
Modeling the Dynamics of Learning Activity on the Web

Charalampos Mavroforakis

⇤

Boston University

cmav@bu.edu

Isabel Valera

MPI-SWS

ivalera@mpi-sws.org

Manuel Gomez Rodriguez

MPI-SWS

manuelgr@mpi-sws.org

ABSTRACT
People are increasingly relying on social media and the Web
to find solutions to their problems in a wide range of domains.
In this setting, closely related problems often lead to the
same characteristic learning pattern—people sharing a similar
problem visit closely related pieces of information, perform
almost identical queries or, more generally, take a series of
similar actions at a similar pace. In this paper, we introduce
a novel modeling framework for clustering continuous-time

grouped streaming data, the Hierarchical Dirichlet Hawkes
process (HDHP), which allows us to automatically uncover
a wide variety of learning patterns from detailed traces of
learning activity. Our model allows for e�cient inference,
scaling to millions of actions and thousands of users. Ex-
periments on real data from Stack Overflow reveal that our
framework recovers meaningful learning patterns, accurately
tracks users’ interests and goals over time and achieves better
predictive performance than the state of the art.

Keywords
learning activity modeling; user interest tracking; continuous-
time data clustering.

1. INTRODUCTION
Learning is nowadays becoming an online activity – people

routinely use a wide variety of learning platforms on the Web,
ranging from wikis and question answering (Q&A) sites to
online communities and blogs, to learn about a large range of
topics. In this context, people find solutions to their problems
by looking at closely related pieces of information, executing
a sequence of queries or, more generally, performing a series
of learning actions. For example, a software engineer may
read several answers within a Q&A site to quickly solve a
specific programming problem; a high school student may
study several closely related wiki pages over a week to prepare
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an essay about a historical event; and, a machine learning
researcher may monthly check a specialized blog written
by one of her peers to learn about a new machine learning
technique. In all these examples, people are performing a
series of learning actions characterized by their content (i.e.,
programming, history, or machine learning) and time dura-
tion (i.e., a few hours, days, or months) to solve a predefined
learning task (i.e., solving a programming problem, writing
an essay, or learning about a machine learning method). In
this context, one expects that people presented with similar
problems will perform similar sequences of actions, both in
terms of content and timing. Consequently, one may think of
a sequence of related actions as a task and of similar tasks as
realizations of a unique learning pattern, which characterizes
both the content and timing of the tasks.

In this work, we introduce the Hierarchical Dirichlet Hawkes
Process (HDHP), a novel probabilistic model for cluster-
ing continuous-time grouped streaming data, and use it to
uncover the above mentioned learning patterns in online
learning platforms. The HDHP leverages the properties of
two other processes: (i) the Hierarchical Dirichlet Process
(HDP) [19] and (ii) the Hawkes process [13]. The former is a
popular Bayesian nonparametric model consisting of a hier-
archy of Dirichlet processes (DP) [12], and is commonly used
for solving clustering problems involving multiple groups of
data. The latter is a temporal point process particularly well
fitted to model social activity [11, 20, 22]. Here, the HDP is
used to account for an infinite number of learning patterns,
which are shared across users (groups) of an online learning
platform, while the Hawkes is used to characterize the tempo-
ral dynamics of each learning pattern. More specifically, the
HDHP models each user’s learning activity as a multivariate
Hawkes process, with as many dimensions as the number
of learning patterns (i.e., infinite). The parameters of this
process are shared across all the users and sampled, together
with the parameters of the associated content, from a DP.
Every time that a user decides to perform a new action, she
may opt for starting a new task (i.e., a new realization of a
learning pattern) or follow-up on one of her ongoing ones.

We develop an e�cient inference algorithm for our model,
based on the sequential Monte Carlo [16], which scales to
millions of actions and thousands of users. We apply our
algorithm on real-world data from Stack Overflow, using
⇠1.6 million questions performed by 16,000 users over a
four year period. Our results show that our model can
recover meaningful learning patterns, it can accurately track
users’ interests and goals over time and, by leveraging both
content and temporal information, it can provide better



predictive performance compared to the HDP [19]. A Python
implementation of the proposed HDHP is available online1.

Related work. The Hierarchical Dirichlet Hawkes process
(HDHP) can be viewed as a model for clustering grouped
continuous-time streaming data. In our application domain,
each group of data corresponds to a user’s online actions and
the clusters correspond to learning patterns, shared across
all the users. Therefore, our work relates, on the one hand,
to models for clustering groups of data [6, 18], and, on the
other hand, to models for clustering (ungrouped) streaming
data [3, 5, 2, 10]. To the best of our knowledge, models for
clustering grouped streaming data are nonexistent to date.

The most popular models for clustering groups of data orig-
inate from the topic modeling literature: the Latent Dirichlet
Allocation (LDA) [6], in which the number of clusters is pre-
defined, and the HDP [19], LDA’s nonparametric counterpart.
There, each document is transformed into a bag-of-words and
is modeled as a mixture of topics that are shared across all
documents. More generally, models for clustering groups of
data typically consider that each observation (word) within
a group (document) is a sample from a mixture model, and
the mixture components are shared among groups. One can
use the HDP to cluster users’ activity on the Web, however
observations are assumed to be exchangeable and thus it
cannot account for the temporal dynamics of learning activ-
ity. As a consequence, it is unable to track users’ interests
and goals over time and provides a worse fit to the data, as
shown in Section 4.

Models for clustering streaming data can incorporate tem-
poral dynamics [2, 3], however they can only handle a single
stream of data and thus cannot be used to jointly model
several users’ learning activity. Additionally, most of these
models discretize the time dimension into bins [2, 3], in-
troducing additional tuning parameters, and ignoring the
self-excitation across actions [5], a phenomenon regularly ob-
served in social activity data [11]. Perhaps the most closely
related work to ours is the recently proposed Dirichlet Hawkes
Process (DHP) [10], a continuous-time model for streaming
data that allows for self-excitation. However, DHP su↵ers
from a significant limitation: the lack of an underlying DP
(or, in fact, any other Bayesian nonparametric) prior on the
cluster distribution compromises the identifiability and repro-
ducibility of the model. Additionally, from the perspective
of our application, DHP only allows for a single data stream
(a single user) and enforces clusters to be forgotten after
some time. The latter is an overly restrictive assumption,
since a user may perform similar actions, i.e., belonging to
the same learning pattern, over widely spaced intervals of
time. As a consequence, the DHP is not suitable to model
learning activity data on the Web, and therefore, to track
users’ interest over time.

2. PRELIMINARIES
In this section, we briefly review the major building blocks

of the Hierarchical Dirichlet Hawkes process (HDHP): the
Hierachical Dirichlet process (HDP) [19] and the Hawkes
process [1].

2.1 Hierarchical Dirichlet Process
The HDP is a Bayesian nonparametrics prior, useful for

clustering grouped data [19], which allows for an unbounded
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number of clusters whose parameters are shared across all the
groups. It has been broadly applied for topic modeling as the
nonparametric counterpart of the Latent Dirichlet Allocation
(LDA), where the number of topics is finite and predefined.
More specifically, this process defines a hierarchy of Dirich-
let processes (DPs), in which a set of random probability
measures G

j

⇠ DP (�
1

, G
0

) (one for each group of data) are
distributed as DPs with concentration parameter �

1

and base
distribution G

0

. The latter is also distributed as a DP, i.e.,
G

0

⇠ DP (�
0

,H). In the HDP, the distributions G
j

share
the same support as G

0

, and are conditionally independent
given G

0

.

Chinese Restaurant Franchise. An alternative repre-
sentation of the HDP is the Chinese Restaurant Franchise
Process (CRFP), which allows us not only to obtain samples
from the HDP but also to derive e�cient inference algorithms.
The CRFP assumes a franchise with as many restaurants
as the groups of data (e.g., number of documents), where
all of the restaurants share the same menu with an infinite
number of dishes (or clusters). In particular, one can obtain
samples from the HDP as follows:

1. Initialize the total number of dishes L = 0, and the
total number of tables in each restaurant K

r

= 0,
for r = 1, . . . , R, with R being the total number of
restaurants in the franchise.

2. For each restaurant r = 1, . . . , R:
For customer i = 1, . . . , N

r

(N
r

is the total number of
customers entering restaurant r):
– Sample the table for the i-th customer in restaurant

r from a multinomial distribution with probabilities

Pr(b
ri

= k) = nrk
�1+i�1

for k = 1, . . . ,K
r

Pr(b
ri

= K
r

+ 1) = �1
�1+i�1 (1)

where n
rk

=
P

i�1

j=1

I(b
rj

= k) is the number of cus-
tomers seated at the k-th table of the r-th restaurant.

– If b
ri

= K
r

+ 1, i.e., the i-th customer sits at a new
table, sample its dish from a multinomial distribution
with probabilities

Pr(�
r(Kr+1)

= '
`

) = m`
K+�0

for ` = 1, . . . , L

Pr(�
r(Kr+1)

= '
L+1

) = �0
K+�0 (2)

where K =
P

r

j=1

K
j

is the total number of tables

in the franchise, m
`

=
P

r

j=1

P
Kj

k=1

I(�
jk

= '
`

) is
the total number of tables serving dish '

`

in the
franchise, and '

L+1

⇠ H(') is the new dish, i.e., the
parameters of the new cluster.

– Increase the number of tables in the r-th restaurant
K

r

= K
r

+1 and, if �
rKr = '

L+1

(i.e., the new table
is assigned to a new dish/cluster), increase also the
total number of clusters in the franchise L = L+ 1.

Note that, although in the process above we have generated
the data (customers) for each group (restaurant) sequentially,
due to the exchangeability properties of the HDP, the result-
ing distribution of the data is invariant to the order at which
customers are assumed to enter any of the restaurants [19].

2.2 Hawkes Process
A Hawkes process is a stochastic process in the family

of temporal point processes [1], whose realizations consist
of lists of discrete actions (often called events) localized in
time, {t

1

, t
2

, . . . , t
n

} with t
i

2 R+. A temporal point process
can be equivalently represented as a counting process, N(t),



which records the number of actions before time t. The
probability of an action happening in a small time window
[t, t+ dt) is given by Pr(dN(t) = 1|H(t)) = �⇤(t)dt, where
dN(t) 2 {0, 1} denotes the increment of the process, H(t)
denotes the history of actions up to but not including time t,
�⇤(t) is the conditional intensity function (intensity, in short),
and the sign ⇤ indicates that the intensity may depend on the
history H(t). In the case of Hawkes processes, the intensity
function adopts the following form:

�⇤(t) = µ+
X

ti2H(t)


↵

(t, t
i

), (3)

where µ is the base intensity and 
↵

(t, t
i

) is the triggering
kernel, which is parametrized by ↵. Note that this intensity
captures the self-excitation phenomenon across actions and
thus allows modeling bursts of activity. As a consequence,
the Hawkes process has been increasingly used to model
social activity [11, 20, 22], which is characterized by bursts
of rapidly occurring actions separated by long periods of
inactivity [4]. Finally, given the history of actions in an
observation window [0, T ), denoted by H(T ), we can express
the log-likelihood of the observed data as

L
T

=
X

i:ti2H(T )

log �⇤(t
i

)�
Z

T

0

�⇤(⌧) d⌧. (4)

3. LEARNING ACTIVITY MODEL
In an online learning platform, users find solutions to

their problems by sequentially looking for closely related
pieces of information within the site, executing a sequence
of queries or, more generally, performing a series of online
actions. In this context, one may expect people addressing
similar problems to undertake similar sequences of actions,
which in turn can be viewed as realizations of an unbounded
number of learning patterns. Here, we assume that each
action is linked to some particular content and we propose a
modeling framework that characterizes sequences of actions
by means of their timestamps as well as their associated
content of these actions. Next, we formulate our model for
online learning activity, starting by describing the data it is
designed for.

Learning activity data and generative process. Given
an online learning platform with a set of users U , we represent
the learning actions of each user as a triplet

e := (

time

#
t , !

"
content

,

learning pattern

#
p ), (5)

which means that at time t the user took an action linked
to content ! and this action is associated to the learning
pattern p, which is hidden. Then, we denote the history of
learning actions taken by each user u up to, but not including,
time t as H

u

(t).
We represent the times of each user u’s learning actions

within the platform as a set of counting processes, N
u

(t), in
which the `-th entry counts the number of times up to time
t that user u took an action associated to the learning pat-
tern `. Then, we characterize these counting processes using
their corresponding intensities as E[dN

u

(t)|H
u

(t)] = �⇤
u

(t) dt,
where dN

u

(t) = [dN
u,`

(t)]
`2[L]

denotes the number of learn-
ing actions in the time window [t, t+ dt) for each learning
pattern, �⇤

u

(t) = [�⇤
u,`

(t)]
`2[L]

denotes the corresponding pat-
tern intensities, L is the number of learning patterns, and
the sign ⇤ indicates that the intensities may depend on the

user’s history, H
u

(t). Additionally, for each learning action
e = (t,!, p), the content ! is sampled from a distribution
f(!|p), which depends on the corresponding learning pattern
p. Here, in order to account for an unbounded number of
learning patterns, i.e., L ! 1, we assume that the learning
pattern distribution follows a Dirichlet process (DP). Next,
we specify the functional form of the user intensity associated
to each learning pattern and the content distribution, and
we elaborate further on the learning pattern distribution.

Intensity of the user learning activity. Every time
user u performs a learning action, she may opt to either start
a new task, defined as a sequence of learning actions similar
in content and performed closely in time (i.e., a realization
of a learning pattern), or to follow-up on an already on-
going task. The multivariate Hawkes process [1], described
in Section 2.2, presents itself as a natural choice to model
this behavior. This way, each dimension ` corresponds to a
learning pattern ` and its associated intensity is given by

�⇤
u,`

(t) = µ
u

⇡
`| {z }

new task

+

follow-upz }| {X

j:tj2Hu(t), pj=`


`

(t, t
j

) . (6)

Here, the parameter µ
u

� 0 accounts for the rate at which
user u starts new tasks, ⇡

`

2 [0, 1] is the probability that a
user adopts learning pattern ` (referred to as learning pattern

popularity from now on), and 
`

(t, t0) is a nonnegative kernel
function that models the decaying influence of past events
in the pattern’s intensity. Similarly to several works on
modeling users’ online activity [14, 20, 21], here we opt
for an exponential kernel function in the form 

`

(t, t0) =
↵
`

exp(�⌫(t� t0)), where ↵
`

controls the self-excitation (or
burstiness) of the Hawkes process and ⌫ controls the decay.

Content distribution. We gather the content associated
to each learning action e = (t,!, p) as a vector !, in which
each element is a word sampled from a vocabulary W as

!
j

⇠ Multinomial(✓
p

), (7)

where ✓
p

is a |W|-length vector indicating the probability of
each word to appear in content from pattern p.

Learning pattern parameters. The distribution of the
learning patterns is sampled from a DP, G

0

⇠ DP (�,H),
which can be alternatively written as

G
0

=
1X

`=1

⇡
`

�
'` , (8)

where ⇡ = (⇡
`

)L=1
`=1

⇠ GEM(�) is sampled from a stick
breaking process [15] and '

`

= {↵
`

,✓
`

} ⇠ H(').

Remarks. Overall, the proposed learning activity model,
which we refer to as the Hierarchical Dirichlet Hawkes process
(HDHP), is based on a 2-layer hierarchical design, which is il-
lustrated in Figure 1. The top layer is a Dirichlet process that
determines the learning pattern distribution, and the bottom
layer corresponds to a collection of independent multivariate
Hawkes processes (while in the HDP [19] it corresponds to a
collection of DPs), one per user, with as many dimensions as
the number of learning patterns, i.e., infinite. In the HDHP,
the popularity of each learning pattern, or equivalently the
probability of assigning a new task to it, is constant over time
and given by the distribution G

0

. However, the probability
distribution of the learning patterns for each specific user
evolves continuously over time and directly depends on her
instantaneous intensity. Finally, we remark that, due to the



infinite dimensionality of the Hawkes process that captures
the learning activity of each user, sampling or performing
inference directly on this model is intractable. Fortunately,
we can benefit from the properties of both the Hawkes and
the DP, and propose an alternative generative process that
we can then utilize to e�ciently obtain samples of, as well
as infer, the HDHP.

3.1 Tractable model representation
Similarly to the HDP, we can generate samples from the

proposed HDHP by following a generative process similar
to the CRFP. To this end, we leverage the properties of
the Hawkes process and represent the learning actions of all
the users in the learning platform as a multivariate Hawkes
process, with as many dimensions as the users, from which
we sample the user and the timestamp associated to the next
learning action. This action is then assigned to either an
existing or a new task with a probability that depends on the
history of that user up to, but not including, the time of the
action. When initiating a new task, the associated learning
pattern is sampled from a distribution that accounts for the
overall popularity of all the learning patterns. We finally
sample the action content ! as we discussed previously.
In the process described above, each user can be viewed

as a restaurant, each action as a customer, each task as a
table, and each pattern as a dish, as in the original CRFP.
Hence, if we assume a set of users U and vocabulary W for
the content, we can generate N learning actions as follows:

1. Initialize the total number of tasks K = 0 and the total

number of learning patterns L = 0.
2. For n = 1, . . . , N :

(a) Sample the time t
n

and user u
n

2 U for the new
action, such that t

n

> t
n�1

, as in [20]

(t
n

, u
n

) ⇠ Hawkes

0
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µ
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+
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...

µU +
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= U)

1

CCCCCA

(9)
(b) Sample the task b

n

for the new action from a
multinomial distribution with probabilities
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n

= k) =
�

⇤
un,k(tn)

�

⇤
un

(tn)

, for k = 1, . . . ,K

Pr(b
n
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µun
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⇤
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where �⇤

un,k

(t
n

) =
P
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= u
n

, b
i

=

k), and �⇤
un(tn) = µ

un +
P

n�1

i=1


bi(tn, ti)I(ui

=
u
n

) is the total intensity of user u
n

at time t
n

.
(c) If b

n

= K + 1, assign the new task to a learning
pattern with probability

Pr(�
K+1

= '
`

) = m`
K+�

, for ` = 1, . . . , L

Pr(�
K+1

= '
L+1

) = �

K+�

(11)
where m

`

=
P

K

k=1

I(�
k

= '
`

) is the number of
tasks assigned to learning pattern ` across all
users, and '

L+1

= {↵
L+1

,✓
L+1

} is the set of
parameters of the new learning pattern L + 1,
which we sample from ↵

L+1

⇠ Gamma(⌧
1

, ⌧
2

)
and ✓
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⇠ Dirichlet(⌘
0

). Then, increase the
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Figure 1: Illustration of the Hierarchical Dirichlet Hawkes
process. The top layer of the hierarchy corresponds to a
Dirichlet process with base intensity H and concentration
parameter �, i.e., G

0

⇠ DP (�,H), which determines both
the popularity and the parameters of an unbounded number
of learning patterns. The bottom layer corresponds to as
many multivariate Hawkes processes as the groups of data,
with one dimension per learning pattern, whose parameters
are given by the DP in the top layer. The popularity (or
probability) of each learning pattern is constant over time
and given by the distribution G

0

, however, the probability
distribution of the learning patterns for each user evolves
continuously over time and depends on the instantaneous
user intensity.

number of tasks K = K + 1 and, if �
K+1

= '
L+1

,
increase also the number of clusters L = L+ 1.

(d) Sample each word in the content !
n

from !
n,j

⇠
Multinomial(✓

bn).

Remarks. Note that, in the process above, both users
and learning patterns are exchangeable. However, contrary
to the CRFP, the generated data consist of a sequence of
discrete events localized in time, which therefore do not
satisfy the exchangeability property. As a consequence, this
generative process, and therefore, its complexity, di↵ers from
the standard CRFP only in two steps. First, it needs to
sample the event time and user from a Hawkes process as in
Eq. 9, which can be done in linear time with respect to the
number of users [11]. Second, while the CRFP only accounts
for the number of customers at each table, the above process
needs to evaluate the intensity associated with each table (see
Eq. 10), which can be updated in O(1) using the properties
of the exponential function.

We also stress that although the above generative process
resembles the Dirichlet Hawkes process (DHP) [10], they
di↵er in two key factors. First, the DHP can only generate a
single sequence of events, while the above process can gen-
erate an independent sequence for each user. Second, the
DHP does not instantiate an explicit prior distribution on
the clusters, which results in a lack of identifiability and
reproducibility of the model. In other words, new events in
the DHP are only allowed to join a new or a currently active
cluster—once a cluster “dies” (i.e., its intensity becomes neg-
ligible), no new event can be assigned to it anymore. As a
result, two bursts of events that are similar in content and
dynamics but widely separated in time will be assigned to dif-
ferent clusters, leading to multiple copies of the same cluster.
In contrast, our generative process ensures the identifiability
and reproducibility of the model by placing a DP prior on
the learning pattern (cluster) distribution, and using the
CRFP to integrate out the learning pattern popularity.



(a) Estimation of µ
u

(b) Estimation of ↵
`

(c) Clustering accuracy

Figure 2: Evaluation of the inference algorithm at recover-
ing the model parameters and the latent learning pattern
assigned to each event on 150k synthetically generated data.

3.2 Inference
Given a collection ofN observed learning actions performed

by a set of users U during a time period [0, T ), our goal
is to infer the learning patterns that these actions belong
to. To e�ciently sample from the posterior distribution,
similarly to [10], we leverage the generative process described
in Section 3.1. We then derive a sequential Monte Carlo
(SMC) algorithm that exploits the temporal dependencies in
the observed data to sequentially sample the latent variables
associated with each learning action. In particular, the
posterior distribution p(b

1:N

|t
1:N

, u
1:N

,!
1:N

) is sequentially
approximated with a set of P particles, which are sampled
from a proposal distribution q(b

1:N

|t
1:N

, u
1:N

,!
1:N

). To infer
the global parameters, µ

u

and ↵
`

, we follow the literature
in SMC devoted to the estimation of a static parameter [7,
8]. Specifically, we sequentially update the former by using
maximum likelihood estimation and the latter by sampling
from its posterior distribution.

Time complexity. The inference algorithm, which is
detailed in Appendix A, has complexity O(P(U+L+K)+P)
per observed learning action, where L and K are respectively
the number of learning patterns and the number of tasks
uncovered up to this action. The only di↵erence between
this algorithm and the inference algorithm for HDP lies in
Equation 10 and specifically in the computation of �⇤

un,k

(t
n

).
However, as we mentioned above, this value can be e�ciently
computed by using the properties of the exponential kernel
function. For an experimental comparison of the two, we
refer the reader to Section 4.2.

4. EXPERIMENTS

4.1 Experiments on synthetic data
In this section, we experiment with synthetic data and

show that our inference algorithm can accurately recover the
model parameters as well as assign each generated learning
action to the true learning pattern given only the times and
content of the learning actions.
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Figure 3: Goodness of fit of the HDHP model in terms of (a)
dynamics and (b) content.

Experimental setup. We assume a set of 200 users,
L = 50 learning patterns and a vocabulary of size |W| = 100.
We then sample the base intensity of each user µ

u

from
Gamma(10, 0.2), and the learning pattern popularity vector
⇡ from a Dirichlet distribution with concentration parameters
equal to 1. For each learning pattern, we sample the kernel
parameter ↵

`

from Gamma(8, 0.25), we randomly pick 30
words that will be used by the pattern and sample their
distribution from a Dirichlet distribution with parameters
equal to 3. We assume a kernel decay of ⌫ = 5. Then,
for each user we generate online learning actions from the
corresponding multivariate Hawkes process.

Results. Figures 2a and 2b summarize the results by
showing the true and the estimated values of the base in-
tensity of each user µ

u

and the kernel parameter of each
pattern ↵

`

respectively, using a total of 150k actions. In the
latter, we match the inferred learning patterns to the true
ones by picking the pair for which the NMI score is maxi-
mized. Moreover, Figure 2c shows the normalized mutual
information (NMI) between the true and inferred clusters of
actions against the number of actions seen by our inference
algorithm. In all the above, we report the results for the
particle which provided the maximum likelihood. It is clear
that our inference algorithm accurately recovers the model
parameters. As expected, using more actions when inferring
the model parameters leads to more accurate assignment of
actions to learning patterns.

4.2 Experiments on real data
In this section, we experiment with real data gathered

from Stack Overflow, a popular question answering (Q&A)
site, where users can post questions—with topics ranging
from C# programming to Bayesian nonparametrics—which
are, in turn, answered by other users of the site. We apply
our inference method on a large set of learning actions, and
show that the inferred HDHP recovers meaningful learning
patterns, accurately tracks users’ interests over time, and
provides better predictive performance than the HDP [19].

Experimental setup. We gather the times and content of
all the questions posted by all Stack Overflow users during
a four year period, from September 1, 2010 to September 1
2014. Here, we consider each user’s question as a learning
action. The reason for this choice is primarily the availability
of public datasets, and, secondarily, the fact that a question
provides clear evidence of the user’s current interest at the
time of asking. By looking only at the questions, we are
underestimating the number of actions taken on each task,
however, this bias is shared across all the tasks and, thus,
we can still compare the dynamics of di↵erent patterns in
a sensible way. For each question, we use the set of (up to)
five tags (or keywords) that the user used to describe her
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Figure 4: Three inferred learning patterns in Stack Overflow. The top row shows the content associated to each pattern, in the
form of clouds of words, while the bottom row shows two samples of its characteristic temporal dynamics, by means of the
intensities of two users using the pattern.
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Figure 5: Learning patterns. Panels (a) and (b) show the popularity and burstiness of the top-50 most popular learning
patterns, and panel (c) shows the popularity and burstiness for all the inferred patterns. We highlight the learning pattern
examples in Figure 4, as well as some others from Table 1.

question as the content associated to the learning action. To
ensure that the inferred parameters are reliable and accurate,
we only consider users who posted at least 50 questions and
tags that were used in at least 100 questions. After these
preprocessing steps, our dataset consists of ⇠1.6 million
questions performed by ⇠16,000 users, and a vocabulary of
⇠31,400 tags. Finally, we run our inference algorithm on the
first 45 months of data and evaluate its performance on the
last three months, used as held-out set.

Runtime. In our experiments, we use |P| = 200 particles,
and set � = 1 and ⌫ = 5 by cross-validation (based on the
achieved log-likelihhod). Our implementation of the SMC
algorithms for the proposed HDHP and the HDP requires,
respectively, 71ms and 65ms per question on average, which
implies that accounting for the temporal information in the
data leads to an increase in runtime of only ⇠10%.

Goodness of fit. In order to measure the performance of
our proposed model, we evaluate its goodness of fit in terms
of both content and temporal dynamics. To this end, we
first evaluate the performance of the HDHP at capturing
the temporal dynamics of the learning activity and compare
it with the standard Hawkes process, which only accounts
for the temporal information of the data and, therefore,
cannot cluster learning actions into learning patterns. For
the Hawkes process, we model the learning activity of each
user as an independent univariate process, disregarding the
content of each learning action. In other words, we learn
both a base intensity µ and a self-excitation parameter ↵,
as defined in Eq. 3, per user active in the test set U

test

. In
order to compare the models’ performance, we first apply

the time changing theorem [9], which states that the integral
of the intensity of a point process between two consecutive
actions should follow a unit-rate exponential distribution.
Then, we resort to two goodness of fit tests, the Kolmogorov-
Smirnov and the Anderson-Darling [17], to measure how
well the transformed action times fit the target distribution.
Figure 3a summarizes the results by showing the percentage
of the users in the held-out set that each test rejects at a
significance level of 5%. From these results we can conclude
that: i) a exponential time decay kernel provides a good
fitting for the online learning activity for the vast majority of
the users; and ii) while the Hawkes process performs slightly
better (5% for the KS-test and 11% for the AD-test) than
our model, it does so by using almost 2⇥ more parameters
(2|U

test

| ⇠ 5k for the Hawkes vs |U
test

|+ L⇤ ⇠ 2.7k for the
HDHP, where L⇤ = 227 is the number of inferred learning
patterns). Moreover, we stress that since the Hawkes process,
as opposed to the HDHP, does not allow us to cluster users’
learning actions into learning patterns, it cannot be used to
track users’ interests over time, which is the main motivation
of this work.
Second, we focus on evaluating the performance of the

HDHP at clustering learning activity into learning patterns,
and compare it with the HDP [19], which only makes use
of the content information in the data. We resort to the
marginal likelihood of the inferred parameters evaluated on
the held-out set of questions !

i

2 D
test

, i.e.,

p(!
i

|D
train

, u
i

, t
i

) =
LX

`=1

p(!
i

|D
train

, `)p(`|D
train

, u
i

, t
i

).



Above, the first term is defined in the same way for both
models. However, for the HDP, the second term is simply
the topic popularity ⇡

`

, while for the HDHP it depends on
the complete user history up to but not including t
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, i.e.,
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) is given by Eq. 6.
Figure 3b shows the log-likelihood values obtained under the
proposed HDHP and the HDP on the held-out set. Here,
higher log-likelihood values mean better goodness of fit and,
therefore, all the points above the x = y line correspond to
questions that are better captured by the HDHP, which are
in turn 60% of the held-out questions. Additionally, we also
compute the perplexity [6] on the held-out set as

perplexity = exp

(
�
P

i:ei2Dtest
log p(!

i

|D
train

)

|D
test

|

)
.

The perplexity values for the HDHP and the HDP are 204
and 243, respectively, where here lower perplexity values
mean better predictive performance. These results show that
by modeling temporal information, in addition to content in-
formation, the HDHP fits better the content in the data than
the HDP (20% gain in perplexity), and therefore, provides
more meaningful learning patterns in terms of content, at a
low extra cost in terms of runtime (⇠10%). As a result, the
proposed HDHP allows us to accurately track users’ interest
over time, and compare di↵erent learning patterns in terms of
both content and temporal dynamics (refer to next sections).

Learning patterns. In this section, our goal is to under-
stand the characteristic properties of the learning patterns
that Stack Overflow users follow for problem solving. For
ease of presentation, we focus on three particular examples of
learning patterns, ‘Machine Learning ’, ‘Python’ and ‘Version
Control ’, among the 227 we uncovered. Figure 4 compares
the above mentioned patterns in terms of content, by means
of word clouds, and in terms of temporal dynamics, by means
of the learning pattern intensities associated to two di↵erent
users active on each of the patterns. Notice that in the
intensity plots, the y-axis is in the same scale for all the
learning patterns to allow for easier comparisons. Here, we
observe that: i) the cloud of words associated to each inferred
learning pattern corresponds to meaningful topics; and ii)
despite the stochastic nature of the temporal dynamics, the
user intensities of the same learning pattern tend to exhibit
striking similarities in terms of burstiness and periods of
inactivity. For example, we observe that Machine Learning

and Python tasks exhibit much larger bursts of actions than
Version Control. A plausible explanation is that version con-
trol tasks tend to be more specific and simple, e.g., resolving
a conflict while merging versions, and thus can be quickly
solved by performing one or just a few questions. On the
contrary, a user interested in machine learning or Python
may face more complex tasks whose solution requires asking
several questions in a relatively short period of time.

Additionally, we investigate the relation between learning
pattern popularity and burstiness, the latter being com-
puted as the expected number of questions triggered by
self-excitation during the first month after the adoption of
the pattern. While popularity accounts for the probability
of starting a new task on a learning pattern, the burstiness
can be interpreted as a measure of how engaging a learning
pattern is—more bursty patterns result in long sequences of
closely related learning actions performed in short periods
of time. Figure 5 shows the popularity and burstiness of
the 50 most popular learning patterns sorted in decreasing

Top-20 most probable words in the learning pattern

‘Web design’: jquery javascript html php css ajax jquery-ui

json forms arrays asp.net html5 jquery-mobile mysql dom regex

jquery-plugins internet-explorer jquery-selectors wordpress

‘sql’: sql mysql sql-server php sql-server-2008 database tsql oracle

postgresql sql-server-2005 database-design join stored-procedures

c# select sqlite sql-server-2008-r2 java performance datetime

‘iOS’: ios objective-c iphone xcode cocoa-touch ipad uitableview

cocoa core-data osx ios4 ios5 uiview uitableviewcell uiviewcon-

troller ios7 ios6 uinavigationcontroller uiscrollview nsstring

‘Python’: python numpy python-2.7 matplotlib django pandas

python-3.x scipy tkinter flask sqlalchemy list arrays wxpython

regex dictionary multithreading osx import google-app-engine

‘Version control’: git svn github version-control mercurial eclipse

tortoisesvn merge branch repository ssh bitbucket xcode git-branch

commit git-svn osx windows java gitignore

‘Machine learning’ (ML): matlab python algorithm r machine-

learning java matrix plot artificial-intelligence numpy arrays image-

processing nlp statistics opencv math octave data-mining scikit-

learn neural-network

‘UI Libraries’: knockout.js javascript kendo-ui jquery asp.net-

mvc knockout-2.0 kendo-grid durandal asp.net-mvc-4 knockout-

mapping-plugin kendo-asp.net-mvc breeze single-page-application

typescript mvvm asp.net-mvc-3 data-binding signalr json twitter-

bootstrap

Table 1: The 20 most probable words for the seven patterns
highlighted in Figure 5c.

order of popularity, as well as a scatter plot which shows the
popularity against burstiness for all the inferred patterns.
The figure reveals that the burstiness is not correlated with
the popularity of a pattern. On the contrary, even among
the top 20 most popular patterns, several of them trigger on
average less than 0.5 follow-up questions. A possible expla-
nation for this phenomenon is that the tasks associated with
such patterns are more self-contained and the corresponding
questions do not project towards a long-term goal. Figure 5c
highlights examples of learning patterns that are very popu-
lar and bursty, e.g., Web design; examples of bursty learning
patterns that are not very popular, e.g., machine learning ;
and learning patterns that are not popular nor bursty, e.g.,
UI libs. Table 1 shows the top-20 most probable words in the
seven learning patterns highlighted in Figure 5c.
Finally, it is also worth noticing that as shown by the

popularity distribution in Figure 5a, which can be seen as the
overall interests of the users of the online learning platform
(i.e., Stack Overflow), there is a small set of learning patterns
which are much more popular than the rest. In particular,
the most popular learning pattern, which is related to Web

design, captures approximatively 12% of the attention of
Stack Overflow users, and the 20 most popular learning
patterns gather more than 60% of the popularity.

User behavior. In this section, we use our model to
identify di↵erent types of users and derive insights about the
learning patterns they use over time, as well as the evolution
of their interests. Two natural questions emerge in this
context: (i) do users stick to just a few learning patterns for
all their tasks, or perhaps they explore a di↵erent pattern
every time they start a task?; and, (ii) how long do they
commit on their chosen task?
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Figure 7: Real-world examples of user behavior. An explorer
user (panel (a)), shifts over many di↵erent learning patterns
over time, while a loyal user (panel (b)) sticks to a small
selection of patterns.

First, we visualize the inferred intensities for two specific
real users, among the several that we found, in Figures 7(a-b).
These are examples of two very distinctive behaviors:

– Explorers: They shift over many di↵erent learning
patterns and rarely adopt the same pattern more than
once. For example, the user in Figure 7a adopts over
10 patterns in less than a year, and rarely adopt the
same learning pattern more than once.

– Loyals: They remain loyal to a few learning patterns
over the whole observation period. For example, the
user in Figure 7b asks questions associated to two
learning patterns over a period of 4 years period and
rarely adopts new learning patterns.

We investigate to which extent we find explorers and loyals
throughout Stack Overflow at large. To this end, we compute
the user base intensities, µ

u

, which can be viewed as the
number of new tasks that a user starts per month, and the
distribution of the total number of learning patterns adopted
by each user over the observation period. Figures 6a and 6b
summarize the results, showing several interesting patterns.
First, there is a high variability across users in terms of new
task rate—while most of users start one to two new tasks
every month, there are users who start up to more than 8
tasks monthly. Second, while approximately 5% of the users
remain loyal to at most 5 learning patterns and another 10%
of the user explores more than 25 learning patterns over the
4 years, the average user (⇠87%) adopts between 5 and 25
patterns during this period.

We also investigate how long users commit on their chosen
task. To answer this question, we compute the average time
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Figure 8: For a random sample of 500 users, we plot the
number of di↵erent learning patterns that each user adopts
vs the average time they invest in a task.

between the initial and the final action for each task of our
users. Figure 6c show the distribution of the average time
spent per task. Here we observe that while approximately
10% of the user tasks are concluded in less than a month,
most of the users (over 75% of the users) spend one to four
months to complete a task.

Finally, we explore in Figure 8 how long the users dedicate
to a task compared to the number of unique learning patterns
they adopt. Here, we observe that when users adopt many
di↵erent learning patterns, they tend to spend only short
time in each of their tasks. This behavior is hinting at a user
being an explorer. On the other hand, more loyal users, i.e.,
the ones who adopt a limited number of di↵erent learning
patterns, tend to spend more time in each of their tasks.

5. CONCLUSIONS
In this paper, we proposed a novel probabilistic model, the

Hierarchical Dirichlet Hawkes Process (HDHP), for clustering
grouped streaming data. In our application, each group
corresponds to a specific user’s learning activity. The clusters
correspond to learning patterns, characterized by both the
content and temporal information and shared across all users.
We then developed an e�cient inference algorithm, which
scales linearly with the number of users and learning actions,
and accurately recovers both the pattern associated with
each learning user action and the model parameters. Our
experiments on large-scale data from Stack Overflow show
that the HDHP recovers meaningful learning patterns, both
in terms of content and temporal dynamics, accurately tracks
users’ interests and goals over time, and provides better
predictive performance than the state of the art.
Our work opens many interesting venues for future work.

For example, the proposed HDHP could be run within the
learning platform in an online fashion to track users’ interest



in real time and recommend questions that may be of interest
at the right time. Although here we focused on modeling
online learning activity data, it would be interesting to apply
the proposed HDHP to cluster other types of streaming data,
ranging from news articles, in which there is a single stream
(group) of data, to web browsing, where one could identify
groups of websites that provide similar services or content.

APPENDIX
A. DETAILS ON THE INFERENCE

Given a collection of n observed learning actions performed
by the users of an online learning site during a time period
[0, T ), our goal is to infer the learning patterns that these
events belong to. To e�ciently sample from the posterior
distribution, we derive a sequential Monte Carlo (SMC)
algorithm that exploits the temporal dependencies in the
observed data to sequentially sample the latent variables
associated with each learning action. In particular, the
posterior distribution p(b
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In the above expression, we can exploit the conjugacy between
the multinomial and the Dirichlet distributions to integrate
out the word distributions ✓
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and obtain the marginal likeli-
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following the literature in SMC devoted to the estimation of a
static parameter [7, 8], we infer these parameters in an online
manner. In particular, we sample the kernel parameters
from their posterior distribution up to, but not including,
time t, and we update the user base intensities at time t
as µnew

u

= rµold

u

+ (1 � r)µ̂
u

, where µ̂
u

is the maximum
likelihood estimation of this parameter given the user history
H

u

(t) and r 2 [0, 1] is a factor that controls how much the
updated parameter µnew

u

di↵ers from its previous value µold

u

.
Algorithm 1 summarizes the overall inference procedure,

which presents complexity O(P(U+L+K)+P) per learning
action i fed to the algorithm, where L and K are the total
number of learning patterns and tasks inferred up to the
(i � 1)-th action. Note also that, the for-loop across the
particles p 2 P can be parallelized, reducing the complexity
per learning action to O(U + L+K + P) .

Algorithm 1 Inference algorithm for the HDHP
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Normalize particle weights.
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Resample particles.
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