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ABSTRACT
The online and offline worlds are converging. Location-
based services, ubiquitous mobile devices and on-the-go so-
cial network accessibility are blurring the distinction be-
tween in-person activities and their virtual counterpart. An
important effect of this convergence is the rapid and po-
werful impact of offline events (meetings, conferences) on
the evolution and temporal dynamics of the online connec-
tivity between members of social and professional networks.
However, these effects have been largely unexplored, in part
due to the lack of datasets that provide a reliable mapping
between events attendees and their online identity and con-
nections.

We are seeking to bridge this gap by using data from
LinkedIn, a popular business-related social networking site
with more than 120 million members and 10,000 real world
events. We find that offline events may induce connecti-
vity changes in the online network – there is a dramatic
increase in the number of connections between event at-
tendees shortly after the date of the event. Building on
these insights, we describe a non-supervised framework that
exploits connectivity changes temporally correlated to real
world events to successfully infer more than 40% of specific
event attendees. Finally, we revisit the link prediction prob-
lem by including user contributed information about offline
events to achieve higher link prediction performance.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications – Data mining
General Terms: Algorithms; Experimentation.
Keywords: Social networks, real world events, temporal
dynamics, link prediction.

1. INTRODUCTION
In recent years, there has been an increasing effort and sig-

nificant progress in understanding the global structure and
evolution of social networks [3, 5, 8, 16, 17, 22]. However,
the mechanism and motivation underlying individual edge
creation is still under-explored [4, 16]. In many circums-
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tances, we may be unable to understand the evolution and
dynamics underlying a social network by limiting our inputs
to node features, edge features and the topological structure
of the network.

In the context of social and professional networks, exter-
nal factors such as social gatherings and professional confe-
rences trigger new connections between people (nodes) in
the network and are key to understanding its evolution.
Understanding these mechanisms and their motivation is
important - not only for its intrinsic value, but for its po-
tential to improve link prediction algorithms, detecting off-
line events (meetings, conferences, parties, etc.) that caused
the connection, or finding attendees with common interests
that facilitate both edge creation and the above-mentioned
events. In particular, external events allow us (i) to pre-
dict when the connection between two people will be created
(i.e., it is more likely to happen just before or after an event
in which both attend), and (ii) to predict connections be-
tween people that are distant in terms of network distance,
geography or both.

Moreover, since online networks are usually very large and
sparse [22], sampling has become a challenging task. For
example, even highly connected LinkedIn members (>1000
connections) are connected to less than 0.001% of all the
LinkedIn members. In this context, external factors provide
an efficient and valuable meaningful sampling of a real net-
work that goes beyond first and second degree connections
or co-membership to a specific discussion group or online
community.

Present work. We study how real world professional events
and social gatherings relate to the temporal dynamics and
evolution of a professional network. We show that the num-
ber of new connections among attendees to events increases
significantly in a short time window just after the dates of
the events. Building on this empirical insight, we first de-
scribe how to infer attendees to an event from changes in
the connectivity of a social network. Later on, we revisit
the link prediction problem to account for real world events,
achieving a higher performance.

We use data from LinkedIn, an online professional net-
work with more than 120 million members. In addition to
the social graph, defined by the professional connections
among LinkedIn members, we record a public list of at-
tendees, often incomplete, for the largest 10,000 real world
public events that created a page on events.linkedin.com.
The lists are often incomplete or partial since we only ac-
count for members that publicly RSVP’ed to an event using
events.linkedin.com. This dataset gives us a comprehen-



sive direct mapping between a subset of the attendees to
events and members of a social network.

Related work. Our work builds upon several lines of re-
search that lie in two main categories: link prediction and
event detection.

The link prediction problem in networks has raised much
interest in recent years. The problem has been posed as
an unsupervised [18] as well as a supervised [24, 30] ma-
chine learning problem. Many approaches to link prediction
are based on proximity measures on the network topolo-
gy [1, 19] and community detection [11, 14]. However, there
have been substantial developments that extend the feature
space beyond proximity measures. Link prediction based on
the combination of node features (i.e., user profile informa-
tion), edge features (i.e., interaction information) and net-
work structure has been shown to improve performance [4].
Recently, geographical proximity among nodes has been also
considered in the context of link prediction [25, 28, 31]. Fi-
nally, even temporal traces of diffusion that allow for net-
work inference methods can also be viewed as new features
for predicting links in networks [12, 13, 21, 29]. Link predic-
tion has been evaluated in a broad range of networks: coau-
thorship networks [4, 14] (arXiv e-print archive, PubMed),
social networks [4, 20] (Facebook, Twitter), mobile phone
networks [10, 31], and location-based social networks [10,
28] (Gowalla, Brightkite).

Event detection has been an active research area, focused
on identifying events in social media. Traditionally, text
mining and clustering techniques have been applied to do-
cument feature representations of news articles in blogs and
news media sites in order to find events of interest [2, 15, 32].
More recently, approaches to event detection that exploit the
underlying structure and temporal dynamics of social net-
works have been suggested, especially for Twitter data [6, 7,
9, 23, 26, 27]. However, previous studies aim to detect news
events or natural disasters, but not events in the sense of
meetups and social or professional gatherings, their atten-
dees and their impact on the online connectivity between
attendees to these events.

To the best of our knowledge, the influence that real world
events have on the evolution of the connectivity between
members of a social network is a novel research problem that
has not been studied in previous work. We believe this work
is a starting point towards better understanding interactions
among members of a social network, inferring attendees of
real world events and helping to improve link prediction.
The main contribution of our work is twofold. First, we find
that real world events are temporally correlated to connec-
tivity changes in networks and we show that these changes
alone allow us to infer attendees to such events. Second, we
modify well known methods for link prediction to account
for real world events, achieving a higher performance.

The remainder of the paper is organized as follows. In
section 2, we explore how and to which extent real world
events may influence the dynamics and evolution of a pro-
fessional network. Section 3 shows how to infer attendees to
real world events from changes in the connectivity of a pro-
fessional network. Section 4 describes how to use real world
events for improving non supervised link prediction algo-
rithms. Finally, conclusions and future work are discussed
in section 5.
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Figure 1: Both the number of RSVPs per event
(Panel (a)) and the RSVPs per member (Panel (b))
are heavy-tailed distributions, as many other natu-
ral processes. About 75% of the real world events
have between 10 and 50 RSVPs, and about 70% of
the members report attendance to a single event.

2. EVENT DYNAMICS
In this section, we describe the data that allows us to

link real world events to social network dynamics. We start
by computing general statistics about events and attendees.
We then show empirical evidence that real world events are
temporally correlated to an increase of the connectivity rate
in the social network that the attendees belong to.

Data. We use data from a popular business-related so-
cial networking site, LinkedIn, with more than 120 million
members that is mainly used for professional networking.
In addition to the professional connections among LinkedIn
members that define the social graph of the site, we record
the dates and lists, often incomplete, of LinkedIn members
that attended more than 10,000 real world events that have a
public webpage at events.linkedin.com. The lists are often
incomplete or partial because we only account for members
that RSVP’ed to an event using events.linkedin.com, but
the actual complete list of attendees is hidden and may be
larger.

First, we compute the distribution for the number of atten-
dees per event that RSVP’ed and for the number of events
that a member RSVP’ed1. Figure 1(a) shows the comple-
mentary cumulative distribution (Complementary CDF) for
the number of attendees per event that RSVP’ed. We ob-
serve a heavy-tailed distribution, as many other natural pro-
cesses – more than 90% of the real world events have more
than 10 RSVPs but only 15% of real world events have more
than 50 RSVPs. That means, 75% of the real world events
in events.linkedin.com have between 10 and 50 RSVPs.
Figure 1(b) shows the complementary CCDF for the num-
ber of events that a member RSVP’ed. Again, we observe a
heavy-tailed distribution, with 70% of the members repor-
ting attendance to a single real world event.

Now, we continue by computing several quantities that
allow us to study how real world events temporally corre-
late to an increase of new professional connections between
attendees to those events.

Connections, density and events. We record the dates
when events take place, the connections between attendees
of such events that RSVP’ed using events.linkedin.com

and the day in which those attendees become connected.
Figure 2(a) shows the absolute daily number of new con-

1We have considered only LinkedIn members that RSVP’ed
to an event on events.linkedin.com at least once.
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Figure 2: Daily connections and network density. In the figures, we observe that there is a higher connectivity
rate (and network density increase) between attendees (that RSVP’ed) on and up to 10 days after the dates
in which events take place. This occurs in average (Panels (a), (b)), across events (Panel (c)) and across
attendees (Panel (d)).

nections. There are several interesting patterns. First, we
find a sharp increase in the daily number of new connections
during and up to 10 days after the events. Second, 10 days
after the event, the daily number of new connections declines
and it is even lower than before the event. This empirical
insights are also supported by the average daily density gain
over the subgraphs induced by real world events on the full
social graph2, as shown in Figure 2(b). We define density of
a subgraph Ge as:

D(Ge) = 2|Ee|/(|Ve| · (|Ve| − 1)),

where Ve and Ee are the set of nodes and connections in Ge,
and we define density gain of the social graph of an event at
day t as

(
D(Gt+1

e )−D(Gte)
)
/D(Gte), where D(Gt+1

e ) and

D(Gte) are the subgraph densities at days t+1 and t respec-
tively.

We have observed an average higher connectivity rate and
density increase on and up to 10 days after the dates in which
events take place. However, does this density increase occur
consistently across the full spectrum of real world events
with a website in LinkedIn? As Figure 2(c) shows, it does

2The subgraphGe induced by a real world event e on a social
graph G is composed of all nodes from G that RSVP’ed to
the event e using events.linkedin.com and the connections
among them.

occur across events. This figure shows the density gain for
the subgraph induced by each event in the 5 days before
the event,

(
D(Gtee )−D(Gte−5

e )
)
/D(Gte−5

e ), and the 5 days

after the event,
(
D(Gte+5

e )−D(Gtee )
)
/D(Gtee ). For each

time window, the events are sorted by decreasing density
gain. We observe that across the full range of events, there
is a greater density increase (gain) during the 5 days after
the date of the event than during the 5 days before. This
supports the empirical findings that we discussed in average
in the paragraph above.

Now, we break down events by attendees, and compute
the normalized degree gain per attendee for the 5 day time
window before the event and the 5 day time window after
the event. We define normalized degree of an attendee as
the number of connections of the attendee to other atten-
dees divided by the total number of attendees to the event
minus one. Figure 2(d) shows the normalized degree gain for
the attendees of all events. For each time window, the at-
tendees are sorted by decreasing normalized degree gain. In
this case, we observe that only half the attendees increases
significantly their normalized degree by connecting to other
attendees during the 5 days before the event, but there is
an increase in normalized degree across the full range of at-
tendees during the 5 days that follow the the date of each
event.
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Figure 3: Tradeoff between average recall (correctly
identified attendees) and precision proxy (ratio be-
tween the list of attendees that RSVP’ed and the
size of the inferred set of attendees) for connection
counting (CC) and temporally weighted connection
counting (TWCC). We achieve this tradeoff by tun-
ing the time window [te − wmin, te + wmax].

Although we have found a connectivity increase between
attendees to real world events shortly after the dates of the
events, this does not imply, strictly speaking, causality –
we cannot claim that the connectivity increase is a direct
cause of the event. However, in practice, we can still exploit
this coincidence to infer attendees to events or predict links
between attendees.

3. INFERRING ATTENDEES
In this section, we describe and evaluate two simple meth-

ods that perform surprisingly well inferring attendees to
events by simply exploiting this network connectivity in-
crease. Both methods allow for a tradeoff between recall
and precision by parameter tuning.

3.1 Algorithms
Given a undirected network G = (V,E) and a real world

event e, we define the set of nodes that attended a real world
event e as Ae ⊆ V , the set of nodes that RSVP’ed to the
event e as Se ⊆ Ae, and the set of nodes that attended
the event e but did not RSVP’ed as Ie ⊆ Ae. We assume
that nodes that RSVP’ed typically attend the event and
therefore Ie ∪ Se ≈ Ae and Ie ∩ Se = ∅. In many cases Ie is
unknown and our goal is to find the nodes that belong to Ie
given the seed set Se, for every real world event e. We now
describe two simple methods to achieve this goal: connection
counting and temporally weighted connection counting.

Connection counting (CC). We build the set of inferred

attendees Î by considering all nodes inG that have n or more
than n new connections to nodes in Se in a time window
[te − wmin, te + wmax], where te is the (starting) date of the
event e,

Î = {i ∈ V \Se : |j ∈ Se, −wmin ≤ (ti,j − te) ≤ wmax| ≥ n},

where ti,j is the time in which nodes i and j become connec-
ted. We achieve a tradeoff between recall and precision by
tuning wmin, wmax and n. For simplicity, in the remainder
of the paper, we work with symmetric time windows around
the (starting) date of the event (i.e., w = wmin = wmax);

however, this does not restrict our ability to choose different
values for wmin and wmax.

Temporally weighted connection counting (TWCC).

We build the set of inferred attendees Î by considering nodes
in G such that the temporally weighted sum of their connec-
tions to nodes in Se exceeds a threshold ε,

Î = {i ∈ V \Se :
∑
j∈Se

e−α·|ti,j−te| ≥ ε},

where ti,j is the time in which nodes i and j become connec-
ted and α is a decay factor that accounts for the evolution
of the connectivity increase with respect to the date of the
event, shown in Figure 2(b). We achieve a tradeoff between
recall and precision by tuning α and ε.

3.2 Experimental evaluation
To evaluate the performance of both connection counting

and temporally weighted connection counting, we would like
to study the tradeoff between precision and recall in average
across all 10,000 real world events.

If a complete list of attendees (ground truth) for a real
world event is available, precision is the fraction of nodes
in the inferred set of attendees, Î, present in the complete
list of attendees of the event that did not RSVP’ed (i.e.,

|Ie ∩ Îe|/|Îe|) and recall is the fraction of nodes in the list
of attendees of the event that did not RSVP’ed, Ie, that are
present in the inferred set of attendees Îe (i.e., |Ie∩ Îe|/|Ie|).

Unfortunately, in general, we do not have access to a com-
plete list of attendees or ground truth for each real world
event but only to an incomplete list of people that RSVP’ed
through events.linkedin.com. However, in addition to es-
timate recall (i.e., correctly identified attendees) using cross-
validation, we are able to identify and measure a precision
proxy.

To estimate the recall for an event, we perform leave-one-
out crossvalidation (LOOCV) for every member in the list
of attendees that RSVP’ed, Se. In particular, we solve |Se|
inference problems, one for each member i ∈ Se. For each
inference problem, we create the sets S′e = Se\i and I ′e =
{i}, and infer I ′e from S′e. We then compute the recall for
each of these inference problems and estimate the total recall
computing the average.

We cannot estimate the precision for an event given only a
list of attendees that RSVP’ed through events.linkedin.

com, Se. Instead, we compute a precision proxy as follows.
For each event e, we let CC and TWCC include members
i ∈ Se in the inferred set Îe. We then compute the ratio
between the list of attendees that RSVP’ed, Se, and the size
of the inferred set of attendees, Îe, i.e., |Se|/|Îe| for each
method (and event). This ratio can be relatively low for
events in which not many attendees RSVP but the size of
the event is actually high. In some cases, a very small value
may also indicate a lack of precision.

We now start by evaluating the tradeoff between recall and
precision proxy in average across all the events for both con-
nection counting and temporally weighted connection count-
ing. Later, we show that the method that achieves the best
tradeoff between recall and the precision proxy works well
across all 10,000 events, not only in average. Finally, we
evaluate both methods in terms of precision and recall in
a case study of a particular event in which both a list of
attendees at LinkedIn and complete list of attendees at the
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Figure 4: Recall (correctly identified attendees) and precision proxy (ratio between the list of attendees that
RSVP’ed and the size of the inferred set of attendees). Panel (a) and (b) show that the tradeoff between
recall and precision proxy shown for connection counting in Figure 3 is consistent across events. Longer time
windows result on higher recall and smaller precision proxy. Note that if we have an estimate of the total
number of attendees to an event |Ae|, we can tune w and n to achieve |Se ∪ Îe| = |Ae|

official website of the event are available.

Tradeoff between recall and precision proxy. We
achieve a tradeoff between recall and precision proxy by
tuning the time window [te − w, te + w] in connection coun-
ting and the threshold ε in temporally weighted connection
counting. Figure 3 shows the average recall vs precision
proxy for both methods. There are several interesting ob-
servations. First, if we assume that the list of RSVPs is com-
plete (i.e., all attendees have RSVP’ed and thus Se = Ae),
we correctly identify approximately 27% of the attendees
that RSVP’ed with both CC and TWCC. Second, if we allow
for an event size three times larger than the list of RSVPs,
we manage to identify 40% of the RSVPs with CC and 32%
with TWCC. Finally, allowing for an event size ten times
larger than the RSVP list leads to discover more than 60%
of the attendees that RSVP’ed with CC but only 44% with
TWCC. We observe that for any fixed value of the precision
proxy CC achieves always a higher recall value than TWCC.

Recall across events. We now pay attention to the in-
dividual recall across all the 10,000 real world events for
connection counting (CC). Figure 4(a) shows the recall for
different time windows [te − w, te + w]. For w = 100 (i.e.,
the time window spanning three months before and after the
date of the event), we achieve an average recall as high as
40% across 10,000 real world events and a recall higher than
40% for more than 50% of the events and higher than 60%
for more than 20% of the events.

Proxy to precision across events. In Figure 4(b), we
observe the ratio between the list of attendees that RSVP’ed,
Se, and the size of the inferred set of attendees, Îe, that
may include members i ∈ Se, across all 10,000 real world
events for connection counting. It is difficult to judge the
performance because the real number of attendees per event
is unknown, and we only have access to the list of attendees
that RSVP’ed using events.linkedin.com. Note that if we
have an estimate of the total number of attendees to an
event |Ae|, we can either tune the parameters of connection

counting to achieve |Se ∪ Îe| = |Ae|.

Example and case study: precision and recall for a
professional event3. Although true event attendee lists
are rarely made public, we have examined how our tech-
niques perform in one case where such information is known.
In spite of its small size, the event helps us exemplify our
techniques and grounds our precision proxy. The official
website of the event that we have chosen contains links to
the LinkedIn profiles of each attendee that has a LinkedIn
account and therefore, we have a reliable mapping between
both the list of attendees at LinkedIn and the complete list
of attendees at the official website.

All 21 people that RSVP’ed are also listed as attendees in
the official website of the event. However, there are a total
of 63 attendees with LinkedIn account listed in the official
website (out of 67 attendees), i.e., there are 42 LinkedIn
members that attended the event that did not RSVP’ed.
Figure 5(b) shows the daily connections to members that
RSVP’ed. As in section 2 for all events in average, we also
observe a peak in new connections just before and after the
event, and later on a decline in the number of new con-
nections. Figure 5(a) shows the number of connections to
members that RSVP’ed in a time window spanning 10 days
before and after the event for every member in the inferred
set of attendees returned by connection counting. More than
75% of the inferred attendees created 5 or more connections
to members that RSVP’ed. Our aim is to infer the set of
42 members that did not RSVP using only the connectivity
increase in the social graph.

Using connection counting with a time window spanning
20 days before and after the event and a threshold of 2 con-
nections, the recall on the set of 42 members that did not
RSVP is 71.4%. Importantly, connection counting returns
only 2 LinkedIn members that are not listed in the official
website nor RSVP’ed, i.e., if we assume that only people

3Drupal executives meeting in Brussels, 8-10 October,
2010. Official event website: http://cxo.drupaldays.org.
LinkedIn event website: http://www.linkedin.com/
osview/canvas?_ch_page_id=1\&_ch_panel_id=1\&_ch_
app_id=7083120\&_applicationId=2000\&_ownerId=0\
&appParams=\{"go_to":"events/421548","referrer":
"public"\}.
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Figure 5: Drupal executives meeting event. In Panel (a), we observe that more than 75% of the inferred
attendees created 5 or more connections to members that RSVP’ed through LinkedIn in the time window
spanning 20 days before and after the event. In Panel (b) we find a sharp increase on the number of new
connections just before and after the event and later on a decline in the number of new connections.

in the list of attendees in the official website attended the
event, the precision of our method is 95.5%. Moreover, if we
perform leave-one-out crossvalidation (LOOCV) on the set
of 21 members that RSVP’ed, the recall on the 21-member
set is 100%.

Using temporally weighted connection counting with α =
0.1 and ε = 1, the recall on the set of 42 members that did
not RSVP is 83.3%, increasing 11.9% with respect to con-
nection counting. However, the precision is 81.4%, slightly
worse than connection counting (-14.1%). As in connection
counting, the recall on the 21-member set of members that
RSVP’ed using leave-one-out crossvalidation is 100%.

In both connection counting and temporally weighted con-
nection counting we can achieve a tradeoff between precision
and recall by tuning the parameters w, n (in CC) and α and
ε (in TWCC).

4. INFERRING CONNECTIONS
In this section, we modify two well-known quantities on

the graph topology, which have been used successfully for
link prediction [1, 18], to leverage from the lists of attendees
that RSVP’ed to real world events. We then evaluate the
modified quantities in a non-supervised setting for link pre-
diction and show that including information about events
enables us to achieve a higher performance.

4.1 Algorithms
Given a undirected network G = (V,E) and a real world

event e with (starting) date te, we define the set of nodes
that RSVP’ed to the event e through events.linkedin.com

as Se ⊆ V . Our aim is to predict new connections in dates
close to te in which at least one of the peers belongs to Se.

Baseline methods. We first recall two baseline methods
based on ranking measures on the graph topology that have
been shown to achieve a relatively good performance in the
link prediction problem in social networks: normalized co-
mmon neighbors and Adamic-Adar. Normalized common
neighbors (CN) between two nodes i and j is defined as the
number of connections that nodes i and j have in common

normalized by the product of the connections of each node,

CN(i, j) =

√
|Γ(i) ∩ Γ(j)|
|Γ(i)||Γ(j)| , (1)

where Γ(n) = {m ∈ V : (m,n) ∈ E}. Adamic-Adar (AA)
modifies common neighbors by weighting each neighbor by
her degree instead of simply counting,

AA(i, j) =
∑

n∈Γ(i)∩Γ(j)

1

log |Γ(n)| . (2)

Both quantities (baselines) do not take into account whe-
ther two nodes attended the same real-world event. How-
ever, the probability that two nodes become connected in a
social network increases if they get to know each other in
person in a real-world event.

Event-based methods. The rationale for an event-based
link prediction approach is better understood after having
a close look at Figure 6. The figure shows the new daily
connections between attendees that RSVP’ed to an event
vs the total number of new daily connections created by
these attendees to any node in the network. Importantly, we
observe that an attendee to an event tends to create almost
one order of magnitude more connections to attendees of
the same event in dates closer to the event than in other
days far from the date of the event. We then introduce two
simple methods based on normalized common neighbors and
Adamic-Adar that given a list of RSVP’s to a real-world
event achieve a greater performance on the link prediction
task for dates close to the date of the event.

Normalized common attendees (CAe) between two nodes
i and j given an event e is defined as the number of connec-
tions to attendees of the event e that nodes i and j have
in common normalized by the product of the connections of
each node that are attendees to the event,

CAe(i, j) =

√
|Γe(i) ∩ Γe(j)|
|Γe(i)||Γe(j)|

, (3)

where Γe(n) = {m ∈ Se : (m,n) ∈ E}. In this case, we
assume that two nodes are more likely to get to know each
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Figure 6: New daily connections between attendees
of an event vs the total number of new daily connec-
tions created by attendees of the event to any node
in the network. An attendee to an event tends to
create almost one order of magnitude more connec-
tions to attendees of the same event in dates closer
to the event than in other days far from the date of
the event

other and become connected in the social network if they
have common connections that attended an event e. Finally,
event-based Adamic-Adar (AAe) simply modifies common
attendees in the same way that Adamic-Adar modifies com-
mon neighbors, penalizing nodes with high degree,

AAe(i, j) =
∑

n∈Γe(i)∩Γe(j)

1

log |Γ(n)| , (4)

where Γe(n) and Γ(n) are defined as above. Common atten-
dees and event-based Adamic-Adar use both the list of atten-
dees to an event and the network topology.

4.2 Experimental evaluation
We evaluate our baseline and event-based methods as fol-

lows. For each attendee to an event, we consider (i) her
second degree connections up to wmin days before the day
of the event and (ii) the other attendees to the event to
build the list Pe of potential connections that may be cre-
ated by attendees to an event e during the time window
(te −wmin, te +wmax). Then, we generate for each method

a list of top-k most likely connections per event L̂e,k ⊆ Pe.
Finally, sweeping over k values allows us to obtain different
points in the precision recall curve.

Recall and precision. For each event, we compute the
precision and recall of the baseline and event-based methods
on the connections Le that the attendees create during the
time window (te − wmin, te + wmax). We define precision
as the fraction of connections in the list of top-k most likely
connections L̂e,k present in the list of connections Le (i.e.,

|Le ∩ L̂e,k|/|L̂e,k|) and recall as the fraction of connections
in the list of connections Le present in the list of top-k most
likely connections L̂e,k (i.e., |Le ∩ L̂e,k|/|Le|).

For our experiments we set wmin = wmax = 10 days, i.e.,
we try to find the connections created in a 20-day time win-
dow centered on the (starting) date of each event. First,
we filter out events with less than 10 attendees, since we
have observed that attendees to such small events are typ-
ically heavily connected between them and events do not

provide additional information, and events with more than
50 attendees for computational reasons, since they were only
15% of the total number of events. Then, we generate two
sets of events: a set of 500 events with the smallest number
of connections between attendees up to te −wmin and a set
of 100 random events. For each event, the set of potential
connections that we rank are (i) connections between each
attendee and her second degree connections (second degree
connections up to te −wmin days before the (starting) date
of the event) and (ii) connections between attendees.

The average set size of potential connections per event
is 730,330 connections for the 500-event set and 1,518,700
connections for the 100-event set, while the average set of
true connections contains only 534 connections and 453 con-
nections respectively, i.e., the probability of choosing a true
connection at random is at most 7·10−4 for the 500-event set
and 3·10−4 for the 100-event set. For each of the methods we
ranked in total more than 500 million potential connections.

Figure 7 shows the average precision vs recall curves across
events with 1.96· standard error (σ/

√
N) bands, which result

of sweeping over k on the lists of top-k most likely connec-
tions in the event-based and baseline methods for both set of
events. In both event sets, AAe outperforms both baselines
in terms of precision for more than an order of magnitude for
recall values up to 50%. For example, for a 10% recall, AAe

achieves a precision of approximately 4% in the 500-event set
and 1.5% in the 100-event set while CAe precision is 0.5% in
the 500-event set and 0.25% in the 100-event set. The preci-
sion for both CN and AA goes down to a value below 0.2%
in the 500-event set and below 0.06% in the 100-event set.
Due to the heavily unbalance dataset that the algorithms
need to deal with, they output solutions with relatively low
precision value. If we compare the performance between
both sets of real world events, we observe that event-based
methods gives a greater additional mileage in the 500-event
set with the smallest number of connections between atten-
dees up to te − wmin than in the 100-event random set. A
possible explanation behind this difference in performance is
that a small number of connections among attendees wmin
days before an event makes inferring connections using only
the network topology more difficult.

Here, we aim to give empirical evidence that real world
events improve performance by modifying two simple meth-
ods – including real world events information in more so-
phisticated link prediction methods may help to increase
precision.

Performance vs. event size. We now perform a strati-
fied analysis of the performance with respect to event size.
Figure 8 plots the average area under curve (AUC) values
on the precision recall curves against event size. We observe
that the performance does not change significantly with re-
spect to the event size and event-based methods outperform
the baselines across the full range of event sizes.

5. CONCLUSIONS
We have given empirical evidence that real world events

shape the temporal dynamics of a social network. Real-
world events may facilitate connections between attendees
in an on-line social network. We conclude this after study-
ing a business-related social network, LinkedIn, with more
than 115 million members and 10,000 real-world events. To
the best of our knowledge, our work tries to bridge, for the



(a) 500-event set with lowest number of connec-
tions before wmin = 10

(b) 100-event random set

Figure 7: Precision vs recall for the link prediction task. Event-based methods (AAe and CAe) perform
better than the baselines (CN and AA) in terms of precision across almost the full range of recall values. For
recall values below 50%, AAe achieves precision values an order of magnitude higher than both baselines CN
and AA.

first time, the gap between off-line and on-line social graph
dynamics.

We exploit the bridge between off-line and on-line dynam-
ics in two research problems: attendee inference and link
prediction. First, we show that simple methods that account
for event-induced connectivity changes in a social network
can be fruitfully applied to uncover attendees to real-world
events. We are able to successfully infer more than 40% of
specific event attendees using only event-induced connectivi-
ty changes. Second, we modify well-known non supervised
link prediction methods to account for the event-induced
network dynamics and we show that these modifications lead
to a significant improvement. In particular, we achieve pre-
cision values more than an order of magnitude higher than
traditional methods that do not account for event-induced
network dynamics.

There are several research directions to build on and be-
nefit from our framework. First, we have studied how real-
world events shape a business-related social network but it is
an open question if similar patterns occur in a non business-
related social network (e.g., Facebook, Twitter, etc.), and
to study the (possible) differences between them. Second,
since sampling of social networks is becoming increasingly
challenging due to the network sizes, real-world events could
be used as an efficient meaningful sampling mechanism that
would go beyond first and second degree connections or
community-based sampling. Third, temporal records of real
world events and connections in a social network are often
noisy, inaccurate or unobserved. In such cases, it is nec-
essary to develop and apply inference and reconstructing
algorithms for the temporal data.

Finally, we have shown that it is possible to infer attendees
to an event based on the network dynamics. But, is it possi-
ble to go a step further and infer an event itself and its atten-
dees based on the network dynamics? Would it be feasible
to perform real-time detection of events from data streams
of online network activity? Would geotemporal traces left
by nodes in a social network give an additional mileage in
detecting real-world events?
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