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ABSTRACT

In an increasingly polarized world, demagogues who reduce com-
plexity down to simple arguments based on emotion are gaining in
popularity. Are opinions and online discussions falling into dema-
goguery? In this work, we aim to provide computational tools to
investigate this question and, by doing so, explore the nature and
complexity of online discussions and their space of opinions, un-
covering where each participant lies.

More specifically, we present a modeling framework to construct
latent representations of opinions in online discussions which are
consistent with human judgments, as measured by online voting.
If two opinions are close in the resulting latent space of opinions,
it is because humans think they are similar. Our framework is
theoretically grounded and establishes a surprising connection
between opinion and voting models and the sign-rank of matrices.
Moreover, it also provides a set of practical algorithms to both
estimate the dimensionality of the latent space of opinions and
infer where opinions expressed by the participants of an online
discussion lie in this space. Experiments on a large dataset from
Yahoo! News, Yahoo! Finance, Yahoo! Sports, and the Newsroom
app show that many discussions are multisided, reveal a positive
correlation between the complexity of a discussion, its linguistic
diversity and its level of controversy, and show that our framework
may be able to circumvent language nuances such as sarcasm or
humor by relying on human judgments instead of textual analysis.
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1 INTRODUCTION

People join online discussions to, on the one hand, express their
own opinions and, on the other hand, approve and disapprove the
opinions expressed by others. In this context, there is a wide variety
of online platforms that enable their users to approve or disapprove
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each others’ comments explicitly using, e.g., upvotes and downvotes.
Here, whenever a user upvotes or downvotes a comment in an
online discussion, she reveals the relative position of her opinion
with respect to the opinion expressed in the comment in a latent
space of opinions. By leveraging this observation from multiple
comments, upvotes and downvotes, our goal is to investigate the
nature and complexity of an online discussion and its space of
opinions, uncovering where each participant lies.

There is a long history of theoretical models [3, 17, 18, 38, 39]
and empirical studies [4, 10-12, 15, 16, 27, 31] of opinions. However,
most of this previous work has reduced (potentially) complex opin-
ions down to real-valued numbers—they have assumed that opin-
ions lie on the real line. While a unidimensional space of opinions
may be sufficient to coarsely characterize people into 2 groups, e.g.,
left leaning vs right leaning or liberals vs conservatives, they may
be lacking at accurately representing complex, multisided opinions
in an online discussion. In fact, if such opinions exist, a unidimen-
sional representation of opinions will be unable to explain many
common voting patterns under some of the most popular voting
models, as we will show in Section 2. That being said, there are two
notable exceptions—aspected oriented sentiment analysis [9, 25]
and collaborative filtering based on matrix factorization [6, 22, 24].
The former relies heavily on ad hoc methods and textual analysis
for determining the sides in online reviews rather than on human
judgments as we do. The latter aims to predict users’ tastes (or
ratings) about a set of items (e.g., movies) based on a partial obser-
vation of user-items ratings. While it typically considers multiple
sides (or factors), it differs from our work in several key aspects.
First, users and items typically lie in two different latent spaces
while, in our work, comments and voters lie in the same latent
space. Second, it determines the number of dimensions (sides) of
the latent spaces empirically (e.g., using cross validation). This is in
contrast with our work, which determines the dimension from first
principles. Finally, most approaches consider real-valued ratings
while we consider (binary) votes.

Current work. Given an online discussion consisting of a set of
comments, which are upvoted and downvoted by a set of voters,
we first introduce a latent multidimensional representation of the
opinions expressed in the comments and the opinions held by the
voters. Then, we propose two voting models, one deterministic and
another probabilistic, which leverage the above multidimensional
representation to characterize the voting patterns within an online
discussion. Under this characterization, it becomes apparent that
the dimensionality of the latent space of opinions is a measure of
complexity of the online discussion—along how many different axis
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Figure 1: Our modeling framework. From left to right, given a (toy) online discussion with a set of comments C and voters V,
our framework maps the upvotes and downvotes into a partially observed sign matrix S. Within S, each row corresponds to a
comment and each column corresponds to a voter. Each +1 entry indicates that the voter upvoted the comment, —1 indicates
that she downvoted the comment, and ? indicates that the voter did not vote. Then, the framework represents the opinions
expressed in the comments and those held by the voters as r-dimensional real-valued vectors lying in the same latent space
of opinions. Finally, it provides a set of practical algorithms to both estimate the dimension r of the latent space of opinions
as well as infer the vectors of opinions which are consistent with the partially observed sign matrix S.

can the opinions expressed in the comments and the opinions held
by the voters differ. The representation of opinions in this latent
space of opinions has a remarkable property: if two opinions are
close (far away) in the latent space it is because the voters—the
crowd—think that they are similar (dissimilar). Such a property
may not hold for other representations of the opinions, e.g., those
based only on the textual data in the comments [23, 30] because of
nuances in the use of language. Motivated by these observations,
we develop!:

(i) A polynomial time algorithm to determine an upper bound on
the minimum dimensionality that a latent space of opinions
needs to have so that they are able to explain a particular
voting pattern under the deterministic voting model.

(if) An inference method based on quantifier elimination to re-
cover the latent opinions from the observed voting patterns
under the deterministic voting model.

(iii) An inference method based on maximum likelihood estima-
tion to recover the latent opinions from the observed voting
patterns under the probabilistic voting model.

Finally, we experiment with a large dataset from Yahoo! News,
Yahoo! Finance, Yahoo! Sports, and the Newsroom app, which con-
sists of one day of online discussions about a wide variety of topics.
Our analysis yields several interesting insights. We find that only
~25% of the online discussions we analyzed can be explained using
a unidimensional representation of opinions, ~60% of them require
a two dimensional representation, and the remaining ones require
a greater number of dimensions. This provides empirical evidence
that, to provide opinions representations that are coherent with
human judgments, it may be often necessary to move beyond one
dimension. The presence of multisided opinions is an indication that
the discussion may not be falling prey to demagoguery. Such finding
is also supported by a positive correlation between the dimension
of a discussion and its linguistic diversity. Moreover, the estimated
r-dimensional opinions allow us to predict upvotes/downvotes in
a discussion more accurately than a state of the art matrix fac-
torization method [26] and a logistic regression classifier [29]. In
this context, whenever an online discussion can be represented
using one dimensional opinions, the deterministic model achieves
higher predictive performance than the probabilistic model. How-
ever, for discussions with multisided opinions, the probabilistic
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model, which allows for noisy voting, provides more accurate pre-
dictions. This suggests that, whenever humans face more complex
discussions, their judgments become less predictable. Moreover,
we find that a positive correlation between the complexity of the
discussions and the level of agreement among comments. Lastly, by
looking at particular examples of online discussions, we show that
our modeling framework, by relying on human judgments, may
be able to circumvent language nuances like sarcasm and humor,
which are often difficult to detect using natural language processing.
The examples will also illustrate how the dimensions uncover the
different sides of the discussion.

2 MODELING OPINIONS AND VOTES

At the very outset, the underlying mechanism behind voting on
online discussions is fairly commonplace and straight-forward. Eve-
ry time a user expresses an opinion by posting a new comment in an
online discussion, other users can upvote (downvote) the comment
to indicate that they agree (disagree) with the expressed opinion.

In this context, whenever a user upvotes or downvotes a com-
ment, she reveals the relative position of her opinion with respect to
the opinion expressed in the comment. By leveraging this observa-
tion to multiple comments, upvotes and downvotes, our modeling
framework will be able to infer the relative positioning of comments
in an online discussion, as judged by the crowd. Moreover, by doing
so, it will also find a meaningful joint latent representation for the
opinions expressed in an online discussion as well as the opinions
held by the users who voted. In the remainder of the section, we
formally introduce our modeling framework, starting from the data
it is designed for.

Online voting data. We observe an online discussion consisting
of a set of comments C which are upvoted and downvoted by a set
of voters V. Here, we keep track of who voted what by means of the
variables y;j; = {T, |, o}, which indicate that voter j € V upvoted,
downvoted, or did not vote on comment i € C, respectively. Then,
we define a (partially) observed sign matrix S = [s;;], where each
(i, j)-th entry is given by

+1 ify;=1
if yij =1 1)
? if yl] =0,

Sij = -1



the sign ? indicates that the voter did not vote and thus we cannot
know whether she agrees (or disagrees) with the comment. We
denote by Q the set of indexes where we have observations, i.e.,
Q = {(i,j) | sij # ?}. Figure 1 illustrates the above definitions for a
given toy example.

Next, we introduce our multidimensional representation of the
opinions expressed in the comments and those held by the vot-
ers and then elaborate on our voting model, which relates these
opinions to the observed voting data.

Opinion representation. Unidimensional (scalar) real-valued rep-
resentations of opinions, owing largely to their interpretability, have
been used most commonly in the literature, following the example
set by the seminal works by DeGroot [14] and Rowley [34]. Thus,
we could think of using such unidimensional representation of
opinions in our work. However, under that choice, we would be
unable to explain certain voting patterns illustrated below, which
are common in many online discussions.

Given an online discussion, assume we represent the opinions
expressed in each comment i € C as ¢; € R and the opinion held
by voter j € V as vj € R. Now, we elaborate separately on two of
the most popular voting models in the literature [28]: the proximity
model and the directional model. Under the proximity model, the
voters use the Euclidean distance as a similarity measure and decide
to cast an upvote if [vj — ¢;| < 0, where 0 is a threshold, and a
downvote otherwise. Now consider the voting pattern 1 in Figure 2a.
It is easy to show that there are no real-valued scalar opinions
v1, U2, v3 and cq, ¢, c3 leading to such a voting pattern: assume that
v1 < v3 < v3 (as the pattern is symmetric, we can always relabel
the voters and comments to make this true) and ¢; < v2. Then
lvg—co| >0 = vy >cy+0,and|vs—cy| <0 = w3 <y + 6.
This contradicts the assumption that vy < v3. We arrive at a similar
contradiction with the assumption ¢z > vs.

Under the directional model, the voters use the dot product as
a similarity measure and decide to cast an upvote if v; - ¢; > 0
and a downvote otherwise. Here, consider the voting pattern 2 in
Figure 2b. Again, it is easy to show that there are no real-valued non-
zero scalar opinions vy, v2, v3 and ¢y, ¢z, c3 leading to such a voting
pattern. The first row requires v; - ¢; > 0 and v - ¢; < 0, which
implies sign(v1) # sign(vz). However, the second row requires
v1 - ¢z > 0and vy - ¢ > 0, which implies sign(v;) = sign(vy) and
this leads to a contradiction.

Motivated by the above examples, given an online discussion,
we represent the opinions expressed in the comments and those
held by the voters as r-dimensional real-valued vectors lying in
the same latent space. More formally, we represent the opinion
expressed in each comment i € C as ¢; € R and we stack all these
opinions into a matrix C, in which the i-th row corresponds to the
opinion cl.T. Similarly, we represent the opinions held by each voter
j € V aswvj € R" and stack all these opinions into a matrix V,
in which the j-th row corresponds to the opinion v]T. Here, one
can think of the dimension r as a measure of the complexity of the
online discussion—along how many different axis can the opinions
expressed in the comments and the opinions held by the voters
differ. Figure 1 illustrates the above definitions using a toy example.

(a) Voting pattern 1

(b) Voting pattern 2

Figure 2: Examples of unfeasible voting patterns under the
proximity and directional voting models with unidimen-
sional (scalar) real-valued representation of opinions.

Voting model. Given a comment i which expresses an opinion c;
and a voter j who holds an opinion v;, we introduce two voting
models, one deterministic and another probabilistic, inspired by the
directional model of voting discussed above.

— Deterministic voting model: In this model, we can uniquely de-
termine each vote y;; from the comment’s opinion ¢; and voter’s
opinion v; by means of the following deterministic rule:

o
17) l

In the above rule, the vote y;; depends on the angle between the
opinion vectors ¢; and w;—if the angle is greater (less) than 90°, i.e.,
c; and vj lie in the same (different) half-plane in the latent space,
theny;; = T (]).

Under this voting model and a partially observed sign-matrix S

derived from votes using Eq. 1, two natural question emerge:

(i) What is the minimum dimension r of the latent space needed
to recover the observed entries in S from the above decision
rule without errors?

(ii) Once we know the minimum dimension r, can we infer the

opinion vectors ¢; and v;?

We will answer both questions affirmatively in Section 3 and 4,
respectively.
— Probabilistic voting model: In the definition of our deterministic
model, we have implicitly assumed that voters do not make any
errors while casting their votes. However, this assumption might
be rather restrictive in some scenarios. To overcome this, we also
propose a probabilistic voting model in which votes are binary
random variables Yj;, and,

if (ci,vj> >0

if (C,’,‘Uj) <0. @

1
PIY:: = yi:] = ) = i 3
¥ij = yij] = plyiy) 1+ exp(—s;j (ci,vj>) )
where s;; = +1if y;; = T and s;; = -1 if y;; = |. Similarly, as in

the case of the deterministic model, we will propose a method to
infer the opinion vectors ¢; and v; under this model in Section 4. In
doing so, we will make the assumption that all the latent opinions
are finite, e, 3a > 0.]|Cllo < @ A ||V]|eo < .

Remark. In the above model definitions, we opt for a similarity
metric based on dot products because the euclidean distance, used
in the proximity model, does not scale well with increasing dimen-
sionality: the relative volume of the opinion space where a voter
will cast an upvote is proportional to (6/a)” where 6 is the thresh-
old for the user, r is the dimension of the latent space and « is the
upper bound on the opinion values.
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3 COMPLEXITY OF ONLINE DISCUSSIONS

In this section, we present an algorithm which can determine an up-
per bound on the minimum dimension r that a latent space of opin-
ions needs to have so that C and V are able to explain voting patterns
exhibited by the voters which result in a particular vote-matrix S un-
der the deterministic voting model, i.e, V (i,j) € Q, s;; = sign(m;;),
where [m;j] = CVT. To this aim, we will first introduce the notion
of sign-rank of a sign matrix. Then, we will show that the problem
of determining r reduces to finding the sign-rank of a partially
observed sign matrix. Finally, we will present an efficient algorithm
to estimate the sign-rank.

Sign-rank of a sign matrix. Paturi and Simon [32] introduced
the classical notion of sign-rank of a sign matrix, which is closely
related to the VC dimension of concept classes [2], as follows:

DEFINITION 1. Let M be a real matrix and sign(M) denote a ma-
trix such that Vi, j. (sign(M));; = sign(M;;). Then, the sign-rank of
a sign matrix S is defined as:

sign-rank(S) = min {rank(M) | sign(M) = S}.

Here, we extend the above definition to partially observed sign
matrices as follows:

DEFINITION 2. The sign rank of a partially observed sign matrix
S is defined as:

sign-rank(S) = min {rank(M) |V (i,)) € Q. sign(M);j = sl-j} .

It is easy to see that, if the rank of a matrix M is r, then we can
decompose the matrix into two components of the form CV T using,
e.g., the singular value decomposition (SVD). Hence, the problem
of determining r reduces to the problem of finding sign-rank(S).

Note that the sign-rank of a sign matrix can be much lower than
its actual rank, as was noticed by Hsieh et al. [19] in the context
of signed graph models. For example, consider the sign-rank of
the matrix B = 2I,, — 1,, where I, is the identity matrix and 1, is
the matrix of all 1 of size n X n. For n > 3, sign-rank(B) remains
3 though the matrix itself is always of full rank n. Moreover, note
that, in our setting, the sign-rank does not merely correspond to the
number of topics being discussed in an online discussion. Instead,
the complexity may be manifest in the combination of the topics
under discussion: the voters may agree with some opinions in a
comment while disagreeing with others.

Estimating the sign-rank of a partially observed sign matrix.
The problem of determining whether sign-rank(S) is 1 can be solved
by a simple breath-first search (BFS). We first create a signed bi-
partite graph of comments and voters with adjacency matrix S. Then
for each connected component in the graph, pick one (i, j) € Q, set

c; = +1 and v; = s;;, and fill in the remaining values using BFS
by multiplying the source node value with the sign of the edge to
arrive at the destination node value. The intuition is that if voter j
has down (up) voted comment i, then i and j have opposite (same)
polarity. If a consistent assignment of +1 to all the nodes is possible,
then sign-rank(S) = 1.

However, this algorithm does not generalize to multiple dimen-
sions. To estimate the sign-rank of a partially observed sign matrix,
we adapt the algorithm for (fully observed) sign matrices proposed
recently by Alon et al. [2]. First, we explain the main ideas behind
the original algorithm and then describe the necessary, non trivial
modifications we propose.

The original algorithm upper-bounds the sign-rank of a (fully ob-
served) sign matrix S by the number of sign-changes in the columns
of the matrix. More formally, define the function SC(S) as the max-
imum number of sign changes in any column of the matrix S, i.e.,
SC(S) = max;j |[{i]sij # s(i+1),j}], Sym(S) as the set of all possible
row permutations of S, and the function SC*(S) as:

SC*(S)= min SC(S").

( ) S’e Sym(S) ( )
Then, the following lemma establishes the relationship between
the sign-rank of matrix S and SC*(S), which the original algorithm

exploits [1]:
LEMMA 3. For a sign matrix S, sign-rank(S) < SC*(S) + 1.

To use the above result, our algorithm needs to do two tasks:
e Find a matrix § = [5;;] such that it is a completion of S, i.e.,
o sij if (i,j) € Q

+1

if (i,j) ¢ Q. @

5 =
e Find §’ € Sym(S) such that it minimizes the maximum num-
ber of sign-changes in its columns.
The algorithm will output SC(S”) + 1 as the estimated sign-rank.
Our algorithm does both tasks together while it computes an
estimation of SC*(S) using an algorithm by Welzl [37, See Ex. 4]. In
a nutshell, we construct a graph in which each node corresponds
to a row of the partially observed matrix S and the weight of each
edge between nodes u and v is given by the number of columns
where the signs of the corresponding rows disagree. Then, we
extract a spanning tree from the completely connected graph which
minimizes the number of sign-changes between pairs of vertices
connected by an edge, as shown in Algorithm 1. In the process of
creating the spanning tree, we also fill the matrix. Finally, we derive
a permutation of the rows based on the tree to construct §’.
More in detail, to understand how Algorithm 1 fills the matrix as
it computes the spanning tree, we distinguish two different cases:



Algorithm 1 Construct a sign-minimizing spanning tree for the
columns of S.
Input: A [|C|] X [|V]] sign-matrix § = [s;;]
Output: Spanning-tree of the rows.

L1e—0 F—{} w:Z" >R Z<[|Cl; Y[V

2: while / < |C| do

3 foru € Z, v € [|C]]; (u, v) U F is cycle-free do

4 w{u,v}) +=[{j €Y |suj #S0j Asuj# ? ANsy;# 7}
5:  end for
6
7

{u*, v*} « argminw(-); S, Y, Z « Uppate({u*, v*}, S)
F—FU@W" ,v*);, l<Il+1;

8: end while

9: return F

Case 1: When, given a column, only one of the rows has a
missing entry. Consider, for example, we have two rows u =
(+1,+1, ? ,+1) and v = (-1, +1,-1,-1). To calculate the weight
of the edge between u and v, i.e., w({u, v}) in line 4 of Algorithm 1,
we ignore the second column, as sy 2 = S, 2, and the third column,
as it has a missing entry s, 3 = ? . Hence, we report w({u, v}) = 2,
because signs of u and v differ in 1st and 4th column. Now;, if this
edge was chosen in line 6 of Algorithm 1, we modify u, such that this
weight indeed is the true weight of the edge: we replace 5,3 = ?
with the corresponding value in v, ie., s,3 = —1, via line 5 in
Algorithm 2.

Case 2: When, given a column, both entries are unknown.
Ifu = (+1,+1, ? ,+1) and v = (+1,-1, ?,+1), we would still
calculate the weight the same way as above. Hence, w({u, v}) = 1.
However, if this edge was chosen in line 6 of Algorithm 1, we could
keep the weight the same by merely ensuring that both u and v
have the same value in the third column, i.e., 5,3 = sy,3. Hence,
we create and save the constraint that the third column of u and
v must always have the same value in line 9 of Algorithm 2. Now,
say a few steps into the creation of the spanning tree, we find that
the missing value in u has to be set to —1 as it was being picked
as part of an edge under Case 1 above. Then, we can also set the
same value in the third column of v, i.e, sy 3 « +1, via line 5 in
Algorithm 2. Note that since each column in S contains at least 1
entry which is +1, as each voter has voted at least once, we will
eventually hit Case 1 and fill in all missing entries. This process is
illustrated in Figure 3, where the first step creates an equivalence
$13 = 23, and the second step fills in the missing entires with s33.

Note that we are conservative and greedy while filling in the
missing entries, i.e., the edge selected at the [th step will have the
same weight w(e) at the Ith iteration if the algorithm was to be run
on the filled matrix and it will be the minimum weight amongst all
valid edges at step ! (though the edge may not be unique in having
that weight). Additionally, our algorithm ensures that the weight
of the edge selected at iteration / is the minimum possible, given
the history of selections. After obtaining a spanning tree, one can
walk the tree by performing a depth-first search starting from any
source node and create a permutation of the rows by dropping the
duplicate nodes in the walk. Hence, we can obtain S” € Sym(S) and
report SC(S") + 1 as r.

Then, we can establish the upper bound on the dimension by us-
ing the following series of self-evident inequalities: sign-rank(S) <
sign-rank(§’) < SC*(S") + 1 < SC(S’) + 1.

Algorithm 2 UpPDATE procedure used in Algorithm 1.

&
Operation W assigns RHS to all entries equivalent to the LHS in & (line 9) and updates Y, Z.

Input: {u, v} edge chosen; and S = [s;;] sign-matrix;
Output: Updated S and all rows/columns with updated signs.
1: // & initialized as an empty set and persisted across calls.

22 Z—{}; Ye{}
3: for j € [|'V|] do
4 if syj= ? andsy; # ? then

5: Suj (:—‘stj

6 elseif s,; # ? and s,,; = ? then
7 Svj %suj

8: elseif s,; = ? ands,; = ? then
9: 8<—8U(sujzsyj)

10:  endif

11: end for

12: return S, Y, Z

Finally, we would like to highlight that the spanning tree al-
gorithm presented above minimizes the average number of sign-
changes in §”. Welzl [37] also describe a variant of the algorithm
which produces guarantees on the worst case number of sign-
changes in §’; the way the weight w(-) is calculated is more involved
in the variant. This variant was used by Alon et al. [2] to design the
first polynomial time algorithm with approximation guarantees for
the sign-rank of the matrix S’. Remarkably, the UpDATE procedure
in Algorithm 2 can be ported to that variant without any changes,
to complete a partially observed matrix S matrix with worst case
guarantees as well. However, that version is computationally more
expensive, more complex, and does not offer significantly better
results in practice in our dataset. Hence, for ease of exposition, we
have described the simpler of the two versions.

Computational complexity. The computational complexity of
Algorithm 1 can be determined by the computations needed for each
missing element in the matrix S. Except on the first initialization
iteration (I = 0), the loop on line 3 will be executed once for each
missing element (u, i) in the initial S, right after s,; is fixed via
UppATE. Hence, the work done for each missing entry, in the worst
case, will be incrementing w(-) by 1 Vo € [|'V]] such as s,; #
$pj in the loop on line 3. This can be done in O(|C|log |C]) time
if w(-) is implemented as a priority queue. As there are at most
|C| X |V| missing entries, the computational cost of Algorithm 1 is
O(IC|%|V|log |C]). All other operations, i.e., initialization of w(-),
calculating argmin, checking for cycles in the tree, the creation of
an walk, maintaining &, etc., have lower complexity.

Remark. In our implementation, we do a (non-exhaustive) search
over walks with different sources to improve our estimate of r
and break ties in calculating the argmin w(-) randomly. Also, as
sign-rank(S) = sign-rank(ST), we run the algorithm on both matri-
ces and report the smaller value.

4 MULTISIDED OPINION ESTIMATION

Given an online discussion, we infer the corresponding r-dimensional
opinions C and V for the deterministic and probabilistic voting mo-
dels introduced in Section 2 as follows.
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Deterministic voting model. By definition, under the determin-
istic voting model, we know that the corresponding r-dimensional
opinions V and C and the partially observed sign matrix S need to
satisfy the following inequalities:

/\ sij (Z Cik - Ujk) >0 (5)

(i,j)eQ k=1

where ¢;; and vy are the k-th entry of the opinions ¢; and v,
respectively, and Q is the set of observed entries in S. However,
we also know from Section 3 that, for each voting pattern, there
will be a minimum dimension 7,,;, under which such an opinion
embedding will not exist.

This reduces the problem of finding the opinions V and C to the
existential theory of reals [36] and, for small values of r and moder-
ate number of comments and voters, |C| and |V|, this problem can
be solved via a procedure called quantifier elimination [20], using,
e.g., the solver Z3 [13]. This procedure eliminates the inequalities
in the disjunction in Eq. 5 one by one by discovering subsets of
RXUVI+ICD) where they are satisfied, backtracking to select a dif-
ferent region when an inequality cannot be satisfied, and using
sound heuristics to prune the search. The procedure terminates
when any assignment to each variable is found or when all regions
of RP¥UVI+ICD are eliminated.

Note that, if r < rpn, the solver will conclude that the problem

is unsatisfiable. Hence, by iteratively increasing r and checking
for satisfiability of Eq. 5, one could determine the true sign-rank
of any matrix S. However, as the most efficient method known
for quantifier elimination is doubly exponential in the number of
variables, calculating the minimum dimension r in this way would
be computationally more expensive than using the polynomial
algorithm introduced in Section 3.
Probabilistic voting model. Given a partially observed matrix
S, under the probabilistic voting model, we estimate V and C by
solving the following constrained maximum likelihood estimation
problem with hyperparameters a:

- Z log (1+exp(—sij <ci,vj>))
(i, /)€ (6)
subjectto  ||C||eo < &, ]|V]|o < a.

maximize

CV

The structure of the above problem allows us to adapt an efficient
1-bit matrix completion method based on stochastic gradient de-
scend [8]. Finally, note that unlike in the deterministic model, for
each voting pattern and dimension r, there will always exist opin-
ions C and V that best fit the data.

Dim. Discuss. [C] |V| Patterns
1* 1,139 19.7£16.7 19.9 £ 20.1 16.2 £ 14.8
2" 2,820 51.5+854 57.6x+75.2 46.0+57.3
3 97 43.7+35.3 56.0+34.5 454+24.6
4 88 148 + 147 195 + 194 149 + 125
5 245 247 £ 272 296 + 267 218 £ 179
6 126 445 + 461 470 + 366 354 + 275
7 89 598 £ 555 706 + 518 512 + 355
>38 112 2596 + 2867 2785+ 2540 1831 + 1602

Table 1: Number of comments, voters and unique voting pat-
terns seen in the dataset for discussions with different di-
mensions. The numbers in each column are the mean values
+ the standard deviation. Dimensions marked with * indi-
cate that they were determined using Z3 and are the true di-
mensions of the discussions. While the dimension of discus-
sions is positively correlated with the size and participants,
discussions of different complexity can be found on the en-
tire spectrum, as is also shown in Figure 5.
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Figure 5: Distributions of the number of comments |C| per
discussion for different dimension values (Dim). The distri-
butions of the number of voters and voting patterns exhibit
similar behavior.

Remark. In both models, the estimated opinions are unique up-to
orthogonal transformations since the inequalities in Eq. 5 and the
likelihood in Eq. 6 only depend on entries of CVT and (CO)(VO)T =
c(00™)VT = VT for any orthogonal matrix O.

5 EXPERIMENTS

Data description. Our dataset contains ~19,800 online discus-
sions, each associated to an article from Yahoo! News (including
contributed articles), Yahoo! Finance, Yahoo! Sports, and the News-
room app, which contain ~5 million votes, cast by ~200,000 voters
on ~685,000 comments, posted by ~151,000 users. These votes were
randomly sampled from all votes which were cast on comments
made by users in the US on August 8, 2017.

As a pre-processing step, we discard discussions with less than
10 comments, as they contain too little data to provide meaningful
results. After this step, our dataset consists of 4,700 discussions, with
~4.5 million votes, cast by ~199,000 voters, on ~645,000 comments,
posted by ~137,000 users. Figure 4 shows the richness of the data
in the votes gathered in the online discussions by means of the
sparsity of § and the number of unique columns of S, which we
name as voting patterns.

Complexity of discussions. In this section, we compute the com-
plexity of the discussions, i.e., the dimensionality of the latent space
of opinions, for the online discussions in our dataset. For each on-
line discussion, we determine whether it can be explained using an
unidimensional space of opinions using the linear time algorithm
presented at the beginning of Section 3. If it cannot be explained
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Figure 6: Performance of our dimensionality estimation al-
gorithm.
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Figure 7: Lexical similarity of an online discussion against
its dimension. The lexical similarity is the mean Jaccard sim-
ilarity of the lexical tokens used in all pairs of comments
in the discussion. The discussions are classified by the num-
ber of comments as small (smallest 33%), medium, and large
(largest 33%) and data is shown only for dimensions which
contain more than 5 discussions.

using one dimension, we determine whether it can be explained
using a two- or three-dimensional space of opinions via quantifier
elimination?, following Section 4. Finally, if it cannot be explained
using two or three dimension, we resort to the algorithm presented
in Section 3, which provides an upper bound on the true dimension.

Table 1 summarizes the results, which show that the opinions
of about 1,139 (25%) of the discussions can be explained using one
dimension, 2,820 (60%) of the discussions require two dimensions,
while the remaining 757 discussions (15%) require a higher number
of dimensions. This allows us to conclude that the opinions in most
of the online daily discussions (85%) can be explained using a latent
space of relatively low dimensions, ie., r < 3. Moreover, while
discussions with a higher number of participants (|C| + |'V|) and
richness (i.e., higher number of voting patterns and lower sparsity)
require, in general, a latent space of opinions with a larger num-
ber of dimensions, there is a large variability spanning the entire
spectrum of online discussions, as shown in Figure 5. Next, we
evaluate how tight is the upper bound on the true dimension pro-
vided by our algorithm for online discussions, which we used above
for discussions whose dimension we could not find using quanti-
fier elimination. To this aim, we run our algorithm on discussions
whose true dimension we could find using quantifier elimination
and compare the upper bound with the true dimension. Figure 6
summarizes the results, which show that, for discussions whose
opinions can be explained using two (three) dimensions, our algo-
rithm recovers the true dimension for 48% (46%) of the discussions
and is off by one for 37% (44%) of them.

Finally, we investigate the relationship between the complexity
of the discussions, estimated using human judgments, and their
linguistic diversity, estimated using textual features. To this aim, for

2In practice, we found quantifier elimination to be sufficiently scalable to test whether
an online discussion can be explained using up to two dimensions.
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Figure 8: Vote prediction accuracy for the deterministic vot-
ing model (DVM), the probabilistic voting model (PVM), a
state of the art matrix factorization method [26] (MF), and
a logistic regression classifier [29] (LR) using textual fea-
tures extracted using Rake [33]. Moreover, the performance
for DVM, PVM and MR uniformly increases as the number
of unique voting patterns increases, in contrast, the perfor-
mance for LR remains relatively constant.
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Figure 9: Agreement and percentage of upvotes among all
votes in discussions. Agreement is measured in terms of per-
centage of comment pairs (c;,c;) for which cich > 0. The
dashed lines show the values of the metrics if the up/down
votes or the latent dimensions were randomly distributed.

each online discussion, we compute the average Jaccard similarity
of the lexical tokens used in all pairs of comments as a measure of
lexical similarity. Figure 7 summarizes the results, which show a
positive correlation between the complexity of a discussion and its
linguistic diversity, as one may have expected.

Opinions in online discussions. In this section, we first evaluate
both quantitatively and qualitatively the quality of the estimated
r-dimensional opinions in the online discussions and then leverage
the estimated opinions to shed some light on the level of controversy
in online discussions. Here, we used the opinion estimation method
for the probabilistic voting model introduced in Section 4, which
scales graciously with the dimension r.

In terms of quantitative evaluation, we assess to which extent
the deterministic voting model (DVM) and the probabilistic voting
model (PVM) can predict whether a voter will upvote or down-
vote a comment from the estimated opinions in comparison with
two baseline methods: (i) a state of the art matrix factorization
method [26] (MF), which assumes the entries in S are real valued,
and (ii) a logistic regression classifier [29] (LR) that uses 200,000
keywords extracted using Rake [33] as features. To this aim, for
each discussion, we held out some of the observed upvotes and
downvotes, estimate the opinions from the remaining votes, and
then predict the votes from the held-out set. However, since our
data is very sparse, as shown in Figure 4, and even holding out a
small fraction of votes may change the underlying dimension of
the latent space of opinions, we resort to leave-one-out validation.



Co:  [...] [Donald Trump] has [...] Enquirers? [which] he considers a treasure trove of information.

C1: He should change his name to Donald J Dubious.

[...] Trump can be an #$%$, and Islam can be cancer [...] they are not mutually exclusive [...]
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C3: Why not? Try anything. Terrorism has got to stop now!
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Figure 10: A subset of comments, estimated multidimensional opinions and unidimensional sentiments for an online discus-
sion about politics. Two pairs of comments, i.e., (Cy, C1) and (C3, C4), express a similar opinion, however, the lexical overlap
between comments within each pair is low. By leveraging the judgments of the voters, our method is able to identify they
are similar, and their estimated opinions lie close to each other in the latent space of opinions, however, sentiment analysis
is unable to do so and the unidimensional sentiments do not lie close to each other. Moreover, the estimated opinion of a
comment expressing an opposite view to the ones above, C», lies in an orthogonal direction.

Co C Co:

You can forget about $16 for a while.

Cy: Bye-Bye twitter sweet 16.

Coe [...] when world leaders speak, they turn to Twitter first. [...] How is it trading at $16? [...] How come
“ Dorsey® can’t monetize this instantaneous platform?
o Cs: [...]It’s about time [for] more positive news to get it [...] up again. [...] Seems to have support $16ish. [...]
Estimated opinions Ca: [Wall Street/CNBC] only want to pump [selective] stocks [...] Twitter of China, Weibo, is selling for $88.00
42
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“Jack Dorsey is the CEO of Twitter.

Figure 11: A subset of comments, estimated multidimensional opinions and unidimensional sentiments for an online discus-
sion about finance. There are two distinct issues being discussed: (i) the price of a stock (Cy, Ci, C2, C3) and (ii) a discussion
about reasons for the price (Cz, C4). Cp and C; say humorously that the price will stay below $16, while C; and C3; suggest that
the price may rise up. C; suggests Wall Street/media bias against the stock and is neutral about its price, while C; questions

the management of the company.

Moreover, we randomly select 200 discussions to tune the hyper-
parameters of PVM and these discussions are excluded from the
validation set. LR was regularized using 10-fold cross-validation
and MF was provided the true rank of the underlying matrix as
input. Figure 8 summarizes the results, which show that:
(i) DVM (PVM) beats all other methods for discussions with
dimension 1 (2).

(if) The performance of DVM, PVM and MF increases as the
number of unique voting patterns in the dataset increase, in
contrast, the performance of LR, which uses text features,
does not benefit much from additional voting patterns.

(iii) While for discussions where opinions can be explained using
two dimensions, PVM achieves better performance, for dis-
cussions which require only one dimension, DVM beats PVM.
A potential explanation for this behavior is that, whenever
humans face simpler decisions, i.e., their opinions can be ex-
plained using one dimension, they become more predictable.

In terms of qualitative evaluation, we first assess to which extent
comments in online discussions agree (or disagree) by analyzing the
estimated opinion embeddings of the comments. More specifically,
for each online discussion, we compute the percentage of distinct
comment pairs (c;, ¢j) for which cl.Tc ;> 0 and compare this quan-
tity with the percentage of upvotes among all votes (upvotes and
downvotes). Figure 9a summarizes the results, which show that

the higher the dimensionality of the latent space of opinions, the
lower the agreement between comments, as one may have expected.
Remarkably, such finding would not be apparent directly from the
relatively constant fraction of upvotes. However, relative upvotes
are typically the measure of controversy (or, rather, consensus) em-
ployed by various websites, like Reddit, to sort articles/comments.

Finally, we take a close look into the comments, inferred multidi-
mensional opinions and unidimensional sentiment® of a discussion
about politics, shown in Figure 10, and a discussion about finance,
shown in Figure 11. The discussion about politics shows that, even
if the lexical overlap between comments which express a similar
opinion is low, e.g., Cy and C or Cy and (5, our opinion estimation
method is able to identify they are similar, as a human would do, by
leveraging the judgments of the voters. Note that, due to their low
lexical overlap, it would be difficult to identify such similarity using
methods based on textual analysis, as revealed by the unidimen-
sional sentiments. The discussion about the price of Twitter stock
(see Figure 11) shows that our method is able to capture objective
opinions about the price (whether it stays at $16 or goes up, Cs,
or stays down, Cy and C;), along one axis and subjective opinions
questioning the reason behind the price drop along a different axis
(suggesting management is the reason, Cy, or media bias/corruption

3Comment sentiments were calculated using Convolutional Neural Networks trained
on Stanford Sentiment Treebank [21, 35].



in Wall Street, C4). Note that Cy suggests both, that the price should
go up, and that the reason for the decrease is the management. Also
in this case, an analysis of the unidimensional sentiments would
not reveal these rich relationships among the comments.

6 CONCLUSION

In this work, we have proposed a modeling framework to gener-
ate latent representations of opinions using human judgments, as
measured by online voting. As a consequence, such representa-
tions exhibit a remarkable semantic property: if two opinions are
close in the latent space of opinions, it is because the voters—the
crowd—think that they are similar. Our modeling framework is
theoretically grounded and establishes an unexplored, surprising
connection between opinion and voting models and the sign-rank
of a matrix. Moreover, it also provides a set of practical algorithms
to both estimate the dimension of the latent space of opinions and
infer where opinions expressed in comments and held by voters
lie in this space. Experiments on a large dataset from Yahoo! News
show that many discussions are multisided and avoid falling prey
to demagoguery, provide insights into human judgments and opin-
ions, and show that our framework is able to circumvent language
nuances, e.g., sarcasm and humor, by relying on human judgments.

Our work also opens up many interesting venues for future
work. For example, our measure of complexity—the dimension
of the latent space of opinions—may be a good starting point to
develop theoretically grounded measures of polarization [10, 11, 27]
and controversy [15, 16], which have been lacking in the literature.
Moreover, it would be very interesting to augment our modeling
framework to also incorporate, in addition to the voting data, the
textual information in the comments, the identity of commenters,
and their trust-worthiness. Besides increasing the accuracy of our
method, these may aid the interpretability of the dimensions as
well. Our algorithm for determining the minimum dimension under
which the opinion space is able to explain the voting data exhibits
weak theoretical guarantees though it performs well on real-data. It
would be interesting to develop exact algorithm by adapting recent
advances in exact sign-rank estimation [5, 7].

Acknowledgements. We thank Mounia Lalmas, Dmitry Chistikov,
and Rupak Majumdar for useful discussions.

REFERENCES

[1] Noga Alon, Peter Frankl, and V Rodl. 1985. Geometrical realization of set systems
and probabilistic communication complexity. In FOCS.

[2] Noga Alon, Shay Moran, and Amir Yehudayoff. 2016. Sign rank versus VC
dimension. In Conference on Learning Theory.

[3] R. Axelrod. 1997. The dissemination of culture a model with local convergence
and global polarization. Journal of conflict resolution 41, 2 (1997), 203-226.

[4] Pablo Barbera. 2015. Birds of the same feather tweet together: Bayesian ideal
point estimation using Twitter data. Political Analysis 23, 1 (2015), 76-91.

[5] Ronen Basri, Pedro F Felzenszwalb, Ross B Girshick, David W Jacobs, and Caro-
line J Klivans. 2009. Visibility constraints on features of 3D objects. In CVPR.

[6] James Bennett, Stan Lanning, et al. 2007. The Netflix prize. In Proceedings of KDD
cup and workshop, Vol. 2007. New York, NY, USA, 35.

[7] Amey Bhangale and Swastik Kopparty. 2015. The complexity of computing the
minimum rank of a sign pattern matrix. arXiv preprint arXiv:1503.04486 (2015).

[8] Sonia A Bhaskar and Adel Javanmard. 2015. 1-bit matrix completion under exact
low-rank constraint. In CISS.

[9] Jurgen Brof. 2013. Aspect-oriented sentiment analysis of customer reviews using

distant supervision techniques. Doctoral dissertation (2013).

Yoonjung Choi, Yuchul Jung, and Sung-Hyon Myaeng. 2010. Identifying contro-

versial issues and their sub-topics in news articles. In Pacific-Asia Workshop on

Intelligence and Security Informatics. Springer, 140-153.

[10

[11

[12

[13

(14

[16]

[17

(18]

[19

[20

[21

[22

[23

[24

[25

[26]

~
=

[28

[29

[30

[31

(33]

[34

(35

(36]

[37

[38

(39]

Michael Conover, Jacob Ratkiewicz, Matthew R Francisco, Bruno Gongalves,
Filippo Menczer, and Alessandro Flammini. 2011. Political polarization on Twitter.
ICWSM (2011).

Abir De, Sourangshu Bhattacharya, Parantapa Bhattacharya, Niloy Ganguly, and
Soumen Chakrabarti. 2014. Learning a linear influence model from transient
opinion dynamics. In CIKM.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems (2008), 337-340.
Morris H DeGroot. 1974. Reaching a consensus. J. Amer. Statist. Assoc. 69, 345
(1974), 118-121.

Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael
Mathioudakis. 2018. Quantifying Controversy on Social Media. ACM Transactions
on Social Computing 1, 1 (2018), 3.

Pedro Henrique Calais Guerra, Wagner Meira Jr, Claire Cardie, and Robert Klein-
berg. 2013. A Measure of Polarization on Social Media Networks Based on
Community Boundaries. In ICWSM.

R. Hegselmann and U. Krause. 2002. Opinion dynamics and bounded confi-
dence models, analysis, and simulation. Journal of Artificial Societies and Social
Simulation 5, 3 (2002).

P. Holme and M. E. Newman. 2006. Nonequilibrium phase transition in the
coevolution of networks and opinions. Physical Review E 74, 5 (2006), 056108.
Cho-Jui Hsieh, Kai-Yang Chiang, and Inderjit S Dhillon. 2012. Low rank modeling
of signed networks. In KDD.

Dejan Jovanovi¢ and Leonardo de Moura. 2012. Solving Non-linear Arithmetic. In
Automated Reasoning - 6th International Joint Conference, [JCAR 2012, Manchester,
UK, June 26-29, 2012. Proceedings (Lecture Notes in Computer Science), Vol. 7364.
Springer, 339-354.

Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1746-1751.

Yehuda Koren and Robert Bell. 2015. Advances in collaborative filtering. In
Recommender systems handbook. Springer, 77-118.

Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International Conference on Machine Learning. 1188-1196.

Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing 1 (2003), 76-80.
Bing Liu. 2012. Sentiment analysis and opinion mining. Synthesis lectures on
human language technologies 5, 1 (2012), 1-167.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. 2010. Spectral regular-
ization algorithms for learning large incomplete matrices. Journal of machine
learning research 11, Aug (2010), 2287-2322.

Yelena Mejova, Amy X Zhang, Nicholas Diakopoulos, and Carlos Castillo. 2014.
Controversy and sentiment in online news. arXiv preprint arXiv:1409.8152 (2014).
Samuel Merrill and Bernard Grofman. 1999. A unified theory of voting: Directional
and proximity spatial models. Cambridge University Press.

Kevin Murphy. 2012. Machine learning: a probabilistic perspective. MIT Press,
Cambridge, UK.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. 2016. Deep sentence embedding using long
short-term memory networks: Analysis and application to information retrieval.
IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 24, 4
(2016), 694-707.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and sentiment analysis. Foun-
dations and Trends® in Information Retrieval 2, 1-2 (2008), 1-135.

Ramamohan Paturi and Janos Simon. 1984. Probabilistic communication com-
plexity. In FOCS.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic
keyword extraction from individual documents. Text Mining: Applications and
Theory (2010), 1-20.

Charles K Rowley. 1984. The relevance of the median voter theorem. Zeitschrift fiir
die gesamte Staatswissenschaft/Journal of Institutional and Theoretical Economics
H. 1(1984), 104-126.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631-1642.

Alfred Tarski. 1998. A decision method for elementary algebra and geometry. In
Quantifier elimination and cylindrical algebraic decomposition. Springer, 24-84.
Emo Welzl. 1988. Partition trees for triangle counting and other range search-
ing problems. In Proceedings of the fourth annual symposium on Computational
geometry. ACM, 23-33.

E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, and A. Scaglione. 2013. Binary
opinion dynamics with stubborn agents. ACM Transactions on Economics and
Computation 1, 4 (2013), 19.

M. E. Yildiz, R. Pagliari, A. Ozdaglar, and A. Scaglione. 2010. Voting models in
random networks. In Information Theory and Applications Workshop. 1-7.



	Abstract
	1 Introduction
	2 Modeling Opinions and Votes
	3 Complexity of Online Discussions
	4 Multisided Opinion Estimation
	5 Experiments
	6 Conclusion
	References

