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ABSTRACT

Many users in online social networks are constantly trying
to gain attention from their followers by broadcasting posts
to them. These broadcasters are likely to gain greater atten-
tion if their posts can remain visible for a longer period of
time among their followers’ most recent feeds. Then when to
post? In this paper, we study the problem of smart broad-
casting using the framework of temporal point processes,
where we model users feeds and posts as discrete events
occurring in continuous time. Based on such continuous-
time model, then choosing a broadcasting strategy for a user
becomes a problem of designing the conditional intensity of
her posting events. We derive a novel formula which links
this conditional intensity with the “visibility” of the user in
her followers’ feeds. Furthermore, by exploiting this formula,
we develop an efficient convex optimization framework for
the “when-to-post” problem. Our method can find broad-
casting strategies that reach a desired “visibility” level with
provable guarantees. We experimented with data gathered
from Twitter, and show that our framework can consistently
make broadcasters’ post more visible than alternatives.

1. INTRODUCTION

The popularization of social media and online social net-
working has empowered political parties, small and large
corporations, celebrities, as well as ordinary people, with a
platform to build, reach and broadcast information to their
own audience. For example, political leaders use social me-
dia to present their character and personalize their message
in hopes of tapping younger voters'; corporations increas-
ingly rely on social media for a variety of tasks, from brand
awareness to marketing and customer service [7]; celebrities
leverage social media to bring awareness to themselves and
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strengthen their fans’ loyalty?; and, ordinary people post
about their lives and express their opinions to gain recogni-
tion from a mix of close friends and acquaintances®. How-
ever, social media users often follow hundreds of broadcast-
ers, and they often receive information at a rate far higher
than their cognitive abilities to process it [13]. This also
means that many broadcasters actually share quite a por-
tion of their followers, and they are constantly competing
for attention from these followers.

In this context, these followers’ attention becomes a scarce
commodity of great value [8], and broadcasters would like
to consume a good share of it so that their posted contents
are noticed and possibly liked or shared. As a consequence,
there are myriads of articles and blog entries about the best
times to broadcast information in social media and social
networking, as well as data analytics tools to find these
times*. However, the best time to post on social media
depends on a variety of factors, often specific to the broad-
caster in question, such as their followers’ daily and weekly
behavior patterns, their location or timezone, and the num-
ber of broadcasters and volume of information competing
for their attention in these followers’ feeds (be it in the form
of a Twitter user’s timeline, a Facebook user’s wall or an In-
stagram user’s feed). Therefore, the problem of finding the
best times to broadcast messages and elicit attention (be it
views, likes or shares), in short, the when-to-post problem,
requires careful reasoning and smart algorithms, which have
been largely inexistent until very recently [19].

In this paper, we develop a novel framework for the when-
to-post problem, where we measure the gained attention or
visibility of a broadcaster as the time that at least one post
from her is among the most recent k received stories in her
followers’ feed. A desirable property of this time based visi-
bility measure is that it is easy to estimate from real data.
In order to measure the achieved visibility for a particular
deployed broadcasting strategy, one only need to use a sep-
arate held-out set of the followers’ feeds, independently of
the broadcasted content. This is in contrast to other mea-
sures based on, e.g., the number of likes or shares caused by
a broadcasting strategy. These latter measures are difficult
to estimate from real data and often require actual interven-
tions, since they depend on other confounding factors such
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as the follower’s reaction to the post content [6], whose effect
is difficult to model accurately [5].

More specifically, we will model users’ feeds and posts
as discrete events occurring in continuous time using the
framework of temporal point processes. Our model explic-
itly characterize the continuous time interval between posts
by means of conditional intensity functions [1]. Based on
such continuous-time model, then choosing a strategy for
a broadcaster becomes a problem of designing the condi-
tional intensity of her posting events. We derive a novel for-
mula which can link the conditional intensity of an arbitrary
broadcaster with her visibility in her followers’ feeds. Inter-
estingly, we can show that the average visibility is concave in
the space of (piece-wise) smooth intensity functions. Based
on this result, we propose a convex optimization framework
to address a diverse range of visibility shaping tasks given
budget constraints. Our framework allows us to conduct
fine-grained control of a broadcaster’s visibility across her
followers. For instance, our framework can steer the visibil-
ity in such a way that some time intervals are favored over
others, e.g., times when the broadcasters’ followers are on-
line. In addition to the novel framework, we develop an effi-
cient gradient based optimization algorithm, which allows us
to find optimal broadcast intensities for a variety of visibility
shaping tasks in a matter of milliseconds. Finally, we exper-
imented on a large real-world dataset gathered from Twitter
dataset, and show that our framework can consistently make
broadcasters’ posts more visible than alternatives.

Related work. The work most closely related to ours is by
Spasojevic et al. [19], who introduced the when-to-post pro-
blem. In their work, they first perform an empirical study
on the best times to post in Twitter and Facebook by ana-
lyzing more than a billion messages and responses. Then,
they design several heuristics to (independently) pinpoint at
the times that elicited the greatest number of responses in a
training set and then show that these times also lead to more
responses in a held-out set. In our work, we measure atten-
tion by means of visibility, a measure that is not confounded
with the message content and can be accurately evaluated
on a held-out set, and then develop a convex optimization
framework to design complete broadcasting strategies that
are provably optimal.

There have been an increasing number of empirical stu-
dies on understanding attention and information overload
on social and information networks [2, 14, 16, 13]. The
common theme is to investigate whether there is a limit on
the amount of ties (e.g., friends, followees or phone contacts)
people can maintain, how people distribute attention across
them, and how attention influences the propagation of in-
formation. In contrast, in this work, we focus on optimizing
a social media user’s broadcasting strategy to capture the
greatest attention from their followers.

Our work also relates to the influence maximization pro-
blem, extensively studied in recent years [18, 15, 4, 10],
which aims to find a set of nodes in a social network whose
initial adoptions of certain idea or product can trigger the
largest expected number of follow-ups. In this line of work,
the goal is finding these influential users but not to find
the best times for these users to broadcast their messages,
which is our goal here. Only very recently, Farajtabar et
al. [11] have developed a convex optimization framework
to find broadcasting strategies, however, their focus is on
steering the overall activity in the network to a certain state

by incentivizing a few influential users, in contrast, we fo-
cus on maximizing visibility as measured on a broadcaster’s
audience’s feeds.

Finally, the framework of temporal point processes, which
our work builds upon, has been increasingly used to model
a wide range of phenomena in social media and social net-
working sites, e.g., from social influence [11], network evolu-
tion [12], opinion dynamics [9] or product competition [20].

2. BACKGROUND ON POINT PROCESSES

A temporal point process is a stochastic process whose
realization consists of a list of discrete events localized in
time, {t;} with ¢, € R* and ¢ € Z*. Many different types of
data produced in online social networks can be represented
as temporal point processes, such as the times of tweets,
retweets or likes in Twitter. A temporal point process can be
equivalently represented as a counting process, N (t), which
records the number of events before time ¢. Then, in a in-
finitesimally small time window dt around time ¢, the num-
ber of observed event is

AN(t)= Y o(t—t;)dt, (1)

t; €H(t)

and hence N (t) = fot dN (s), where §(¢) is a Dirac delta func-
tion. It is often assumed that only one event can happen in
a small window of size dt, and hence dN (t) € {0,1}.

An important way to characterize temporal point pro-
cesses is via the intensity function — the stochastic model
for the time of the next event given all the times of previous
events. The intensity function A(t) (intensity, for short)
is the probability of observing an event in a small window
[t,t +dt), i.e.,

A(t)dt = P {event in [t,t + dt)}. (2)

Based on the intensity, one can obtain the expectation of
the number of events in the windows [t,¢ + dt) and [0,t)
respectively as

E[dN(£)] = A(t) dt, and 3)
BN )] - | ) dr (4)

There is a wide variety of functional forms for the intensity
A(t) in the growing literature on social activity modeling
using point processes, which are often designed to capture
the phenomena of interests. For example, retweets have been
modeled using multidimensional Hawkes processes [11, 22],
new network links have been predicted using survival pro-
cesses [21, 12], and daily and weekly variations on message
broadcasting intensities have been captured using inhomo-
geneous Poisson processes [17].

In this work, since we are interested on optimizing mes-
sage broadcasting intensities, we use inhomogeneous Pois-
son processes, whose intensity is a time-varying function
Alt) =g¢(t) > 0.

3. FROM INTENSITIES TO VISIBILITY

In this section, we will present our model for the pos-
ting times of broadcasters and the feed story arrival times
of followers using point processes parameterized by intensity
functions. Based on these models, we will then define our



visibility measure, and derive a novel link between the visi-
bility measure and the intensity functions of a broadcaster
and her followers.

Representation of broadcast and feed. Given a di-
rected social network G = (V,€) with m = |V| users, we
assume that each user can be both broadcaster and follower.
Then, we will use two sets of counting processes to modeling
each user’s activity, the first set for the user’s broadcasting
activity, and the second set for the user’s feed activity.
More specifically, we represent the broadcasting times of
the users as a set of counting processes denoted by a vector
N (t), in which the u-th dimension, N, (t) € {0}UZ™, counts
the number of messages user u broadcasted up to but not
including time t. Then, we can characterize the message
rate of these users using their corresponding intensities

E[dN (t)] = A(t) dt. (5)

mXm

Furthermore, given the adjacency matrix A € {0,1}
corresponding to the social network G, where A,, = 1 in-
dicates that v follows u, and A,, = 0 otherwise, we can
represent the feed story arrival times of the users as a sum
of the set of broadcasting counting processes. That is

M(t) = ATN(t), (6)

which essentially aggregates for each user the counting pro-
cesses of the broadcasters followed by this user. Then, we
can characterize the feed rates using intensity functions

E[dM ()] = ~(t) dt, (7

where v(t) ;= ATA(@®) = (71, .., 7m) -

Finally, from the perspective of a pair of broadcaster (or
user) u and her follower v, it is useful to define the feed rate
of v due to other broadcasters (or users) followed by v as

Yoru(t) 1= () — Au(?), (8)
where we assume 7\, (t) := 0 if v does not follow u, Ay, = 0.

Definition of Visibility. Consider a broadcaster u and
her follower v, and we note that v may follow many other
broadcasters other than u. Thus, at any time ¢, user v may
see stories originated from multiple broadcasters. We can
model the times and origins of all these stories present in
v’s current feed as a first-in-first-out (FIFO) queue® of pairs

Hv(t) = {(t(i),U(i)) . (9)
t>tay =... = tu-1) 2 tay, uw €N (v)},

where -(;) denotes the i-th element in the queue, t(;) is the
time when v receives a story from broadcaster w(;y, N~ (v)
denotes the set of broadcasters followed by v, and I is the
length of the queue. The length I accounts for the fact
that online social platforms typically set a maximum number
of stories that can be displayed in the feed, e.g., currently
Twitter has I = 20. The FIFO queue is to model the fact
that when a new story arrives, the oldest story, (t(1y,wr)),
at the bottom of the feed will be removed, and the ordering
of the remaining stories will be shifted down by one slot, i.e.,

i+l«i, Vi=1,...,]—1

and the newly arrived story will be appended to the be-
ginning of the queue as t(;) and appear at the top of the

5 . . ..
In this work, we assume the social network sorts stories in each user’s
feed in inverse chronological order.

feed. For simplicity, we assume that the queue is always full
at the time of modeling.

In the list H,(t), we keep track of the rank ry.(t) of the
most recent story posted by the broadcaster u among all the
stories received by user v by time ¢, i.e.,

UGy = u} . (10)
Then, given an observation time window [0, 7], and a deter-
ministic sequence of broadcasting events, we can define the

deterministic visibility of broadcaster u at k with respect to
follower v as

Tuv (t) = min {z :

Too(k) = /OT Mo (t) < K] dt, (11)

which is the amount of times that at least one story from
broadcaster u is among the most recent k stories in user v’s
feed.

Since the sequence of broadcasting events are generated
from stochastic processes, we will consider the expected value
of Tuv(k) instead. If we first denote the probability that at
least one story from broadcaster u is among the k£ most re-
cent stories in follower v’s feed as

fuo(t, k) = P{ruu(t) <k}, (12)

then the expected (or average) visibility V(k) can be defined
as

Vuo (k) = E [Tuw (k)] = /0 Jun(t, k) dt, (13)

given the integral is well-defined. In some scenarios, one
may like to favor some periods of times (e.g., times in which
the follower is online), encode such preference by means of a
time significance function s(t) > 0 and consider fu. (¢, k)s(t)
instead of just fu.(t, k).

Note that the visibility Vu.(k) is defined for a pair of
broadcaster u and her follower v given k. We will focus
our later exposition on a particular of v and v, and omit the
subscript -4, and simply use notation such as fx(t), V(k).
However, we note that the computation of the visibility for
a pair of users v and v may depend on the broadcast and
feed intensities of all users in the network.

Computation of Visibility. In this section, we derive
an expression for the average visibility, given by Eq. 13, us-
ing the broadcaster posting and follower feed representation,
given by Eqs. 5-8. This link is crucial for the convex visibil-
ity shaping framework in Section 5.

Given a broadcaster u with A, () = A(¢) and her follower
v with v, (t) = v(t) and v\ (t) = p(t), we first compute the
probability f1(¢) that at least one message from the broad-
caster is among the kK = 1 most recent ones received by v
at time t. By definition, one can easily realize that f1(t)
satisfies the following equation:

Hlttdt) = fi(H) (1 —p@)dt) 4+ (1= f1(2) M¢)dt,
1. Remains the most recent 2. Becomes the most recent
(14)
where each term models one of the two possible situations:
1. The most recent message received by follower v by time
t was posted by broadcaster u (w.p. f1(t)) and none of
the other broadcasters that v follows posts a message
in [t,t+dt] (w.p. 1 — p(t)dt).
2. The most recent message received by follower v by
time ¢ was posted by a different broadcaster (w.p. 1 —



f1(t)) and broadcaster u posts a message in [t,t + di]

(w.p. A(t)dt) which becomes the most recent one.
Then, by rearranging terms and letting dt — 0, one finds
that the probability satisfies the following differential equa-
tion:

f1(t) = = (u(t) + X)) fr(t) + A1) (15)

We can proceed with the induction step for fi(t) with k& >
1. In particular, by definition, fi(¢) satisfies the following
equation:

fe(t+dt) = feoa(t) A+ (fe(t) = from1 () (1 — p(t)dt)
~—
1. Was among k—1 2. Remains on the k-th position
+ (= fu(®)A®)dt, (16)
| —

3. Becomes the most recent

where each term models one of the three possible situations:

1. The last message posted by broadcaster u by time ¢ is
among the most recent k—1 ones received by follower v
(w.p. fr—1(t)) and, independent of whether a message
is posted by any other broadcaster or not, this message
will remain among the most recent k at t 4 dt.

2. The last message posted by broadcaster u by time ¢ is
the k-th one (w.p. (fr(t) — fr—1(t))) and none of the
other broadcasters followed by v posts a message in
[t,t + dt] (w.p. 1 — p(t)dt)

3. The last k messages received by follower v by time ¢
were posted by other broadcasters (w.p. 1 — f(t)) and
broadcaster u posts a message in [¢, t+dt] (w.p. A(t)dt),
becoming the most recent one.

By rearranging terms and letting dt — 0, we uncover a re-
cursive relationship between fx(t) and fr—1(t), by means of
the following differential equation:

Fi' () = =(u(t) + A0) fr(t) + p(t) far (t) + ), (17)

Perhaps surprisingly, we can find a closed form expression
for fi(t), given by the following Lemma (proven in the Ap-
pendix A):

LEMMA 1. Given a broadcaster with message intensity A(t)
and one of her followers with feed message intensity due to
other broadcasters u(t). The probability fi(t) that at least
one message from the broadcaster is among the k most re-
cent ones received by the follower at time t can be uniquely
computed as

_ fg A(r)e” J7 Aw)da Ik, f: w(z)dz] dr
gwen the boundary conditions f1(0) = ... = fr(0) = 0
and the incomplete Gamma function defined as T'[k,x] =
f;o R le=Tdr.

4. ON THE CONCAVITY OF VISIBILITY

Once we have a formula that allows us to compute the ave-
rage visibility given any arbitrary intensities for the broad-
casters, we will now show that, remarkably, the average vis-
ibility is concave in the space of smooth intensity functions.
Moreover, we will also show that the average visibility is
concave with respect to the parameters of piecewise con-
stant functions, which we will use in our experiments.

Smooth intensity functions. In this section, we assume
that the message intensity of the broadcaster belongs to the

Wi
+
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+
: : .:. :
: O .a
=
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Y v

Visibility
Figure 1: The visibility shaping problem. A so-
cial media user u broadcast N,(t) messages at a rate
Au(t). Her messages accumulate in each of her fol-
lowers’ feeds, which receives M, (t) messages at a rate
Yo (t) = Au(t) + Yoru(t), Wwhere 7, ,(t) denotes the mes-
sage rate due to other broadcasters v follows. For
each follower, the average visibility of a user u’s mes-
sages is defined as the time that a post from user u
is among the last k stories the follower received. In
the visibility shaping problem, the goal is to opti-
mize \,(t) to steer visibility.

space H of all smooth functions. Before we proceed, we need
the following definition:

DEFINITION 2. Given the space H of all smooth func-
tions, a functional J : H — R is concave if for every g1, g2 €
Hand 0 < a < 1:

Jlagi + (1 —a)g] = aJ[g] + (1 — a)J[ga]. (19)
A functional J is convex if —J is concave.

It readily follows that the probability f%(¢), given by Eq. 18,
is a functional with A(-) as input. Moreover, the following
two theorems, proven in Appendices B and C, establish the
concavity of fi(t) and V(k) with respect to ().

THEOREM 3. Given a broadcaster with message intensity
A(t) and one of her followers with feed message intensity due
to other broadcasters u(t). The probability fi(t) that at least
one message from the broadcaster is among the k most recent
ones received by the follower at time t, given by Eq. 18, is
concave with respect to A(-).

THEOREM 4. Given a broadcaster with message intensity
A(t) and one of her followers with feed message intensity
due to other broadcasters u(t). The visibility V(k), given by
Eq. 13, is concave with respect to A(+).

Given the above results, one could think of finding the
optimal (general) message intensity A(¢) that maximize (a
function of) the average visibilities across a broadcaster’s
followers. However, in practical applications, this may be
inefficient and undesirable, instead, one may focus on a sim-
pler parametrized family of intensities, such as piecewise
constant intensity functions, which will be easier to opti-
mize and fit using real data. To this aim, next, we prove



that the average visibility is also concave on the parameters
defining piecewise constant intensity functions.

Piecewise constant intensity functions. In this section,
we assume that the message intensity A(¢) of the broad-
caster belongs to the space of piecewise constant functions
A [0,7] — R, denoted by G, which we parametrized as
follows:
M
At) = Z aml(Tm—1 <t < 7m), (20)
m=1
where a,, > 0, M is the number of pieces, 7;—7-1 = T/M =
A and 79 = 0.

As the reader may have noticed, the results from the pre-
vious section are not readily usable since Lemma 1 requires
the intensity functions to be smooth. However, we will now
show that, for every function A\(¢t) € G, there is a sequence of
smooth functions A, (t) € H such that lim, o An(t) = A(¢)
and, this will sufficient to prove concavity. Before we pro-
ceed, we need the following definition:

DEFINITION 5. A functional J : G — H is said to be
continuous at A(-) € H if for every e > 0, there is a 6 > 0
such that

|JIA] = JN]| < e (21)
provided that ||\ — X|| < 8, where || - || is a norm in .

It readily follows that the probability fi is a continuous
functional on H. Moreover, we need the following lemma
(proven in Appendix D) to prove the concavity:

LEMMA 6. For every A(t) € G, there is a sequence of
smooth functions A, (t) € H where limy, 00 An(t) = A(E).

Using Lemma 6, for any A(t) € G, it follows that
fe(AO) = Tim feAa(®) (22)

where A\, (t) is a sequence of smooth functions such that
limp oo An(t) = A(t). As a consequence, we can establish
the concavity of fr(t) and V(k) with respect to ai,...,am
with the following Theorem (proven in Appendix E):

THEOREM 7. fi and V(k) are concave functionals in the
space of piecewise constant functions G.

COROLLARY 8. If we represent A € G using Eq. 20, fi(t)
and V(k) are concave with respect to ai,...,Gm.

5. CONVEX VISIBILITY SHAPING FRAME-

WORK

Given the concavity of the average visibility, we now pro-
pose a convex optimization framework for a variety of visi-
bility shaping tasks. In all these tasks, our goal is to find
the optimal message intensity A, (t) for broadcaster u that
maximizes a particular nondecreasing concave utility func-
tion U(V.(k)) of the average visibility of broadcaster u in
all her followers within a time window [0, 77, i.e.,

maximizey, ;) U(Vu(k))
subject to Au(t) >0 te]0,T] (23)
ST at <,

where Vo (k) = (Vuv (k) yerr(uy+» N (u)" denotes the broad-
caster u’s followers, V. (k) denotes the average visibility in

Algorithm 1: Projected Gradient Descent for Visibility
Shaping

Initialize c;

repeat
1- Project ¢ into the polytope ¢ >0, ¢'1 < C;
2- Find the gradient g(c);
3- Update c using the gradient g(c);

until convergence;

follower v, the first constraint asserts the intensity function
remains positive, and the second limits the average number
of messages broadcasted within [0, T] to be no more than C.

We next discuss two instances of the general framework,
which achieve different goals (their constraints remain the
same and hence omitted). More generally, the flexibility
of our framework allows to use any nondecreasing concave
utility function.

Average Visibility Maximization (AVM). The goal
here is to maximize the sum of the visibility for all the broad-
caster’s followers, i.e.,

> Vuu(k) (24)

veN (u)t

maximizey, (¢)

Minimax Visibility Maximization (MVM). Suppose
our goal is instead to keep the visibility in the n followers
with the smallest visibility value above a certain minimum
level, or, alternatively make the average visibility across the
n followers with the smallest visibility as high as possible.
Then, we can perform the following minimaz visibility maz-
imization task

maximizey, (¢ Z Vg (k) (25)

i=1

where V’“’[z‘] (k) denotes the average visibility in the follower
with the i-th smallest visibility among all the broadcaster’s
followers.

6. SCALABLE ALGORITHM

To solve the visibility shaping problems defined above, we
need to be able to (efficiently) evaluate the probability func-
tion fi and visibility V(k). However, a direct evaluation by
means of Eqs. 18 and 13 seem difficult. Here, we present an
alternative representation of the probability function fj and
the visibility V(k) for piece-wise constant intensity functions,
which allow us to compute these quantities very efficiently.
Based on this result, we present an efficient gradient based
algorithm to find the optimum intensity.

Assume the broadcaster’s message intensity A(t) and the
follower’s feed message intensity due to other broadcasters
wu(t) adopt the following form:

M
)\(t) == Z CmH(Tmfl S t< Tm)

m=1

M
p(t) = bnl(Tm-1 <t < 7).

m=1

Then, each piece m in the above intensities satisfies the re-



currence relation given by Eq. 17, which we rewrite as

f]/c(t) + (bm + Cm)fk(t) =Cm + bmfkfl(t)y

and one can easily prove by induction that, in general, the
solution of the above differential equation for each time in-
terval 7p,—1 <t < 7y, is given by

fu(t) = 67(b""ﬂ"”)t(f)é11c71,1c15]€7l +--4aok)+ B (26)

where a; ; = %(hkﬂ‘ — Br—i), Bi =1 — ( b )Z, and h;

bm+cm
is the probability f;(7:-1) at the beginning of time inter-
val. Such representation allows for an efficient evaluation of
Jr(t).

Next, we also need to compute the integral of fi(t) to
efficiently compute the visibility V(k). Without loss of gen-
erality, we represent the time for each piece in a normalized
time window [0, 1]. Then, the integral of fi(¢) can be written
as follows:

V(k) = /01 fr(t)dt

k—1 1
= ﬁk + Z ai,k/ e*(bm+cm)tt2 dt
i=0 0

k-1
(67} . .
— B+ W[u —D(i+Lbm +em)]  (27)
i=0 V"

m

where note that the last term is efficiently computable since,
for integer values of m, the incomplete Gamma function
T(n,z) = (n—1)le 30} f—:

Given Eq. 27, we can now easily compute the gradient of
the visibility V(k), which we can then use to design an effi-
cient gradient based algorithm. For brevity, we just show
the gradient for k = 1. Let ¢ = (c1,...,cm), and y =
(yo,-..,ym—1,ynm) be the values of fi(t) at the beginning
of each time interval, then,

ov() 1 (_%
8Ci

ocs (bi + ;)2 (bi‘i‘ci)‘f'(yi—yiﬂ)—i—bi)

M
1 OYm—1  OYym
+ m;:ﬂ b + Cm [ dc; dc; } '

where we can easily compute 9y;/dcy, recursively as

b
(b + Cm )2 (y’”‘l (b +cm)  (bm +Cm

—(bjtc;) 0Yj—1
dcm

if j=m, and e yif g >m.

Once we have an efficient way to compute the visibility
V(k) and its gradient, we can readily design a projected
gradient descent algorithm to find the optimal message in-
tensity Ay (t) in the visibility shaping problems described
in Section 5. Note that, since our optimization problems
are convex, there is a unique optimum and convergence is
guaranteed. Moreover, for the projection step, we solve a
quadratic program, minimizing the distance to the feasible
polytope. Algorithm 1 summarizes the overall algorithm.

7. EXPERIMENTS

Dataset description and experimental setup. We use
data gathered from Twitter as reported in previous work [3],
which comprises the following three types of information:

Cm bm —(bmtem)
)¢ ’

profiles of 52 million users, 1.9 billion directed follow links
among these users, and 1.7 billion public tweets posted by
the collected users. The follow link information is based on a
snapshot taken at the time of data collection, in September
2009. Here, we focus on the tweets published during a six
and a half month period, from February 2, 2009 to August
13, 2009. In particular, we sample 10,000 users uniformly
at random as broadcasters and record all the tweets they
posted. Moreover, for each of these broadcasters, we track
down all their followers and record all the tweets they posted
as well as reconstruct their timelines by collecting all the
tweets published by the people they follow.

In our experiments, we use the first three and a half month
period, from February 2 to May 13 to fit the piecewise con-
stant intensities of the followers’ timelines and the followers’
significance, which we use in our convex visibility shaping
framework. Here, the follower’s significance is the proba-
bility that she is on-line, estimated as a piecewise (hourly)
constant probability from the tweets-retweets the follower
posted — if a follower tweeted or retweeted in an hour, we
assume it was on-line during that hour. Then, we use the
last three month period, from May 14 to August 13, to eval-
uate our framework. We refer to the former period as the
training set and the latter as the test set. We experiment
both with T'=24 hours (M =24, A=1 hour) and T=7 days
(M=24x7, A=1 hour), and set the budget C to be equal to
the average number of tweets per 71" the broadcaster posted
in the training period.

Evaluation schemes. Throughout this section, we use
three different evaluation schemes, with an increasing re-
semblance to a real world scenario:

Theoretical objective: We compute the theoretical value of
the utility using the broadcaster intensity under study, be it
the (optimal) intensity given by our convex visibility shaping
framework, the intensity given by an alternative baseline, or
the the broadcaster’s (true) fitted intensity.

Stmulated objective: We simulate events both from the
broadcaster intensity under study and each of the followers’
timeline fitted intensities. Then, we estimate empirically the
overall utility based on the simulated events. We perform
100 independent simulation runs and report the average and
standard error (or standard deviation) of the utility.

Held-out data: We simulate events from the broadcaster
intensity under study, interleave these generated events on
the true followers’ timelines recorded as test set, and com-
pute the corresponding utility. We perform 10 independent
simulation runs and report the average and standard error
(or standard deviation) of the utility.

Intensities, top-k£ probabilities and visibilities. We
pay attention to four broadcasters, picked at random, and
solve the average visibility maximization task for one of their
followers, also picked at random. Our goal here is to shed
light on the influence that the follower’s timeline intensity
and significance have on the optimized broadcaster’s inten-
sity as well as its corresponding visibility and top-k prob-
ability for different values of k. Figure 2 summarizes the
results, which show that (i) including the significance in the
visibility definition shifts the optimized intensities away from
the times in which the followers are not online (first row);
(ii) the optimized intensities typically achieve a higher av-
erage visibility than the one achieved by the broadcaster’s
true posting activity on a held-out set (third row); and (iii)
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Figure 2: Intensities and top-k probabilities and visibilities. We focus on four broadcasters (one per column)
and solve the AVM problem for one of their followers, picked at random. The first row shows the follower’s
timeline intensity (x(t), in brown) fitted using events from the training set, and the optimized intensities, as
given by our framework, that maximize visibility for k=1, 20 on the training set with and without significance
(A*(t), in solid and dashed yellow and blue, respectively). The second row shows the top-k probability for the
optimized intensities with and without significance for k=1, 20 (f7(¢), in solid and dashed yellow and blue) as
well as the follower’s significance (s(t), in brown). The third row compares the average visibility achieved by
the optimized intensities without significance for k=1, 20 (V*(k), in yellow and blue) to the average visibility
achieved by the broadcaster’s posting activity (V(k), in green and purple) on a held-out set.

the optimized intensities are more concentrated in time for In the third heuristic, the broadcaster distributes its bud-
k =1 (first row) and achieve a higher average visibility and get following a greedy procedure: at each iteration k, it
top-k probability for k = 20 (second and third row). first finds the user with the least visibility given A(*~1)(¢)

and then solves the average visibility maximization for that
user given a budget of C/n. Finally, it outputs the inten-
sity A(t) = Sor_, A®(t). The greedy procedure starts with

Solution quality. In this section, we perform a large scale
evaluation of our framework across all 10,000 broadcasters in
terms of the three evaluation schemes described above and

compare its performance against several baselines. Here, we A(O)(t) = C/M. Additionally, for the helFl—out comparison,
consider the definition of visibility that incorporates signifi- we also Corhnpute.the agtual average intensity that the broad-
cance since, as argued previously, may lead to more effective caster achieved in reality.
broadcasting strategies®. Figure 3 summarizes the results by means of a box plot,
In the average visibility maximization task, we compare which shows the utilities achieved by our framework and the
our framework with three heuristics, in which the broad- heuristics normalized with respect to the utility achieved by
caster distributes the available budget uniformly at ran- the broadcasters’ fitted true intensity (by the posts during
dom (RAVM), proportionally to "% u;(t) (IAVM) and the test set for the third evaluation scheme). That means,
proportionally to 3.7 | s;(t)u:(t) (PAVM), respectively. In if y = 1, the optimized intensity achieves the same utili‘ty
the minimax visibility maximization task, we also compare as Fhe broa.dc.aste.}r’s recorded ppsts. .I*TOT the average vis-
with three heuristics. The first two heuristics are similar to ibility maximization task, the intensities provided by our
two of the ones just mentioned for AVM, i.e., the broad- method achieve 1.5x higher theoretical objective and 1.3x
caster distributes the available budget uniformly at ran- higher utility on a held-out set, in average (black dashed
dom (RMVM) and proportionally to 37 u;(t) (IMVM). line), than the broadcaster’s fitted intensities. In contrast,
i=

alternatives fail at providing any gain, i.e., y < 1 for a half
5We obtain qualitatively similar results if we omit the signif- f)f Fhe jbroadcasters.. Fl'nal}y, 'for the minimax VISlb,lhty tnax-
icance in the definition of visibility. Actually, in such case, imization task, which is significantly harder, the intensities
our framework beats the baselines by a greater margin. provided by our method achieve 1.6x higher theoretical ob-
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Figure 4: The average visibility against (a) # of
followers and (b) k. Panel (c) plots running time.

jective and 1.4x higher average utility on a held-out set, in
average (black dashed line), than the broadcaster’s fitted in-
tensities. In this case, although our method outperforms the
baselines by large margins in terms of theoretical and sim-
ulated objectives, the baselines achieved almost the same
average utility on the held-out set. The theoretical and sim-
ulated objective are almost equal in all cases, as one may
have expected.

Solution quality vs. # of followers. Figure 4(a) shows
the average visibilities achieved by our optimized intensi-
ties for the AVM task, normalized by the average visibil-
ity that the corresponding broadcasters’ fitted intensities
achieve, against number of followers for the same 10,000
broadcasters as above. Independently of the number of fol-
lowers, we find that the intensities provided by our method
consistently outperform the broadcaster’s fitted intensities.

Visibility vs. k. Figure 4(b) shows the average visibil-

ity achieved by our optimized intensities for the AVM task
against k for the four broadcasters from Figure 2.

Scalability. Figure 4(c) shows that our convex optimiza-
tion framework easily scale to broadcasters with thousands
of followers. For example, given a broadcaster with ~2000
followers, our algorithm takes 250 milliseconds to find the
optimal intensity for the average visibility maximization us-
ing a single machine with 64 cores and 1.5 TB RAM.

8.  CONCLUSIONS

In this paper, we developed a novel framework to solve the
when-to-post problem, in which we model users’ feeds and
posts as discrete events occurring in continuous time. Under
such continuous-time model, then choosing a strategy for a
broadcaster becomes a problem of designing the conditional
intensity of her posting events. The key technical idea that
enables our framework is a novel formula which can link the
conditional intensity of an arbitrary broadcaster with her
visibility in her followers’ feeds, defined as the time that at
least one post from her is among the most recent k received
stories in her followers’ feed. In addition to the framework,
we develop an efficient gradient based optimization algo-
rithm, which allows us to find optimal broadcast intensities
for a variety of visibility shaping tasks in a matter of sec-
onds. Experiments on large real-world data gathered from
Twitter revealed that our framework can consistently make
broadcasters’ posts more visible than alternatives.

Our work also opens many interesting venus for future
work. For example, we assume that the social network sorts
stories in each user’s feed in inverse chronological order.
While this is a realistic assumption for some social networks
(e.g., Twitter), there are other social networks (e.g., Face-
book) where the feed is curated algorithmically. It would be
very interesting to augment our framework to such cases. In
this work, we model users’ intensities using inhomogeneous
Poisson processes, whose intensities are history independent
and deterministic. Extending our framework to point pro-
cesses with stochastic and history dependent intensity func-
tions, such as Hawkes processes, would most likely provide
more effective broadcasting strategies. Finally, in this work,
we validate our framework on two visibility shaping tasks,
average visibility maximization and minimax visibility max-
imization, however, there are many other useful tasks one
may think of, such as visibility homogenization.
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APPENDIX
A. PROOF OF LEMMA 1

We will prove this lemma by induction on k. For the case
k =1, f1(¢) satisfies a first-order linear differential equation,

FL#) = =(p(t) + X(®) f1(t) + A®), (28)
whose unique solution is
h(t) = / (e SO (29)

as long as assuming f1(¢) = 0. Then, using that I'[1, f: w(x)dz] =

— 't . .
e Jr #@)dz e can rewrite the solution as

t t

710 = [ A s [ @i,
0 T

which proves the theorem for £k = 1. Now, in the inductive

step we assume the hypothesis is true for 1,2,...k — 1 and

we prove it for k. We start by rewriting the differential given

by Equation 17 as

Fe' () + (u(t) + M) fr(t) = M) + p(t) fr-1(8),

where, by assumption, fr—1(t) is unique and known. Then,
as long as fi(0) = 0, the above differential equation has a
unique solution and thus we only need to find fi(¢) that
satisfies it. To do so, we rewrite the right hand side of the
differential equation using the inductive hypothesis as

(30)

fg A(r)e” Iz M@)depip 1, f: w(z)dzldr
(k —2)! ’

A + (t)

which, using I'lk — 1,2] = Tk, z] + %), can be
expressed as

Js (A(T)e‘ FEA@ T [ () da] + w) dr

0]: p(z)dx
A1) +a(t) =
(31)
Next, we hypothesize that
t — [t t
A Jr M@)dz i, dz]d
Fult) = Jo Ar)e [k, [ p(z)dz] dr) (32)

(k—1)! ’
and rewrite Eq. 31 as

M(t) fot )\(T)e_ SEN(z)da Ak, [t p(x)da] dr

A(t) + p(t) fult) + I 27 p(w)de

(33)



Then, by the fundamental theorem of calculus,

8F[k,f: p(x)dz] 8F[k7f: w(z)dx] " ot

3[: w(z)yde ot 3th w(x)dx
Uk )] 1
ot w(t)
and thus

JEA(@)dw 0TIk, [ p(@)da]
ot

(k—1)!

A + a0 fu(t) + 220

. (34)

Finally, using that for differentiable functions g and h, gh’ =
(gh)" — g'h, we have that

' — [ A(x)dz ATk, [ pu(x)dx]
) e 20y (SRR
_ /t DA (r)e™ [ A@daT [t p(x)da])
0 ot

(E=D(f, (D) =A(1)

t e J5 Ma)dz t
- [T [ uta)da)r

(k=1)IA(#) f ()

and then we can rewrite Eq. 34 as

(k= Dfr(t) = AE)) + (k = DIA(E) S (t)

A(E) + () fr(t) +
which simplifies to

Fe' () + (u(t) + M) f (1)

This asserts that hypothesized solution for fi(t) in Eq. 32
satisfies Eq. 30, hence, it is the unique solution for fx(t).

B. PROOF OF THEOREM 3

From Lemma 1, we know that

fo Y~ Jr A@dmy P f u(x)dz)dr

fit) = (= 1)!

Using integration by parts, we can rewrite the above ex-
pression as

e~ do A(I)dzl’[k,fot u(zx)dz]
fe® =1~ (k —1)!

to(a)de
fot(e— qu )\(z)dz) 8F[kaf7é:¢(1)d ]dT
*—1)

Lemma 9 tells us that e~ Jo @4 and ¢~ J7 2w ape con-
vex with respect to A(-). Moreover, using Lemma 10 and

"t
the fact that W > 0, it follows that the function
"t t x)ax . . .
fot(ef I A<””)d“”) Wd’r is convex. Finally, given that

Ik, fot 0] > 0, we can conclude that fx(t) is concave with re-
spect to A(+).

- f; A(z)dx

LEMMA 9. Functional J\] = e is convex with

respect to X(-) for any constant a < t.

(k— 1) ’

PRrROOF. We simply verify that J[A] satisfies the definition
of convexity, as given by Eq. 19:

Jladi + (1 — a)ha] = e~ Ji oM@ +(=aPa(@) da

< oae” JaM(e)da +(1-ae
=aJ[M]+ (1 — a)J[A]

- j; A2 (z) dz

where the inequality follows from the arithmetic-geometric
mean inequality, i.e., 8z + (1 — 6)y > xy* =% for all positive
rz,y,and 0 <0 <1. [

LEMMA 10. If the functional Ji[\(-)] is conver with Te-
spect to A(+). Then, given any arbitmry function g(z) > 0,

the functional L[\ = fo (T)dr is also convexr with
respect to ().

PROOF. We verify that the functional L[] = [ J-[A(.)]g()dT
verifies the definition of convexity, as given by Eq. 19:

Lo + (1 — a)Xa] = /Ot Jrlax + (1 = a)A2]g(r)dr
<a [ ng(rdr

F(1—a) /Ot T+ Dalg(r)dr
= OtL[)\l] + (1 — Ot)L[)\z}

where the inequality holds using that, given any two arbi-
trary functions h; and ho such that hi(z) > ha(z) > 0
for all z € D, then [, hi(z)g(x)dx > [, ho(x)g(z)dz given
glx) >0forallzeD. [

C. PROOF OF THEOREM 4

Theorem 3 proves the concavity of fi(¢) with respect to
A(+). Therefore, 1 — fk( ) is convex and using Lemma 10, it

holds that [ (1— fu(t = [ s()dt— [ fu(t)s(t)dt is

also convex. Then, since f t)dt is constant fo fk )s(t)dt
is concave with respect to )\( ) and the proof is complete.

D. PROOF OF LEMMA 6

Each piecewise continues function can be represented as
summation of a number of heaviside step functions. The
count is equal to the number of discontinuity points. How-
ever, each heaviside function itself is the limit of smooth tanh
functions. Therefore, the piecewise continues function will
be the limit of a finite summation of smooth tanh functions.

E. PROOF OF THEOREM 7

Consider two piecewise constant functions A(-), u(-) € G.
According to Lemma 6 there exist sequence of smooth func-
tions such that lim, 00 An = A and lim, 00 Ap, = X', Be-
cause of the concavity of f in H we know for 0 < o < 1:

frlada () + (1 = )N ()] = afe[An ()] + (1 = @) fu[An ()]
Taking the limit and using the continuity of fi we get:

feleA() + (1= )N ()] = afu MO+ (1 = ) fu[N' (). (35)

Accompanied with convexity of space G the theorem is proved.



