at two different times.

Note that the set of disabled nodes (Xn) is composed of the sets of activated (I) and

useless nodes (Un). Moreover, by definition of Sn(·), Un(t|S) = Sn(I(t|S))\I(t|S)

and Xn(t|S) = Sn(I(t|S)). Now, by studying the temporal evolution of Xn(t|S) we

will be able to compute P (tn ≤ T |S).

First, for a diffusion process that starts in the set of source nodes S, it can be

shown that the set of disabled nodes Xn(t|S) at any time t ≥ 0 belongs to Ω∗n. The

following result is an adaptation of a similar result in (Kulkarni, 1986):

Theorem 10. Given a set of source nodes S, a sink node n and any time t ≥ 0,

Xn(t|S) ∈ Ω∗n.

Proof. Fix t > t− ε ≥ 0, where ε is an arbitrarily small time such that no activations

occur in [t − ε, t), and suppose that Xn(t − ε) ∈ Ω∗n. If no activation occurs at

time t, Xn(t) = Xn(t− ε) trivially. If a node i ∈ V gets activated at time t, nodes in

Sn(I(t−ε|S)∪{i}) become disabled, Xn(t|S) = Sn(I(t−ε|S)∪{i}), and by definition

of Sn(·), Sn(Xn(t|S)) = Sn(Sn(I(t − ε|S) ∪ {i})) = Sn(I(t − ε|S) ∪ {i}) = Xn(t|S).

In both cases, Xn(t − ε|S) ∈ Ω∗n → Xn(t|S) ∈ Ω∗n. Since Xn(0|S) = Sn(S) ∈ Ω∗n, the

theorem follows.

Figure 6.1(c) enumerates all sets of disabled nodes X ∈ Ω∗n such that S ⊆ X
for the small network depicted in Figures 6.1(a) and 6.1(b). They represent the

states that we need to describe the evolution of a diffusion process that starts in the

set of sources S relative to the sink node n. Now, assuming independent pairwise

exponential transmission likelihoods in the diffusion network, we have the following

result:

Theorem 11. ((Kulkarni, 1986)) Given a set of source nodes S, a sink node n and

independent pairwise exponential transmission likelihoods f(tj|ti;αi,j), {Xn(t|S), t ≥
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0} is a continuous time Markov chain (CTMC) with state space {X : X ∈ Ω∗n,S ⊆ X}
and infinitesimal generator matrix Q = [q(D,B)] (D,B ∈ {X : X ∈ Ω∗n,S ⊆ X})
given by:

q(D,B) =


∑

(i,j)∈Cv(D) αi,j if ∃v ∈ D̄ : B = Sn(D ∪ {v}),

−
∑

(i,j)∈C(D) αi,j if B = D,

0 otherwise.

(6.5)

where C(D) = C(D, D̄) is the minimal cut between D and D̄ = V\D, Cv(D) =

{(u, v) ∈ C(D)}, and C(V) = ∅. The minimal cut C(D) has been shown to be

unique (Provan and Ball, 1984).

Finally, let tn be the length of the fastest (shortest) directed path from any of the

nodes in S to the sink node n in the directed acyclic graph (DAG) induced by the

diffusion process on the network G. By construction of the CTMC {Xn(t|S), t ≥ 0}
in Theorem 11,

tn = min{t ≥ 0 : Xn(t|S) = SN |Xn(0|S) = S1}, (6.6)

where S1 and SN denote respectively the first and last state of the CTMC. The

length of the fastest (shortest) path is thus equivalent to the time until the CTMC

{Xn(t|S), t ≥ 0} becomes absorbed in the final state SN starting from state S1 (i.e.,

the state in which only the source nodes in S are activated). Then, computing the

probability of activation of the sink node P (tn ≤ T |S) reduces to computing the

distribution of time of the sink state of the CTMC. Such distributions are called

continuous phase-type distributions. Their generator matrix Q and the cumulative

density function satisfy:

P (tn ≤ T |S) = 1− [10]′eST1, where Q =

[
S S0

0′ 0

]
, (6.7)

with S0 = −S1, where 1 denotes an all 1’s column vector and 0 an all 0’s column

vector. The matrix S results from removing the column and row associated to the
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last state SN from Q. By construction, the CTMC {Xn(t|S), t ≥ 0} has the structure

of a DAG and it is usually sparse. Then, S is upper triangular, sparse and eST can

be computed efficiently (Sidje, 1998).

Our results can be easily extended to diffusion networks with phase-type pairwise

transmission likelihoods (Kulkarni, 1986), which can approximate power-laws (Hor-

vath and Telek, 2000) or Rayleigh (Asmussen and Nerman, 1996) transmission like-

lihoods, which we used previously in Chapter 3 and Chapter 4. Each phase-type

pairwise transmission likelihood between a node i and a node j can be viewed as a a

CTMC with source node i, sink node j and a generator matrix. By using properties

of phase-type distributions (Wolf, 2008), it is possible to show that {Xn(t|S), t ≥ 0} is

still a CTMC, with an infinitesimal generator matrix Q that depends on the generator

matrices of a set of pairwise transmission likelihoods of the network.

6.3.2 Influence maximization

We have shown how to analytically evaluate our objective function σ(S;T ) for any

set of sources A. However, optimizing σ(S;T ) with respect to the set of sources S
seems to be a cumbersome task and naive brute-force search over all k node sets is

intractable even for relatively small networks. Indeed, we cannot expect to find the

optimal solution to the continuous time influence maximization problem defined by

Eq. 6.1 since it is NP-hard:

Theorem 12. Given a network G = (V , E), transmission rates A = [αj,i], a set

of nodes S ⊆ V and a time horizon T , the continuous time influence maximization

problem defined by Eq. 6.1 is NP-hard.

Proof. We show that the NP-complete Set Cover problem (Karp, 1972) is a spe-

cial case of our continuous time influence maximization problem. In the Set Cover

problem, we are given a finite set W = {w1, w2, . . . , wn}, and a collection of subsets

S1,S2, . . . ,Sm ⊆ W . Our goal is to know if there exists k of the subsets whose union

is equal to W (We assume that k < n < m).

Given an arbitrary instance of the Set Cover problem, we define a corresponding

directed bipartite graph with n + m nodes: there is a node i corresponding to each
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set Si, a node j corresponding to each element wj , and a directed edge (i, j) with

pairwise transmission likelihood f(tj|ti;αi,j) = δ(t) whenever wj ∈ Si. The Set

Cover problem is equivalent to deciding if there is a set S of k nodes in this graph

with σ(S;T ) ≥ n + k. Note that for the instance we have defined, transmission is

a deterministic process, as all likelihoods result in paths with probability either 0

or 1 of infecting the ending point of each path before T . Initially activating the k

nodes corresponding to sets in a Set Cover solution results in activating all n nodes

corresponding to the set W , and if any set S of k nodes has σ(S;T ) ≥ n + k, then

the Set Cover problem must be solvable.

In absence of source nodes, the expected number of total activations σ(∅, T ) is zero.

By construction, σ(S;T ) ≥ 0. It also follows trivially that σ(S;T ) is monotonically

nondecreasing in the set of source nodes S, i.e., σ(S;T ) ≤ σ(S ′;T ), whenever S ⊆ S ′.
Fortunately, we now show that the objective function σ(S;T ) is a submodular function

in the set of source nodes S. Refer to Section 2.4 for a definition of submodularity. By

this natural diminishing returns property, we are able to find a provable near-optimal

solution to our problem:

Theorem 13. Given a network G = (V , E), transmission rates A = [αj,i], a set of

nodes S ⊆ V and a time horizon T , the influence function σ(S;T ) is a submodular

function in the set of nodes S.

Proof. For simplicity, we assume that the activation time of all nodes in S is t = 0; the

results generalize trivially. Consider the probability distribution of all possible time

differences between each pair of nodes in the network. The activation time of a given

node in the network depends only on the time differences drawn from the probability

space. Thus, given a sample ∆t in the probability space, we define σ∆t(S;T ) as the

total number of nodes activated in a time less than or equal to T for ∆t. We will

first show that for a given sample ∆t, σ∆t(S;T ) is submodular.

Define R∆t(k;T ) as the set of nodes that can be reached from node k in a time

shorter than T . We can compute R∆t(k;T ) in linear time because it reduces to

computing the shortest path between k and the rest of nodes in a DAG. It follows

trivially that σ∆t(S;T ) = | ∪k∈S R∆t(k;T )|. Define R∆t(k|N ;T ) as the set of nodes
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that can be reached from node k in a time shorter than T and at the same time

cannot be reached in a time shorter than T from any node in the set of nodes N ⊆ V .

It follows that |R∆t(k|N ;T )| ≥ |R∆t(k|N ′;T )| for the sets of nodes N ⊆ N ′.
Consider now the sets of nodes S ⊆ S ′ ⊆ V , and a node n such that n /∈ S ′. Using

the definition of submodularity,

σ∆t(S ∪ n;T )− σ∆t(S;T ) = |R∆t(n|S;T )|

≥ |R∆t(n|S ′;T )|

= σ∆t(S ′ ∪ n;T )− σ∆t(S ′;T ),

and thus σ∆t(S;T ) is submodular. Now, if we average over the probability space of

possible time differences,

σ(S;T ) =

∫
∆t

σ∆t(S;T )f(∆t) d∆t (6.8)

is also submodular.

A well-known approximation algorithm to maximize monotonic submodular func-

tions is the greedy algorithm. It adds nodes to the source node set S sequentially. In

step k, it adds the node which maximizes the marginal gain

nk = argmax
n∈V \Sk−1

σ(Sk−1 ∪ {n};T )− σ(Sk−1;T ). (6.9)

The greedy algorithm is guaranteed to find a source node set which achieves at least a

constant fraction (1− 1/e) (≈ 63%) of the optimal average total number of activated

nodes (Nemhauser et al., 1978).

Moreover, we can also use the submodularity of σ(S;T ) to acquire a tight online

bound on the solution quality obtained by any algorithm:

Theorem 14 ((Leskovec et al., 2007a)). For a source set Ŝ ⊆ V with k sources and

a node n ∈ V\Ŝ, let δn = σ(Ŝ ∪ {n};T )− σ(Ŝ;T ) and n1, . . . nk be the sequence of k
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nodes with δn in decreasing order. Then,

max
|S|≤k

σ(S;T ) ≤ σ(Ŝ;T ) +
k∑
i=1

δni
.

We refer to our continuous time influence maximization method as InfluMax.

Speeding-up InfluMax. We can speed up our algorithm by implementing the

following speed-ups:

• Lazy evaluation (LE, (Leskovec et al., 2007a)): it dramatically reduces the num-

ber of evaluations of marginal gains by exploiting the submodularity of σ(S;T ).

Note that lazy evaluation can also be employed to speed-up the computation of

the on-line bound for InfluMax.

• Localized source nodes (LSN): for each sink node n, we speed up the computation

of P (tn ≤ T |S) by ignoring source nodes whose shortest path to the sink node

is longer than m hops.

• Limited transmission paths (LTP): for each sink node n, we speed up the com-

putation of P (tn ≤ T |S) by ignoring paths longer than m hops from any source

in S to the sink node.

LSN and LTP should be used with care since they provide an approximate evalua-

tion of P (tn ≤ T |S). Therefore, they result on an approximate value of the influence

σ(S;T ). In the remainder of this chapter, if not specified, we run InfluMax with

LE but avoid using LSN and LTP.

6.3.3 Experiments on synthetic data

Experimental setup. As in Sections 4.3.2 and 5.3.4, we consider two models of

directed real-world networks to generate G∗, namely, the Forest Fire model (Leskovec

et al., 2005) and the Kronecker Graphs model (Leskovec et al., 2010). For Kronecker

networks, we consider three sets of parameters that produce networks with a very
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Figure 6.2: Probability of activation vs time horizon. Panel shows the probability
of activation (cdf) of node § that results of selecting node ∗, node ∗∗ or both as
source(s) (i.e., S = {∗}, S = {∗∗}, or S = {∗, ∗∗}) on the small core-periphery
Kronecker network of Figure 6.3.

different global network structure: a random network (Erdős and Rényi, 1960), a core-

periphery network (Leskovec et al., 2008) and a network with hierarchical community

structure (Clauset et al., 2008). A brief introduction to Forest Fire and Kronecker

Graph models can be found in Section 2.2.2.

First, we generate a network G using one of the network models cited above. Then,

we draw a transmission rate for each edge (j, i) ∈ E from a uniform distribution, a

Gaussian distribution or a Rayleigh distribution. We control the transmission rate

variance across edges in the network by tuning the parameters values of the distri-

butions. In social networks, transmission rates model how fast information spreads

across the network. Given G and the transmission rates αj,i, our aim is to find the

most influential subset of k nodes, i.e., the subset of nodes that maximizes the spread

of information up to a time T .

Solution quality. We evaluate the solution quality that InfluMax achieves in small

and large synthetic networks. First, we run InfluMax on a small network and discuss

the source sets that our algorithm selects qualitatively. Second, we compare Influ-

Max with exhaustive search (enumeration) and several state of the art algorithms on

the same small network. By studying a small network in which exhaustive search can

be run, we are able estimate exactly how far InfluMax is from the NP-hard to find
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Figure 6.3: Probabilities of activation on a core-periphery Kronecker network with 35
nodes and 39 edges for T = 0.1, 5 for the sources selected by the proposed influence
maximization algorithm: InfluMax. Nodes with border in red are the optimal
influential source nodes. The higher the probability of activation of a node, the
darker the color of the node. Pairwise transmission rates α of the pairwise exponential
likelihoods are over the edges.

optimum. Finally, we run InfluMax and several state of the art algorithms on diffe-

rent large networks. Running exhaustive search on large networks is computationally

too expensive. Therefore, we compute instead the tight on-line bound from Th. 14.
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We run InfluMax on a small core-periphery Kronecker network with 35 nodes

and 39 edges and look at the probability of activation of every node of the network

for the set of sources that InfluMax chooses. We set the transmission rate of every

edge of the network by drawing a sample from a uniform distribution α ∼ U(0, 5).

Figure 6.3 shows the probabilities of activation of each node for two different time

horizons. The gray level of each node is proportional to its probability of activation

(i.e., white means 0 and black means 1) and the sources have the border in red.

We observe that the optimal sources tend to reach sets of nodes with a relatively

low overlap. This is a natural consequence of the submodularity of the continuous

time influence maximization problem. Moreover, for small time windows, optimal

sources are nodes surrounded by high out-going transmission rates while for larger

time windows, optimal sources are simply nodes that can reach the greatest amount

of nodes. That means, the smaller the time horizon, the more important the temporal

dynamics become when choosing the subset of most influential nodes of a given size.

We continue computing the probability of activation of a single node of the network

of Figure 6.3 for different source sets and time horizons. Figure 6.3.2 shows the

probability of activation (cdf) of the node labeled as § for three different source

sets, S = {∗}, S = {∗∗}, and S = {∗, ∗∗}, against the time horizon. Neither

the node labeled as ∗ nor the node labeled as ∗∗ blocks each other with respect

to node §. In other words, source ∗ does not block all paths from ∗∗ to §, and

source ∗∗ does not block all paths from ∗ to §. Therefore, selecting both sources

increases the probability of activation of node §, i.e., P (t§ ≤ T |{∗, ∗∗}) ≥ max(P (t§ ≤
T |{∗}), P (t§ ≤ T |{∗∗})). However, if one of the sources blocks the other with respect

to a given sink, the probability of activation of the sink given the pair of sources is

simply the maximum of the probabilities of activation given each source separately.

Now, we compare InfluMax with several other state of the art methods. We

use the same core-periphery Kronecker network structure of Figure 6.3 and we set

the transmission rates by drawing samples from a uniform distribution α ∼ U(0, 10).

We summarize the results in Table 6.2. We consider several time horizons (T =

0.1, 0.5, 1.0) and source set sizes (|A| = 1, ..., 5). The first state of the art algorithm

is the original greedy algorithm, the second is PMIA and the third is SP1M. The
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last two methods are essentially efficient heuristics to speed up the greedy algorithm.

In addition, we also run a baseline that simply chooses the set of sources randomly.

For all methods, we compute the influence they achieve by evaluating Eq. 6.2 for the

set of sources selected by them. Surprisingly, InfluMax achieves in most cases the

optimal influence that exhaustive search gives but several order of magnitude faster.

In other words, the solution given by InfluMax may be in practice much closer

to the NP-hard to find optimum than (1 − 1/e), the theoretical guarantee given by

Nemhauser et al (Nemhauser et al., 1978). Moreover, InfluMax outperforms all

other methods typically by at least 20%.

Finally, we focus on different large synthetic networks. Figure 6.4 shows the ave-

rage total number of activated nodes against number of sources that InfluMax

achieves in comparison with the other methods on a 512 node random Kronecker

network, a 1,024 node hierarchical Kronecker network, a 1,024 node core-periphery

Kronecker network, and a 1,024 node Forest Fire (scale free) network. All four net-

works have approximately 2 edges in average per node. We set the time horizon to

T = 1.0 and the transmission rates are drawn from a uniform distribution α ∼ U(0, 5).

In all networks, InfluMax typically outperforms other methods by at least 20% by

exploiting the temporal dynamics of the network. We also compare InfluMax with

the on-line bound from Th. 14. Figure 6.5 shows the average number of activated

nodes against number of sources that InfluMax achieves in comparison with the

on-line bound for the small core-periphery Kronecker network and the large hierar-

chical Kronecker network that we used previously. If we pay attention to the value

of the bound on the small network for source set sizes significantly smaller than the

number of nodes in the network, we observe that the bound value on the influence is

not as close to the optimal value given by exhaustive search as we could expect. That

means that although the bound is not very tight on the large network, InfluMax

may be actually achieving in practice an almost optimal value on that network too.

Influence vs. time horizon. Intuitively, the smaller the time horizon, the more

important the temporal dynamics become when choosing the subset of most influen-

tial nodes of a given size. Figure 6.6 shows the average total number of activated

nodes against time horizon for a hierarchical Kronecker network with 1,024 nodes
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Algorithm |A| σ(S; 0.1) σ(S; 0.5) σ(S; 1.0)

Enumeration

1 3.05 8.95 13.90
2 5.73 15.24 19.66
3 8.04 18.01 21.70
4 9.90 20.10 23.71
5 11.60 22.17 25.59

InfluMax

1 3.05 8.95 13.90
2 5.73 15.24 19.66
3 8.04 18.01 21.70
4 9.90 20.10 23.71
5 11.60 22.17 25.59

Greedy (Kempe et al., 2003)

1 3.05 7.70 9.31
2 4.59 10.67 13.87
3 6.18 12.70 15.88
4 7.57 14.84 18.32
5 8.62 16.05 19.70

PMIA (Chen et al., 2010)

1 1.20 1.67 1.89
2 2.21 2.84 3.43
3 4.90 11.67 16.80
4 5.90 12.31 16.96
5 8.90 18.03 22.02

SP1M (Chen et al., 2009)

1 2.15 8.04 11.66
2 3.88 9.75 12.13
3 4.88 10.75 13.14
4 6.71 13.47 16.06
5 7.96 13.95 16.16

Random

1 1.61 3.77 5.34
2 3.13 6.71 8.99
3 4.63 9.29 11.84
4 6.07 11.61 14.35
5 7.39 13.36 16.04

Table 6.2: Influence σ(S;T ) (i.e., average number of activated nodes) that enume-
ration (i.e., exhaustive search), InfluMax and several other baselines achieve in the
small diffusion network of Fig. 6.3 for different time horizon values T and number of
sources |S|. InfluMax always achieves the optimal influence that exhaustive search
gives but several order of magnitude faster. Moreover, it typically outperforms other
algorithms by more than 20%.
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(d) Hierarchical Kronecker

Figure 6.4: Panels plot influence σ(S;T ) (i.e., average number of activated nodes)
for T = 1 and transmission rates drawn from α ∼ U(0, 5) against number of sources.
(a): 1,024 node Forest Fire network. (b): 512 node random Kronecker network. (c):
1,024 node hierarchical Kronecker network. (d): 1,024 node core-periphery Kronecker
network. The proposed algorithm InfluMax outperforms all other methods typically
by at least 20%.

and approx. 2 edges per node. We consider a source set of cardinality |S| = 10 and

we draw the transmission rate of each edge from a uniform distribution α ∼ U(0, 5).

The experimental results for all transmission rates configurations confirm the initial

intuition, i.e., the difference between InfluMax and other methods is greater for

small time horizons.

Influence vs. transmission rates distribution. Up to this point, we have always

consider networks in which the transmission rates of the edges are drawn from a
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Figure 6.5: Influence σ(S;T ) achieved by InfluMax in comparison with the online
upper bound from Theorem 14 for T = 1. (a): 35 node network from Figure 6.3. (b):
1,024 node hierarchical Kronecker. InfluMax’s performance is close to the upper
bound, especially for the smaller network.

uniform distribution. However, in many real networks this is not the case. We now

consider the hierarchical network for which we have previously studied the impact of

the time horizon on the influence but we set the transmission rates of the edges by

drawing samples from (i) a uniform distribution (αmin = 0, αmax = 2), (ii) a Gaussian

distribution (µ = 1, σ = 1; we rejected any negative samples) and (iii) a Rayleigh

distribution (σ = 1). Figure 6.7 compares InfluMax with the traditional greedy

algorithm, PMIA and SP1M for time horizon T = 1 and |S| = 10. We observe that

the more skewed the transmission rate distribution is, the greater is the difference

between InfluMax and other methods.

Scalability. Figure 6.8 shows the average computation time per source added of our

algorithm implemented (i) with lazy evaluation, (ii) with lazy evaluation and localized

source nodes with m = 6 hops and (iii) with lazy evaluation and limited transmission

paths with m = 6 hops on a single CPU (Mac Book Pro with 2.3 Ghz Dual Core and

4 GB RAM). We use hierarchical Kronecker networks with an increasing number of

nodes but approximately the same network density since real networks are usually

sparse. Remarkably, the number of hops that we use in localized source nodes and

limited transmission paths result in an approximation error for the influence σ(S;T )
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Figure 6.6: Influence σ(S;T ) achieved by InfluMax vs. time horizon for a 1,024
node hierarchical Kronecker network. The source set has cardinality |S| = 10 and
we draw the transmission rate of each edge from a uniform distribution α ∼ U(0, 5).
The difference in performance between InfluMax and other methods is greater for
small time horizons.

of at most 10%, while achieving an speed-up of ∼ 5x for the largest network (2,048

nodes). If desired, we can further trade-off between approximation error and speed.

For example, for lazy evaluation and localized source nodes with m = 5 on the 2,048

node network, we achieve a speed-up of ∼ 9x with a 15% error.

6.3.4 Experiments on real data

Dataset description. We use the original MemeTracker dataset, which contains

more than 172 million news articles and blog posts from 1 million online sources over

a period of one year from September 1 2008 till August 31 20091. Based on this raw

data, we use two different methodologies to trace information on the Web and then

create two different datasets: hyperlink cascade dataset and MemeTracker cascade

dataset. We refer the reader to Section 2.5.2 for more details on the MemeTracker

dataset and an in-depth description of the two methodologies we used to trace infor-

mation on the Web.

First, from the hyperlink cascade data, we infer an underlying diffusion networks

with the top (in terms of hyperlinks) 1,000 media sites and blogs. Second, from the

1Data available at http://memetracker.org and http://snap.stanford.edu/netinf

http://memetracker.org
http://snap.stanford.edu/netinf
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Figure 6.7: Influence σ(S;T ) achieved by InfluMax vs. rate distribution for a
1,024 node hierarchical Kronecker network. We draw the transmission rates from
three different distributions: Uniform (αmin = 0, αmax = 2), Gaussian (µ = 1, σ = 1)
and Rayleigh (σ = 1). The source set has cardinality |S| = 10 and T = 1. InfluMax
is robust across rate distributions.

MemeTracker cascade data, we infer an underlying diffusion network with the top

(in terms of phrases) 1,000 media sites and blogs. As a preprocessing step before

running InfluMax on both diffusion networks, we sparsify further the networks by

keeping the 1,000 fastest edges since it has been shown that in the context of influence

maximization, computations on sparsified models give up little accuracy, but yield

significant improvements in terms of scalability (Mathioudakis et al., 2011). Finally,

we run InfluMax on the resulting network.

Solution quality. Figure 6.9 shows the average total number of activated nodes

against number of sources that InfluMax achieves in comparison with other meth-

ods for both real networks, that were inferred from the hyperlink cascade and the

MemeTracker cascade datasets, as described above. We set the time horizon to

T = 1.0. Again, InfluMax outperforms all other methods typically by ∼ 20− 25%,

by considering the temporal dynamics of the diffusion.

6.4 Summary

We have developed a method for influence maximization, InfluMax, that accounts

for the temporal dynamics underlying diffusion processes. The method allows for
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Figure 6.8: Running time. The panel shows the average computation time per source
added of InfluMax implemented (i) with lazy evaluation (LE), (ii) with lazy eval-
uation and localized source nodes (LSN, m = 6), and (iii) with lazy evaluation and
limited transmission paths (LTP, m = 6) against network size (number of nodes). (ii)
and (iii) achieve a speed-up of ∼ 5x for the largest network (2,048 nodes).

variable transmission (influence) rates between nodes of a network, as found in real-

world scenarios. Perhaps surprisingly, for the rather general case of continuous tempo-

ral dynamics with variable transmission rates, we can evaluate the influence of any set

of source nodes in a network analytically by means of continuous time Markov chains,

in contrast to previous approaches that require Monte Carlo simulations (Kempe

et al., 2003) or heuristics (Chen et al., 2010, 2009). In this analytical framework, we

find the near-optimal set of source nodes that maximizes influence by exploiting the

submodularity of our objective function. In addition, the reevaluation of influence for

changes on the transmission rates is straightforward and the algorithm parallelizes

naturally by sink and source nodes.

We evaluated our algorithm on a wide range of synthetic diffusion networks with

heterogeneous temporal dynamics which aim to mimic the structure of real-world

social and information networks. Our algorithm is remarkably stable across diffe-

rent network topologies and transmission rates distributions. It outperforms state

of the art methods in terms of influence (i.e., average number of activated nodes)

for different network topologies, transmission rates distributions, time horizons and

source set sizes. InfluMax typically gives an influence gain of ∼ 25% and it achieves

the greatest improvement for small time horizons; in such scenarios, the temporal
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(b) MemeTracker cascade based network

Figure 6.9: Panels plot influence σ(S;T ) (i.e., average number of activated nodes)
for time horizon T = 1 against number of sources for (a) a 1,000 node real diffusion
network that we infer from hyperlinks cascades and (b) a 1,000 node real diffusion
network that we infer from MemeTracker cascades. The proposed algorithm Influ-
Max outperforms all other methods by 20-25%. For network inference, we used
NetRate (Gomez-Rodriguez et al., 2011).

dynamics play a dramatic role. We also evaluated InfluMax on two real diffusion

networks that we inferred from the MemeTracker dataset using NetRate. Again,

InfluMax drastically outperformed the state of the art by ∼ 30%.

We believe that InfluMax provides a novel view of the influence maximization

problem by accounting for the underlying temporal dynamics of diffusion networks.



Chapter 7

Diffusion and survival theory

7.1 Introduction

This chapter presents general theoretical framework to model propagation and infer

hidden or unobserved networks using survival theory Gomez-Rodriguez and Schölkopf

(2012b). The theoretical framework allows us to generalize previous network infe-

rence methods, including NetRate, described in Chapter 4 and consider links which

inhibit or encourage the diffusion of a contagion.

In particular, we represent a contagion as a nondecreasing (binary) counting pro-

cess. We model the instantaneous risk of infection or hazard rate Aalen et al. (2008)

of each node using only the infection times of previously infected nodes as covariates.

First, we develop an additive risk model under which the hazard rate of each node

is additive on the covariates. We show that several previous network inference me-

thods, including NetRate, described in Chapter 4, use particular cases of our more

general additive risk model. All these models implicitly consider previously infected

nodes to only increase the instantaneous risk of infection. Second, we also develop a

multiplicative risk model under which the hazard rate of each node is multiplicative

on the covariates. This allows previously infected nodes to either increase or decrease

the risk of a node multiplicatively. For example, trendsetters’ probability of buying

a product may increase when she observes her peers buying a product but may also

decrease when she realizes that average, mainstream friends are buying the product.

149
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Similarly, consider an example of a blog which often mentions pieces of information

from a general news media site, but only whenever they are not related to sports.

Therefore, if the general news media site publishes a piece of information related to

sports, we would like the blog’s risk of adopting the information to be smaller than

for other type of information. Third, we efficiently fit the parameters of both models

using cascade data by the maximum likelihood principle.

The remainder of the chapter is organized as follows: in Section 7.2, we show how

to model information propagation over weighted networks using counting processes.

Section 7.3 and section 7.4, describe general additive and multiplicative risk models of

information propagation. We conclude with a summary of our results in Section 7.5.

7.2 Diffusion as a counting process

Consider a node i, a cascade t, and an indicator function Ni(ti) such that Ni(ti) =

1 if node i is infected by time ti in the cascade and Ni(ti) = 0 otherwise. We

define the history Fti as the set of nodes that has been infected by time ti and their

activation times, i.e., Fti = (t<ti), where t<ti = (t1 . . . tN |tj < ti). By definition,

since Ni(ti) is a nondecreasing counting process, it is a submartingale and satisfies

that E(Ni(ti)|Ft′) ≥ Ni(t
′) for any ti > t′. Then we can decompose Ni(ti) uniquely

as Ni(ti) = Λi(ti) +Mi(ti), where Λi(ti) is a nondecreasing predictable process, called

cumulative intensity process and Mi(ti) is a mean zero martingale. This is called the

Doob-Meyer decomposition of a submartingale (Aalen et al., 2008). Consider Λi(ti)

to be absolutely continuous and then, there exists a predictable intensity process non

negative λi(ti) such that:

Ni(ti) =

∫ ti

0

λi(s) ds+Mi(ti). (7.1)

Now, we assume that the intensity process λi(ti) depends on a covariate vector s(ti) =

γ(t<ti ; ti), where γ(·) is an arbitrary time shaping function that we have to decide

upon. The covariate vector accounts for the previously infected nodes up to time just

before ti, i.e., the history Fti . In principle, the covariates can be fixed or time-varying.
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Symbol Description

G(V , E) Directed network with node set V and edge set E
c Contagion
tc Cascade: activation times for contagion c
C Set of all recorded cascades
tci Activation time of node i in cascade tc

T c Observation window cut-off or time horizon for cascade tc

t≤T
c

Observed activation times for cascade tcc up to T c

Ni(ti) Indicator function for node i; nondecreasing counting process
Fti History for node i up to time ti
λi(t) Intensity process for node i
s(ti) Covariates for node i at time ti
αi(ti|s(ti)) Intensity or hazard rate of node i at time ti
αi Parameter vector for node i
A Parameter matrix
γ(·; ti) Time shaping function at time ti
f(ti|s(ti)) Likelihood of activation of node i
F (tis(ti)) Probability of activation of node i

Table 7.1: Table of symbols for Chapter 7.

Then, we can rewrite the intensity process of Ni(ti) as λi(ti) = Yi(ti)αi(ti|s(ti)), where

Yi(ti) is an indicator such that Yi(ti) = 1 if node i is susceptible to be infected just

before time ti and 0 otherwise, and αi(ti|s(ti)) is called intensity or hazard rate of

node i and it is defined conditional on the values of the fixed covariates and the

observed paths of the time-varying ones. Note that the intensity or hazard rate must

be non negative at any time ti since otherwise Ni(ti) would decrease, violating the

assumptions of our framework. We assume a node is susceptible as long as it did not

get infected.

Our goal is to infer a hazard function αi(ti|s) for each node i from a set of recorded

cascades C = {t1, . . . , t|C|}. This will allow us to evaluate the probability of activation

of a susceptible node i at a given time ti given an arbitrary cascade t up to time s < t

using that

Fi(ti|s(ti)) = 1− e−
∫ ti
0 αi(t|s(t)) dt, (7.2)
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which is a well-known result in survival theory. We then compute the likelihood of

activation of a susceptible node i at a time ti, fi(ti|s(ti)) = dFi(ti|s(ti))/dti.

In the remainder of the chapter, we propose an additive and a multiplicative model

for the hazard functions αi(ti|s) and validate them experimentally in synthetic and

real data. There are several reasons to do so. First, to provide a general framework

which is flexible enough to fit cascading processes over networks in different domains.

Second, to allow for both positive and negative influence of a node in its neighbors’

hazard rate, without violating the non negativity of hazard rates over time. Third, it

has been argued the necessity of both additive and multiplicative models in traditional

survival analysis literature (Aalen et al., 2008).

7.3 Additive risk model of diffusion

Given a cascade t, we propose the hazard function αi(ti|s(ti)) of any node i to be

additive on the covariates up to ti. We then show that this is equivalent to consider

an independent cascade model in which a node gets infected once the first parent

infects her, assumption that has been used extensively in previous work, including

our diffusion model for inference of unweighted and weighted networks in chapters 3

and 4.

We consider the hazard rate of any node i in a cascade t to be:

αi(ti|s(ti)) = αT
i s(ti) = αT

i γ(t<ti ; ti), (7.3)

where α ≥ 0 is a positive parameter vector and γ(·) ≥ 0 is an arbitrary positive time

shaping function on the previously infected nodes up to ti. We force the parameter

vector and time shaping function to be non negative to avoid ill-defined negative

hazard functions at any time ti. For simplicity, we assume that (a) each covariate de-

pends only on one parent and therefore each parameter only models the effect of a sin-

gle parent, and (b) we apply the same time shaping function to each of the parents’ ac-

tivation times. That means mathematically that γ(t<ti ; ti) = (γ(t1; ti), . . . , γ(ti−1; ti)).

Our goal is thus to infer the optimal parameters αi for every node i that maximize
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the likelihood of a set of observed cascades C{t1, . . . , t|C|}. To this aim, we need to

compute the likelihood of a cascade starting from the hazard rate of each node.

We first compute the cumulative likelihood of activation Fi(ti|s(ti)) of a node i

from the hazard rate using Eq. 7.2:

Fi(ti|s(ti);αi) = 1−
∏
j:tj<ti

e
−
(
αj,i

∫ ti
tj
γ(tj ;t)

)
. (7.4)

Then, the likelihood of activation fi(ti|s(ti)) is:

fi(ti|s(ti);αi) =
∑
j:tj<ti

αj,iγ(tj; ti)
∏

k:tk<ti

e−αk,i

∫ ti
tk
γ(tk;t) (7.5)

Now, consider a cascade t := (t1, . . . , tN). We first compute the likelihood of

the observed activations t≤T = (t1, . . . , tN |ti ≤ T ). Since we assume activations are

conditionally independent given the covariates, the likelihood factorizes over nodes as

f(t≤T ; A) =
∏
ti≤T

f(ti|s(ti);αi), (7.6)

where A := {αj,i | i, j = 1, . . . , n, i 6= j}. By combining Eq. 7.5 and Eq. 7.6 the

likelihood of the activations in a cascade is:

f(t≤T ; A) =
∏
i:ti<T

∑
j:tj<ti

αj,iγ(tj; ti)×
∏

k:tk<ti

e−αk,i

∫ ti
tk
γ(tk;t) dt. (7.7)

However, Eq. 7.7 only considers infected nodes. The fact that some nodes are not

infected during the observation window is also informative. We then add survival

terms (1− Fn(tn|s(tn);αn)) for any node n such that tn > T , and apply logarithms.

Therefore, the log-likelihood of a cascade t is:

log f(t; A) =
∑
i:ti<T

log

 ∑
j:tj<ti

αj,iγ(tj; ti)

− ∑
i:ti<T

∑
k:tk<ti

αk,i

∫ ti

tk

γ(tk; t) dt

−
∑

n:tn>T

∑
m:tm<T

αm,n

∫ T

tm

γ(tm; t) dt,

(7.8)
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Network Inference Method γ(tj; ti)

NetRate, InfoPath (Exp) I(tj < ti)

NetRate, InfoPath (Pow) max(0, 1/(ti − tj))

NetRate, InfoPath (Ray) max(0, ti − tj)

KernelCascade {k(τl, ti − tj)}m1
moNet I(tj < ti)γe

−d(fj ,fi)

Table 7.2: Mapping from several network inference methods to our general additive
risk model.

where A := {αj,i | i, j = 1, . . . , n, i 6= j}, the first two terms represents the infected

nodes, and the third term represents the surviving ones up to the observation window

cut-off T . Perhaps surprisingly, the log-likelihood is jointly concave on the parameters

αj,i.

Now, assuming independent cascades, the log-likelihood of a set of cascades C =

{t1, . . . , t|C|} is the sum of the log-likelihoods of the individual cascades given by

Eq. 7.8. Then, we apply the maximum likelihood principle on the log-likelihood of

the set of cascades to find the optimal parameters αi of every node i:

minimizeA −
∑

c∈C log f(tc; A)

subject to αj,i ≥ 0, i, j = 1, . . . , N, i 6= j,
(7.9)

where A := {αj,i | i, j = 1, . . . , n, i 6= j} are the variables. The solution to Eq. 7.9 is

unique and computable:

Theorem 15. The network inference problem for the additive risk model defined by

equation Eq. 7.9 is convex in A.

Proof. Convexity of Eq. 7.9 follows from linearity, composition rules for convexity,

and concavity of the logarithm.

If αj,i > 0, node j increases additively the hazard rate of node i (positive influence).

If a parameter αj,i = 0, it means node j does not have any influence on the hazard

rate of node i – there is not edge between j and i.



CHAPTER 7. DIFFUSION AND SURVIVAL THEORY 155

We find some common features of the solutions to the network inference problem

under the additive risk model. The first term in the log-likelihood of each cascade,

defined by Eq. 7.8, ensures infected nodes have at least one parent since otherwise the

log-likelihood would be negatively unbounded, i.e., log 0 = 1. Moreover, there exists a

natural diminishing property on the number of parents of a node – since the logarithm

grows slowly, it weakly rewards infected nodes for having many parents. The second

and third term in the log-likelihood of each cascade, defined by Eq. 7.8, consist of

positively weighted l1-norm on the vector A. L1-norms are well-known heuristics to

encourage sparse solutions (Boyd and Vandenberghe, 2004). That means, optimal

networks for the additive risk model are sparse.

7.3.1 Generalizing other network inference methods

The algorithm NetRate, described in chapter 4, and several state of the art network

inference algorithms that build on our work (Du et al., 2012; Wang et al., 2012),

model information propagation using continuous time generative probabilistic models

of diffusion. Such models start by describing the pairwise interactions between pair

of nodes. They define a pairwise likelihood fi(ti|tj;αj,i) for every node i and j, where

αj,i is a transmission rate from node j to node i. Then, they continue computing

the likelihood of activation of a node by assuming a node gets infected once the

first parent infects her, as in the independent cascade model (Kempe et al., 2003).

Finally, they conclude by computing the likelihood of a cascade from the likelihoods

of activation. Importantly, the following result holds:

Theorem 16. The independent cascade model in continuous time is an additive ha-

zard model on the pairwise hazards between a node and her parents.

Proof. In the independent cascade model in continuous time, for a given node i, the

likelihood of activation fi(ti|t<ti ; A) and the probability of survival Si(ti|t<ti ; A) given
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the previously infected nodes t<ti are:

f(ti|t<ti ; A) =
∏

k:tk<ti

S(ti|tk;αk,i)
∑
j:tj<ti

H(ti|tj;αj,i),

S(ti|t<ti ; A) =
∏

k:tk<ti

S(ti|tk;αk,i),

where H(ti|tj;αj,i) is the pairwise hazard of edge (j, i). Then, the hazard of node i is

αi(ti|t<ti ; A) =
∑
j:tj<ti

H(ti|tj;αj,i), (7.10)

which is trivially additive on the pairwise hazards between a node and her parents.

Therefore, the additive risk model is a generalization of the independent cascade

model in continuous time. The model we used in NetRate (chapter 4) and seve-

ral models used by other state of the art network inference methods map easily to

our general additive risk model, Table 7.2. Pairwise transmission likelihoods used

in NetRate result in simple pairwise hazard rates that map into our model by

setting the time shaping functions γ(·). The kernelized hazard functions used in

KernelCascade (Du et al., 2012) map into our model by considering m covariates

per parent, where k(τl, ·) is a kernel function and τl is the lth point in a m-point

uniform grid over of [0, T ]. It allows to model multimodal hazard functions. Finally,

the featured-enhanced diffusion model used in moNet (Wang et al., 2012) maps

into our model by considering a time shaping function with both temporal and non-

temporal covariates, where d(fj, fi) denote the distance between two non-temporal

feature vectors and γ is a normalization constant.

7.3.2 Link to Aalen’s model

Our additive model is a particular case of the well known Aalen’s model in survival

theory (Aalen et al., 2008). In Aalen’s model, the hazard function of each node i is

parametrized as αi,0(t)+αi(t)
T
i si(t), where α(t) is a vector that accounts for the effect

of a collection of observable covariates s(t) and αi,0(t) is a baseline. In general, Aalen’s
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model allows some individual parameters αj,i(t) to be negative. Unfortunately, in our

scenario this would easily lead to ill defined hazards. For example, consider there is

only one infected node j before node i gets infected. If αj,i < 0, then the hazard rate

would be negative, and would result in an ill-defined likelihood of activation for node

i. Inspired by Aalen’s model, we could however extend our additive model to consider

external causes (by adding a baseline αi,0(t)), time varying parameters αj,i(t) or other

type of covariates si(t), while keeping the parameters non negative.

7.4 Multiplicative risk model of diffusion

Given a cascade t, we propose the hazard function αi(ti|s(ti)) of any node i to be

multiplicative on the covariates up to ti. This allows us to model situations in which

a parent can either a increase or decrease the hazard rate of a node, without violating

the non negativity of hazard rates any time time ti. Additive risk models, in contrast,

only consider parents to increase the hazard rate of a node.

We consider the hazard rate of any node i in a cascade t to be:

αi(ti|s(ti)) = α0,i(ti)
∏
j:tj<ti

βj,i (7.11)

where α0,i(t) ≥ 0 is a fixed or time varying baseline, which is independent of the

previously infected nodes, endogenous to the observed (monitored) nodes, and βj,i ≥
ε > 0 are the parameters of the model, and represent the positive or negative influence

of node j in node i. If βj,i > 1, when node j becomes infected, the instantaneous risk

of node i increases, if βj,i < 1, it decreases and, if βj,i = 1, node j does not have any

effect on the risk of node i. The baseline α0,i(t) may be, in general, unknown, and we

choose a parametric form based on expert knowledge or additional information.

Our goal is thus to infer the optimal parameters βj,i for every node i given a set

of cascades C = {t1, . . . , t|C|}. To this aim, we need to compute the likelihood of a

cascade starting from the hazard rate of each node. We first compute the cumulative
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likelihood of activation Fi(ti|s(ti)) of a node i from the hazard rate using Eq. 7.2:

Fi(ti|s(ti);βi) = 1− exp

− ∑
j:tj≤ti,j>0

∏
k:tk<tj ,k>0

βk,i

∫ tj

tj−1

α0,i(t) dt

 (7.12)

Then, the likelihood of activation fi(ti|s(ti)) is:

fi(ti|s(ti);βi) = α0,i(ti)

( ∏
k:tk<ti

βk,i

)
(1− Fi(ti|s(ti))) (7.13)

where we assume the indices to indicate temporal order, t0 = 0 < t1 < . . . < ti−1 < ti.

The key observation to compute the likelihood of activation from the cumulative

likelihood of activation is to realize that there is only one integral in the cumulative

likelihood that contains ti, and the derivative is with respect to this variable ti.

Now, consider a cascade t := (t1, . . . , tN). We first compute the likelihood of

the observed activations t≤T = (t1, . . . , tN |ti ≤ T ). Since we assume activations are

conditionally independent given the covariates, the likelihood factorizes over nodes as

f(t≤T ;B) =
∏
ti≤T

f(ti|s(ti);βi), (7.14)

where B := {βj,i | i, j = 1, . . . , n, i 6= j}. By combining Eq. 7.13 and Eq. 7.14, the

likelihood of the activations in a cascade is:

f(t≤T ;B) =
∏
i:ti<T

α0,i(ti)
∏

k:tk<ti

βk,i × exp

 ∑
j:tj≤ti

∏
k:tk<tj ,k>0

βk,i

∫ tj

tj−1

α0,i(t) dt

 .

(7.15)

However, Eq. 7.15 only considers infected nodes. The fact that some nodes are

not infected during the observation window is also informative. We then add survival

terms (1 − Fn(tn|s(tn);βn)) for any node n such that tn > T , use as parameters
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αj,i = log(βj,i) and apply logarithms to compute the log-likelihood of a cascade as,

log f(t; A) =
∑
i:ti<T

∑
k:tk<ti

αk,i +
∑
i:ti<T

log(α0,i(ti))

−
∑
i:ti<T

∑
j:tj≤ti

e
∑

k:tk<tj,k>0 αk,i

∫ tj

tj−1

α0,i(t) dt

−
∑
n:tn>T

∑
j:tj≤T

e
∑

k:tk<tj,k>0 αk,i

∫ tj

tj−1

α0,i(t) dt

(7.16)

where A := {αj,i | i, j = 1, . . . , n, i 6= j}, the first three terms represent the infected

nodes, and the last term represents the surviving ones up to the observation window

cut-off T . The log-likelihood is jointly concave on the parameters A, by exploiting

the convexity of ex and linearity.

Now, assuming independent cascades, the log-likelihood of a set of cascades C =

{t1, . . . , t|C|} is the sum of the log-likelihoods of the individual cascades given by

Eq. 7.16. Then, if the baselines α0,i(t) are known, we apply the maximum likelihood

principle on the log-likelihood of the set of cascades to find the optimal parameters

αi of every node i:

minimizeA −
∑

c∈C log f(tc; A) (7.17)

where A := {αj,i | i, j = 1, . . . , n, i 6= j} are the variables. The solution to Eq. 7.17 is

unique and computable:

Theorem 17. The network inference problem for the multiplicative risk model defined

by Eq. 7.17 is convex in A.

Proof. Convexity of Eq. 7.17 follows from linearity, composition rules for convexity,

and convexity of the exponential.

If αj,i > 0, node j increases the hazard rate of node i (positive influence), if

αj,i < 0, node j decreases the hazard rate of node i (negative influence), and finally if

a parameter αj,i = 0, node j does not have any influence on the hazard rate of node

i – there is not edge between j and i.
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However, there are some undesirable properties of the solution to the uncons-

trained network inference problem for the multiplicative risk model as defined by

Eq. 7.17. The optimal network will be dense: any pair of nodes (j, i) that are not

infected by the same contagion at least once will have negative influence on each other.

Even worse, the negative influence between those pair of nodes will be arbitrarily large,

making the optimal solution unbounded.

A first strategy to induce sparsity and obtain a bounded optimal solution consists

in allowing only positive influences between nodes, i.e., αj,i ≥ 0 for any (j, i), and

solving instead:

minimizeA −
∑

c∈C log f(tc; A)

subject to αj,i ≥ 0, i, j = 1, . . . , N, i 6= j,
(7.18)

where A := {αj,i | i, j = 1, . . . , n, i 6= j} are the variables. In this way, the first

term in the log-likelihood of each cascade, defined by Eq. 7.16, becomes a l1-norm

on the vector A, and we encourage sparse networks (Boyd and Vandenberghe, 2004).

Moreover, the optimal solution is not unbounded anymore.

However, whenever we work in a domain in which negative influence between

nodes may occur, we propose a second strategy. First, if a pair (j, i) does not get

infected in any common cascades, we set αj,i to zero and do not include αj,i in the log

likelihood. This rules out interactions between nodes that got infected in disjoint set

of cascades and avoid unbounded optimal solutions. In other words, we assume that

if node j has a (positive or negative) influence in node i, they should get infected at

least once by the same contagion at times tj < ti < T . Second, although by ruling

out interactions between nodes that got infected in disjoint set of cascades we also

reduce the network density of the optimal solution, the solution is not encouraged to

be sparse yet. We then achieve greater sparsity by including a l1-norm regularization

parameter in A (Boyd and Vandenberghe, 2004). Therefore, we finally solve:

minimizeA −
∑

c∈C g(tc; A) + λ
∑

j

∑
i |αj,i|, (7.19)

where λ is a sparsity penalty factor, and g(tc; A) is the log-likelihood of cascade tc

which omits parameters αj,i of pairs (j, i) that did not get infected at least once in
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the same cascade at times tj < ti < T . The problem is still convex by applying the

same reasoning as in Th. 17.

7.4.1 Link to Cox’s model

Our multiplicative model is a particular case of the well known Cox’s model in survival

theory (Aalen et al., 2008). In Cox’s model, the hazard function of each node i is

parametrized as λi,0(t)eα
T
i s(t), where α is a vector that accounts for the effect of a

collection of observable covariates s(t) and λi,0(t) is a baseline. Future work could

use Cox’s model to consider unknown non parametric baselines λi,0(t) by fitting the

model using partial likelihood, Cox’s goodness of fit tests to validate further the model

or other type of covariates s(t).

7.5 Summary

In this chapter, we have proposed a theoretical framework to model information

propagation over implicit or unobserved networks using survival theory. First, we

proposed an additive risk model under which the network inference problem from

cascades can be solved efficiently by exploiting convexity. We have shown that seve-

ral state of the art network inference methods use particular instances of our additive

risk model. Then, we proposed a multiplicative risk model under which the network

inference problem can be solved efficiently too by exploiting convexity. This multi-

plicative model allows for situations in which a parent can either encourage or inhibit

the diffusion of a contagion.



Chapter 8

Conclusions and future work

This dissertation has been mainly devoted to one of the fundamental research pro-

blems in the context of network diffusion, inference of hidden or implicit networks

over which various types of contagions spread. Additionally, we have also tackled the

influence (spread) maximization over networks from a novel perspective. In particular,

we have made the following contributions:

• Network inference. We introduced probabilistic models and network infe-

rence algorithms for modeling diffusion over hidden or implicit networks. We

first developed two algorithms, NetInf and Multitree, which allow to infer

the structure of unweighted static diffusion networks, where diffusion occurs

at the same rate across different edges. The algorithms exploit submodularity

to efficiently find suboptimal networks with provable guarantees using cascade

data. The algorithms require to set the number of edges of the inferred net-

work. We then developed NetRate, an algorithm which allow to infer the

structure and rates of weighted static and dynamic diffusion networks in which

diffusion occurs at different rates across different edges from cascade data. The

algorithm exploits convexity to efficiently find optimal networks using cascade

data. It naturally (without heuristics) imposes sparse solutions and requires no

parameter tuning. We applied our inference algorithms to information diffu-

sion among mainstream media and blogs sites and experiment with more than

162
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340 million blogs and news articles. We find that diffusion networks tends to

have a core-periphery structure with a small set of core media sites that diffuse

information to the rest of the Web. These sites tend to have stable circles of in-

fluence with more general news media sites acting as connectors between them.

Information pathways for general recurrent topics are more stable across time

than for on-going news events. Clusters of news media sites and blogs often

emerge and vanish in matter of days for on-going news events. Major social

movements and events involving civil population, such as the Libyan’s civil war

or Syria’s uprise, lead to an increased amount of information pathways among

blogs as well as in the overall increase in the network centrality of blogs and

social media sites.

• Influence maximization. We developed InfluMax, an algorithm for in-

fluence maximization which uses an asynchronous continuous time model of

diffusion that takes into account heterogeneous temporal dynamics. In other

words, diffusion can occur at different rates across different edges, as in real-

world examples. We showed experimentally on synthetic and real diffusion

networks that InfluMax outperforms other state of the art algorithms by

considering the heterogeneous temporal dynamics of diffusion.

We believe that these contributions open several interesting avenues for future

research. We envision the following short term goals:

• Threshold model in continuous time. We have developed continuous time

models of diffusion which are inspired on the sequential independent cascade

model – we assume a node gets activated due to the first parent. However,

the sequential threshold cascade model has been also argued for in the litera-

ture (Kempe et al., 2003). It would be interesting to develop continuous time

models of diffusion based on the sequential threshold cascade model.

• Beyond temporal features. Here we only used time difference to infer edges



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 164

and thus it would be interesting to utilize more informative features (e.g., tex-

tual content of postings, credibility, etc.) to more accurately estimate the trans-

mission or cascade likelihoods.

• External sources and events detection. We notice that many times the

changes in the inferred dynamic networks could be attributed to sudden exter-

nal real-world events. How can diffusion network inference be combined with

methods for detecting external influence in networks (Myers et al., 2012)? And

also, how can dynamic network inference be extended for detecting unexpected

real-world events based on a stream of documents?

• Signed networks. Many times, not only information but also sentiment

attached to a piece of information spreads through the network (Miller et al.,

2011). It would be interesting to think about inference of signed networks, where

a positive/negative valence of an edge models sentiment relationship between a

pair of nodes.

• Competing cascades. In our work, we have assumed contagions to propagate

independently. However, this is over simplistic, as noticed recently (Prakash

et al., 2012b; Myers and Leskovec, 2012). It would be interesting to relax this

assumption in our framework.

• Scalable influence maximization with temporal dynamics. Evaluating

influence exactly, as InfluMax does, becomes prohibitive in terms of compu-

tational complexity when the network density grows. Therefore, it would be

interesting to find approximate ways to evaluate influence.

In the context of online media, such modifications and extensions would allow

us to improve our understanding of the current landscape of news coverage, the role

that news media plays in framing the discussion of important topics, and the evolving

ecosystem that news media occupies. Among the medium and long term goals, we

also envision:



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 165

• Other applications for network inference. There are many other domains

where our network inference algorithms or some variations of them may be

useful: inferring interaction networks in systems biology (protein-protein and

gene interaction networks), neuroscience (inferring physical connections between

neurons) and epidemiology.

• Sequential vs. asynchronous diffusion models. Finding culprits or end

effectors from diffusion traces, reconstructing incomplete diffusion traces, spread

maximization and minimization are all examples of research problems where

diffusion of information, influence or behavior must be modeled. In previous

work, diffusion has typically been modeled as a sequential synchronous pro-

cess in which time is discretized in epochs and propagation is synchronous.

Such models are often assumed to facilitate theoretical analysis, including NP-

hardness results, but unfortunately they lack realism. Instead, in our work,

we provide a novel more realistic view of diffusion as discrete networks of con-

tinuous asynchronous temporal processes occurring at different rates. Perhaps

surprisingly, our model allows for theoretical analysis as well as fitting real

observed data, as shown for the network inference problem and the influence

maximization problem. We believe it can be fruitfully applied to other lines of

research, including the ones mentioned above.



Appendix A

Table of symbols

Symbol Description
G(V , E) Directed network with node set V and edge set E
A Pairwise transmission rates for all pair of nodes (i, j)
(G,A) Diffusion network: directed network G and transmission rates A
αi,j Pairwise transmission rate of edge (i, j)
c Contagion
tc Cascade: activation times for contagion c
C Set of all recorded cascades
tci Activation time of node i in cascade tc

T c Observation window cut-off or time horizon for cascade tc

f(tj|ti, αi,j) Pairwise transmission likelihood of edge (i, j)
F (tj|ti, αi,j) Cumulative density function of edge (i, j)
S(tj|ti;αi,j) Survival function of edge (i, j)
H(tj|ti;αi,j) Hazard function, or instantaneous activation rate, of edge (i, j)

Eε Set of ε-edges, E ∩ Eε = ∅ and E ∪ Eε = V × V
Tc(G) Set of all possible propagation trees of cascade tc on network G
T = (VT , ET ) Cascade propagation tree, T ∈ Tc(G)
VT Node set of T , VT = {i | i ∈ Vand tc[i] <∞}
ET Edge set of T , ET ⊆ E ∪ Eε
Ct Set of recorded cascades by time t
t≤T

c
Observed activation times for cascade tcc up to T c

Continued on next page...
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Symbol Description

g(A) Prior likelihood on the transmission rates A
A Support of the prior likelihood on the transmission rates g(A)

T Time horizon
S Node source set
si Source node i
N(S;T ) Number of activated nodes at time t given a node source set S
σ(S;T ) = EN(S;T ) Influence function
n Sink node
Sn(B) Set of nodes dominated by B with respect to a sink node n
Ω∗n Set of self dominant node sets with respect to a sink node n
I(t|S) Activated node set at time t given S
Un(t|S) Useless node set at time t given S and n
Xn(t|S) Set of disable nodes at time t given S and n

Ni(ti) Indicator function for node i; nondecreasing counting process
Fti History for node i up to time ti
λi(t) Intensity process for node i
s(ti) Covariates for node i at time ti
αi(ti|s(ti)) Intensity or hazard rate of node i at time ti
αi Parameter vector for node i
γ(·; ti) Time shaping function at time ti
f(ti|s(ti)) Likelihood of activation of node i
F (tis(ti)) Probability of activation of node i

Table A.1: Table of symbols.
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