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1 Details on Inference Algorithm

In this section we describe how Sequential Monte Carlo
can be used to infer latent patterns from the observed
spatiotemporal and content data. The posterior dis-
tribution p(s1:n|t1:n,d1:n, r1:n) is sequentially approxi-
mated from n = 1 to n = N with a set of |P| particles
that are sampled from a proposal distribution that fac-
torizes as

qn(s≤n|t≤n,d≤n, r≤n) = qn(sn|s<n, t≤n,d≤n, r≤n)

× qn−1(s<n|t<n,d<n, r<n)

where qn(sn|s<n, t≤n,d≤n, r≤n) is given by
(1.1)

p(sn|s<n,t≤n)p(dn|s≤n,d<n)p(rn|s≤n,r<n)∑
sn
p(sn|s<n,t≤n)p(dn|s≤n,d<n)p(rn|s≤n,r<n)

In the above expression, the distribution p(sn|s<n, t≤n)
is given by

(1.2) p(sn|s<n, t≤n) =
λsn(tn)

λ0 +
∑n−1
i=1 γsi(tn, ti)

where the numerator λsn(tn) is equal to λ0 when sn is
a new spatiotemporal pattern.

We can exploit the conjugacy between the multi-
nomial and the Dirichlet distributions as well as the
conjugacy between the normal distribution and normal-
gamma prior to integrate out the word distributions θs
and spatial parameters {σs,Rs}, respectively, and ob-
tain the marginal likelihoods:

p(dn|s≤n,d<n) =
Γ(Csn/dn+V θ0)

∏V
v Γ(Csn/dn

v +Cdn
v +θ0)

Γ(Csn/dn+Cdn+V θ0)
∏V

v Γ(C
sn/dn
v +θ0)

where V is the size of the observed vocabulary, Csn/dn is
the total number of words in the spatiotemporal pattern

sn seen so far excluding dn, C
sn/dn
v is the total count

for word v in spatiotemporal pattern sn so far excluding
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dn, Cdn
v is the total count for word v in dn and Cdn is

the total word count for dn; and,

p(rn|s≤n, r<n) =

{
N2

sn

2π(1+Nsn )

ξ−1
sn

[1+∆(rn)/ξsn ]1+Nsn
if Nsn≥1

1 if Nsn =0

where Nsn =
∑n−1
i=1 I[si = sn] is the number of posts

assigned to spatiotemporal pattern sn, ξsn is given by1

ξsn = βspace + 1
2

∑n−1
i=1 r2

i I[si = sn]− 1
2Nsn

(∑n−1
i=1 riI[si = sn]

)2

and

∆(rn) =
Nsn

2(Nsn+1)

(
rn − 1

Nsn

∑n−1
i=1 riI[si = sn]

)2

This choice of qn(·) results in the incremental impor-
tance weight
(1.3)

αn(s<n) = p(tn|s<n, t<n)Qn(s<n, t≤n,d≤n, r≤n)

where Qn(s<n, t≤n,d≤n, r≤n) is given by

(1.4)
∑
sn

p(sn|s<n, t≤n)p(dn|s≤n,d<n)p(rn|s≤n, r<n)

This update is optimal in the sense that it leads to mini-
mum variance among the particle weights. Finally note
that in order to mitigate against particle degeneracy
systematic resampling is used whenever the particle sys-
tem satisfies ‖wn‖−2

2 < κthresh|P| (throughout we use
κthresh = 0.9). For more details on Sequential Impor-
tance Resampling see e.g. ref. [2].

1.1 Time kernel inference If the time kernels pa-
rameters, {αs, τs}, are fixed the inference procedure
described above yields an unbiased estimate of the
posterior p(s1:N |t1:N ,d1:N , r1:N ). In general, however,
these parameters are unknown and need to be es-
timated. Methods for calculating the full posterior
p(s1:N , {αs, τs}|t1:N ,d1:N , r1:N ) can be derived; how-
ever, they are computationally expensive and do not

1Up to a factor of 1
2
Nsn this is the spatial variance of pattern

sn when βspace → 0.



Algorithm 1 Inference algorithm for the SDHP

Initialize w
(p)
1 → 1/|P| and S(p) → 0 for all p ∈ P.

for n = 1, . . . , N do
for p ∈ P do

Draw s
(p)
n from Eqn. 1.1.

if s
(p)
n = S(p) + 1 then
Draw the time kernel parameters {αs, τs} for

s = s
(p)
n from the prior

Increase the number of patterns S(p) → S(p) +1

Update the particle weight w
(p)
n using Eqn. 1.3

Update {αs, τs} for all patterns via Eqn. 1.6

Normalize particle weights.
if ‖wn‖−2

2 < κthresh|P| then
Resample particles.

Finally return the particle p ∈ P with the largest weight as
an approximate MAP estimate to Eqn. 1.5.

scale to large datasets (since they rely on e.g. expensive
MCMC updates). Since our primary interest is not in
the posterior itself but rather the MAP estimate, i.e.

(1.5) sMAP
1:N = arg max

s1:N

p(s1:N |t1:N ,d1:N , r1:N ),

we do not necessarily require SMC to produce unbiased
samples from the posterior. Rather, we just need SMC
to explore the posterior space efficiently and return an
(approximate) MAP estimate. Consequently, we use
the following computationally efficient procedure: after
each time step, the parameters {αs, τs} are set equal to
a (restricted) MLE estimate. More specifically, as part
of the model specification we choose a fixed, finite set
of allowed time constants, Ψτ = {τi}. Then at each
time step n and for each spatiotemporal pattern s and
τi ∈ Ψτ we compute

(1.6)
αMLE
s (τi) = arg max

αs

p(αs|αtime, βtime)p(Ts;n|αs, τi)

where Ts;n is the sequence of times for the posts assigned
to spatiotemporal pattern s through time step n. For
each τi ∈ Ψτ Eqn. 1.6 can be computed in closed
form. Finally, we choose the pair (αMLE

s (τi), τi) that
maximizes the likelihood in Eqn. 1.6.2 In this way the
parameters {αs, τs} are updated at each time step for
all patterns that contain at least two posts.

2 Setup for synthetic experiments

Unless stated otherwise, the following experimental
parameters are common to all four experiments: the
vocabulary has length |V| = 15; the hyperparameters

2Note that this is not equivalent to simultaneously maximizing
over (αs, τs), which cannot be done in closed form.

for the prior on the self-excitation parameter αs are
given by αtime = 0.1 and βtime = 0.2; the base intensity
λ0 = 10; the time constants are given by Ψτ = {1};
the Dirichlet hyperparameter is given by θ0 = 1; the
number of words per tweet is given by Nwords = 7; and
the number of particles used during inference is |P| = 4.
The number of tweets in each sample will be denoted as
N and the number of trials per value of x will be denoted
as Ntrials.

In order for the spatial part of the generative
process to be well-defined, we use a uniform prior on
the mean location Rs of each pattern s, with the prior
defined on the unit square.3 Unless stated otherwise the
spatial hyperparameter βspace = 0.01 and the generative
process assigns each spatiotemporal pattern a spatial
extent σ0 = 0.1.

For the experiment corresponding to Fig. 2a we set
Ntrials = 60 and σ0 = 0.03, while for the experiment
corresponding to Fig. 2b we set N = 5500 and Ntrials =
500 as well as Nwords = 15 and σ0 = 0.02 (so that even
smaller patterns should be readily identifiable). For the
experiment corresponding to Fig. 3a we set N = 500,
Ntrials = 50, |P| = 8, and βspace = σ2

0 , while for the
experiment corresponding to Fig. 3b we set N = 2000,
Ntrials = 200, σ0 = 0.03, and |P| = 1.

3 Details on Location Prediction Experiment

The two selection criteria used in the paper are defined
as follows:

— Loose selection: we sort all tweets in ascending
order according to the σs of the associated pattern, dis-
card any tweet in a pattern with less than 7 tweets, and
compute the average root mean square error (RMSE) of
the top 4%.

— Tight selection: we sort all tweets in ascending
order according to the σs of the associated pattern, dis-
card any tweet in a pattern with less than 11 tweets, and
compute the average root mean square error (RMSE) of
the top 4%.

In the above measures, ties are adjudicated by
preferring tweets which belong to patterns with more
tweets. Any remaining ties are decided randomly.

4 Goodness of Fit Measures

4.1 Spatial measure We use the following spatial
goodness of fit measure. At each iteration n of the cor-
responding inference algorithm (after a burnin period
of 500 tweets), we evaluate the marginal likelihood of
the next sample n + 1 given the parameters and latent

3If a given tweet falls outside the unit square during sampling

from the generative process, sampling of the location is repeated
until the location falls within the unit square.



variables inferred from the first n samples; e.g. for the
SDHP we have:
(4.7)

spatial g.o.f. = 1
2000

2500∑
n=501

log p(rn|t≤n, s<n,d≤n, r<n)

An analogous expression (i.e. without conditioning on
d≤n and t≤n) holds for the GMM. In order to make
a more direct comparison between the two models we
setup the GMM as follows: (i) at each iteration n
we set the number of gaussian components equal to
the number of spatiotemporal patterns inferred by the
SDHP at time step n− 1; and (ii) we consider isotropic
gaussians with the minimum covariance set equal to
σ2

min = 2βspace.

4.2 Content measure With reference to the expres-
sion in Eqn. 4.7, we use a related goodness of fit mea-
sure, namely the perplexity P [1]; e.g. for the DHP we
have the following:

P= exp

(
−1

Nwords

2500∑
n=501

log p(dn|t≤n, s<n,d<n)

)

where Nwords is the total number of words in
{d501, ...,d2500}. An analogous expression (i.e. with ad-
ditional conditioning on r≤n) holds for the SDHP. In
order to make a more direct comparison between the
two models we set λ0 for the DHP such that the num-
ber of inferred patterns matches that of the SDHP.
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