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ABSTRACT

Online social networking sites are experimenting with the
following crowd-powered procedure to reduce the spread of
fake news and misinformation: whenever a user is exposed to
a story through her feed, she can flag the story as misinfor-
mation and, if the story receives enough flags, it is sent to a
trusted third party for fact checking. If this party identifies the
story as misinformation, it is marked as disputed. However,
given the uncertain number of exposures, the high cost of fact
checking, and the trade-off between flags and exposures, the
above mentioned procedure requires careful reasoning and
smart algorithms which, to the best of our knowledge, do not
exist to date.

In this paper, we first introduce a flexible representation of
the above procedure using the framework of marked temporal
point processes. Then, we develop a scalable online algorithm,
Curb, to select which stories to send for fact checking and
when to do so to efficiently reduce the spread of misinforma-
tion with provable guarantees. In doing so, we need to solve a
novel stochastic optimal control problem for stochastic differ-
ential equations with jumps, which is of independent interest.
Experiments on two real-world datasets gathered from Twitter
and Weibo show that our algorithm may be able to effectively
reduce the spread of fake news and misinformation.

ACM Reference format:

Jooyeon Kim, Behzad Tabibian, Alice Oh, Bernhard Schölkopf, and Ma-
nuel Gomez-Rodriguez. 2018. Leveraging the Crowd to Detect and
Reduce the Spread of Fake News and Misinformation. In Proceedings
of WSDM 2018: The Eleventh ACM International Conference on Web
Search and Data Mining, Marina Del Rey, Ca, USA, February 5–9, 2018
(WSDM 2018), 9 pages.
https://doi.org/10.1145/3159652.3159734

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
WSDM 2018, February 5–9, 2018, Marina Del Rey, Ca, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159734

1 INTRODUCTION

In recent years, social media and online social networking
sites have become a major disseminator of false facts, urban
legends, fake news, or, more generally, misinformation. In this
context, there are growing concerns that misinformation on
these platforms has fueled the emergence of a post-truth so-
ciety, where debate is perniciously framed by the repeated
assertion of talking points to which factual rebuttals by the
media or independent experts are ignored. For example, the
post-truth label has been widely used to describe the presiden-
tial campaign of Donald Trump in the 2016 U.S. elections1 and
the Leave campaign in the 2016 Brexit referendum2, whose
outcomes have been then called into question.

In an effort to curb the spread of misinformation, major
online social networking sites, such as Facebook, Twitter or
Weibo, are (considering) resorting to the crowd3,4,5. In par-
ticular, they are experimenting with the following procedure
to reduce the spread of misinformation: whenever users are
exposed to a story through their feeds, they have a choice
to flag the story as misinformation and, if the story receives
enough flags, it is directed to a coalition of independent organi-
zations6, signatories of Poynter’s International Fact Checking
Code of Principles7, for fact checking. If the fact checking orga-
nizations identify a story as misinformation, it gets flagged as
disputed and may also appear lower in the users’ feeds, reduc-
ing the number of people who are exposed to misinformation.
In this context, online social networking sites are giving ad-
vice to its millions of users on how to spot misinformation
online8. However, the above mentioned procedure requires
careful reasoning and smart algorithms which, to the best of
our knowledge, are nonexistent to date:

1https://www.washingtonpost.com/posteverything/wp/2016/06/16/why-the-post-
truth-political-era-might-be-around-for-a-while/

2https://www.theguardian.com/commentisfree/2016/may/13/boris-johnson-donald-
trump-post-truth-politician

3https://newsroom.fb.com/news/2016/12/news-feed-fyi-addressing-hoaxes-and-fake-
news/

4https://www.washingtonpost.com/news/the-switch/wp/2017/06/29/twitter-is-
looking-for-ways-to-let-users-flag-fake-news/

5http://www.scmp.com/news/china/policies-politics/article/2055179/how-chinas-
highly-censored-wechat-and-weibo-fight-fake

6This coalition of organizations includes, among many others,
Snopes (http://www.snopes.com), FactCheck (http://www.factcheck.org) or Politifact
(http://www.politifact.com).

7http://www.poynter.org/fact-checkers-code-of-principles/
8https://www.nytimes.com/2017/05/08/technology/uk-election-facebook-fake-

news.html



— Uncertain number of exposures: the spread of information
over social networking sites is a stochastic process, which may
depend on, e.g., the information content, the users’ influence
and the network structure. Thus, the number of users exposed
to different stories varies greatly and we need to consider
probabilistic exposure models to capture this uncertainty.
— Fact checking is costly: given the myriad of (fake) stories
spreading in online social networking sites and the observation
that fact checking is a costly process, we can only expect (the
reviewers from) the coalition of independent organizations to
fact check a small percentage of the set of stories spreading
over time. Therefore, it is necessary to decide which stories to
fact check and when to do so.
— Flags vs exposures: the more users are exposed to a story
before sending it for fact checking, the greater the confidence
a story may be misinformation, however, the higher the poten-
tial damage if it turns out to be misinformation. Thus, we need
to find the optimal trade-off between misinformation evidence,
by means of flagging data, and misinformation reduction, by
means of preventing (unwarned) exposures to misinformation.
Our approach. To tackle the above challenges, we first intro-
duce a novel representation of the above procedure using the
framework of marked temporal point processes [1]. Then, we
find which stories to send for fact checking by solving a novel
stochastic optimal control problem for SDEs with jumps [17],
which differs from the nascent literature on stochastic optimal
control of social and information systems [42, 43, 48, 49] in
two technical aspects:

I. The control signal is a multidimensional survival pro-
cess (i.e., a terminating temporal point process), which
is defined by means of a set of conditional intensities
(i.e., stories to fact check), while previous work has con-
sidered nonterminating temporal point processes as
control signals.

II. The SDEs with jumps depend on random variables (i.e.,
flags) whose distributions depend on a priori unknown
parameters (i.e., flagging probability, which depends on
whether a story is fake or legitimate). In this context, a
posterior estimate of these parameters arises naturally
in the formulation of the optimal control problem. In
contrast, previous work did not consider application
scenarios where posterior inference was required.

These technical aspects have implications beyond the problem
of detecting and reducing misinformation since they establish
an unexplored connection between stochastic online optimal
control, survival analysis and Bayesian inference. Moreover,
we find that the solution to the above optimal control pro-
blem is relatively simple and intuitive: the optimal intensity
of fact checking is proportional to a posterior estimate of the
rate of misinformation. As a consequence, we can develop a
scalable online algorithm, Curb, to schedule which stories to
send for fact checking to efficiently reduce misinformation.
Finally, we experiment on two real-world datasets gathered
from Twitter and Weibo and show that our algorithm is able
to effectively reduce the spread of misinformation and fake
news. To facilitate research in this area, we release an open
source implementation of our algorithm at http://learning.mpi-
sws.org/curb/.

Relatedwork. The research areas most closely related to ours
are on truth discovery and rumor detection. In terms of truth
discovery, most previous work discovers the truth by assessing
the trustworthiness of the information sources and they do
so using link-based measures [4, 7, 16], information retrieval
based measures [45], accuracy-based measures [9, 10, 20, 28,
46], content-based measures [2, 15, 36, 38, 39, 44, 52], graphical
models [33, 47, 50, 51], or survival analysis [27, 37]. A recent
line of work [23, 24, 32, 41] also considers scenarios in which
the truth may change over time. In terms of rumor detection,
previous work has typically relied on textual, network and
temporal features to characterize and detect rumors [14, 21,
25, 29, 30, 34, 35]. However, our work differs from previous
work in several key aspects: (i) the crowd-powered fact che-
cking procedure is, to the best of our knowledge, novel; (ii)
we both detect and reduce the spread of misinformation, in
contrast, previous work has focused on detection and has not
designed interventional strategies considering the exposure
dynamics; and, (iii) we develop a principled online algorithm
by solving a stochastic optimal control of SDEs with jumps,
which is able to adapt to changes in the rate of exposures and
flags, while previous work has developed off-line algorithms.
Moreover, note that our methodology could be extended to
leverage the above detection methods to further refine the
posterior estimate of the rate of misinformation.

Learning from the crowd has been widely used in many
different areas, e.g., web security [6, 40], spam detection [5, 53],
phishing detection [31] and fake online account detection [13].
Moreover, using expert knowledge, such as the one provided
by fact checking organizations, has been used to improve the
quality and reliability of crowd learning procedures [18, 26].
However, to the best of our knowledge, the present work is
the first that leverages both the crowd and expert knowledge
in the context of detecting and preventing the spread of fake
news and misinformation.

Finally, there has been a paucity of work on stochastic
optimal control of SDEs with jumps [42, 43, 48, 49], however,
previous work has focused on steering social activity, has not
considered survival processes as control signals, and has not
considered SDEs with jumps depending on random variables
whose distributions depend on unknown parameters.

2 PROBLEM FORMULATION

To reduce the spread of misinformation, we optimize the follo-
wing fact checking procedure used by major online social
networking sites. Users can flag any story in their feed as
misinformation and, if a story receives enough flags, it is sent
to a third party for fact checking. If the third-party identifies
a story as misinformation, it gets flagged as disputed and may
also appear lower in the users’ feeds. In this procedure, since
the third-party fact checking is costly, we need to decide which
stories to fact check andwhen to do so—decide howmany flags
are enough. For ease of exposition, we assume that, if a story is
sent for fact checking, the story is instantaneously verified—it
is instantly revealed whether the story is fake or genuine9.

9One could easily relax this assumption by modeling the delay between the time when
a story is sent for fact checking and the time when it is verified.
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In this section, we first leverage the framework of marked
temporal point processes [1] to model the above mentioned
fact checking procedure, starting from the data representation
the model uses, then define and estimate the rate of misinfor-
mation, which we will use to decide what and when to fact
check, and finally state the fact checking scheduling problem.
Data representation. Given an online social networking site
with a set of usersU and a set of unverified storiesS, we define
two types of user events: exogenous events, which correspond
to the publication of stories by users on their own initiative,
and endogenous events, which correspond to the resharing
and/or flagging of stories by users who are exposed to them
through their feeds, similarly as in previous work [8, 11].

Formally, we represent each exogenous event as a triplet

p B ( u
↑

user

, t
↑

time

,

story
↓

s ),

which means that user u ∈ U posted story s ∈ S at time
t at her own initiative. Moreover, we denote the history of
exogenous events for each story s up to time t by Hp

s (t ) =⋃
i :ti<t {pi | si = s}.
Similarly, we represent each endogenous event as a 5-tuple

e B ( u
↑

user

, t
↑

time

,

story
↓

s, r
↑

reshare

,

flag
↓

f ),

which means that user u ∈ U was exposed to story s ∈ S
at time t and decided (not) to reshare it, r = 1 (r = 0),
and/or (not) to flag it, f = 1 (f = 0). Then, we denote
the history of endogenous events for story s up to time t by
H e
s (t ) =

⋃
i :ti<t {ei | si = s}. Finally, we gather the history of

exogenous and endogenous events for story s up to time t by
Hs (t ) = H

p
s (t )
⋃
H e
s (t ) and the overall history of exogenous

and endogenous events up to time t byH (t ) =
⋃
s ∈SHs (t ).

Fact checking generative process.We represent the times
of the exogenous and endogenous events within the social
networking site using two multidimensional counting pro-
cesses, Np (t ) and N e (t ), in which the s-th dimension, Np

s (t )
and N e

s (t ), count the number of exogenous and endogenous
events for story s up to time t . Following the literature on
temporal point processes [1], we characterize these counting
processes using their corresponding intensities, i.e.,

E[dNp (t ) |H (t )] = λp (t )dt ,

E[dN e (t ) |H (t )] = λe (t )dt ,

where dNp (t ) and dN e (t ) denote the number of exogenous
and endogenous events in the window [t ,t + dt ) and λp (t ) :=
[λps (t )]s ∈S and λe (t ) := [λes (t )]s ∈S denote the vector of in-
tensities associated to all stories. Every time a user is exposed
to a story s , the binary indicators r and f are sampled from
two Bernoulli distributions, P(r = 1) = rs and P( f = 1) = fs ,
where rs and fs are story specific parameters which may de-
pend on many complex factors, e.g., content, source.

Moreover, we represent the times when stories are sent to
a trusted third-party for fact checking using a multidimen-
sional binary counting process, M (t ), in which the s-th di-
mension, Ms (t ), becomes one when story s is sent for fact
checking. Here, we characterize this process using a vector

of intensities u (t ) := [us (t )]s ∈S associated to all stories, i.e.,
E[dM (t ) |H (t )] = u (t ) ⊙ (1 −M (t ))dt , where ⊙ denotes pair-
wise product and the term (1 −M (t )) ensures each story is
sent for fact checking only once. Whenever story s is sent
for fact checking, we assume it gets instantly verified—it gets
revealed whether s is fake or genuine. Under this characteri-
zation, deciding which stories to fact check and when to do so
becomes a problem of finding the vector of intensities u (t ) of
fact checking events.
Endogenous and exogenous intensities. Following previ-
ous work [11, 12, 49], we model exogenous events for each
unverified story s ∈ S as:

λ
p
s (t ) := hs (t ) (1 −Ms (t )), (1)

where hs (t ) ≥ 0 is a time-varying (differentiable) function
and (1 −Ms (t )) ensures the intensity of endogenous events
becomes zero if the story is verified (i.e., fact checked).

For endogenous events, we consider the following form for
the intensity functions:

λes (t ) =
[

Reshares︷                          ︸︸                          ︷∫ t

0
rs (τ )д(t − τ )dN

e
s (τ )

+

Posts︷                   ︸︸                   ︷∫ t

0
д(t − τ )dN

p
s (τ )

] Fact check︷        ︸︸        ︷
(1 −Ms (t )), (2)

where the first term, with rs (τ ) ∼ Bernoulli(rs ), models the
exposures due to reshares of story s by the previous users, the
second term models the exposures due to previous posts of
story s by users on their own initiative (i.e., exogenous events).
In the first two terms, дs (t ) denotes an exponential triggering
kernel, д(t ) := γ exp(−ωt )I(t ≥ 0), which models the decay of
influence of previous reshares and posts over time. By making
the intensity dependent on the history of reshares and posts,
it becomes a stochastic process by itself.

Given the above functional form for the intensity of endoge-
nous events, the following alternative representation based on
stochastic differential equations (SDEs) with jumps, which can
be derived using Ito’s calculus [17], will be useful to design
our algorithm:

Proposition 2.1. Let N e
s (t ) be a counting process with asso-

ciated intensity λes (t ), given by Eq. 2. The tuple (N e
s (t ),λ

e
s (t ))

is a doubly stochastic Markov process whose dynamics can be
represented by the following SDE with jumps:

dλes (t ) = −ωλ
e
s (t )dt − λ

e
s (t )dMs (t )

+ γ
[
rs (t )dN

e
s (t ) + (1 −M (t ))dN

p
s (t )

]
(3)

Estimated rate of misinformation. If one cannot send all
stories for fact checking, ideally, one may like to send only fake
stories and favor those which, if not fact checked, would reach
the greatest number of users. However, we cannot directly
observe whether a story is fake (that is why we send it for
fact checking!) and we do not know the total number of users
who will be exposed to the story if not fact checked. Instead,
for each story, we will leverage the users’ flags and exposures
to compute a running estimate of the rate of misinformation
due to that story. Then, we will find the optimal fact checking
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intensities u (t ) that minimize a nondecreasing function of the
estimated misinformation rates over time.

Given a story s ∈ S, the number of usersN f
s (t ) who flagged

the story up to time t can be formally defined as

N
f
s (t ) :=

∫ t

0
fs (τ )dN

e
s (τ ),

where N e
s (t ) counts the number of users exposed to story s

by time t , fs (τ ) ∼ fs , and it readily follows that dN f
s (t ) =

fs (t )dN
e
s (t ). Then, we can estimate the average number of

users N̄m
s (t ) exposed to misinformation by time t , conditioned

on the number of exposed users and flags, as

N̄m
s (t ) := pm |s,f =1N

f
s (t ) + pm |s,f =0 (N

e
s (t ) − N

f
s (t ))

= pm |f =1N
f
s (t ) + pm |f =0 (N

e
s (t ) − N

f
s (t )),

where we assume that the probability that a story is misinfor-
mation given that a user did or did not flag it is equal for all
stories, i.e., pm |s,f = pm |f , and one can estimate pm |f from
historical flag and exposure data about fact checked stories.
Here, the probability pm |f characterizes how good the crowd
is at spotting misinformation10.

Next, we can compute the differential dN̄m
s (t ) as

dN̄m
s (t ) =

[
(pm |f =1 − pm |f =0) fs (t ) + pm |f =0

]
dN e

s (t )

and define the rate of misinformation as
λms (t )dt = E[dN̄m

s (t )]

=
[
(pm |f =1 − pm |f =0) fs + pm |f =0

]
λes (t )dt . (4)

Unfortunately, the flagging probability fs may depend on
many complex factors, e.g., content, source, and is generally
unknown. To overcome this challenge, we assume a Beta prior
on fs , i.e., fs ∼ Beta(α ,β ), and compute instead a posterior
estimate of the rate of misinformation, which leverages both
the number of exposures N e

s (t ) and flags N f
s (t ) by time t , i.e.,

λ̂ms (t )dt = Efs (t ),fs [dN̄m
s (t )]

=
[
(pm |f =1 − pm |f =0)

α + N
f
s (t )

α + β + N e
s (t )

+ pm |f =0
]
λes (t )dt , (5)

where we used the conjugacy between the Bernoulli and the
Beta distributions, i.e.,

fs |N
f
s ,N

e
s ∼ Beta

(
α + N

f
s (t ),β + N

e
s (t ) − N

f
s (t )
)
.

Finally, given a set of stories S, we denote the vector of pos-
terior estimates of their associated rate of misinformation as
λ̂m (t ) = [λ̂ms (t )]s ∈S .
The fact checking scheduling problem. Given a set of un-
verified stories S, we aim to find the optimal fact checking
intensities u (t ) that minimize the expected value of nonde-
creasing convex loss function ℓ(λ̂m (t ),u (t )) of the posterior
estimates of the stories rates of misinformation λ̂m (t ) and the
fact checking intensities u (t ) over a time window (t0,tf ], i.e.,

10One could consider different false positive and false negative rates per user and per
story, e.g., using text analysis or domain knowledge about the website that published the
story. However, for simplicity, we leave such extensions for future work.

minimize
u (t0,tf ]

E

[
ϕ (λ̂m (tf )) +

∫ tf

t0

ℓ(λ̂m (τ ),u (τ ))dτ

]

subject to u (t ) ≥ 0 ∀t ∈ (t0,tf ], (6)
where u (t0,tf ] denotes the fact checking intensities from t0
to tf , the expectation is taken over all possible realizations
of the marked temporal point processes associated to the en-
dogenous and exogenous events of all stories from t0 to tf ,
and ϕ (λ̂m (tf )) is an arbitrary penalty function. Here, by con-
sidering a nondecreasing loss on both the posterior estimate
of the rates of misinformation and fact checking intensities,
we penalize high levels of misinformation and we limit the
number of stories that are sent for fact checking.

3 PROPOSED ALGORITHM

In this section, we find the optimal fact-checking intensities
u (t ) that minimizes Eq. 6 from the perspective of stochastic
optimal control of jump SDEs [17]. To ease the exposition,
we first derive a solution for one story, introduce an efficient
algorithm that implements the solution, and then generalize
the solution and the efficient algorithm to multiple stories.
Optimizing for one story. Given an unverified story s with
fact checking reviewing intensity us (t ) = u (t ), exogenous
intensity λ

p
s (t ) = λp (t ), endogenous intensity λes (t ) = λe (t )

and associated counting processes Ms (t ) = M (t ), Np
s (t ) =

Np (t ) and N e
s (t ) = N e (t ), respectively, we can rewrite the

fact checking scheduling problem defined in Eq. 6 as:

minimize
u (t0,tf ]

E

[
ϕ (λ̂m (tf )) +

∫ tf

t0

ℓ(λ̂m (τ ),u (τ ))dτ

]

subject to u (t ) ≥ 0 ∀t ∈ (t0,tf ], (7)
where the dynamics of N e (t ) are given by Eq. 3 and the pos-
terior estimate of the misinformation rate is given by Eq. 5.
Note that we are now focusing on a single story rather than
on multiple stories.

Next, we define an optimal cost-to-go function J for the
above problem, use Bellman’s principle of optimality to derive
the associated Hamilton-Jacobi-Bellman (HJB) equation [3],
and exploit the structure of our problem to find a solution to
the HJB equation.

Definition 3.1. The optimal cost-to-go J is defined as the
minimum of the expected value of the cost of going from state
(M (t ),N e (t ),N f (t ),Np (t ),λe (t )) at time t to the final state at
time tf , i.e.,

J (M (t ),N e (t ),N f (t ),Np (t ),λe (t ),t ) (8)

= min
u (t,tf ]

E

[
ϕ (λ̂m (tf )) +

∫ tf

t
ℓ(λ̂m (τ ),u (τ ))dτ

]
.

Now, using the Markov property of the state variables
(M (t ),N e (t ),N f (t ),Np (t ),λe (t )), we can apply Bellman’s prin-
ciple of optimality to the above definition to break the problem
into smaller subproblems and rewrite Eq. 8 as

0 = min
u (t,t+dt ]

{
E

[
d J (M (t ),N (t ),N f (t ),Np (t ),λe (t ),t )

]

+ℓ(λ̂m (t ),u (t ))dt
}
. (9)

Next, we differentiate J with respect to time t , M (t ), N e (t ),
N f (t ), Np (t ) and λe (t ) using Lemma 5.1 (in the Appendix)
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with x (t ) = λe (t ), y (t ) = λp (t ) = h(t ), z (t ) = r (t ), w (t ) =
f (t )) and F = J .
d J =

[
J (M ,N e + 1,N f + 1,Np ,λe + γ ,t ) f (t )r (t )

+ J (M ,N e + 1,N f + 1,Np ,λe ,t ) f (t ) (1 − r (t ))

+ J (M ,N e + 1,N f ,Np ,λe + γ ,t ) (1 − f (t ))r (t )

+ J (M ,N e + 1,N f ,Np ,λe ,t ) (1 − f (t )) (1 − r (t ))

− J (M ,N e ,N f ,Np ,λe ,t )
]
dN e (t )

+
[
J (M ,N e ,N f ,Np + 1,λe + γ ,t )

− J (M ,N e ,N f ,Np ,λe ,t )
]
dNp (t )

−
[
J (M ,N e ,N f ,Np ,λe ,t ) − J (M + 1,N e ,N f ,Np ,0,t )

]
dM (t )

+ Jt − ωλ
e (t ) Jλe ,

Then, using that E[dN e (t )] = λe (t )dt , E[dNp (t )] = h(t )dt ,
E[dM (t )] = (1 −M (t ))u (t )dt , E[r (t )] = rs = r , and E[f (t )] =
α+N f (t )

α+β+N e (t ) , the HJB equation follows:

0 =
[
J (M ,N e + 1,N f + 1,Np ,λe + γ ,t )

α+N f (t )
α+β+N (t ) r

+ J (M ,N e + 1,N f + 1,Np ,λe ,t )
α+N f (t )
α+β+N (t ) (1 − r )

+ J (M ,N e + 1,N f ,Np ,λe + γ ,t ) (1 − α+N f (t )
α+β+N (t ) )r

+ J (M ,N e + 1,N f ,Np ,λe ,t ) (1 − α+N f (t )
α+β+N (t ) ) (1 − r )

− J (M ,N e ,N f ,Np ,λe ,t )
]
λe (t )

+
[
J (M ,N e ,N f ,Np + 1,λe + γ ,t )

− J (M ,N e ,N f ,Np ,λe ,t )
]
(1 −M (t ))h(t )

+ min
u (t,tf ]

{
l (λ̂m (t ),u (t )) + Jt − ωλ

e (t ) Jλe

−
[
J (M ,N e ,N f ,Np ,λe ,t )

− J (M + 1,N e ,N f ,Np ,0,t )
]
(1 −M (t ))u (t )

}
,

(10)

with J (M (tf ),N
e (tf ),N

f (tf ),N
p (tf ),λ

e (tf ),tf ) = ϕ (λ̂e (tf ))
as the terminal condition.

To solve the above HJB equation, we need to define the
penalty function ϕ and the loss function ℓ. Following the li-
terature on the stochastic optimal control [17], we consider
the following quadratic forms, which penalize high levels of
misinformation and limit the number of stories that are sent
for fact checking:

ϕ (λ̂m (tf )) =
1
2
(λ̂m (tf ))

2

ℓ(λ̂m (t ),u (t )) =
1
2
(λ̂m (t ))2 +

1
2
qu2 (t ),

where q is a tunable parameter to trade-off between the num-
ber of stories sent for fact checking and the spread of misin-
formation. With the loss function, we take the derivative with
respect to u (t ) in Eq. 10 and uncover the relationship between
the optimal fact checking intensity and the optimal cost J :
u∗ (t ) = q−1 (1 −M (t ))

[
J (M (t ),N e (t ),N f (t ),Np (t ),λe (t ),t ),

− J (M (t ) + 1,N e (t ),N f (t ),Np (t ),0,t )
]
. (11)

Then, we plug in the above expression in Eq. 10 and find a
solution to the resulting nonlinear differential equation using
the following Lemma:

Lemma 3.2. The optimal cost-to-go J that satisfies the HJB
equation, defined by Eq. 10, is given by:

J (M (t ),N e (t ),N f (t ),Np (t ),λe (t ),t )

= q
1
2

[
(pm |f =1 − pm |f =0)

α+N f (t )
α+β+N (t ) + pm |f =0

] [
λe (t )

− γNp (t ) − (γr − ω) (α + β + N e (t ))
]
.

Proof Sketch.We verify the above cost-to-go J satisfies the HJB
equation, given by Eq. 10. To do so, we use that Jt = 0 and

Jλe = q
1
2

[
(pm |f =1 − pm |f =0)

α+N f (t )
α+β+N (t ) + pm |f =0

]
.

Here, note that the HJB equation needs to be satisfied only
for M (t ) ∈ {0,1}, which are the only feasible values for the
counting process associated to the fact checking event.

Next, we use the above Lemma to recover the optimal fact
checking intensity u∗ (t ):

Theorem 3.3. Given a story s , the optimal fact checking
intensity for the fact checking scheduling problem, defined by
Eq. 7, under quadratic loss is given by:

u∗ (t ) = q−
1
2 (1 −M (t ))

[
pm |f =0

+ (pm |f =1 − pm |f =0) *
,

α + N f (t )

α + β + N e (t )
+
-

]
λe (t ). (12)

The above result reveals a linear relationship between the
optimal fact checking intensity and the endogenous (i.e., expo-
sure) intensity λe (t ). Moreover, the corresponding coefficient
depends on the number of user exposures N e (t ) and the num-
ber of flags N f (t ), and can increase and decrease over time.
Remarkably, the optimal intensity does not depend on the
exogenous intensity λp (t ), which is generally unknown.

Finally, we derive an efficient procedure to sample from
the above intensity, summarized in Algorithm 1, which we
name Curb. At a high level, as a story spreads through out
the network, the algorithm updates its belief about the best
time to fact-check based on how quickly the story is spread-
ing as well as what is the likelihood that the story is mis-
information. Within the algorithm, Next () returns the next
endogenous (i.e., exposure) event, which occurs at time t ′

with resharing and flagging indicators r and f , respectively,
Update (N e (t ),N f (t ),λe (t )) updates u (t ) using Eq. 12, and
Sample (τ ,u (t )) samples from an intensityu (t ) starting at time
τ using a standard thinning algorithm [22]. If the fact checking
intensity increases, by r = 1 or f = 1, we apply the super-
position theorem [19], i.e., we sample a new candidate fact
checking time κ and we take the minimum between κ and
the previous candidate fact checking time. If the fact checking
intensity decreases, by f = 0, we first use a thinning argument
to decide whether to keep the current candidate fact check-
ing time τ or we sample a new candidate fact checking time,
greater than τ . This sampling procedure is very efficient since
it only needs to sample O (N e (tf )) times from an inhomoge-
neous Poisson process. Finally, note that if we gather more
and more evidence that a story s is not misinformation (f = 0

5



(a) Twitter (b) Weibo

Figure 1: Performance vs. number of fact checking events. We measure performance in terms of misinformation

reduction, which is the fraction of unverified exposures that fact checking prevented, and precision, which is the

fraction of fact checked stories that are fake. Oracle and Curb achieve a comparable performance in both datasets,

beating the threshold baseline by large margins.

Algorithm 1: The Curb Algorithm
Input: Parameters q, α , β , pm |f =1, pm |f =0, tf
Initialization :N (t ) ← 0; N f (t ) ← 0; λe (t ) ← 0;

Update (N e (t ), N f (t ), λe (t ))
Output: Fact checking time τ
τ ← tf
(t ′, r , f ) ← Next ()
while t ′ < τ do

u0 (t ) ← u (t )
N e (t ) ← N e (t ) + 1; N f (t ) ← N f (t ) + f
u (t ) ← Update (N e (t ), N f (t ), λe (t ))
if f = 0 then

x ← Unif orm (0, 1)
if u (t )/u0 (t ) < x then

τ ← Sample
(
τ , u (t )

)
end

end

if r = 1 then
λe (t ) ← λe (t ) + д (t − t ′)
u (t ) ← Update (N e (t ), N f (t ), λe (t ))

end

κ = Sample (t ′, max(0, u (t ) − u0 (t )))
τ ←min (τ , κ )
(t ′, r , f ) ← Next ()

end

return τ

for many exposures), the candidate fact checking time τ will
eventually become greater than tf and the story will never be
sent for fact checking.
Optimizing for multiple stories. Given a set of unverified
stories S with fact checking intensities u (t ), exogenous in-
tensities λp (t ), endogenous intensities λe (t ) and associated
counting processesM (t ), Np (t ) and N e (t ), we can solve the
fact checking scheduling problem defined by Eq. 6 similarly as
in the case of a single story. In particular, consider the follow-
ing quadratic form for the penalty function ϕ and loss function
ℓ:

ℓ(λ̂m (t ),u (t )) =
1
2

∑
s ∈S

(λ̂ms (t ))2 +
1
2

∑
s ∈S

qsu
2
s (t ),

where {qs }s ∈S are given parameters, which trade off the num-
ber of stories sent for fact checking and the spread of mis-
information, and may favor fact checking some stories over
others. Then, we can derive the optimal control signal intensity
for each story, using the independence assumption between
stories, proceeding similarly as in the case of a single story.

Theorem 3.4. Given a set of storiesS, the optimal fact check-
ing intensity for each story s ∈ S, which minimizes Eq. 6, under
quadratic loss and penalty functions is given by:

u∗s (t ) = q
− 1

2
s (1 −Ms (t ))

[
pm |f =0

+ (pm |f =1 − pm |f =0) *
,

α + N
f
s (t )

α + β + N e
s (t )

+
-

]
λes (t ). (13)

Finally, we can sample the fact checking times for all stories
by running |S| instances of Curb, one per story, and the over-
all number of required samples isO (

∑
s ∈S N

e
s (tf )). Moreover,

note that the instances can be run in parallel and thus our
algorithm is highly scalable.

4 EXPERIMENTS

In this section, we evaluate our algorithm on data gathered
from two social networking sites, Twitter and Weibo, and
compare its performance with three baselines via two metrics.
Dataset description and experimental setup.We use data
gathered from Twitter and Weibo as reported in previous
work [21, 29], which comprises posts and reshares for a variety
of (manually annotated) genuine and fake stories11, respec-
tively.

More specifically, the Twitter dataset contains 192,350 posts
and reshares from 117,824 users for 111 unique stories. The
Weibo dataset contains 3,752,459 posts and reshares from
2,819,338 users for 4,663 unique stories. We filtered out stories
posted or reshared more than 3,000 times as well as stories
whose number of posts or reshares taking place after the last
decile of the observation period is greater than 1%. Finally, we

11In the Twitter and the Weibo datasets, stories were fact checked using snopes.com
and the Sina community management center, service.account.weibo.com.
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Figure 2:Misinformation reduction vs. time. For both (a) and (b), the bottompanel shows the number of users exposed

to misinformation at each time period, the middle panel shows when different methods send stories for fact check-

ing, and the top panel shows the cumulative number of users. The bars and lines show the different fact checking

schedules and "Total" which shows the numbers in absence of fact checking. Both Curb and Oracle are able to pre-

vent the spread of misinformation before it becomes viral, whereas the other baselines cannot do so. The parameters

for all methods are set so that the total number of fact-checked stories is 15 ± 4 for Twitter and 64 ± 10 for Weibo.

filtered out fake stories at random until the percentage of fake
stories is less than 15%12.

After these preprocessing steps, our Twitter dataset con-
sists of 28,486 posts and reshares from 18,880 users for 7 fake
stories and 39 genuine stories and our Weibo dataset consists
of 93,943 posts and reshares from 88,913 users for 23 fake sto-
ries and 133 genuine stories. Unfortunately, the datasets do
not contain any information about the timing (or number) of
exposures nor flags. To remedy the data unavailability, we
generate user exposures based on user reshares and sample
flags from Bernoulli distributions. We experiment with diffe-
rent parameter settings to ensure that our model’s efficacy is
robust throughout different settings. The details of the data
generation steps are described in the following paragraph.

For each story, we sample exposure events using the ex-
posure intensity defined by Eq. 2, which does depend on the
observed posts and reshares. There, we set γ = 10−4 and
ω = 10−5. This choice of parameters results in approximately
10 to 20 exposures per post (or reshare) and a half-life of ap-
proximately 19 hours per post (or reshare). Under this set-
ting, our Twitter and Weibo datasets contain 313,357 and
1,054,449 exposures respectively. Unless otherwise stated, for
each exposure, we sample flags for fake and genuine stories
using two bernoulli distributions with pf =1 |m=1 = 0.3 and
pf =1 |m=0 = 0.01, respectively. Moreover, we estimate pd us-
ing the ratio between fake and overall number of stories, com-
pute pm |f =1 and pm |f =0 from pf =1 |m ,pf =0 |m , and pd , and set

12We subsample the number of fake stories to resemble a more realistic scenario in
which the number of fake stories is small in comparison with the total number of stories.
We obtained qualitatively similar results without subsampling.

α/(α+β ) = (pf =1 |d +pf =0 |d )pd . Finally, note that we obtained
qualitatively similar results for other experimental settings.
Evaluationmetrics and baselines. Throughout this section,
we evaluate the performance via two metrics: precision and
misinformation reduction. Precision is the fraction of fact
checked stories that are fake. Misinformation reduction is the
fraction of unverified exposures that fact checking prevented.

We compare the performance of Curb against an “Ora-
cle", which is a variant of Curb and has access to the true
flag probability pf , and three baselines. The first baseline
(“Flag Ratio") samples the fact checking time for each story
using an intensity which is proportional to the ratio between
the number of flags and the total number of exposures, i.e.,
us (t ) = qs (α + N

f
s (t ))/(α + β + N

e
s (t )). The second baseline

(“Flag Sum") sends a story for fact checking as soon as it
accumulates a certain number of flags. The third baseline (“Ex-
posure") samples the fact checking time for each story using
an intensity which is proportional to the exposure intensity,
i.e., us (t ) = qsλ

e
s (t ). Here, note that the Flag Sum baseline

utilizes a deterministic policy while our method, the Oracle
and the other baselines use a stochastic policy defined by an
intensity function.
Solution quality. We first evaluate the performance of our
method, the oracle and the three baselines against the number
of fact checking events. Figure 1 summarizes the results, which
show that: (i) the more the number of fact checking events, the
higher the average misinformation reduction for all methods;
and, (ii) Oracle and Curb achieve a comparable performance
in both datasets, outperforming the baselines in most cases.
Next, we evaluate the performance in terms of misinformation
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Figure 3: Performance for different true positive rates,

pf =1 |m=1. Here, we set the false positive rate to

pf =1 |m=0 = 0.01. The higher the true positive rate, the

better the crowd is at spotting misinformation and the

more effective Curb is. Total number of fact checked

stories is 21 ± 2 for Twitter and 90 ± 15 for Weibo.

reduction over time in Figure 2. We find that both Curb and
the Oracle are able to prevent the spread of misinformation
before it becomes viral. In contrast, the baselines are unable
to spot misinformation that will become viral in time partly
due to ignoring either the flags or the exposure dynamics.
Flagging behavior and misinformation evidence. In this
section, we first investigate how sensitive our algorithm is to
the crowd’s flagging behavior and then explore the influence
of the hyperparameters α and β on the posterior estimate of
the misinformation rate.

Intuitively, the more (less) accurate the crowd is at spotting
misinformation, the more (less) effective our algorithm will be.
Figure 3 confirms this intuition by showing the performance
of our algorithm for different true positive rates, pf =1 |m=1.

Next, we investigate the influence of the hyperparameter
α on the posterior estimate of the misinformation rate λms (t ),
which the optimal intensity u∗ (t ) depends on, and the poste-
rior estimate of the flagging probability E[fs |N e

s (t ),N
f
s (t )] =

f̂s by examining an example of a genuine and a fake story. Fig-
ure 4 summarizes the results, which show that: (i) the higher
the value of α , the smaller the effect of individual exposures
and flags on the posterior estimate of both the misinforma-
tion rate and the flagging probability when a story starts
spreading—the lower the variance of the estimates over time;
and, (ii) the posterior estimate of the misinformation rate,
which the optimal intensity u∗ (t ) depend on, changes in a
more intricate way than the posterior estimate of the flagging
probability since it combines the latter with the exposure in-
tensity. This enables our algorithm to be more cautious with
viral stories even if the evidence of misinformation is weak.

5 CONCLUSIONS

In this paper, we have introduced an efficient online algo-
rithm, Curb, that leverages the crowd to detect and prevent
the spread of fake news and misinformation in online social
networking sites. In doing so, we establish an unexplored con-
nection between stochastic online optimal control of SDEs
with jumps, survival analysis, and Bayesian inference. We
experimented with two real-world datasets gathered from
Twitter and Weibo and showed that our algorithm effectively
reduces the spread of misinformation, outperforms several

competitive baselines and is robust to different user flagging
behaviors.

There are many interesting directions for future work. For
example, we assumed every person in the crowd is equally
good (or bad) at flagging misinformation. It would be inter-
esting to relax this assumption, infer each person’s trustwor-
thiness, and design algorithms that are robust to adversarial
behavior from part of the crowd. Also, it would be worthwhile
to investigate if one’s network position affects the susceptibil-
ity of being exposed to fake news. For example, a subgroup of
biased people may be the main source of misinformation. If
that is the case, explicitly incorporating the network structure
in the model would be beneficial in mitigating the spread of
misinformation. Moreover, we considered that stories are in-
dependent and the probability that a story is misinformation
given that a user did or did not flag it is equal for all stories.
However, stories may be dependent and the probability that a
story is misinformation given a user did or did not flag it may
be different for stories supported by different sources (or do-
mains) [37]. Finally, our algorithm optimizes a quadratic loss
of the posterior estimate of the misinformation rate, however,
it would be useful to derive fact checking intensities for other
losses capturing more nuanced goals.

APPENDIX

Lemma 5.1. Let x (t ) be a jump-diffusion process defined by
the following SDE:

dx (t ) = f (x (t ),t )dt + д(x (t ),t )z (t )dN e (t )

+ h(x (t ),t ) (1 −M (t ))dNp (t ) + k (x (t ),t )dM (t ),

whereM (t ),N e (t ),Np (t ) are independent jump processes,Nf (t )
is a jump process whose increment is defined as dNf (t ) =
w (t )dN e (t ), w (t ) ∈ {0,1}, and z (t ) ∈ {0,1}. If the function
F (M (t ),N e (t ),N f (t ),Np (t ),x (t ),t ) is once continuously dif-
ferentiable in x (t ) and t , then,

dF (M (t ),N (t ),N f (t ),Np (t ),x (t ),t )

=
[
F (M ,N e + 1,N f + 1,Np ,x + д,t )w (t )z (t )

+ F (M ,N e + 1,N f + 1,Np ,x ,t )w (t ) (1 − z (t ))

+ F (M ,N e + 1,N f ,Np ,x + д,t ) (1 −w (t )) (z (t ))

+ F (M ,N e + 1,N f ,Np ,x ,t ) (1 −w (t )) (1 − z (t ))

−F (M ,N e ,N f ,Np ,x ,t )
]
dN e (t )

+
[
F (M ,N e ,N f ,Np + 1,x + h,t )

−F (M ,N e ,N f ,Np ,x ,t )
]
dNp (t )

+
[
F (M + 1,N e ,N f ,Np ,x + k,t )

−F (M ,N e ,N f ,Np ,x ,t )
]
dM (t ) + Ftdt + f Fxdt ,

where for notational simplicity we dropped the arguments of the
functions f, g, h, k.

Proof Sketch. The differential of J can be found using Ito’s calcu-
lus [17]. In particular, using that the bilinear formsdtdN e (t ) =
dtdNp (t ) = dtdM (t ) = 0 anddN e (t )dM (t ) = 0 andNp (t )dM (t ) =
0 by the zero-one jump law.
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