
A Broad View of the Ecosystem of
Socially Engineered Exploit Documents

Stevens Le Blond, Cédric Gilbert, Utkarsh Upadhyay, Manuel Gomez Rodriguez
Max Planck Institute for Software Systems

{stevens, cedricg, utkarshu, manuelgr}@mpi-sws.org

David Choffnes
Northeastern University
choffnes@ccs.neu.edu

Abstract—Our understanding of exploit documents as a vector
to deliver targeted malware is limited to a handful of studies
done in collaboration with the Tibetans, Uyghurs, and political
dissidents in the Middle East. In this measurement study, we
present a complementary methodology relying only on publicly
available data to capture and analyze targeted attacks with both
greater scale and depth. In particular, we detect exploit docu-
ments uploaded over one year to a large anti-virus aggregator
(VirusTotal) and then mine the social engineering information
they embed to infer their likely targets and contextual information
of the attacks. We identify attacks against two ethnic groups
(Tibet and Uyghur) as well as 12 countries spanning America,
Asia, and Europe. We then analyze the exploit documents
dynamically in sandboxes to correlate and compare the exploited
vulnerabilities and malware families targeting different groups.
Finally, we use machine learning to infer the role of the uploaders
of these documents to VirusTotal (i.e., attacker, targeted victim, or
third-party), which enables their classification based only on their
metadata, without any dynamic analysis. We make our datasets
available to the academic community.

I. INTRODUCTION

Targeted attacks are low-volume, socially engineered com-
munications that convince specific victims to install malware.
By definition, these attacks are hard to capture, making it
challenging to design effective countermeasures against them.
Recently, several researchers started collaborating with the
Tibetans, Uyghurs, as well as political dissidents in the Middle
East, to shed light on the threats faced by these groups
[11], [15], [16]. In particular, all these projects found that
modern targeted attacks often relied on exploit documents,
i.e., documents exploiting vulnerabilities in Microsoft Office
and Adobe Acrobat Reader on Microsoft Windows, to deliver
malware to their victims. A fundamental limitation of the
approach taken by previous work, however, is that it is labor-
and time-intensive, limiting coverage to a few chosen groups.
For example, each of the above papers represented a multi-year
effort to build trust and to share suspicious samples acquired
manually over substantial time periods.

In contrast with the approaches above, Anti-Virus (AV)
aggregators acquire large numbers of suspicious samples via
public web portals that allow anyone to scan files against
multiple, different AV products. Aggregators leverage the fact
that a collection of AV products from different vendors often
detect complementary, partially overlapping sets of malware,
so their aggregation provides a useful service to improve
overall detection over any single AV product. Such aggrega-
tors are popular, e.g., VirusTotal receives millions of weekly
submissions from all over the world [32]. Interestingly, AV
aggregators can scan all file types supported by partnering
AV software: Although most submitted files are executables,
VirusTotal receives over 12 million (non-executable) document
submissions per year.

We focus here on exploit documents because they are the
most common vector of targeted attacks identified by related
work [11], [15], [16] and they are arguably more dangerous
than Office macros, which require additional user approval
and can be forcibly disabled by system administrators. While
malicious Office macros are commonly used in large-scale,
opportunistic attacks such as those delivering ransomware
[13], they tend to be used less frequently in targeted attacks.
For example, out of the hundreds of malicious documents
analyzed by the related work only one embedded a malicious
Office macro [16]. Finally, recent reports indicate that exploit
documents represent an important attack vector against a range
of targets including NGOs [6], news agencies [8], and military,
governmental and intelligence agencies [17], motivating the
need to study the corresponding ecosystem.

This paper presents a measurement study of the ecosystem
of exploit documents and in particular, their likely targets,
exploited vulnerabilities, embedded malware families, and
uploaders, using only documents uploaded to VirusTotal. This
approach allows us to scale our analysis to hundreds of
thousands of documents from tens of thousands of users, but
poses substantial challenges such as reliably filtering benign
and other types of malicious documents, clustering exploit
documents based on their targets, and inferring the likely
role of their uploaders. By addressing these challenges, we
identify a variety of targeted attacks not reported in previous
work and perform a comparative analysis of their respective
characteristics in the wild. We specifically seek to answer the
following questions:

• Do targeted groups upload exploit documents on
VirusTotal and if so, can we distinguish them from
the bulk of other submissions?

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23250

• Can we automate the detection and mining of exploit
documents to scale our analysis to hundreds of thou-
sands of samples?

• How do the attacks faced by different targeted groups
compare with each other?

• Is VirusTotal used by other actors (e.g., attackers and
researchers) and if so can we reliably classify and
quantify them?

To answer these questions, we must first address three main
challenges. First, we must determine the provenance of exploit
documents uploaded on VirusTotal despite their acquisition
through a third party. Although both the related work [1], [14]
and AV reports (e.g., [21], [26], [27], [28], [29], [30], [31])
offer/use methods to reliably cluster a large number of malware
samples based on their behavior or family, target inference
requires a higher level of abstraction to cluster attacks based
on their targets, independent of the exploited vulnerability and
malware family used. Second, we must distinguish exploit
documents from legitimate ones, determine the version of the
vulnerable reader, and extract the embedded files and URLs.
Analyzing exploit documents in this way typically requires
a significant amount of manual intervention, which cannot
scale to hundred of thousands of documents. This is due to a
lack of specialized toolchains and methodologies for analyzing
exploit documents. Although traditional malware sandboxes
work well for executables, they tend to be agnostic of the
specificities of exploit documents such as the diversity of
software configurations in which exploits might trigger. Third,
because VirusTotal allows many different types of anonymous
users, it is difficult to distinguish among victims, attackers,
and third parities such as researchers or companies submitting
samples in bulk. For example, attackers and targeted victims
(targets) may be using VirusTotal to evade AV software and
detect targeted attacks, respectively. Indeed, there is anecdotal
evidence of attackers abusing VirusTotal to drive down the
detection rate of AV software [33]. Targets may also use
VirusTotal, for example, to scan document attachments before
opening them. Combining the analysis of exploit documents
with the uploaders’ behavioral information can enable us to
classify uploaders and to infer the context in which attacks
took place.

Our key findings are as follows. We use social engineer-
ing information embedded in exploit documents, along with
malware behavior, to identify hundreds of attacks against two
ethnic groups (Tibet and Uyghur) and 12 countries spanning
America (the US), Asia (India, Indonesia, Japan, Mongolia,
Myanmar, Philippines, Russia, South Korea, Taiwan, Thailand,
and Vietnam), and Europe (France). The decoy documents
targeting these groups use a variety of techniques to allay
the victim’s suspicion: They are often written in the victims’
native languages (and/or English), frequently use content likely
acquired from compromised hosts, cover a small number
of targeted topics, and tend to use fairly recently created
documents.

Second, we find that attacks against different groups tend to
use disjoint malware families. Namely, most families are found
in only one country in our dataset; further, malware found in
multiple countries tend to be located in a relatively confined
region. This specialization makes it difficult to generalize any

findings based on analysis of attacks targeted only at one
group (e.g., Tibetans or Uyghurs). The vast majority of samples
exploit vulnerabilities reported two or more years prior to our
measurement period. Thus, these attacks often rely on victims
using unpatched software.

Third, we observe that the uploaders of exploit documents
on VirusTotal exhibit distinguishable behaviors that enable
automatic and reliable role inference. Using ground-truth infor-
mation from VirusTotal complemented with manual inference
for a subset of users, we train a machine-learning classifier
that accurately predicts whether a user is an attacker, target,
or third-party. We find that a semi-supervised algorithm based
on label-propagation is able to achieve about 80% accuracy
with few labeled seeds.

To summarize, our main contributions are as follows:

• A methodology to analyze targeted attacks relying on
exploit documents without requiring direct acquisition
from the targeted groups.

• A comparative analysis of exploit documents targeting
various groups uploaded to VirusTotal over one year.

• The inference of the roles of the uploaders of these
exploit documents.

• An interactive service to analyze exploit documents
which we make available to the academic community
at https://slingshot.dedis.ch.

Finally, to make our results reproducible and foster research
in this area, we release our datasets of exploit documents and
extracted malware, their CVEs, decoys’ coding, and malware
tagging.

II. BACKGROUND

A. Terminology and Infection Process

We focus on documents exploiting vulnerabilities in Mi-
crosoft Office or Adobe Acrobat Reader. Such documents
embed an exploit, a shellcode or gadgets’ addresses and
optionally, a decoy document and malware (as defined below).

Exploit. An exploit is a malicious input subverting the control
or data plane of the vulnerable application [12].

Shellcode/gadgets’ addresses. The goal of an exploit docu-
ment is to execute malware on the victim’s computer. Although
historically, the (shell)code responsible for malware execution
was injected into the vulnerable process’ address space, miti-
gations such as DEP now preclude code injection. Therefore,
modern attacks rely on legitimate code units mapped in the
process’ address space (gadgets) that are located and executed
out-of-order by leveraging addresses embedded into the exploit
document.

Decoy document. A decoy document is an optional, benign
document that is embedded into the exploit document, written
to disk, and opened with the reader application after a suc-
cessful exploitation. As the purpose of a decoy is to conceal
the infection from the victim, attackers have an incentive to
tailor decoys to their victims.

Malware. Finally, the malware is the malicious software’s
binary that is executed on the victim’s computer.

2

Fig. 1: Exploit document infection process.

From the time a victim opens an exploit document to the
installation of malware on their system, there is a chain of
events that underpins a successful exploitation. We present
a sample infection process for a real exploit document in
Figure 1, obfuscating only the victims’ identity and content
of the decoy. The process begins with an exploit document
being delivered to the victim, e.g., via a malicious email (¶).
If the victim opens the attached document and her reader is
compatible with the exploit, the exploit is triggered (·). The
shellcode or gadget then writes the decoy and/or malware to
persistent storage (¸), opens the decoy with the reader (¹),
and executes the malware (º).

B. Related work

Drive-by downloads. Several studies focused on opportunistic
exploitations of web browsers (drive-by downloads) [10], [19],
[22], [24]. In 2005, Moshchuk et al. [19] crawled 18 million
URLs to identify spyware and drive-by downloads. They found
that 13.4% of the crawled URLs led to spyware, and 5.9% to
drive-by downloads. More recently, Provos et al. showed that
drive-by downloads represented the largest threat to average
users and examined how exploit sites appeared to users in
search results and through syndicated advertisements [24].
Finally, Grier et al. [10] built on Provos et al. by examining the
emergence of exploit-as-a-service whereby host exploitation is
uncoupled from its monetization. In contrast with all these
works, we focus on low-volume, socially engineered exploit
documents luring specific victims into installing malware.

Targeted malware. Recently, researchers mined malware
sandboxes available publicly to detect new malware families
[9]. They found that such samples, including targeted malware,
were sometimes submitted before being reported in the wild.
Our work is complementary and focuses on the analysis of
exploit documents as an attack vector to deliver such targeted
malware.

Targeted attacks. The three most related studies were done
in collaboration with the Tibetans [11], Uyghurs [15], and
political dissidents in the Middle East [16]. They revealed
that attacks against these groups were performed via socially
engineered emails with malicious attachments. Exploit doc-
uments represented 81% (481/592) and 71% (799/1,116) of
the malicious attachments targeting the Tibetans [5] and the
Uyghurs [15], respectively. (Although exploit documents were
also employed against Middle East dissidents, they were not
quantified in the related work.) The majority of the remain-
ing malicious attachments comprised of executables attached
directly, or in an archive, and only one malicious attachment
was a macro document [16]. We presume that executables and
macro documents were a minority because they are blocked
by popular webmails (e.g., GMail) and they are disabled by

default in Microsoft Office, respectively. Because each of these
studies focused on a single group, they could not compare the
exploit documents targeting different communities.

C. Scope of this paper and observational biases

This paper is a measurement study that composes existing
tools and techniques to build a novel methodology enabling the
analysis of exploit documents that embed socially engineered
decoys. Though our methodology should be applicable to any
dataset of documents, the analysis results presented in this
paper are limited to the data in our study (documents uploaded
to VirusTotal), which introduce two main observational biases.
First, despite VirusTotal’s popularity its coverage of targeted
attacks is limited to those users and organizations who upload
suspicious files. Second, in addition to its partial coverage,
VirusTotal’s visibility is likely skewed towards users who work
with non-classified material. As a result of these biases, our
VirusTotal dataset offers a partial coverage of attacks where
individuals and NGOs are likely over-represented. Despite this
limitation, we show that this dataset captures attacks against a
wide range of targets including corporations and governmental
institutions located in 12 countries located in America, Asia,
and Europe. Finally, this paper focuses on the ecosystem of
exploit documents with respects to their targets, exploited
vulnerabilities, malware families, and VirusTotal uploaders.
Generalization to different AV aggregators, malicious Office
macros, and detailed analyses of exploitation and evasion
techniques (both for reader exploitation and role inference)
are the subject of future work (cf. Section VI).

III. METHODOLOGY

In this section, we describe our methodology for acquiring,
processing, and validating the VirusTotal dataset. Figure 2
summarizes our datasets, methods, and important statistics.

The input to our analysis is a large feed of documents
from VirusTotal and a publicly available dataset of exploit
documents from the World Uyghur Congress [15] (¶). We use
the Enhanced Mitigation Experience Toolkit (EMET) [18] in a
variety of controlled environments to detect exploit documents
(·), then use an extractor that separates the embedded malware
and decoys from the exploit documents (¸). Native speakers
manually annotate the extracted decoys to give contextual in-
formation about the attacks (¹). We tag the extracted malware
families using two enterprise-grade malware sandboxes (º).
Finally, we infer and analyze the role of uploaders of exploit
documents (»). (With the exception of Step ¹, all steps were
fully automated.)

The rest of this section describes all these steps in detail
except for » which we defer to Section V.

3

Fig. 2: Our data acquisition and processing workflow. Each box displays the dataset type and the number of corresponding entries
after each step.

A. Acquiring Suspicious Documents

Our analysis relies on two complementary datasets: A large
dataset of suspicious documents uploaded to VirusTotal and a
small dataset of exploit documents acquired directly from the
World Uyghur Congress (WUC) [15] (¶). We used the WUC
dataset as ground truth to validate that our analysis has no or
few false negatives and that decoys are indeed tailored to their
victims.

VirusTotal. VirusTotal is the largest publicly available AV
aggregator at the time of writing. Upon submitting a file
to VirusTotal, a user is provided with a list of scan results
from different AV software (71 at the time of this writing).
This functionality makes VirusTotal popular among victims of
targeted attacks as they generally have a low detection rate
by individual AV software. Behind the scenes, AV vendors
who do not detect a file detected by others are given its
payload, providing visibility into attacks that may otherwise
go unnoticed by that specific vendor.

VirusTotal Intelligence API. To facilitate sharing with AV
vendors and other members of the security community, Virus-
Total implements a rich API providing registered users with
access to the uploaded content and its meta-data. VirusTotal
gave us access to this API between April 2014 and March
2015. We used the following three API features to retrieve
documents and their metadata.

• Distribution. The distribution function gives access
to a live feed of VirusTotal uploads (in our case, all
Office and PDF documents). We use this function to
acquire our dataset of documents.

• Report. The report function returns the detailed results
of the AV scans and additional meta data such as the
first upload date. We use this function to determine
the detection rate of our documents.

• Submissions. The submissions function returns a list
of submissions with for each submission, the inferred
geolocation and the salted hash of the uploader’s
IP address. We use this function to determine the
uploader of an exploit document.

Characteristics of the VirusTotal dataset. Our dataset con-
tains all Office and PDF documents (13.8 TB) uploaded
between April 2014 and March 2015. The corresponding
uploaders were geolocated in 210 countries with 2,574 daily
users and 49,048 daily submissions on average. A concern
is that VirusTotal may not catch a significant fraction of
targeted attacks. As we find in Section IV-A, VirusTotal false

TABLE I: Summary of our dataset. Time frame corresponds
to the acquisition period, Size to the volume of documents
in terabytes, and Users and Countries to the number of
unique uploaders and their countries. Finally, Extraction (> 1
detection) refers to all the detected documents uploaded over
one year and on which we performed our measurement study.

Time frame Apr 2014 - Mar 2015
Size (TB) 13.8
Users 255,926
Countries 210
Extraction (> 1 detection) 257,635

negative rate1 is very low for the uploaded samples (<0.1%).
We then perform extraction on all documents detected by at
least one AV software over one year (257,635). We analyze
their decoys in Section IV-B, associated malware and CVEs in
Section IV-C, and their uploaders in Section V. We summarize
these statistics in Table I.

World Uyghur Congress (WUC) dataset. We include a
public dataset of 143 exploit documents collected over four
years by one WUC volunteer [15]. This dataset has been
extensively analyzed in the related work and constitutes a
ground truth to validate our methodology. Unlike VirusTotal,
this dataset is composed exclusively of exploit documents that
have targeted the Uyghur ethnic group.

B. Detecting Exploit Documents

The next step is to identify exploit documents for the
purpose of extracting their malware and decoys (·). A key
challenge in this step is that the dynamic analysis tools we use
may exhibit false negatives resulting in files not being written
to disk by exploit documents. We address this by performing
detection in Virtual Machines (VMs) with multiple software
configurations and manually inspecting all discrepancies.

Dynamic analysis platform. Our initial analysis revealed that
most exploit documents target different versions of readers on
Microsoft Windows. Thus, to increase the attack surface and
diversity of our controlled environments, we created multiple
VMs, each of which uses Windows XP as a guest operating
system and one version of Microsoft Office or Adobe Acrobat
Reader. We created eleven VM images for Office and 12
for Acrobat Reader: Office 2003 and 2007 (each one with
and without Service Packs 0-3), and 2010 (with and without
Service Packs 0-2), and Acrobat Reader VIII (0.0 and 1.0), IX

1The AV detection rates were collected on the day of the upload.

4

TABLE II: Breakdown of the filtered data at each step of
the processing workflow. Office macro corresponds to Office
documents requesting user permission to activate macros,
Cannot open to documents which could not be opened by any
versions of our readers, Crashes to documents making at least
one reader version crash, Passwords to password protected
documents, False positives to potential AV false positives,
Neutralized corresponds to a subset of detected documents
which had been neutralized, and Others to the remaining
detected samples. Finally, Download and No executable or
decoy correspond to exploit documents downloading files from
the network and not embedding any executables or decoys,
respectively.

Steps Filtered categories # documents
· Detection 257,635

Office macros −129,532
Cannot open −17,177

Crashes −3,370
Passwords −1,001

False positives −45,342
Neutralized −5,574

Others −17,798
¸ Extraction 37,841

Downloads −32,387
No executable or decoy −1,639

¹-º Analysis 3,815

(0.0, 1.0, 2.0, 3.0, 4.0, and 5.0) X (0.0, 1.0, and 1.4), and XI
(0.0).

We chose these variety of reader versions to expose exploit
documents to potentially vulnerable software, and used Win-
dows XP because it has fewer exploit mitigation mechanisms
than more recent Windows versions. We also automatically
scrolled down documents to trigger exploits that might not
be triggered by viewing only the first page. Our software was
compiled for an x86 architecture. The analyses below required
over two years of total CPU time.

Enhanced Mitigation Experience Toolkit (EMET). EMET
enhances Microsoft Windows with modern mitigation tech-
niques [18]. To detect exploit documents, we opened docu-
ments in a controlled environment with EMET installed, parsed
logs for successful mitigations, and manually investigated
detections for which no files were extracted. Although EMET
has limitations [3], [23], we found no evidence of evasion in
our dataset and also cross validated our results with ground
truth from the WUC dataset (Section III-D).

Filtering of malicious documents. To validate that our
methodology has no or few false negatives, we also quantified
documents that were detected by at least one AV but that were
not detected by EMET or for which no files were written to
disk. To do so, we categorized the filtered documents that
were not detected by EMET into six categories: Office macros,
Cannot open, reader Crashes, Password protected documents,
AV False Positives, and Neutralized (Table II). We further
categorized the documents that were detected by EMET but
for which no files were written to disk as Downloads and No
Executable or decoy.

Office Macros. To determine whether documents contained

Office macros, we opened them with Office 2003 and auto-
matically captured the text contained in the message dialog.
Under default security settings, Office warns the user that doc-
uments containing macros can be dangerous. By determining
whether the message text corresponded to a macro warning,
we identified 85,088 macro documents. In addition, macros
created using versions predating Office 2003 are deactivated
in recent Office versions (i.e., they do not trigger a dialog and
cannot be executed under normal security settings). To capture
these macros, we repeated the above procedure after modifying
Office’s security settings to Medium. Doing so detected 44,444
additional macro documents (129,532 in total).

Cannot open. Other documents could not be opened because
they were corrupted, had the wrong file extension or format. As
for Office macros, problematic documents generate a message
dialog indicating that Office or Acrobat Reader cannot open
the document. We identified 17,177 such documents which
could not be opened using any of our eleven Office versions.

Crashes. We observed 3,370 documents which made at least
one version of our readers terminate unexpectedly. While the
root causes of these crashes varied and could not easily be
determined, they could be due to, for example, legitimate
documents triggering a reader bug, malicious documents ex-
ploiting a flaw in an unsupported reader version, or dysfunc-
tional exploit documents such as the ones we will discuss in
Section IV-A.

Password. 1,001 document were protected and could not be
opened without the correct password.

False positives. AV software may exhibit false positives due
to static signatures being triggered on legitimate samples or
dysfunctional ones that dynamic analysis does not detect.
Although the size of our dataset precludes a manual analysis,
45,342 documents in our dataset were detected by only one or
two AV vendors suggesting that they may be false positives.

Others and Neutralized. After filtering the above, disjoint
categories, we are left with 23,372 samples belonging to
other categories. Manual inspection of the remaining samples,
revealed 5,574 samples embedding an executable binary but
which had been neutralized. In particular, the document opened
normally in Microsoft Office but did not exhibit any mali-
cious behavior. We believe that such cases might correspond
to crypting, whereby attackers repeatedly tweak a malicious
payload to reduce its detection rate by AV software. These
neutralized samples illustrate the difficulty of classifying all
samples uploaded to VirusTotal, since many of them contain
malicious components that are not functional and thus cannot
be detected by dynamic analysis.

Downloaded and no executable or decoys. Finally, some
documents were detected by EMET but did not write any files
to the filesystem. 32,387 of these documents unsuccessfully
attempted to download files from the network and 1,639 did
not embed any executable or documents.

C. Analyzing decoys, malware and CVEs

This step consists of extracting the malware and decoys
from the 37,841 exploit documents detected by EMET (¸),
labeling their distinguishing characteristics (¹), and analyzing
the dynamic behavior of their embedded malware (º).

5

Extraction system. To inform our analysis, we designed
and implemented a Windows driver (9,884 lines of C and
assembly code) that records filesystem and network activities
performed by Microsoft Office and Acrobat Reader upon
opening documents in a controlled environment. The use of
syscalls related to filesystem and/or networking API calls by
these processes and their children is recorded by our driver,
enabling us to recover the content of the files written to
disk after a successful exploitation, and the IP addresses,
hostnames, and URLs contacted by shellcodes or gadgets.

Coding of decoys. We manually annotated (coded) the ex-
tracted decoys according to their languages, the countries they
refer to, ethnic groups and dates, whether they targeted specific
individuals or organizations, and whether they were likely
exfiltrated from compromised systems and used as decoys in
exploit documents targeting new, related victims (replayed).
In contrast to replayed decoys, some decoys were empty or
just contained a few words, e.g., “hello”, “wrong version”,
or “passphrase”. We coded these decoys as empty or poor,
respectively.

In the first phase of coding, one researcher coded all
documents. Those written in a language different from English
were translated using a translation software. In the second
phase, volunteer native speakers independently coded the doc-
uments written in Russian, Traditional Chinese, Uyghur, and
Vietnamese. Finally, we compared the sets of code, merged
the original notes with the volunteers’, and fixed minor dis-
crepancies (e.g., missing dates).

Malware analysis. We also dynamically analyzed the malware
extracted from exploit documents in two malware sandboxes
specialized in the analysis of targeted malware (a FireEye
AX appliance and another one whose vendor wished to re-
main anonymous). To the best of our knowledge, commercial
malware sandboxes are the only solutions readily available to
analyze thousands of samples.

We used two such sandboxes to tag the malware. The
malware sandboxes determined the malware family using static
(e.g., YARA rules) and dynamic signatures (e.g., fingerprinting
of communications).

Vulnerability analysis. We collaborated with a large AV
vendor to determine the CVE tags of the exploited reader
vulnerabilities. To do so, the vendor scanned all the exploit
documents that we detected and compared the resulting CVE
with the majority of VirusTotal tags. If the two CVEs matched,
no further action was taken unless there was a doubt that the
exploit was a zero-day vulnerability. Samples for which the
CVE release date was posterior to the date of the upload on
VirusTotal were examined manually to determine the CVE’s
correctness. Finally, if the AV’s scanner did not reveal any
CVE or if the CVE did not match, the sample was also
analyzed manually.

D. Discussion

Limitations. We have described our methodology to detect
exploit documents and separate and analyze their malware and
decoys. This methodology provides a rich dataset for analysis
of exploit documents, but may be subject to the following
limitations.

First, dynamic analysis can exhibit false negatives, pre-
venting us from extracting malware and decoys from exploit
documents. We took steps to limit the impact of these false
negatives, namely by systematically comparing our extraction
results with EMET and manually accounted for all discrepan-
cies (as described in Section IV). One reason we may fail to
extract malware is when exploit documents target third-party
plugins (i.e., Flash) or versions of Office and Acrobat Reader
that we do not support. We found that very few documents
used Flash (52 out of 843,483) and did not install it on
our platform. To reduce false negatives due to unsupported
versions, we opened all documents with many reader versions.
For comparison, EMET detected 114 out of the 143 malicious
documents (79.7%) from the WUC dataset. Out of the 29
documents that were not detected by EMET, 16 targeted Mac
OS X, nine affected a different reader version, two were
password protected, and two were ciphered XLS documents
in which we could not identify any exploits. We presume that
the absence of evasion is due to the complexity of concealing
exploitation and the lack of widespread exploitation mitigation
in the wild. Importantly, none of our analyses depends on the
lack of evasion techniques in the malware embedded in exploit
documents.

Second, our analysis of decoys and malware is limited to
documents embedding these files as opposed to downloading
them over the network. Despite this limitation, our analysis
revealed 3,815 exploit documents with embedded decoys or
malware. The WUC dataset indicates that this approach was
preferable for attacks targeting the Uyghur community, as the
vast majority (90.3%) of exploit documents embed malware or
decoys. One explanation for this behavior is that embedding
files offers the advantage of enabling the compromise of hosts
even when they are not connected to the Internet.

Finally, our decoy analysis is limited to exploit documents
that embed intelligible information for analysis. Although
decoys are not fundamental to the malware used in the attacks,
in practice, they are essential to present the victim with a
document that is not suspicious. As a result, we expect most
targeted attacks to employ decoys that are relevant to the
victim. The WUC dataset confirmed this hypothesis with 41
out of 59 documents with decoys (69%) pertaining to the
Uyghur community. Out of the 18 remaining decoys, 12 were
poor or empty, two pertained to Tibet or Taiwan, and we could
not classify the remaining four decoys (e.g., only pictures).

Ethical considerations. The analysis of data that may contain
private information raises ethical concerns. As one of the goals
of VirusTotal is to promote security research, its users agree
to share their submissions with the security community. Our
study does not collect any user’s personal information beyond
what is submitted to VirusTotal, nor does it expose users to
additional risks. The results we present in this study can be
split into two categories: aggregate and anonymized. In most
cases, aggregate results are sufficient however; it is sometimes
necessary to present results for individual users to validate
aggregates. In these cases, we anonymized the results so that
it was not possible to identify users. This study was approved
by our IRB.

6

A
ll

S
P
0

S
P
1

S
P
2

S
P
3

S
P
0

S
P
1

S
P
2

S
P
3

S
P
0

S
P
1

S
P
2

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
401 240 240 239 219 346 331 331 263 197 196 43

A
ll

8.0
.0

8.1
.0

9.0
.0

9.1
.0

9.2
.0

9.3
.0

9.4
.0

9.5
.0

10.0
.0

10.1
.0

10.1
.4

11.0
.0

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n

3858 3484
3474

3795
3253

3230
3233

26 7 0 8 8 12

Fig. 3: Fraction of exploit documents compatible with each
version and subversion of Microsoft Office (top) and Adobe
Acrobat Reader (bottom). For Office, the subversion corre-
spond to Service Packs (SPs). There is one bar group for each
reader version: Office 2003, 2007, and 2010, and Acrobat 8,
9, 10, and 11. Although exploits do not affect all readers’
versions, an exploit against a given version tends to affect
all its subversions.

IV. ANALYSIS OF EXPLOIT DOCUMENTS

In this section, we seek to answer the following questions
by analyzing documents submitted to VirusTotal:

• Can we reliably detect exploit documents? What is
the impact of reader versions? How many versions do
exploits generally affect?

• Can we leverage decoy documents to infer the likely
targets of attacks? If so, can we identify attack trends
in the VirusTotal dataset based on their targets?

• Do targeted attacks against different target groups
exhibit the same characteristics or do they differ
from each others? Do they use the same or different
malware?

• How does our observed malware coverage compares
with previous work focusing on single communities?

Previous work focuses on targeted groups [11], [15], [16]
or individual malware families [21], [26], [27], [28], [29],
[30], [31]. Our analysis extends this complementary work by
associating the malware families with the decoy documents
used for targeting groups.

A. Extraction effectiveness

Before analyzing the decoys and malware embedded in
exploit documents, we first demonstrate the our extraction
process experiences few false negatives. To this end, we
dynamically analyze all the documents uploaded to VirusTotal
in February 2015 to identify exploit documents and validate
that we properly extract the decoys and malware written to
disk. Our goal is to scale extraction to the entire dataset
while minimizing the number of false negatives (i.e., exploit
documents from which we do not extract the corresponding

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of versions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f
e
x
p
lo

it
 d

o
c
u
m

e
n
ts

Acrobat

Office

Fig. 4: CDFs of the number of versions affected by Acrobat
and Office exploit documents. Few exploits are portable
across all reader versions.

files). To do so, we test that (a) documents detected by
the Enhanced Mitigation Experience Toolkit (EMET) were
also extracted and that (b) exploit documents detected by
EMET were also detected by at least one AV software.
These conditions would indicate that extraction has no or few
false negatives as compared to EMET detections and that, in
aggregate, AV software can be used as an oracle for the exploit
documents submitted to VirusTotal, respectively.

Impact of reader versions. Out of the documents submitted
for one month, EMET detected 4,259 unique exploit docu-
ments (401 Office and 3,858 PDF files). We found that an
exploit affecting a given reader’s version tends to affect many
subversions (Figure 3). This result indicates that knowing a
target’s reader version is sufficient for an attacker to achieve
a near-perfect trigger rate across all its subversions. At the
same time, we found that few exploits are portable across all
reader’s versions (Figure 4). While this result is solely based
on empirical observation, it is clear that any analysis toolchain
should support many different reader versions.

Unextracted samples detected by EMET. Out of 4,259
documents detected by EMET, 29 did not write any files to
disk. Manual inspection of these 29 exploit documents revealed
that none of them were extraction false negatives.

• Crashes. There were six cases where exploit docu-
ments made the reader crash during exploitation.

• Experimental samples. In four cases, the document
merely executed a command such as calc.exe.

• Dysfunctional samples. In the remaining 19 cases, the
exploit relied on an absent property of the document
(e.g., incorrect file size). Such cases led to a bug (e.g.,
an infinite loop in shellcode or gadgets) that prevented
exploitation.

AV detection of exploit documents. All but three of the 4,259
exploit documents detected by EMET were detected by at least
one AV software. This result indicates that, in aggregate, AV
software has very few false negatives for exploit documents
uploaded to VirusTotal.

7

TABLE III: Likely targeted Group, and corresponding Number
and Fraction of exploit documents with meaningful decoys.

Group Number Fraction
Uyghur 237 .16
Vietnam 145 .10
USA 118 .08
Tibet 115 .08
Taiwan 100 .06
India 72 .05
Russia 51 .03
Japan 50 .03
Philippines 38 .02
South Korea 19 .01
Myanmar 17 .01
Mongolia 14 <.01
Thailand 9 <.01
Indonesia 7 <.01
Others 438 .30
Total 1,430 1.00

Summary of results. We showed that extraction had no or few
false negatives as compared to EMET and that, in aggregate,
AV software retroactively detected the vast majority of exploit
documents. In particular, we confirmed that all the exploit
documents that we could not extract were dysfunctional or
experimental samples, or crashed before performing disk write
operations, and all the extracted documents but three were
detected by at least one AV software. In the following, we
leverage these results by focusing our study on documents
uploaded over one year and detected by at least one AV
software. Doing so enables us to greatly reduce the number
of analyzed samples while keeping the number of extraction
false negatives to a minimum.

B. Social engineering

In this section, we characterize the decoys embedded in
exploit documents. In total, 2,447 (64%) out of the 3,815
exploit documents embedding files contained decoys. (Note
that we now focus on the subset of all detected documents
which wrote files to disk.) 1,017 (41%) of them were empty
or poor, leaving us with 1,430 (58%) meaningful decoys.

Languages, ethnic groups, and countries. The most common
languages in our dataset were English (44%), Chinese (15%),
Uyghur (12%), Vietnamese (4%), and Russian (4%). The
decoys sometimes also enabled us to infer the likely targeted
ethnic groups or countries as shown in Table III.

We show the distribution of languages for each of the main
groups in Figure 5. We see that these attacks tend to employ
the mother tongue and official languages of ethnic groups
and countries, with the most common other language being
English.

Replayed decoys and organizational targeting. Our transla-
tors estimated that 459 (32%) of decoys were likely replayed.
In particular, a majority of decoys pertaining to the Uyghur,
Vietnam, and Philippines were likely replayed, as we see in
Figure 6. In addition, we found that these groups with a
high rate of replayed decoys tended to exhibit organizational
targeting. For example, out of the 237 Uyghur decoys, 207
(87%) referred to the World Uyghur Congress (WUC) and

In
dia

Philip
pin

es

M
ya

nm
ar

USA
Tib

et

Thaila
nd

In
donesia

South
 K

ore
a
Ja

pan

Russ
ia

Uyg
hur

Taiw
an

Vie
tn

am

M
ongolia

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
d
e
c
o
y
s

Languages of decoys

Others

Others,Official

English

English,Official

Fig. 5: Distribution of languages employed in the decoys
targeting the various groups in our dataset. For each group, we
show the the fraction of decoys written in English, the Official
language of the group (when different from English), and
Other languages. Decoys tended to use the official language
of the groups they target.

Uyg
hur

Vie
tn

am

Philip
pin

es

In
donesia USA

Taiw
an

M
ongolia

Tib
et

Russ
ia

South
 K

ore
a

In
dia

Ja
pan

M
ya

nm
ar

Thaila
nd

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
c
ti
o
n
 o

f
d
e
c
o
y
s

Replayed decoys

Not replayed

Replayed

Fig. 6: Fraction of the decoys that were likely acquired from
compromised hosts and embedded into exploit documents (Re-
played). The majority of Uyghur, Vietnamese, and Filipino
decoys were replayed, indicating that these groups were
deeply compromised.

were likely replayed. Furthermore, all 38 Filipino decoys
(19 of which replayed) were military documents referring
to the navy or armed forces. They included four lists of
navy and air force personnel (names, ranks, date of births,
and telephone numbers). Finally, we additionally identified 12
decoys describing a research project in which a French defense
contractor was involved, all of which were replayed. (We will
cover these attacks in detail in Section V-F).

Dates of decoy documents. We found dates in 662 (46%)
of the decoys in our dataset with 164 referring to 2014 or
2015, 133 to 2013, 114 to 2012, and 251 to previous years.
If these dates referred to events that were contemporary to the
attacks (e.g., to sparkle the victim’s interest), they can be used
to estimate when these attacks took place.

8

M
ongolia

Vie
tn

am

M
ya

nm
ar

In
donesia

Ja
pan

In
dia

Philip
pin

es

Thaila
nd

Tib
et

Russ
ia

Uyg
hur

USA

Taiw
an

South
 K

ore
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
d
e
c
o
y
s

Years of decoys

Older

2013

2014

2015

Fig. 7: Distribution of the decoys from 2013-2015 as well as
Older decoys. The years greatly varied from one group to
another however, all groups exhibited decoys referring to
a least one year in the range of 2013-2015.

To investigate this, we plotted the years found in decoy
documents for different regions in Figure 7. The distribution
of these years varied substantially across groups, with decoys
pertaining to groups under Chinese influence (e.g., Taiwan,
Uyghur, and Tibet) tending to be significantly older than those
against Asian Pacific countries (e.g., Vietnam, Myanmar, and
the Philippines). For example, 75-85% of decoys pertaining to
Vietnam and Myanmar included years in the 2013-2015 range,
presumably indicating that many of these attacks occurred in
recent years.

Summary. Collectively, we find that exploit documents may
employ a variety of strategies to minimize suspicion from
victims. In particular, many used content in the victims’ native
language, (presumably stolen) content pertaining to specific
region or organization, and used relatively fresh content as op-
posed to older documents. While different exploit documents
use different subsets of these strategies, our analysis reveals a
reasonably high level of sophistication for social engineering.

C. Malware and CVEs

In the following, we leverage decoys to study the charac-
teristics of the malware targeting different groups.

Malware families. Our malware sandboxes tagged the family
for 3,131/3,705 (84%) of the exploit documents that wrote
malware to disk. The most popular malware families in our
dataset were Miniduke (21%) [2], PlugX (4%) [27], PoisonIvy
(2%) [7], Lurid (2%) [30], Taidoor (2%) [29], IXESHE (2%)
[28], Zeus (1%), Mongall (1%), WMI (1%) [31], FakeM (1%)
[26], and Elise (<1%) [21]. Miniduke was the most represented
family in our dataset due to several different exploit documents
embedding the same Miniduke executable; however, fewer than
1% of these samples were used jointly with a decoy. This is in
sharp contrast with all the other above families, where a decoy
was written to disk in the majority of the cases, indicating
some targeting. Documents embedding Zeus samples tended
to be used jointly with decoys less often than the other above
families. (This is likely because Zeus is a banking trojan.)

Fig. 8: Graph of malware families for each country where
two family nodes are linked if they target the same country
(different color for each region). In addition, we use gray
links to indicate when the same malware family is used in
different regions. The node colors and sizes correspond to their
countries and the number of samples targeting it, respectively.
The malware families in our dataset tend to target one
main ethnic group or country.

Excluding Zeus, all remaining families are commonly used for
espionage and were used jointly with a decoy in most cases.

Malware distribution. To show regional clustering of the
countries in which malware families were found, we plot the
families using a graph (Figure 8). Each node represents a
(family, country) pair and its size is proportional to the number
of samples in our dataset. Then we use two types of edges:
colored ones represents links to other malware in the same
country, and gray ones represent the same malware in other
countries. Note that most edges are colored, meaning that most
malware is found in only one country. Further, even when
the same malware appears in multiple countries, most cases
appear in a small number. This has implications for both direct
acquisition and AV reports (as we will discuss below).

We now focus on the minority of malware samples im-
pacting victims across multiple regions in Figure 9. For
each malware family, the bar shows the fraction of samples
submitted from each region. The figure shows that several
malware families are targeted broadly across regions (e.g.,
PlugX, Mongall, Mirage, PoisonIvy) with no region seeing
a majority of samples, while others tend to focus on a small
number of regions (e.g., Lurid, FakeM, FakeSafe). We did not
see any cases of exploit documents affecting every region in
our dataset, indicating that even when distributed beyond a
single country, the reach of exploit documents is still quite
limited.

The time distributions varied from one family to another.
IXESHE, Taidoor, and FakeM have not been actively used
since 2011−2012, whereas PlugX, WMI, and Elise have been
used uniformly during the observation period. Interestingly,

9

Pro
et

Fake
m

Taid
oor

IX
ESHE

M
ongall

Zegost

Pro
et_

2

Plu
gX

W
M

I

Poiso
n Iv

y

M
ira

ge
Lurid

Page
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
c
ti
o

n
 o

f
d

e
c
o

y
s

USA

Russia

Asia Pacific G20

Asia Pacific

Chinese Influence

Fig. 9: Distribution of regions where each malware family was
found, only for malware found in multiple countries and more
than 10 samples (13/273 families). Chinese Influence includes
Uyghur, Tibet, and Taiwan; Asia Pacific G20 includes India,
Indonesia, Japan, and South Korea; and Asia Pacific includes
Myanmar, the Philippines, Thailand, and Vietnam. We find
with the exception of PlugX, malware tends to be found in
one or two main regions; further, the primary region(s) are
different across malware families. Thus, socially engineered
malware tends to have a limited set of targets.

Russ
ia

In
dia

M
ongolia

Ja
pan

M
ya

nm
ar

Taiw
an

Philip
pin

es

Vie
tn

am
Tib

et
USA

Uyg
hur

In
donesia

South
 K

ore
a

Thaila
nd

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
d

e
c
o

y
s

Unknown

Older

2012

2013

2014

Fig. 10: Distribution of the CVEs’ release years for the ex-
ploited reader vulnerabilities. 2011-2014 and Older correspond
to CVEs released during the corresponding years and to older
CVEs, respectively, and Unknown to vulnerabilities that could
not be associated with a CVE. Most CVEs in our dataset
were released in 2012 and before and relied on unpatched
readers to compromise users during the measurement
period.

IXESHE, Taidoor and FakeM’s inactivity loosely correlates
with the publication of the corresponding AV reports (2012
for IXESHE [28] and Taidoor [29] and 2013 for FakeM [26]).
To the best of our knowledge, no comprehensive AV report on
PlugX has been published to date and the first AV report on
Elise was published in 2015 [21]. Thus, our analysis reveals
that malware authors are responsive to AV detection and adapt
accordingly.

Distribution of CVEs. Despite the diversity of the decoys

and malware families, the exploit documents in our dataset
used a relatively small number of vulnerabilities with, for
example, CVE-2012-0158 representing 892/1,430 (62%) of
exploit documents with meaningful decoys. Recent CVEs were
a minority with 67 samples with CVEs from 2013 or 2014
(Figure 10). These results indicate that old vulnerabilities with
patches available still constitute the bulk of the attacks. We
did not find evidence of zero-day exploits in our dataset.

Limitations of direct acquisition and AV reports. The spe-
cialization of targeted malware has important implications for
generalizing results found via direct acquisition from targeted
groups and AV reports. In particular, specialization complicates
the discovery of targeted samples as acquiring them from one
group (e.g., Uyghur or Tibetans) is unlikely to reveal families
targeting others, with the exception of PlugX. Similarly, an AV
deployment would need to span enough groups to potentially
gain access to all families. To make the matter worse, we find
that the distribution of families per targeted groups is skewed
with the top four common families representing less than a
quarter of all malware.

Summary, validation, and new results. We showed that
decoy documents often embedded sufficient contextual in-
formation to infer the targets of exploit documents. Once
coded, decoys enable a more comprehensive analysis of exploit
documents by clustering attacks independent of their malware
family. Our second new result is that targeted malware is
highly specialized, meaning that a collaboration and/or AV
deployment would need to span many groups to over a good
coverage of its landscape. Third, we showed that the distri-
bution of malware families targeting individual groups was
skewed, further reducing the generalizability of AV reports.

V. ANALYSIS OF UPLOADERS

Next, we infer and analyze the role of users who uploaded
exploit documents on VirusTotal using only meta-data. Role
inference is useful to categorize users, study their relationships,
and/or inform the analysis of their uploads. For example, it
could enable companies such as VirusTotal to identify attackers
abusing their services, or researchers working on targeted
attacks to prioritize the analysis of documents uploaded by
targeted victims. Importantly, role inference has the potential
of doing all this by relying only on meta-data, i.e., without
coding or dynamic analysis of the exploit documents or
malware. To the best of our knowledge, this paper is the first
attempt to leverage machine learning to systematically infer the
role of an AV aggregator’s users. Below, we seek to determine
whether we can accurately infer the role of VirusTotal users
based solely on their meta-data, their distribution, and the most
important feature that differentiate users in different categories.

A. Definitions

The goal of the analysis in this section is to infer whether
uploaders of exploit documents correspond to attackers, tar-
geted victims or third-parties. Although these roles may not
be the only interesting ones, we argue they are the most
general and that other roles would be variants of these. We
will describe the techniques to infer these roles in more details
in Section V-D.

10

• Attacker. An attacker corresponds to the source of an
exploit document.

• Targeted victim. A targeted victim is the destination
of a exploit document with a targeted decoy. They are
referred to as targets in the ensuing discussion.

• Third party. A third is neither the source or destina-
tion of an exploit document. Members of this category
typically upload many documents but these are rarely
exploit documents.

Limitations. The ground truth for the roles of the uploaders
was only available for companies and we had to manually infer
targets and attackers. As a result, the labeling of these two
categories is likely imperfect. Despite this limitation, we will
see that our machine-learning algorithm (relying on a different
set of features) accurately classified users from each category.

B. Ground truth and manual inference

VirusTotal shared with us the role of several premium
accounts that belonged to third-parties, giving us ground truth
for that category. For the other categories (i.e., targets, and
attackers), we inferred the roles manually as follows.

• Targets uploaded at least one extracted document
with a targeted decoy, a plausible email attachment
filename, as well as at least one benign document.

• Attackers uploaded at least one extracted document
sharing a command and control server with targets but
predating their uploads, and geolocated in a different
country. We manually inspected the uploads of the
corresponding users and kept only those who had
uploaded experimental samples.

The purpose of the ground truth and manual inference is
to validate the roles inferred by machine learning. Although
machine learning uses only meta-data, manual inference lever-
ages all the data made available through coding and dynamic
analysis. As a result, researchers without the resources to code
or analyze all malicious documents can use role inference to
guide their analysis.

C. Features

Our goal is identifying a set of user features such that
users with high feature similarity play the same role in the AV
aggregator (be it an attacker, a target, or third-party). Here, we
distinguish two types of features: user specific features and
neighborhood features.

We build each user’s specific features using her own
uploading activity. We consider the following specific features:

• Fraction of exploit documents uploaded, total num-
ber of uploads. Attackers are expected to upload a
disproportionate fraction of exploit documents.

• Unique filenames vs unique hashes. For attackers
using VirusTotal as a crypting service, may upload
files with different hashes but using the same filename.

• Fraction of unique filenames used multiple times
for documents with different detection rates. For

attackers using VirusTotal as a crypting service, we ex-
pect the detection rates of exploit documents uploaded
consecutively over short time periods (e.g., hours) to
decrease until they reach zero. To avoid false positives,
we only consider exploit documents sharing the same
filename.

• Maximum upload delay, average of the top 10%-
ile of upload delay. Upload delay is defined as the
interval between the first upload of a document (by
anyone) and the time when this user uploaded it
(identity being established using the hash). We expect
this to be low for the attackers (close to zero) and
high for the targets and researchers who receive their
documents from the attackers.

To build each user’s neighborhood features, we first con-
struct a directed co-hash graph. In this graph, each node
corresponds to a user that uploaded at least one of the exploit
documents. We form an edge from a user u to user v if u
uploaded a document which was later also uploaded by v.
We use the hash of the documents to identify such identical
uploads. We refer to a user’s one hop neighborhood on this
graph (including all edges contained within) it as the ego-
network of the user. We extract the following neighborhood
features from this subgraph:

• Out-degree, in-degree and LCC. Attackers are ex-
pected to have a large out-degree since they are often
the first to upload an exploit document and then
they send the documents to others in the network.
Hence, the in-degree can help identify the receivers
(targets/researchers). The Local Clustering Coefficient
(LCC) (computed on an undirected version of the
graph) helps in identifying users which received ex-
ploit documents as part of wide spread attacks, i.e.,
who were not singled out and targeted. Due to paucity
of neighbors, these users are expected to have a high
LCC.

• Edges in, into and out of the ego network, Neigh-
bors’ out and in degree. We count the number of
edges in the ego network, the number of incoming
edges from nodes outside the ego network to nodes
in the ego network and the number of outgoing edges
from nodes in the ego network to nodes outside the
ego network. This takes into account the features of
the one hop network around the node. These features
can help identify “cascades” which bring a exploit
document from an attacker, through a target to a
researcher. We also calculate the average, variance,
minimum and maximum in-degree and out-degree
across the nodes in the co-hash ego network.

• Neighbors’ fraction of total and malicious files up-
loaded. This summarizes the activity of the neighbors
of nodes. We compute the average, variance, minimum
and maximum fraction of all and exploit documents
uploaded across the nodes in the co-hash ego network.
The activity of neighbors can give hints about the
nature of the current node.

11

D. Semi-supervised light-weight inference

We manually, with the help of roles provided by VirusTotal,
identified the role of 246 users, i.e., we labeled a few seed
users, and filtered out users who did not upload extractable
documents, which leaves 9,245 users. Given such a labeled
dataset, a natural approach would be to use a supervised
learning method, such as logistic regression or support vector
machines (SVMs), to find a mapping between features and
labels and use this mapping to infer the role of the remaining
users. Unfortunately, since the number of labeled users is
several orders of magnitude smaller than the total number of
users, such a mapping would not generalize to the overall set of
(unlabeled) users. Instead, here, we resort to semi-supervised
learning [4], which leverages both labeled and unlabeled data
to infer the role of all users. In particular, we use label
propagation [34], which works as follows.

It first computes an affinity matrix W , which captures the
feature similarity between every pair of users (i, j). Then,
it infers each user’s role r̂i ∈ {1, . . . R} by leveraging the
roles of the labeled users and assuming that users with higher
similarity will be more likely to have similar roles. Here, for
each node i, we can think of nodes j as the neighbors of i
in an underlying similarity graph if Wij > 0. The algorithm
consists of the following steps:

Semi-supervised role inference:

In. Bandwidth parameter σ, Tradeoff parameter α ∈
(0, 1), and, features (i.e., xi) standardized to have
0 mean and 1 variance.

1. Construct affinity matrix W such that Wij =
exp

(
−||xi − xj ||2/2σ2

)
if i 6= j and 0 otherwise.

2. Construct matrix S = D−1/2WD−1/2, where D
is a diagonal matrix with Dii =

∑
j Wij .

3. Construct F 0 = Y such that Yij = 1 if user i has
been manually labelled as ri = j and 0 otherwise.

4. Iterate F t+1 = αSF t+(1−α)Y until convergence.
Out. If limt→∞ F t = F ∗, then r̂i = argmaxj F

∗
ij .

We can think of each column F t
i in the matrix F t as the

amount of evidence that supports each potential role for user
i. In the third step, W is normalized symmetrically to ensure
the convergence of the algorithm. During each iteration of
the fourth step, each user tradeoffs between the information
she receives from her neighbors (first term) and their initial
information (second term) by means of the parameter α. In
our experiments, for scalability reasons, we build a kNN graph
from W , instead of using the entire (dense) affinity matrix
W , as proposed elsewhere [35], and use the open source
implementation of the algorithm in scikit-learn, a well-
known machine learning library. For the kNN graph, we set
the number of neighbors to k = 18 by 5-fold cross-validation
on the set of seed users, which leads to the best performance
in terms of F1 score [25], as shown in Figure 11. We see that
the performance hits a plateau and stays stable after k = 18.

Table V compares the performance of our semi-supervised
light-weight inference method to two baseline methods: (i) a
random classifier that assigns a class to each sample propor-
tionally to the distribution of the classes in the seed set, and (ii)
k-means, an unsupervised method that does not use the labels

0 5 10 15 20 25 30 35 40

Number of neighbors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1
 s

c
o
re Attacker

Target

Third-party

Fig. 11: Impact of the neighborhood size k on performance
of the inference algorithm. The F1 score was calculated over
5-fold cross-validation. The vertical red line indicates the k
chosen for the analysis here. The performance (F1 scores)
becomes stable after k = 18 neighbours.

TABLE IV: Confusion matrix produced for the seed users (5-
fold cross validation). The most common error is users in
category Third-party being marked as Targets.

PPPPPPInf.
True Third-party Target Attacker

Third-party 42 20 6
Target 10 125 3

Attacker 0 10 30

TABLE V: Comparing the performance (using the F1 score)
of a random classifier and the classifier chosen after cross-
validation. Label propagation outperforms the random
classifier and the k-means classifier by a large margin for
all categories.

Category Random k-means Semi-supervised
classifier classifier classifier

Third-party 0.28 0.61 0.70
Target 0.56 0.70 0.85

Attacker 0.16 0.00 0.76

of the seed users [20]. Our method is the best performer across
all classes, consistently beating the second best by a very large
margin.

The confusion matrix for the set of seed uses is shown in
Table IV. The targets are easy to classify while the third-party
category is difficult to distinguish from targets. The overall
accuracy of classification was 80.0%, compared to the baseline
accuracy of 33.3% for random assignment and of 61.3% for
k-means based classification.

E. Roles of users

Distribution of Roles. Next, we discuss inference on all users
in our dataset. The distribution of users is shown in Table VII.
As expected, there are many more targets identified in the
dataset than other categories and relatively few third-parties
when compared to the fraction of attackers in the seed set.

12

TABLE VI: Most important features for each category chosen by different classifiers. These reveal the underlying characteristic
behavior of users in each category (see Section V-E).

Category Decision Tree Decision Tree Extra Tree
(Depth = 1) (Depth = 10) (Depth = 10)

Third-party infected files infected files unique filenames/unique hashes
max upload delay infected files

Target total files avg. num. of infected files uploaded by the ego net out degree
var. in num. of infected files uploaded by the net max upload delay

Attacker unique files/unique hashes edges into ego net edges into ego net
unique files/unique hashes unique files/unique hashes

TABLE VII: Distribution of roles of users in the seed set,
which was manually labelled, and the inferred labels using the
algorithm described in section V-D.

Category Seed set Inferred
Third-party 68 717

Target 138 7,148
Attacker 40 1,380

Total 246 9,245

This is because the third-parties often show features that are
similar to those of targets and it is difficult to dis-entangle
them completely.

Important features. After the inference was done, we in-
vestigated which features were most helpful in discriminating
the different classes. Since label-propagation itself does not
provide us with a measure of importance of each feature,
we train several supervised learning methods using the user
features and labels inferred using our semi-supervised method.
Then, we use the corresponding feature weights given by these
supervised methods as the proxy of their true importance.

Then we selected the features that the classifiers deemed
the most important for each class. The features selected by
different classifiers are shown in Table VI.

For the third-party category, the feature infected files
(which is highly correlated to the total number of files up-
loaded) helps distinguish them from other users. For the
targets, the differentiating features are average number of
infected files uploaded by their ego network. This is because
the neighborhood of the targets is usually devoid of sources
which upload a large number of infected files, i.e. researchers
or heavy handed attackers. Attackers are relatively easily
identified if they upload more than one file with the same
filename but with different content (i.e. hash). Hence, the
feature unique files/unique hashes is able to identify them. The
importance of edges into ego net in identifying attackers also
suggests that these attackers may be connected to targets who
suffer coordinated attacks.

F. Case study: French Defense contractor

Next, we attempt to paint a holistic picture of an attack
campaign against a French defense contractor by combining
role inference, malware, and decoys. This type of postmortem
analysis can inform how attacks are developed and evolve
over time. Unlike the role analysis, we leverage all available

indicators including Command and Control (C2), malware
family, content of decoys, and benign documents.

Our dataset offered some coverage of the campaign against
the defense contractor between April and November 2014. This
campaign involved 12 participants that we verified manually:
three targeted victims, eight attackers, and one researcher. We
show the relationships between these participants, VirusTotal,
and the C2s in Figure 12.

As expected, the three targeted victims involved in this
campaign were geolocated in France and uploaded both be-
nign and triggered documents. In total, they uploaded three
triggered documents and 27 benign documents (most of them
written in French). The three triggered documents uploaded
by the victims contained the same replayed decoy discussed
in Section IV.

More surprisingly, we also identified eight likely attackers
who uploaded only malicious documents. Three of them were
geolocated in France, two in Mainland China, two in Hong
Kong, and one in the UK. In total, these attackers uploaded
14 triggered documents, nine with the replayed decoy, and
five with empty of poor decoys. All empty/poor decoys were
uploaded after June 13. Interestingly, two triggered documents
uploaded by the attackers dropped calc.exe. We assume that
these uploads were final detection tests for the exploit and
shellcode prior to launching the attacks. In one case, the at-
tacker uploaded two documents embedding calc.exe and no de-
coy in less than ten minutes. Five hours later, the same attacker
uploaded a document with the replayed decoy and embedded
malware which connected to sophos.skypetm.com.tw. Around
three hours later, one of the targets uploaded an identical
document on VirusTotal. We also see in Figure 12 that three
C2s were used over the course of this campaign. The first C2
was used by the first five samples and the second one by all of
the remaining ones but one. This phenomenon may correspond
C2 rotation to evade network defenses however, it could also
be an artifact of our partial coverage of this campaign. Despite
the last upload from a victim having occurred in May, the fact
that attackers continued to upload related documents in June
suggests that the campaign may have continued during that
period.

Finally, there was one researcher geolocated in India
with a premium VirusTotal account. This researcher uploaded
only one triggered file with a different hash than those that
had been uploaded previously. The malware connected to
mca.av.store.tw and other C2s and contained the replayed
decoy. As we see in Figure 12, this researcher uploaded this
document in November 2014, long after the other participants.

13

Summary, confirmations, and new results. We have pre-
sented a role inference algorithm which is able to achieve a
reasonable accuracy over the dataset with a very small set
of labeled seed users. We also verify that the features which
emerge as important after the inference are indeed the features
we would expect would classify the users.

We are able to classify 9,245 users after manually labeling
only 246 users, i.e. a ∼4000% reduction in amount of work
needed for 80% accuracy. Hence, role inference stands to aid
researchers by reducing the amount of manual work they will
need to do to find “interesting” users in the dataset.

As we see in the confusion matrix (Table IV), it is difficult
to differentiate between third-parties and targets. We speculate
that third-parties are difficult to identify since their behaviour
subsumes the behavior of targets and researchers.

To resolve this ambiguity and to improve the performance
of the algorithm, we will need to come up with better ap-
proaches to automatically classify the roles of users. It is
possible that including more information (i.e. geo-location or
IP addresses of users) can aid in role inference significantly.

VI. DISCUSSION AND FUTURE WORK

We presented a methodology for analyzing exploit doc-
uments without relying on direct acquisition from targeted
groups. Importantly, although we used public tools to acquire
and detect targeted samples (VirusTotal and EMET, respec-
tively), our approach does not depend on any specific tool.
For example, third parties such as targeted groups could adopt
our approach to analyze internal document attachments, as we
have shown with the WUC dataset. Similarly, EMET could
be replaced or complemented with additional mechanisms to
detect novel exploitation techniques. Below, we discuss some
on-going and future work enabled by this paper.

Crowd-assisted detection. Common defenses deployed in
email channels do not effectively block exploit documents.
While the reason is not clear, we suspect it is due to a
combination of email providers using too few AV software,
the lack of static signatures for exploit documents in the wild,
and/or attackers specifically evading them. Independent of the
reasons, the poor efficacy of existing defenses motivates the
deployment of more robust email defenses. We are currently
experimenting with a Chrome extension that uploads document
attachments to our analysis service and shows the detection
results in the GMail interface. In the background, these docu-
ments are processed by our complete toolchain to help inform
users of the threats they are facing. Our beta deployment
with Tibetan, Uyghur, and journalist users already detected
hundreds of attacks. By combining automated and manual
detection, we hope to achieve a virtuous circle whereby attacks
missed by EMET might be identified by users (e.g., because
of poor social engineering), enabling us to improve mitigation.

Office macros. We focused on exploit documents because
they are arguably more dangerous than macro documents
which require additional user approval, can be blocked in
the email channels, or disabled by system administrators. The
comparative analysis between exploit and macro documents
will be the subject of future work.

Evasion techniques. Both the mitigation of readers’ exploita-
tion and inference of uploaders’ roles can be evaded. Although
it is possible to evade EMET, we did not find evidence
of evasion in Section III-D, presumably due to the lack of
widespread exploit mitigations in the wild. Finally, we did not
attempt to make our role inference techniques robust against
evasion by attackers or privacy-conscious users. We leave the
analysis of such evasion techniques as future work.

VII. CONCLUSION

We showed that AV aggregators constitute a rich, untapped
source of information to study targeted attacks. We presented a
novel methodology relying on publicly available tools and ser-
vices for detecting exploit documents submitted to VirusTotal
for one year. We leveraged EMET in a multiple of controlled
environments to reliably detect exploitation of the Office and
Adobe Acrobat readers. We then mined the social engineering
information embedded into decoy documents to identifying
hundreds of attacks against two ethnic groups (Tibet and
Uyghur) and 12 countries spanning America (the US), Asia
(India, Indonesia, Japan, Mongolia, Myanmar, Philippines,
Russia, South Korea, Taiwan, Thailand, and Vietnam), and
Europe (France). We additionally enriched our dataset with
threat intelligence data to perform a comparative analysis of
the malware families used against these groups and showed
that socially engineered malware tends to be highly specialized
for specific regions and groups, and that the exploits often use
known vulnerabilities that rely on unpatched software (instead
of zero-days). Finally, we showed that we could reliably and
automatically classify the uploaders of these exploit documents
using machine learning.

ACKNOWLEDGMENTS

This paper is one of the most collaborative efforts initiated
by the authors. We are particularly grateful to VirusTotal,
our translators, the EMET developers, and vendors of AV
software and malware sandboxes. We also thank the anony-
mous reviewers for their helpful feedback. This work was
supported by the Max Planck Society and the European
Research Council (ERC) under the imPACT Synergy Grant
No. 610150. Finally, we thank the Decentralized/Distributed
Systems (DEDIS) group at EPFL for hosting our services.

REFERENCES

[1] M. Bailey, J. Andersen, Z. Morleymao, and F. Jahanian, “Automated
classification and analysis of internet malware,” in Proceedings of Re-
cent Advances in Intrusion Detection (RAID’07), Queensland, Australia,
2007.

[2] Bitdefender, “A closer look at miniduke,”
https://labs.bitdefender.com/wp-content/uploads/downloads/2013/04/
MiniDuke_Paper_Final.pdf.

[3] Bromium, “Bypassing EMET 4.1,” February 2014,
http://labs.bromium.com/2014/02/24/bypassing-emet-4-1/.

[4] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learn-
ing. Cambridge, MA: MIT Press, 2006.

[5] Citizen Lab, “Malware indicators,”
https://raw.githubusercontent.com/citizenlab/malware-
indicators/master/file-indicators.csv.

[6] ——, “Tibetan uprising day malware attacks,”
https://citizenlab.org/2015/03/tibetan-uprising-day-malware-attacks/.

14

Fig. 12: Case study of the defense contractor. The horizontal line represents the timeline of uploads on VirusTotal by the
participants involved in this campaign. We show the role of these participants (i.e., Targeted Victim, Attacker, and Researcher),
their relationships, and the relationships between their uploads and C2s. Several attackers participated in this campaign and
their uploads were intertwined with those of the victims. The researcher uploaded last.

[7] FireEye, “Poison Ivy: Assessing Damage and Extracting Intelligence),”
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-
threats/pdfs/rpt-poison-ivy.pdf.

[8] ——, “The EPS Awakens - Part 2,”
https://www.fireeye.com/blog/threat-research/2015/12/the-eps-awakens-
part-two.html.

[9] M. Graziano, D. Canali, L. Bilge, A. Lanzi, and D. Balzarotti, “Needles
in a haystack: Mining information from public dynamic analysis sand-
boxes for malware intelligence,” in 24th USENIX Security Symposium
(USENIX Security’15), Washington, D.C., Aug. 2015.

[10] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. Mccoy, A. Pitsillidis, N. Provos,
M. Zubair, R. Moheeb, A. Rajab, C. Rossow, K. Thomas, V. Paxson,
S. Savage, and G. M. Voelker, “Manufacturing compromise: The
emergence of exploit-as-a-service,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS’12),
2012.

[11] S. Hardy, M. Crete-Nishihata, K. Kleemola, A. Senft, B. Sonne,
G. Wiseman, and P. Gill, “Targeted threat index: Characterizing and
quantifying politically-motivated targeted malware,” in Proceedings of
the 23rd USENIX Security Symposium (USENIX Security’14), San
Diego, CA, August 2014.

[12] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, “Data-
Oriented Programming: On the Expressiveness of Non-Control Data
Attacks,” in IEEE Symposium on Security and Privacy (Oakland’16),
San Jose, CA, 2016.

[13] A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “UN-
VEIL: A Large-Scale, Automated Approach to Detecting Ransomware,”
in 25th USENIX Security Symposium (USENIX Security’16), Austin,
TX, 2016.

[14] C. Kruegel, E. Kirda, P. M. Comparetti, U. Bayer, and C. Hlauschek,
“Scalable, behavior-based malware clustering,” in Proceedings of the
16th Annual Network and Distributed System Security Symposium
(NDSS’09), San Diego, CA, 2009.

[15] S. Le Blond, A. Uritesc, C. Gilbert, Z. L. Chua, P. Saxena, and
E. Kirda, “A look at targeted attacks through the lense of an NGO,”
in Proceedings of the 23rd USENIX Security Symposium (USENIX
Security’14), San Diego, CA, August 2014.

[16] W. R. Marczak, J. Scott-Railton, M. Marquis-Boire, and V. Paxson,
“When governments hack opponents: A look at actors and technology,”
in Proceedings of the 23rd USENIX Security Symposium (USENIX
Security’14), San Diego, CA, August 2014.

[17] Microsoft, “PLATINUM: Targeted attacks in South and Southeast Asia,”
https://www.microsoft.com/en-us/download/details.aspx?id=51956.

[18] ——, “Enhanced Mitigation Experience Toolkit,” 2015,
http://www.microsoft.com/en-us/download/details.aspx?id=46366.

[19] E. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A crawler-
based study of spyware on the web,” in Proceedings of the Annual

Network and Distributed System Security Symposium (NDSS’06), San
Diego, CA, 2006.

[20] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[21] Palo Alto Networks, “Operation Lotus Blossom,”
https://www.paloaltonetworks.com/resources/research/unit42-operation-
lotus-blossom.html.

[22] M. Polychronakis, P. Mavrommatis, and N. Provos, “Ghost turns
zombie: Exploring the life cycle of web-based malware,” in 1st Usenix
Workshop on Large-scale Exploits and Emergent Threats, 2008.

[23] A. Portnoy, “Bypassing All of the Things,”
2013, https://www.exodusintel.com/files/Aaron_Portnoy-
Bypassing_All_Of_The_Things.pdf.

[24] N. Provos, P. Mavrommatis, M. Abu, R. F. Monrose, G. Inc, N. Provos,
P. Mavrommatis, M. Abu, and R. F. Monrose, “All your iframes point
to us,” in 17th USENIX Security Symposium (USENIX Security’08), vol.
2008, San Diego, CA.

[25] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA:
Butterworth-Heinemann, 1979.

[26] Trend Micro, “Hiding in Plain Sight: The FAKEM Remote
Access Trojan,” urlhttp://blog.trendmicro.com/trendlabs-security-
intelligence/hiding-in-plain-sight-the-fakem-remote-access-trojan/.

[27] ——, “PlugX: New Tool For a Not So New Campaign,”
http://blog.trendmicro.com/trendlabs-security-intelligence/plugx-
new-tool-for-a-not-so-new-campaign/.

[28] ——, “Taking a Bite Out of IXESHE,”
http://blog.trendmicro.com/trendlabs-security-intelligence/taking-a-
bite-out-of-ixeshe/.

[29] ——, “The Taidoor Campaign: An in-depth analysis),”
http://www.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/white-papers/wp_the_taidoor_campaign.pdf.

[30] ——, “Trend Micro Exposes LURID APT,”
http://blog.trendmicro.com/trendlabs-security-intelligence/trend-micro-
exposes-lurid-apt/.

[31] ——, “WMI Abused for Malware Operations,”
http://blog.trendmicro.com/trendlabs-security-intelligence/windows-
wmi-abused-for-malware-operations/.

[32] VirusTotal, “Virustotal file statistics,”
https://www.virustotal.com/en/statistics/.

[33] WIRED, “A google site meant to protect you is helping hackers attack
you,” http://www.wired.com/2014/09/how-hackers-use-virustotal/.

[34] D. Zhou, O. Bousquet, T. N. L., J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” Advances in neural information
processing systems, vol. 16, no. 16, pp. 321–328, 2004.

[35] X. Zhu, Semi-supervised learning with graphs. CMU PhD Thesis,
2005.

15

