
A Proof of Proposition 1

Given x

⇤
(t) := [x1(t), ...,x|V|(t)]T and �

⇤
(t) := [�1(t), ...,�|V|(t)]T , we can compactly rewrite

Eqs. 3 and 4 for all users as:

x

⇤
(t) = ↵+A

Z t

0
g(t� ✓)m(t)� dN(t) (15)

and

�

⇤
(t) = µ+B

Z t

0
(t� ✓)� dN(t). (16)

Then, it easily follows that

dx⇤
(t) = A

Z t

0
g0(t� ✓)m(t)� dN(t) + g(0)Am(t)� dN(t), (17)

where g(t) = e�!t and g0(t� ✓) = �!g(t� ✓). And, we can rewrite the above expression as

dx⇤
(t) = !(↵� x⇤

(t))dt+A(m(t)� dN(t)). (18)

Similarly, we can show that

d�⇤
(t) = ⌫(µ� �

⇤
(t))dt+B dN(t).

B Auxiliary theoretical results

The proofs of Theorems 2 and 5 rely on the following auxiliary Lemma.

Lemma 7 The expected opinion EH
t

\H
t0
[x

⇤
(t)|Ht0] in the model of opinion dynamics defined by

Eqs. 4 and 3 with exponential triggering kernels with parameters ! and ⌫ satisfies the following
differential equation:

dEH
t

\H
t0
[x

⇤
(t)|Ht0]

dt
= AEH

t

\H
t0
[x

⇤
(t)� �

⇤
(t)|Ht0]� !EH

t

\H
t0
[x

⇤
(t)|Ht0] + !↵, (19)

where A = (avu)v,u2G and the sign � denotes pointwise product.

Using that E[mv(✓)|x⇤
v(✓)] = x⇤

v(✓), we can compute the average opinion of user u across all
possible histories from Eq. 4 as

EH
t

\H
t0
[x⇤

u(t)|Ht0] = ↵u +

X

v2N (u)

auv

Z t

0
g(t� ✓)EH

t

\H
t0
[mv(✓)dNv(✓)|Ht0]

= ↵u +

X

v2N (u)

auv
X

t
i

2H
v

(t0)

g(t� ti)mv(ti) +
X

v2N (u)

auv

Z t

t0

g(t� ✓)EH(✓)\H
t0

⇥
x⇤
v(✓)�

⇤
v(✓)|Ht0

⇤
d✓,

and we can write the expectation of the opinion for all users in vectorial form as

EH
t

\H
t0
[x

⇤
(t)] = v(t) +A

Z t

0
g(t� ✓)EH(✓)\H

t0
[x

⇤
(✓)� �

⇤
(✓)]d✓, (20)

where the � denotes pointwise product and

(v(t))u = ↵u +

X

v2N (u)

auv
X

t
i

2H
v

(t0)

g(t� ti)mv(ti).

Since g(t) = e�!t, one may observe that !v(t) + ˙

v(t) = !↵. Then, by differentiating Eq. 20, we
obtain

dEH
t

\H
t0
[x

⇤
(t)|Ht0]

dt
= AEH

t

\H
t0
[x

⇤
(t)� �

⇤
(t)|Ht0]� !EH

t

\H
t0
[x

⇤
(t)|Ht0] + !↵, (21)

10

C Proof of Theorem 2

Using Lemma 7 and �⇤
u(t) = µu, we obtain

dEH
t

[x

⇤
(t)]

dt
= [�!I +A⇤1]EH

t

[x

⇤
(t)] + !↵, (22)

where ⇤1 = diag[µ]. Then, we apply the Laplace transform to the expression above and obtain

ˆ

x(s) = [sI + !I �A⇤1]
�1

x(t0) +
!

s
[sI + !I �A⇤1]

�1
↵,

where we leverage the fact that, conditioning the prior history, the opinion is non-random, i.e.,
EH

t0\H
t

�
0

[x(t0)|Ht�0
] = x(t0). Finally, applying the inverse Laplace transform, we obtain the

average opinion EH
t

\H
t0
[x

⇤
(t)|Ht0] in time domain as

EH
t

\H
t0
[x

⇤
(t)|Ht0] = e(A⇤1�!I)(t�t0)

x(t0) + !(A⇤1 � !I)�1
⇣
e(A⇤1�!I)(t�t0) � I

⌘ i
↵.

D Proof of Theorem 3
Theorem 2 states that the average users’ opinion EH

t

[x

⇤
(t)] in time domain is given by

EH
t

\H
t0
[x

⇤
(t)|Ht0] = e(A⇤1�!I)(t�t0)

x(t0) + !(A⇤1 � !I)�1
⇣
e(A⇤1�!I)(t�t0) � I

⌘ i
↵.

If Re[⇠(A⇤1)] < !, where ⇠(X) denote the eigenvalues of matrix X , it easily follows that

lim

t!1EH
t

[x

⇤
(t)] =

✓
I � A⇤1

w

◆�1

↵. (23)

E Proof of Theorem 4

Assume bvu = 0 for all v, u 2 G, v 6= u. Then, �⇤
v(t) only depends on user v’s history and, since

x⇤
v(t) only depends on the history of the user v’s neighbors N (v), we can write

EH
t

\H
t0
[x

⇤
(t)� �

⇤
(t)|Ht0] = EH

t

\H
t0

⇥
x

⇤
(t)|Ht0

⇤� EH
t

\H
t0

⇥
�

⇤
(t)

⇤
,

and rewrite Eq. 21 as
dEH

t

\H
t0
[x

⇤
(t)|Ht0]

dt
= (24)

A(EH
t

\H
t0
[x

⇤
(t)|Ht0]� EH

t

\H
t0
[�

⇤
(t)|Ht0])� !EH

t

\H
t0
[x

⇤
(t)|Ht0] + !↵.

We can now compute EH(✓)\H
t0
[�

⇤
(✓)|Ht0] analytically as follows. From Eq. 3, we obtain

EH
t

\H
t0

⇥
�

⇤
(t)|Ht0

⇤
= ⌘(t) +

Z t

t0

B(t� ✓)EH
✓

\H
t0

⇥
�

⇤
(✓)

⇤
d✓, (25)

where (t) = e�⌫t, [⌘(t)]u2V = µu +

P
v2N (u) buv

P
t
i

2H
v

(t0)
(t � ti) and B = (bvu)v,u2V ,

where bvu = 0 for all v 6= u, by assumption. Differentiating with respect to t, we get,
d

dt
EH

t

\H
t0

⇥
�

⇤
(t)|Ht0

⇤
= �⌫EH

t

\H
t0

⇥
�

⇤
(t)|Ht0

⇤
+BEH

t

\H
t0

⇥
�

⇤
(t)|Ht0

⇤
+ ⌫µ,

with initial condition EH(t+0)\H(t0)
�

⇤
(t0) = ⌘(t0). By taking the Laplace transform and then

applying inverse Laplace transform,

EH
t

\H
t0
[�

⇤
(t)|Ht0] = e(B�⌫I)(t�t0)

⌘(t0)+⌫(B�⌫I)�1
⇣
e(B�⌫I)(t�t0) � I

⌘
µ 8t � t0, (26)

where ⌘(t0) = EH(t+0)\H(t0)
[�

⇤
(t0)]. Using Eqs. 24 and 26, as well as EH

t

\H
t0
[x

⇤
(t)] �

EH
t

\H
t0
[�

⇤
(t)] = ⇤(t)EH

t

\H
t0
[x

⇤
(t)], where ⇤(t) := diag[EH

t

\H
t0
[�

⇤
(t)]], we obtain

dEH
t

\H
t0
[x

⇤
(t)]

dt
= [�!I +A⇤(t)]EH

t

\H
t0
[x

⇤
(t)] + !↵,

with initial conditions (EH(t+0)\H(t0)
[x

⇤
(t0)])u2V = ↵u +

P
v2N (u) auv

P
t
i

2H
v

(t0)
g(t0 �

ti)mv(ti).

11

F Proof of Theorem 5
Theorem 4 states that the average users’ opinion EH

t

[x

⇤
(t)] in time domain is given by

dEH
t

\H
t0
[x

⇤
(t)|Ht0]

dt
= [�!I +A⇤(t)]EH

t

\H
t0
[x

⇤
(t)|Ht0] + !↵. (27)

In such systems, solutions can be written as [16]

EH
t

\H
t0
[x

⇤
(t)|Ht0] = �(t)↵+ !

Z t

0
�(s)↵ds, (28)

where the transition matrix �(t) defines as a solution of the matrix differential equation
˙

�(t) = [�!I +A⇤(t)]�(t) with �(0) = I.

If �(t) satisfies ||�(t)||  �e�ct 8t > 0 for �, c > 0 then the steady state solution to Eq. 28 is given
by [16]

lim

t!1EH
t

\H
t0
[x

⇤
(t)|Ht0] =

✓
I � A⇤2

!

◆�1

↵.

where ⇤2 = limt!1 ⇤(t) = diag

h
I � B

⌫

i�1
µ.

G Proof of Theorem 6

Let {x⇤
l (t)}nl=1 be the simulated opinions for all users and define s(t) =

1
n

Pn
l=1 sl(t), where

sl(t) = (

ˆ

x

⇤
l (t)�EH

t

\H
t0
[x

⇤
(t)|Ht0]). Clearly, for a given t, all elements in sl(t) are i.i.d. random

variables with zero mean and variance, and we can bound |su(t)| < 2xmax. Then, by Bernstein’s
inequality, the following holds true,

P(|su(t)| > ✏) = P(su(t) > ✏) + P(su(t) < �✏) > 2.exp
⇣
� 3n✏2

6�2
H

t

\H
t0
(x⇤

u(t)|Ht0) + 4xmax✏

⌘

Let �2
max(t) = maxu2G �2

H
t

\H
t0
(x⇤

u(t)|Ht0). If we choose,

� < 2.exp
⇣
� 3n✏2

6�2
max(t) + 4xmax✏

⌘
(29)

we obtain the required bound for n. Moreover, given this choice of �, we have P(|su(t)| < ✏) > 1��
immediately.

However, a finite bound on n requires the variance �2
max(t) to be bounded for all t. Hence, we

analyze the variance and its stability below.

G.1 Dynamics of variance

In this section we compute the time-domain evolution of the variance and characterize its stability for
Poisson driven opinion dynamics. A general analysis of the variance for multidimensional Hawkes
is left for future work.

Lemma 8 Given a collection of messages Ht0 recorded during a time period [0, t0) and �⇤
u(t) = µu

for all u 2 G, the covariance matrix �(t0, t) at any time t conditioned on the history Ht0 can be
described as,

vec(�(t0, t)) =
Z t

0
�(t� ✓)vec[�2

A⇤A

T
+A diag(EH

t� [x
⇤
(✓)])2⇤A

T
]d✓.

where
�(t) = e

�
(�!I+A⇤)⌦I+I⌦(�!I+A⇤)+(A⌦A)b⇤

�
t,

ˆ⇤i2,i2 = �

⇤
(i), and ⇤ := diag[�]. Moreover, the stability of the system is characterized by

⇠
⇥
(�!I +A⇤)⌦ I + I ⌦ (�!I +A⇤) + (A⌦A)

b⇤
⇤
< 0.

12

Proof. By definition, the covariance matrix is given by

�(t0, t) := EH
t

\H
t0
[

�
x

⇤
(t)� EH

t

\H
t0
(x

⇤
(t))

��
x

⇤
(t)� EH

t

\H
t0
(x

⇤
(t))

�T |Ht0]. (30)

Hence, if we define �x = (x

⇤
(t) � EH

t

\H
t0
(x

⇤
(t))), we can compute the differential of the

covariance matrix as
d�(t0, t) = EH

t

\H
t0
[d(�x�x

T
)|Ht0] = EH

t

\H
t0
[�xd(�x

T
)+d(�x)�x

T
+d(�x)d(�x

T
)|Ht0],
(31)

where
d(�x) = d(x⇤

(t)� EH
t

\H
t0
(x

⇤
(t))) = d(x⇤

(t))� d(EH
t

\H
t0
(x

⇤
(t))). (32)

Next, note that
E(dN(t)dNT

(t)) = E[dNi(t)dNj(t)]i,j2V = E[diag(dN(t))] = ⇤, (33)
where the off-diagonal entries vanish, since two jumps cannot happen at the same time point [14].
Now, recall the Markov representation of our model, i.e.,

dx⇤
(t) = �!x⇤

(t)dt+AM

⇤
(t)dN(t) +↵dt, (34)

where M

⇤
(t) := diag[m(t)] is the diagonal formed by the sentiment vector and note that,

m(t)� dN(t) = M

⇤
(t)dN(t) = diag[dN(t)]m(t), (35)

and, using Eq. 21,
dEH

t

\H
t0
[x

⇤
(t)|Ht0] = �!EH

t

\H
t0
[x

⇤
(t)|Ht0]dt+A⇤EH

t

\H
t0
[x

⇤
(t)|Ht0]dt+ !↵dt. (36)

Then, if we substitute Eqs. 34 and 36 in Eq. 32, we obtain
d(�x) = �![x⇤

(t)� EH
t

\H
t0
(x

⇤
(t)|Ht0)]dt+A[M

⇤
(t)dN(t)�⇤EH

t

\H
t0
(x

⇤
(t)|Ht0)dt].

(37)
As a result, we can write

d�(t0, t) = EH
t

\H
t0

⇥� 2!�x�x

T dt+�x
�
(M

⇤
(t)dN(t)�⇤EH

t

\H
t0
(x

⇤
(t))dt

�T
A

T

| {z }
Term 1

+A

�
M

⇤
(t)dN(t)�⇤EH

t

\H
t0
(x

⇤
(t))dt

�
�xT

+A(M

⇤
(t)dN(t)�⇤EH

t

\H
t0
(x

⇤
(t))dt)(M⇤

(t)dN(t)�⇤EH
t

\H
t0
(x

⇤
(t))dt)TAT

| {z }
Term 2

|Ht0

⇤
,

(38)

where Term 1 gives

EH
t

\H
t0

⇥
�x

�
M

⇤
(t)dN(t)�⇤EH

t

\H
t0
(x

⇤
(t))dt

�T
A

T
��Ht0]

= EH
t

\H
t0

⇥
�x(m⇤

(t)� EH
t

\H
t0
(x

⇤
(t))dt)TAT |Ht0

⇤
⇤dt (Using Eq. 35 and the fact that E[diag(dN(t))] = ⇤)

= EH
t

\H
t0

h
�x.E

⇥
(m⇤

(t)� EH
t

\H
t0
(x

⇤
(t)))TAT |x(t),Ht0

⇤i
⇤dt

= �(t0, t)⇤dt,

and Term 2 gives

EH
t

\H
t0
A[(M

⇤
(t)dN(t)�⇤EH

t

\H
t0
(x

⇤
(t))dt)(M⇤

(t)dN(t)�⇤EH
t

\H
t0
(x

⇤
(t))dt)T |Ht0]A

T

= AEH
t

\H
t0
[M

⇤
(t)E(dN(t)dNT

(t))M⇤
(t)|Ht0]A

T
+O(dt2)

= AEH
t

\H
t0
[M

2
(t)|Ht0]⇤dtAT (From Eq. 33)

= A(�2I + diag(EH
t

\H
t0
(x(t)2)|Ht0))⇤A

T dt

= A

⇥
�2I + �ii(t0, t) + diag[EH

t

\H
t0
(x

⇤
(t)|Ht0)]

2
)

⇤
⇤A

T dt.

Hence, substituting the expectations above into Eq. 38, we obtain
d�(t0, t)

dt
= �2!�(t0, t) + �(t0, t)⇤A

T
+A⇤�(t0, t) (39)

+A�ii(t)⇤A

T
+ �2

A⇤A

T
+A diag(EH

t

\H
t0
[x

⇤
(t)|Ht0])

2⇤A

T ,

13

Eq. 39 can be readily written in vectorial form by exploiting the properties of the Kronecker product
as
d[vec(�(t0, t)])

dt
= V (t)vec(�(t0, t)) + vec

�
�2

A⇤A

T
+A diag(EH

t

\H
t0
[x

⇤
(t)|Ht0])

2⇤A

T
�

where

V (t) = (�!I +A⇤)⌦ I + I ⌦ (�!I +A⇤) +

nX

i=1

(A⇤Pi ⌦APi),

Pi = [�ii] and ⌦ stands for the Kronecker product. Hence, the closed form solution of the above
equation can be written as,

vec(�(t0, t)) =
Z t

0
eV (t�✓)vec[�2

A⇤A

T
+A diag(EH(✓)\H

t0
[x

⇤
(✓)|Ht0])

2⇤A

T
]d✓. (40)

Moreover, the covariance matrix �(t0, t) is bounded iff

Re
⇥
�[(�!I +A⇤)⌦ I + I ⌦ (�!I +A⇤) + (A⌦A)

b⇤]] < 0,

where b⇤ :=

P|V|
i=1 ⇤Pi ⌦ Pi.

In this case, the steady state solution � = limt!1 �(t0, t) is given by

�2!�+ �⇤A

T
+A⇤�+A diag(�)⇤A

T
+ �2

A⇤A+A diag(EH
t� [x

⇤
])

2⇤A

T
= 0. (41)

that means limt!1 vec[�(t0, t)] is same as,

vec(�) =[(�!I +A⇤)⌦ I + I ⌦ (�!I +A⇤)

T
+ (A⌦A)

ˆ⇤]

�1

⇥ vec[�2
A⇤A

T
+A diag(x

⇤
1)

2⇤A

T
] (42)

where x

⇤
= limt!1 EH

t

\H
t0
(x

⇤
(t)|Ht0). Finally, the variance of node u’s opinion at any time t

is given by
�2
H

t

\H
t0
(x⇤

u(t)|Ht0) = [�(t0, t)]u,u = vec(Pu)
T vec(�(t0, t)),

where Pu is the sparse matrix with its only (u, u) entry to be equal to unity.

14

H Parameter estimation algorithm

H.1 Estimation of ↵ and A

Algorithm H.1 summarizes the estimation of the opinion dynamics, i.e., ↵ and A, which reduces to
a least-square problem.

Algorithm 1: Estimation of ↵ and A

1: Input: H
T

, G(V,E) , regularizer �, error bound ✏

2: Output: ˆ

↵, ˆA
3: Initialize:
4: IndexForV[1 : |V |] = ~

0

5: for i = 1 to |H(T)| do
6: T [u

i

](IndexForV[u
i

]) = (t
i

, u
i

,m
i

)

7: IndexForV[u
i

]++
8: end for
9: for u 2 V do

10: i = 0

11: S = T [u]
12: for v 2 N (u) do
13: S =MergeTimes(S, T [v])
14: // Merges two sets w.r.t t

i

, takes O(|H
u

(T)|+ | [
v2N (u)

H
v

(T)|) steps

15: xlast = 0

16: tlast = 0

17: j = 0

18: for i = 1 to |S| do
19: // This loop takes O(|S|) = O(|H

u

(T)|+ | [
v2N (u)

H
v

(T)|) steps

20: (t
v

, v,m
v

) = S[i]
21: tnow = t

v

22: if u = v then
23: xnow = xlaste

�!(tnow�tlast)

24: j++
25: g[u](j, v) = xnow
26: Y [u](j) = m

u

27: else
28: xnow = xlaste

�!(tnow�tlast)
+m

v

29: end if
30: tlast = tnow
31: xlast = xnow
32: end for
33: end for
34: end for
35: // Estimation of (↵,A)

36: for u 2 V do
37: a =InferOpinionParams(Y [u],�, g[u])
38: ↵̂

u

= a[1]

39: ˆA[⇤][u] = a[1 : end]
40: end for

15

Algorithm 2: InferOpinionParams(Yu,�, gu)
1: s = numRows(g

u

)
2: X = [

~1
s

g
u

]

3: Y = Y
u

4: L = X 0X
5: x = (�I + L)�1X 0Y
6: return x

H.2 Estimation of (µ,B)

The first step of the parameter estimation procedure for temporal dynamics also involves the com-
putation of the triggering kernels, which we do in same way as for the opinion dynamics in Algo-
rithm H.1. In order to estimate the parameters, we adopted the spectral projected gradient descent
(SPG) method proposed in [4].

Algorithm 3: Spectral projected gradient descent for µu and Bu⇤

1: Input: H
T

, G(V,E) and µ0

u

,B0

u

⇤ , step-length bound ↵
max

> 0 and initial-step length ↵
bb

2 (0,↵
max

],
error bound ✏ and size of memory h

2: Output: µ̂
u

, ˆB
u

⇤

3: Notation:
x = [µ

u

, B
u

⇤
]

f(x) =
P

e

i

2H(T)

log �⇤
u

i

(t
i

)�P
u2V

R
T

0

�⇤
u

(⌧) d⌧

4: Initialize:
k = 0

x
0

= [µ0

u

,B0

u

⇤]

5: while ||d
k

|| < ✏ do
6: ↵̄

k

 min{↵
max

,↵
bb

}
7: d

k

 P
c

⇥
x
k

� ↵̄
k

rfu

(x
k

)]� x
k

8: fu

b

 max{fu

(x
k

), fu

(x
k�1

), ..., fu

(x
k�h

)}
9: ↵ 1

10: while q
k

(x
k

+ ↵d
k

) > fu

b

+ ⌫↵rfu

(x
k

)

T d
k

do
11: Select ↵ by backtracking line-search;
12: end while
13: x

k+1

 x
k

+ ↵d
k

14: s
k

 ↵d
k

15: y
k

 ↵B
k

d
k

16: ↵
bb

 yT

k

y
k

/sT
k

y
k

17: k = k + 1

18: end while

I Model simulation algorithm

We leverage the simulation algorithm in [11] to design an efficient algorithm for simulating opinion-
dynamics. The two basic premises of the simulation algorithm are the sparsity of the network and
the Markovian property of the model. Due to sparsity, any sampled event would effect only a few
number of intensity functions, only those of the local neighbors of the node. Therefore, to generate
the new sample and to identify the intensity functions that require changes, we need O(log |V|)
operations to maintain the heap for the priority queue. On the other hand, the Markovian property
allows us to update the rate and opinion in O(1) operations. The worst-case time-complexity of this
algorithm can be found to be O(dmax|H(T)||V|), where dmax is the maximum degree.

16

Algorithm 4: OpinionModelSimulation(T,µ,B,↵,A)
1: Initialize the priority queue Q

2: LastOpinionUpdateTime[1 : |V |] = LastIntensityUpdateTime[1 : |V |] = ~
0

3: LastOpinionUpdateValue[1 : |V |] = ↵

4: LastIntensityUpdateValue[1 : |V |] = µ

5: H(0) ;
6: for u 2 V do
7: t =SampleEvent(µ[u], 0, u)
8: Q.insert([t, u])
9: end for

10: while t < T do
11: %%Approve the minimum time of all posts

12: [t0, u] = Q.ExtractMin()
13: t

u

= LastOpinionUpdateTime[u]
14: x

t

u

= LastOpinionUpdateValue[u]
15: x

t

0
u

 ↵[u] + (x
t

u

�↵[u])e�!(t�t

u

)

16: LastOpinionUpdateTime[u] = t0

17: LastOpinionUpdateValue[u] = x
t

0
u

18: m
u

⇠ p(m|x
u

(t))
19: H(t0) H(t) [(t,m

u

, u)
20: %% Update neighbors’

21: for 8v such that u v do
22: t

v

= LastIntensityUpdateTime[v]
23: �

t

v

= LastIntensityUpdateValue[v]
24: �

t

0
v

 µ[v] + (�
t

v

� µ[v])e�!(t�t

v

)

+B

uv

25: LastIntensityUpdateTime[v] = t0

26: LastIntensityUpdateValue[v] = �
t

0
v

27: t
v

= LastOpinionUpdateTime[v]
28: x

t

v

= LastOpinionUpdateValue[v]
29: x

t

0
v

 ↵[v] + (x
t

v

�↵[v])e�!(t�t

v

)

+A

uv

m
u

30: LastOpinionUpdateTime[v] = t0

31: LastOpinionUpdateValue[v] = x
t

0
v

32: %%Sample by only effected nodes

33: t
+

=SampleEvent(�
v

(t0), t0, v)
34: Q.UpdateKey(v, t

+

)
35: end for
36: t t0

37: end while
38: return H(T)

Algorithm 5: SampleEvent(�, t, v)
1: ¯� = �, s t
2: while s < T do
3: U ⇠ Uniform[0, 1]
4: s = s� lnU

¯

�

5: �(s) µ[v] + (�
v

(t)� µ[v])e�!(s�t)

6: d ⇠ Uniform[0, 1]
7: if d¯� < � then
8: break
9: else

10: ¯� = �(s)
11: end if
12: end while
13: return s

17

J Experiments on Synthetic Data

Parameter estimation accuracy. We evaluate the accuracy of our model estimation proce-
dure on three types of Kronecker networks [20]: i) Assortative networks (parameter matrix
[0.96, 0.3; 0.3, 0.96]), in which nodes tend to link to nodes with similar degree; ii) dissortative net-
works ([0.3, 0.96; 0.96, 0.3]), in which nodes tend to link to nodes with different degree; and iii)
core-periphery networks ([0.9, 0.5; 0.5, 0.3]). For each network, the message intensities are multi-
variate Hawkes, µ and B are drawn from a uniform distribution U(0, 1), and ↵ and A are drawn
from a Gaussian distribution N (µ = 0,� = 1). We use exponential kernels with parameters
! = 100 and ⌫ = 1, respectively, for opinions x⇤

u(t) and intensities �⇤
(t). We evaluate the accu-

racy of our estimation procedure in terms of mean squared error (MSE), between the estimated and
true parameters, i.e., E[(x� x̂)2]. Figure 5 shows the MSE of the parameters (↵,A), which control
the Hawkes intensities, and the parameters (µ,B), which control the opinion updates. As we feed
more messages into the estimation procedure, it becomes more accurate.

0.2

0.4

0.6

0.8

1

0

25 50 100 200 400 800

M
S
E
(
↵
,A

)
!

Avg. no. of events per node

Homophily
Heterophily
Core-periphery

⇤
⇤
⇤

(a) Temporal parameters, (↵,A)

0.1

0.2

0.3

0.4

0.5

0

25 50 100 200 400 800

M
S
E
(
µ
,B

)
!

Avg. no. of events per node

Homophily
Heterophily
Core-periphery

⇤
⇤
⇤

(b) Opinion parameters, (µ,B)

Figure 5: Performance of model estimation for several 512-node kronecker networks in terms of
mean squared error between estimated and true parameters. As we feed more messages into the
estimation procedure, the estimation becomes more accurate.

18

K Twitter dataset description

We used the Twitter search API8 to collect all the tweets (corresponding to a 2-3 weeks period
around the event date) that contain hashtags related to the following events/topics:

• Politics: Delhi Assembly election, from 9th to 15th of December 2013.
• Movie: Release of “Avengers: Age of Ultron” movie, from April 28th to May 5th, 2015.
• Fight: Professional boxing match between the eight-division world champion Manny Pac-

quiao and the undefeated five-division world champion Floyd Mayweather Jr., on May 2,
2015.

• Bollywood: Verdict that declared guilty to Salman Khan (a popular Bollywood movie star)
for causing death of a person by rash and negligible driving, from May 5th to 16th, 2015.

• US: Presidential election in the United-States, from April 7th to 13th, 2016.

We then built the follower-followee network for the users that posted the collected tweets using the
Twitter rest API9. Finally, we filtered out users that posted less than 200 tweets during the account
lifetime, follow less than 100 users, or have less than 50 followers.

Dataset |V| |E| |H(T)| E[m] std[m]

Tw: Politics 548 5271 20026 0.0169 0.1780
Tw: Movie 567 4886 14016 0.5969 0.1358
Tw: Fight 848 10118 21526 -0.0123 0.2577
Tw: Bollywood 1031 34952 46845 0.5101 0.2310
Tw: US 533 20067 18704 -0.0186 0.7135

Table 1: Real datasets statistics

L Baselines description

• Collab-Filter: We adopt the proposal described by Kim et al.in [19] to use sentiment
prediction using collaborative filtering. Let us assume that U and V are two latent low
rank matrices capturing the characteristics of spread and reception of the users. R

(t)
i,j is

the sentiment value posted by user i at time t that evokes a message of user j before any
other neighbor of j posts a message. To compute U and V , we minimize the following
optimization problem.

X

t2H
t

X

i,j2V
Ii,j(R

(t)
i,j � UT

i Vj)
2
+ �1

X

i

||Ui||22 + �2

X

j

||Vj ||22

Here Ii,j’s are the entries of adjacency matrix.
• Flocking: In the flocking model [15], a node i with opinion x first selects the set of

neighbors j having opinions xj so that |xi � xj | < ✏ and then updates her own opinion by
averaging them.

• Voter: In this strategy [26], at each step, a node is selected at random; she chooses one of
its neighbors uniformly at random (including itself) and adopts that opinion as its own.

• DeGroot: This model [9] suggests that a node updates her opinion by taking a weighted
average of her neighbors’ opinion. In particular, this proposal assumes that the array of
weights form a row-stochastic influence matrix with wi,j � 0, and opinions in the range
[0, 1] (which stochastic updates preserved).

• Linear: A generalize linear model [8] generalizes the DeGroot model by relaxing the
structure of influence matrix. Under this model, the influence matrix need not be stochastic.
Moreover, the influence parameters can take negative values.

• Biased Voter: A biased voter model [7] captures various aspects of other opinion models
by a mix of three factors: stubbornness (ignoring others opinions), DeGroots weighted
averaging with neighbors, and biased conformance (Flocking Model), which selects users
having opinion close to that of the base agent.

8
https://dev.twitter.com/rest/public/search

9
https://dev.twitter.com/rest/public

19

