TweLEX: A tweaked version of the LEX stream cipher

Mainack Mondal, Avik Chakraborti, Nilanjan Datta and Debdeep Mukhopadhyay
MPI-SWS, Germany, ISI, Kolkata, India, IIT Kharagpur, India

WISSec 2010, Nijmegen
29th November, 2010
Outline

- Leak Extraction and LEX
- Related key cryptanalysis of LEX.
- TweLEX: Modification of LEX.
- Future work
Outline

- Leak Extraction and LEX
- Related key cryptanalysis of LEX.
- TweLEX: Modification of LEX.
- Future work
Leak Extraction and LEX

- Block ciphers and Stream ciphers are conceptually different.
- But they serve the same purpose.
- Can we combine them to get some new ciphers?
Alex Biryukov: A new method called ‘Leak EXtraction’

- Run a Block Cipher in Output Feed Back (OFB) mode.
- Take some bits from internal states of block cipher and output as key stream.
- Used it on AES and called the resulting stream cipher LEX.
Leak Extraction and LEX

TweLEX: A tweaked version of the LEX stream cipher
Leak Extraction and LEX

TweLEX: A tweaked version of the LEX stream cipher
Advantages:
- Speed-up using existing hardware/software.
- Reuse existing implementations.
- Reuse countermeasures.
Several cryptanalytic efforts on LEX.

Best known attack on LEX

Orr Dunkelman et al [ASIACRYPT, 2008]:

Differential cryptanalysis of LEX.

TweLEX: A tweaked version of the LEX stream cipher
Outline

- Leak Extraction and LEX
- Related key cryptanalysis of LEX.
- TweLEX: Modification of LEX.
- Future work
Related key cryptanalysis of LEX

- LEX use the same key schedule as AES - 128.
- Given, \[\alpha = [a \ b \ c \ d]^T, \beta = \text{SubByte}(\alpha \ggg 8) \]

We observe the following differential trail in AES - 128 key schedule:

- \((\alpha \oplus \beta, \beta, 0, 0)\)
- \((\alpha \oplus \beta, \alpha, \alpha, \alpha)\)
- \((\alpha, 0, \alpha, 0)\)
- \((\alpha, \alpha, 0, 0)\)
- \((\alpha, 0, 0, 0)\)
- \((\alpha, \alpha, \alpha, \alpha)\)
Related key cryptanalysis of LEX

- Consider two key streams of LEX under related keys K and K^*
- we search for a special difference pattern in LEX state matrices.
Consider two key streams of LEX under related keys K and K^*, we search for a special difference pattern in LEX state matrices.
We use
- Differential trail in key schedule.
- Difference pattern in state matrices.

We retrieve,
- 24 hidden state bytes.
- Time complexity 2^{96}.
Outline

- Leak Extraction and LEX
- Related key cryptanalysis of LEX.
- TweLEX: Modification of LEX.
- Future work
TweLEX: Modification of LEX

- We Tweaked LEX a little: TweLEX

LEX:

Odd rounds

Even rounds

TweLEX: A tweaked version of the LEX stream cipher
TweLEX: Modification of LEX

- TweLEX:

<Diagram showing odd and even rounds>

TweLEX: A tweaked version of the LEX stream cipher
TweLEX: Modification of LEX

Advantages

- Prevent Dunkelman’s attack.
- Prevent related key attack presented in this paper.
- Almost no modification of original LEX implementation.
TweLEX: Modification of LEX

- **Disadvantage**
 - Slow compared to LEX.
 - LEX – 320 bits / AES Encryption
 - TweLEX – 160 bits / AES Encryption
 - AES – 128 bits / AES Encryption
Outline

- Leak Extraction and LEX
- Related key cryptanalysis of LEX.
- TweLEX: Modification of LEX.
- Future work.
Future work

- Explore Leak Extraction further.
- Explore the security of TweLEX in depth.
Questions?

Contact:

mainack@mpi-sws.org

debdeep@cse.iitkgp.ernet.in

Detailed Report:

http://www mpi-sws org/~ mainack/ MtechThesis.pdf
Thank You!