
ON THE LENGTH OF STRONGLY MONOTONE
DESCENDING CHAINS OVER Nd

SYLVAIN SCHMITZ1 AND LIA SCHÜTZE2

Abstract. A recent breakthrough by Künnemann, Mazowiecki, Schütze,
Sinclair-Banks, and Węgrzycki (ICALP 2023) bounds the running time for the
coverability problem in d-dimensional vector addition systems under unary
encoding to n2O(d) , improving on Rackoff’s n2O(d lg d) upper bound (Theor.
Comput. Sci. 1978), and provides conditional matching lower bounds.

In this paper, we revisit Lazić and Schmitz’ “ideal view” of the backward
coverability algorithm (Inform. Comput. 2021) in the light of this breakthrough.
We show that the controlled strongly monotone descending chains of downwards-
closed sets over Nd that arise from the dual backward coverability algorithm of
Lazić and Schmitz on d-dimensional unary vector addition systems also enjoy
this tight n2O(d) upper bound on their length, and that this also translates into
the same bound on the running time of the backward coverability algorithm.

Furthermore, our analysis takes place in a more general setting than that
of Lazić and Schmitz, which allows to show the same results and improve on
the 2EXPSPACE upper bound derived by Benedikt, Duff, Sharad, and Worrell
(LICS 2017) for the coverability problem in invertible affine nets.
Keywords. Vector addition system, coverability, well-quasi-order, order ideal,
affine net

1. Introduction

Well-Quasi-Orders (wqo for short) are a notion from order theory [29, 41] that
has proven very effective in many areas of mathematics, logic, combinatorics, and
computer science in order to establish finiteness statements. For instance, in the
field of formal verification, they provide the termination arguments for the generic
algorithms for well structured transition systems [1, 22], notably the backward
coverability algorithm for deciding safety properties [3, 1, 22].

In full generality, one cannot extract complexity bounds from wqo-powered
termination proofs. Nevertheless, in an algorithmic setting, one can “instrument”
wqos by considering so-called controlled sequences [41, 39], and new tight complexity
upper bounds for wqo-based algorithms now appear on a regular basis [e.g., 40, 4,
6, 5, 26, for a few recent examples].

Those complexity upper bounds are however astronomically high, and sometimes
actually way too high for the problem at hand. An emblematic illustration of this
phenomenon is the backward coverability algorithm for vector addition systems
(VAS), which was shown to run in double exponential time by Bozzelli and Ganty [13]
based on an original analysis due to Rackoff [37]: the corresponding bounds over
the wqo Nd are Ackermannian [20].
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Descending Chains. One way pioneered by Lazić and Schmitz [32] to close such
complexity gaps while retaining some of the wide applicability of wqos and well
structured transition systems is to focus on the descending chains of downwards
closed sets over the wqo at hand. Indeed, one of the equivalent characterisations
of wqos is the descending chain condition [29, 41], which guarantees that those
descending chains are finite.

In themselves, descending chains are no silver bullet: e.g., the controlled descend-
ing chains over Nd are also of Ackermannian length [32, Thm. 3.10]. Nevertheless,
these chains sometimes exhibit a form of “monotonicity,” which yields vastly im-
proved upper bounds. When applied to a dual version of the backward coverability
algorithm in well structured transition systems, this allows to recover the same
double exponential time upper bound as in [13, 37] for the VAS coverability problem,
along with tight upper bounds for coverability in several VAS extensions. The same
framework was also the key to establishing tight bounds for coverability in ν-Petri
nets [31]. As a further testimony to the versatility of the approach, Benedikt, Duff,
Sharad, and Worrell use it in [7] to derive original upper bounds for problems on
invertible polynomial automata and invertible affine nets, in a setting that is not
strictly speaking one of well structured transition systems.

Fine-grained Bounds for VAS Coverability. The coverability problem in VAS is well-
known to be EXPSPACE-complete, thanks to Rackoff’s 1978 upper bound matching
a 1976 lower bound by Lipton [34]. The main parameter driving this complexity
is the dimension of the system: the problem is in pseudo-polynomial time in fixed
dimension d; more precisely, Rackoff’s analysis yields a n2O(d lg d) deterministic time
upper bound for d-dimensional VAS encoded in unary [38], by proving the same
bound on the length of a covering execution of minimal length. Here, there is a
discrepancy with the n2Ω(d) lower bound on the length of that execution in Lipton’s
construction—a discrepancy that was already highlighted as an open problem in the
early 1980’s by Mayr and Meyer [35], and settled in the specific case of reversible
systems by Koppenhagen and Mayr [28]. The upper bounds of both Bozzelli
and Ganty [13] and Lazić and Schmitz [32] on the complexity of the backward
coverability algorithm inherit from Rackoff’s n2O(d lg d) bound and suffer from the
same discrepancy.

This was the situation until Künnemann, Mazowiecki, Schütze, Sinclair-Banks,
and Węgrzycki showed an n2O(d) upper bound on the length of minimal covering
executions of unary encoded d-dimensional VAS, matching Lipton’s lower bound [30,
Thm. 3.3]. This directly translates into a deterministic algorithm with the same
upper bound on the running time [30, Cor. 3.4]. Furthermore, assuming the
exponential time hypothesis, Künnemann et al. also show that there does not
exist a deterministic no(2d) time algorithm deciding coverability in unary encoded
d-dimensional VAS [30, Thm. 4.2].

Thinness. The improved upper bound relies on the notion of a thin vector in Nd [30,
Def. 3.6] (somewhat reminiscent of the “extractors” of Leroux [33]). The proof of [30,
Thm. 3.3] works by induction on the dimension d. By splitting a covering execution
of minimal length at the first non-thin configuration, Künnemann et al. obtain a
prefix made of distinct thin configurations (which must then be of bounded length),
and a suffix starting from a configuration with some components high enough to be
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disregarded, hence that can be treated as an execution in a VAS of lower dimension,
on which the induction hypothesis applies.

Contributions. In this paper, we show that the improved n2O(d) upper bound of
Künnemann et al. [30] also applies to the number of iterations of the backward
coverability algorithm for d-dimensional VAS encoded in unary (see Theorem 4.2).
In order to do so, one could reuse the approach of Bozzelli and Ganty [13] to lift
the improved bound from the length of minimal covering executions to the running
time of the backward coverability algorithm, but here we aim for the generality of
the framework of [32].

Our main contribution is thus to show in § 3 that the upper bounds on the
length of strongly monotone controlled descending chains of downwards closed sets
over Nd—which include those constructed during the running of the backward
coverability algorithm for VAS—can be improved similarly (see Theorem 3.6) when
focusing on a suitably generalised notion of thinness. As a byproduct, we observe
that thinness is an inherent property of such chains (see Corollary 3.7), rather than
an a priori condition that—almost magically—yields the improved bound.

We apply our results to the coverability problem in vector addition systems in
§ 4.2—thus providing as promised an alternative to applying Bozzelli and Ganty’s
approach to Künnemann et al.’s results—and show that the backward coverability
algorithm runs in time n2O(d) (see Corollary 4.5) and is therefore conditionally
optimal by [30, Thm. 4.2].

As a further demonstration of the versatility of our results, we show in § 4.3
how to apply them to invertible affine nets, a generalisation of vector addition
systems introduced by Benedikt et al. [7], and a good showcase for our techniques.
We obtain the same bounds for their coverability problem as in the case of vector
addition systems (see Theorem 4.11 and Corollary 4.12), and thereby improve on the
2EXPSPACE upper bound of [7] by showing that the problem is actually EXPSPACE-
complete (see Corollary 4.13). Along the way, we will see that the improved upper
bounds also apply for other VAS extensions, for which Rackoff’s proof scheme had
been successfully adapted (see remarks 4.4 and 4.15), namely strictly increasing
affine nets [12], branching VAS [16], and alternating VAS [15].

2. Well-Quasi-Orders and Ideals

We start by introducing the necessary background on well-quasi-orders, descending
chains, and order ideals.

Well-Quasi-Orders. A quasi-order (X, ≤) comprises a set X and a transitive reflexive
relation ≤ ⊆ X ×X. For a subset S ⊆ X, its downward closure is the set of elements
smaller or equal to some element in S, i.e., ↓S def= {x ∈ X | ∃y ∈ S . x ≤ y}. When
S = {y} is a singleton, we note ↓y for this set. A subset S ⊆ X is downwards-closed
if S = ↓S. A well-quasi-order is a quasi-order (X, ≤) such that all the descending
chains

D0 ⊋ D1 ⊋ D2 ⊋ · · · (1)
of downwards-closed subsets Dk ⊆ X are finite [29, 41].

Conversely, the upward closure of a subset S ⊆ X is ↑S def= {x ∈ X | ∃y ∈ S.y ≤ x},
and S is upwards-closed if S = ↑S. The complement X \ D of a downwards-closed
set D is upwards-closed (and conversely), hence wqos have the ascending chain
condition for chains U0 ⊊ U1 ⊊ · · · of upwards-closed sets: they are necessarily
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D0 = {(ω, 4)} D1 = {(1, 4), (ω, 3)} D2 = {(1, 4), (3, 3), (ω, 2)}

D3 =
{(1, 4), (3, 3), (5, 2), (ω, 1)}

D4 = {(1, 4), (3, 3), (5, 2),
(7, 1), (ω, 0)}

D5 = {(1, 4), (3, 3), (5, 2),
(7, 1), (9, 0)}

Figure 1. A descending chain D0 ⊋ D1 ⊋ · · · ⊋ D5 over N2 [32,
Ex. 3.6].

finite. Furthermore, any upwards-closed set U over a wqo has a finite basis B such
that U = ↑B [29, 41]; without loss of generality, we can take the elements of B to
be minimal and mutually incomparable in U .

A well-studied wqo is (Nd, ⊑) the set of d-dimensional vectors of natural numbers
along with the component-wise (aka product) ordering [17]; see Figure 1 for an
illustration of a descending chain over N2, which happens to be produced by the
backward coverability algorithm for a vector addition system [32, Ex. 3.6].

Order Ideals. An order ideal of X is a downwards-closed subset I ⊆ X, which is
directed: it is non-empty, and if x, x′ are two elements of I, then there exists y in I
with x ≤ y and x′ ≤ y. Alternatively, order ideals are characterised as the irreducible
non-empty downwards-closed sets of X: an order ideal is a non-empty downwards-
closed set I with the property that, if I ⊆ D1 ∪D2 for two downwards-closed sets D1
and D2, then I ⊆ D1 or I ⊆ D2.

Over a wqo (X, ≤), any downwards-closed set D ⊆ X has a canonical decomposi-
tion as a finite union of order ideals D = I1 ∪ · · · ∪ In, where the Ij ’s are mutually
incomparable for inclusion [11, 25]. We write I ∈ D if I is an order ideal appearing
in the canonical decomposition of D, i.e., if it is a maximal order ideal included in D.
Then D ⊆ D′ if and only if, for all I ∈ D, there exists I ′ ∈ D′ such that I ⊆ I ′.

Effective Representations over Nd. Over the wqo (Nd, ⊑), the order ideals are exactly
the sets of the form ↓v ∩ Nd where v ranges over Nd

ω
def= (N ⊎ {ω})d, where ω is a

new top element [25]. From here on, we will abuse notations and identify an order
ideal I of Nd with the vector v in Nd

ω such that I = ↓v ∩ Nd. See for instance the
decompositions in Figure 1.

Let us introduce some notations for the sets of infinite and finite components
of I, namely

ω(I) def= {1 ≤ i ≤ d | I(i) = ω} , fin(I) def= {1 ≤ i ≤ d | I(i) < ω} , (2)
along with its dimension and finite dimension, respectively defined as

dim I def= |ω(I)| , fdim I def= |fin(I)| . (3)



ON THE LENGTH OF STRONGLY MONOTONE DESCENDING CHAINS OVER Nd 5

Note that fin(I) = {1, . . . , d} \ ω(I) and fdim I = d − dim I. For instance, the order
ideal I = (ω, 4) in the decomposition of D0 in Figure 1 satisfies ω(I) = {1} and
dim I = 1.

The order ideals of Nd, when represented as vectors in Nd
ω, are rather easy

to manipulate [25] — and thus so are the downwards-closed subsets of Nd when
represented as finite sets of vectors in Nd

ω. For instance,
• I ⊆ I ′ (as subsets of Nd) if and only if I ⊑ I ′ (as vectors in Nd

ω) — which
incidentally entails ω(I) ⊆ ω(I ′) and therefore dim I ≤ dim I ′; also note
that, if I ⊆ I ′ and dim I = dim I ′, then ω(I) = ω(I ′);

• the intersection of two order ideals is again an order ideal, represented by
the vector I ∧ I ′ defined by (I ∧ I ′)(i) def= min(I(i), I ′(i)) for all 1 ≤ i ≤ d;

• the complement of an order ideal I is the upwards-closed set
⋃

i∈fin(I) ↑
(
(I(i)+

1) · ei

)
, where ei denotes the unit vector with “1” in coordinate i and “0”

everywhere else.

Proper Ideals and Monotonicity. If D ⊋ D′, then there must be an order ideal
I ∈ D such that I ̸∈ D′. Coming back to a descending chain D0 ⊋ D1 ⊋ · · · ⊋ Dℓ,
we then say that an order ideal I is proper at step k, for 0 ≤ k < ℓ, if I ∈ Dk but
I ̸∈ Dk+1; at each step 0 ≤ k < ℓ, there must be at least one proper order ideal. In
Figure 1, (ω, 4) is proper at step 0, and more generally (ω, 4 − k) is the only proper
order ideal at step 0 ≤ k < 5.

It turns out that the descending chains arising from some algorithmic procedures,
including the backward coverability algorithm for VAS, enjoy additional relationships
between their proper order ideals. Over (Nd, ⊑), we say that a descending chain
D0 ⊋ D1 ⊋ · · · is

• strongly monotone [36, 7] if, whenever an ideal Ik+1 is proper at some
step k +1, then there exists Ik proper at step k such that dim Ik+1 ≤ dim Ik,
and

• in particular ω-monotone [32] if, whenever an ideal Ik+1 is proper at some
step k + 1, then there exists Ik proper at step k such that ω(Ik+1) ⊆ ω(Ik).

The descending chain depicted in Figure 1 is ω-monotone—and thus strongly
monotone— with ω((ω, 4 − (k + 1))) ⊆ ω((ω, 4 − k)) for all 4 > k ≥ 0.

Controlled Sequences. While guaranteed to be finite, descending chains over a
wqo can have arbitrary length. Nevertheless, their length can be bounded under
additional assumptions. We define the size of a downwards-closed subset of Nd and
of an order ideal of Nd as

∥D∥ def= max
I∈D

∥I∥ , ∥I∥ def= max
i∈fin(I)

I(i) . (4)

In Figure 1, ∥D0∥ = ∥D1∥ = ∥D2∥ = 4, ∥D3∥ = 5, ∥D4∥ = 7, and ∥D5∥ = 9.
Given a control function g:N → N, which will always be monotone (i.e., ∀x ≤

y.g(x) ≤ g(y)) and expansive (i.e., ∀x.x ≤ g(x)) along with an initial size n0 ∈ N,
we say that a descending chain D0 ⊋ D1 ⊋ · · · over Nd is (asymptotically) (g, n0)-
controlled if, for all k ≥ 0,

∥Dk∥ ≤ gk(n0) (5)
where gk(n0) is the kth iterate of g applied to n0 [39]. In particular, ∥D0∥ ≤ n0
initially. In Figure 1, the descending chain is (g, 4)-controlled for g(x) def= x + 1.
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3. Main Result

In this section, we establish a new bound on the length of controlled strongly
monotone descending sequences. This relies on a generalisation of the notion of
thinness from Künnemann et al. [30, Def. 3.6] (see § 3.1), before we can apply
thinness in the setting of strongly monotone descending chains and prove our main
result in § 3.2.

3.1. Thinness. Fix a control function g, an initial size n0, and a dimension d ≥ 0.
Define inductively the bounds on sizes (Ni)0≤i≤d and lengths (Li)0≤i≤d as follows

N0
def= n0 , Ni+1

def= gLi+1(n0) , (6)

L0
def= 0 , Li+1

def= Li +
∏

1≤j≤i+1
(d − j + 1)(Nj + 1) . (7)

Beware the abuse of notation, as the bounds above depend on (g, n0) and d, but
those will always be clear from the context.

Remark 3.1 (Monotonicity of (Ni)0≤i≤d and (Li)0≤i≤d). By definition, for all
0 ≤ i < j ≤ d, 0 ≤ Li < Lj , and because g is assumed monotone expansive,
n0 ≤ Ni ≤ Nj . □

The following definition generalises [30, Def. 3.6] to handle order ideals and an
arbitrary control function and initial size.

Definition 3.2 (Thin order ideal). Let (g, n0) be a control function and initial
size and d > 0 a dimension. An order ideal I of Nd is thin if there exists a
bijection σ : fin(I) → {1, . . . , fdim I} such that, for all i ∈ fin(I), I(i) ≤ Nσ(i).

Observe that that, if I ′ is thin, I ⊆ I ′, and dim I = dim I ′, then I is thin.

Remark 3.3 (Number of thin order ideals). There cannot be more than
(

d
i

)
· i! ·∏

1≤j≤i(Nj + 1) =
∏

1≤j≤i(d − j + 1)(Nj + 1) distinct thin order ideals of finite
dimension i. As will become apparent in the proofs, this is what motivates the
definition in (7).

Furthermore, if we let Idlthin(Nd) denote the set of thin order ideals of Nd, there
is only one thin order ideal of finite dimension 0—namely (ω, . . . , ω)—, and

|Idlthin(Nd)| ≤ 1 +
∑

1≤i≤d

∏
1≤j≤i

(d − j + 1)(Nj + 1)

= 1 +
∑

1≤i≤d

(Li − Li−1)

= 1 + Ld − L0 = 1 + Ld . □

3.2. Thinness Lemma. The crux of our result is the following lemma.

Lemma 3.4 (Thinness). Consider a (g, n0)-controlled strongly monotone descending
chain D0 ⊋ D1 ⊋ · · · of downwards-closed subsets of Nd. If Iℓ is a proper order
ideal at some step ℓ, then Iℓ is thin and ℓ ≤ Lfdim Iℓ

.

The proof of Lemma 3.4 proceeds by induction over the finite dimension fdim Iℓ =
d − dim Iℓ. For the base case where Iℓ has full dimension dim Iℓ = d, then Iℓ =
(ω, . . . , ω) is thin and Dℓ = Nd is the full space, which can only occur at step
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ℓ = 0 = L0. For the induction step, we first establish thinness with the following
claim; note that, as just argued, an order ideal of dimension d is necessarily thin.
We then follow with the bound on ℓ to complete the proof of Lemma 3.4.

Claim 3.5. Let 0 ≤ d′ < d and assume that Lemma 3.4 holds for all proper order
ideals I ′ of dimension dim I ′ > d′. If I is any (not necessarily proper) order ideal
of dimension dim I = d′ appearing as a maximal ideal in the descending chain
D0 ⊋ D1 ⊋ · · · , then I is thin.

Proof of Claim 3.5. Let k be a step where I appears in the descending chain D0 ⊋
D1 ⊋ · · · , i.e., I ∈ Dk, and let us write Ik

def= I. If k > 0, since Dk ⊆ Dk−1, there
exists an order ideal Ik−1 ∈ Dk−1 such that Ik ⊆ Ik−1. If k = 0, or by repeating
this argument if k > 0, we obtain a chain of order ideals (with decreasing indices)

Ik ⊆ Ik−1 ⊆ · · · ⊆ I0 (8)

where Im ∈ Dm for all k ≥ m ≥ 0. Every order ideal in that chain must have
dimension at least dim Ik = d′ since they all contain Ik. Two cases arise.

(1) If every order ideal in the chain (8) has dimension dim Ik, then because
the descending chain D0 ⊋ D1 ⊋ · · · is (g, n0)-controlled, we have ∥I0∥ ≤
n0 = N0 and we know by Remark 3.1 that I0 is thin. Since Ik ⊆ I0 and
dim Ik = dim I0, Ik is also thin.

(2) Otherwise there exists a first index K along the chain (8) where the di-
mension increases, i.e., such that dim Ik < dim IK and dim Im = dim Ik

for all k ≥ m > K. Then IK is proper, as otherwise DK+1 would contain
two distinct but comparable order ideals in its canonical decomposition,
namely IK and IK+1: indeed, IK+1 ⊆ IK and dim IK+1 = dim Ik < dim IK

imply IK+1 ⊊ IK . By assumption, Lemma 3.4 can be applied to IK of
dimension dim IK > dim Ik = d′, thus IK is thin and K ≤ Lfdim IK

.

Let us now show that IK+1 is thin, which will also yield that Ik is thin
since Ik ⊆ IK+1 and dim Ik = dim IK+1.

Since dim IK+1 < dim IK , we let f def= dim IK − dim IK+1 = fdim IK+1 −
fdim IK > 0. As furthermore IK+1 ⊆ IK , ω(IK+1) ⊊ ω(IK) and we let
{i1, . . . , if } def= ω(IK) \ ω(IK+1) = fin(IK+1) \ fin(IK).

Since IK is thin, there exists a bijection σ : fin(IK) → {1, . . . , fdim (IK)}
such that IK(i) ≤ Nσ(i) for all i ∈ fin(IK). We extend σ to a bijection
σ′ : fin(IK) ⊎ {i1, . . . , if } → {1, . . . , fdim IK + f}: we let σ′(i) def= σ(i) for all
i ∈ fin(IK), and σ′(ij) def= fdim IK + j for all 1 ≤ j ≤ f . Let us check that σ′

witnesses the thinness of IK+1.
• Because IK+1 ⊆ IK , for all those i ∈ fin(IK), IK+1(i) ≤ IK(i) ≤

Nσ(i) = Nσ′(i).
• Since K + 1 ≤ Lfdim IK

+ 1 and since the descending chain D0 ⊋
D1 ⊋ · · · is (g, n0)-controlled, we have a bound of gLfdim IK

+1(n0) =
Nfdim IK +1 on all the finite components of IK+1, and in particular
IK+1(ij) ≤ Nfdim IK+1 for all 1 ≤ j ≤ f . By Remark 3.1, we conclude
that IK+1(ij) ≤ Nfdim IK +j = Nσ′(ij) for all 1 ≤ j ≤ f . [3.5]

Proof of Lemma 3.4. We have already argued for the base case, so let us turn to
the inductive step where dim Iℓ < d. If ℓ > 0 and since our descending chain
is strongly monotone, we can find an order ideal Iℓ−1 proper at step ℓ − 1 such
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that dim Iℓ ≤ dim Iℓ−1. Both if ℓ = 0 or by repeating this argument, we obtain a
sequence of order ideals (with decreasing indices)

Iℓ, Iℓ−1, . . . , I0 (9)
where, for each ℓ > k ≥ 0, Ik is proper at step k, and dim Ik+1 ≤ dim Ik.

Let us decompose our sequence (9) by identifying the first step L where dim IL+1 <
dim IL; let L def= −1 if this never occurs. After this step, for all L ≥ k ≥ 0,
dim Ik > dim Iℓ. Within the initial segment, for ℓ ≥ k > L, the dimension dim Ik

remains constant equal to dim Iℓ, and the induction hypothesis allows to apply
Claim 3.5 and infer that every order ideal Ik in this initial segment, and in particu-
lar Iℓ among them, is thin.

It remains to provide a bound on ℓ. The ℓ − L order ideals in the initial segment
are thin, and distinct since they are proper, hence by Remark 3.3,

ℓ ≤ L +
∏

1≤i≤fdim Iℓ

(d − i + 1)(Ni + 1) . (10)

If L ≥ 0: we can apply the induction hypothesis to the proper order ideal
IL of finite dimension fdim IL < fdim Iℓ along with Remark 3.1 to yield
L ≤ Lfdim IL

≤ Lfdim Iℓ−1 and therefore

ℓ ≤ Lfdim Iℓ−1 +
∏

1≤i≤fdim Iℓ

(d − i + 1)(Ni + 1) = Lfdim Iℓ
. (11)

If L = −1: then (11) also holds since Lfdim Iℓ−1 ≥ 0 > L in (10). □

We deduce a general combinatorial statement on the length of controlled strongly
monotone descending chains, that generalises and refines [32, Thm. 4.4] thanks to
thinness.

Theorem 3.6 (Length function for strongly monotone descending chains). Con-
sider a (g, n0)-controlled strongly monotone descending chain D0 ⊋ · · · ⊋ Dℓ of
downwards-closed subsets of Nd. Then ℓ ≤ Ld + 1.

Proof. In such a descending chain, either ℓ = 0 ≤ Ld + 1, or ℓ > 0 and there must
be an order ideal I proper at step ℓ − 1, and I has finite dimension at most d. By
Lemma 3.4 and Remark 3.1, ℓ − 1 ≤ Lfdim I ≤ Ld in that case. □

3.3. Thin Order Ideals and Filters. Let us conclude this section with some
consequences of Lemma 3.4 and Claim 3.5. Whereas thinness was posited a priori
in the proof of Künnemann et al. [30, Thm. 3.3] and then shown to indeed allow
a suitable decomposition of minimal covering executions and to eventually prove
their result, here in the descending chain setting it is an inherent property of all the
order ideals appearing in the chain, thereby providing a “natural” explanation for
thinness.

Corollary 3.7. Consider a (g, n0)-controlled strongly monotone descending chain
D0 ⊋ D1 ⊋ · · · of downwards-closed subsets of Nd. Then every order ideal appearing
in the chain is thin.

Corollary 3.7 also entails a form of thinness of the minimal configurations in the
complement of the downwards-closed sets Dk. Recall that such a complement is
the upward-closure of a finite basis Bk

def= min⊑ Nd \ Dk. Each element v ∈ Bk is
a vector defining a so-called (principal) order filter ↑v of Nd. Let us call a vector
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v ∈ Nd nearly thin if there exists a permutation σ : {1, . . . , d} → {1, . . . , d} such
that, for all 1 ≤ i ≤ d, v(i) ≤ Nσ(i) + 1. We can relate thin order ideals with nearly
thin order filters, which by Corollary 3.7 applies to every vector v ∈

⋃
k Bk.

Proposition 3.8. If every order ideal in the canonical decomposition of a downwards-
closed set D ⊆ Nd is thin, then each v ∈ min⊑ Nd \ D is nearly thin.

Proof. Consider the canonical decomposition D = I1 ∪ · · · ∪ Im of D. Then U def=
Nd \ D = (Nd \ I1) ∩ · · · ∩ (Nd \ Im). In turn, for each 1 ≤ j ≤ m, Nd \ Ij =⋃

i∈fin(Ij) ↑
(
(Ij(i) + 1) · ei) where ei denotes the unit vector such that ei(i) def= 1 and

ei(j) def= 0 for all j ̸= i. Distributing intersections over unions, we obtain that

U =
⋃

(i1,...,im)∈fin(I1)×···×fin(Im)

⋂
1≤j≤m

↑
(
(Ij(ij) + 1) · eij ) . (∗)

For two order filters ↑v and ↑v′, (↑v) ∩ (↑v′) = ↑(v ∨ v′) where v ∨ v′ denotes the
component-wise maximum of v and v′. Therefore, by (∗), any v ∈ min⊑ U is of the
form

vi1,...,im

def=
∨

1≤j≤m

(
(Ij(ij) + 1) · eij ) (†)

for some (i1, . . . , im) ∈ fin(I1) × · · · × fin(Im). Note that not all the vectors vi1,...,im

defined by (†) are necessarily minimal in U , but that

min
⊑

U = min
⊑

{vi1,...,im | (i1, . . . , im) ∈ fin(I1) × · · · × fin(Im)} . (‡)

Assume by contradiction that there exists some minimal vector v ∈ min⊑ U that
is not nearly thin. Without loss of generality, v(1) ≤ v(2) ≤ · · · ≤ v(d), as otherwise
we could apply a suitable permutation of {1, . . . , d} on the components of each ideal
Ij ∈ D. Then, because Ni ≤ Ni′ for all i < i′ by Remark 3.1, v not being nearly
thin entails that there exists an index k ∈ {1, . . . , d} such that v(k) > Nk + 1 but
v(i) ≤ Ni + 1 for all i < k.

By (‡), there exists (i1, . . . , im) ∈ fin(I1) × · · · × fin(Im) such that v = vi1,...,im .
We are going to show that there exists (i′

1, . . . , i′
m) ∈ fin(I1) × · · · × fin(Im) such

that vi′
1,...,i′

m
Ĺ v, which by (‡) contradicts the minimality of v.

Looking more closely at the individual components of v in (†), define for all
1 ≤ i ≤ d the set Si

def= {1 ≤ j ≤ m | ij = i} of indices j ∈ {1, . . . , m} such that the
value of v(i) “stems” from Ij . Then

vi1,...,im(i) =
{

0 if Si = ∅
max{Ij(i) + 1 | j ∈ Si} otherwise.

(∗∗)

In particular, for the kth component, Sk ≠ ∅ and we let Vk
def= {j ∈ Sk | Ij(k) > Nk}

denote the indices j of the ideals Ij ∈ D responsible for the violation of near thinness.

Example 3.9. Let us illustrate the previous notations. Let d def= 4 and assume for
the sake of simplicity that

N1
def= 2 , N2

def= 4 , N3
def= 6 , N4

def= 8 .
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Consider D def= {I1, I2, I3, I4, I5} with
I1

def= (1, 4, 6, 7) , I2
def= (2, 6, 4, 8) , I3

def= (3, 1, 7, 6) ,

I4
def= (3, 1, 7, 6) , I5

def= (4, 5, 3, 0) .

Then v def= (2, 7, 7, 7) = v3,2,4,1,2 is not nearly thin with k = 2, stem sets
S1 = {4} , S2 = {2, 5} , S3 = {1} , S4 = {3} ,

and V2 = {2, 5}, and indeed v(2) stems from the ideals I2 and I5, which are such
that I2(2) = 6 > N2 and I5(2) = 5 > N2. □

For all 1 ≤ j ≤ m, because Ij is thin, there exists a bijection σj : fin(Ij) →
{1, . . . , fdim Ij} such that, for all i ∈ fin(Ij), Ij(i) ≤ Nσj(i). Without loss of
generality, we can assume that for all i, i′ ∈ fin(Ij), Ij(i) ≤ Ij(i′) whenever σj(i) <
σj(i′).
Example 3.9 (continuing from p. 9). Here are suitable bijections witnessing thin-
ness:

σ1 = (1 2 3 4) , σ2 = (1 3 2 4) , σ3 = (2 1 4 3) ,

σ4 = (2 1 4 3) , σ5 = (3 4 2 1) . □

For every j ∈ Vk, σ−1
j ({1, . . . , k}) \ {1, . . . , k − 1} is non empty. Therefore it

contains an element i′
j ≥ k such that Ij(i′

j) ≤ Nk. For every 1 ≤ j ≤ m such that
j ̸∈ Vk, let i′

j
def= ij .

Let us check that vi′
1,...,i′

m
Ĺ v, which will allow to conclude. Define S′

i
def= {1 ≤

j ≤ m | i′
j = i} for each 1 ≤ i ≤ d; then equation (∗∗) holds mutatis mutandis for

vi′
1,...,i′

m
and

for i < k: S′
i = Si hence vi′

1,...,i′
m

(i) = v(i);
for i = k: S′

k = Sk \Vk = {j ∈ Sk | Ij(k) ≤ Nk} hence vi′
1,...,i′

m
(k) ≤ Nk +1 <

v(k) by definition of k;
for i > k: S′

i = Si ∪ {j ∈ Vk | i′
j = i} hence vi′

1,...,i′
m

(i) = max{Ij(i) + 1 | j ∈
S′

i} = max(max{Ij(i) + 1 | j ∈ Si}, max{Ij(i) + 1 | j ∈ Vk and i′
j = i}).

• On the one hand, max{Ij(i) + 1 | j ∈ Si} = v(i).
• On the other hand, Ij(i′

j) ≤ Nk for all j ∈ Vk by definition of i′
j , hence

max{Ij(i) + 1 | j ∈ Vk and i′
j = i} ≤ Nk + 1 < v(k) by definition of k.

As v(k) ≤ v(i) by assumption since i > k, we conclude vi′
1,...,i′

m
(i) = v(i).

Example 3.9 (continuing from p. 10). We have σ−1
2 ({1, 2}) = {1, 3} and σ−1

5 ({1, 2}) =
{3, 4}, hence we can pick i′

2
def= 3 and i′

5
def= 4. This defines v3,3,4,1,4 with stem sets

S′
1 = {4} , S′

2 = ∅ , S′
3 = {1, 2} , S′

4 = {3, 5} .

Then v3,3,4,1,4 = (2, 0, 7, 7) Ĺ v as desired. □

4. Applications

We describe two applications of Theorem 3.6 in this section. The first application
in § 4.2 is to the coverability problem in vector addition systems, and relies on the
analysis of the backward coverability algorithm done in [32]. Thus we can indeed
recover the improved upper bound of Künnemann et al. [30] for the coverability
problem in the more general setting of descending chains, and show that the backward
coverability algorithm achieves this n2O(d) upper bound (see Corollary 4.5).
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The second application in § 4.3 focuses on the coverability problem in invertible
affine nets, a class introduced by Benedikt et al. [7], who analysed the complexity
of the problem through a reduction to zeroness in invertible polynomial automata.
We give a direct analysis of the complexity of the backward coverability algorithm,
which follows the same lines as in the VAS case, and allows to improve on the
2EXPSPACE upper bound shown in [7] for the problem, by showing that it is actually
EXPSPACE-complete (see Corollary 4.13). This application additionally illustrates
the usefulness of considering strongly monotone descending chains rather than the
ω-monotone ones, as the descending chains constructed by the backward algorithm
for invertible affine nets are in general not ω-monotone.

As both applications take place in the framework of well-structured transition
systems [1, 22], we start with a quick refresher on this framework, the backward
coverability algorithm, and its dual view using downwards-closed sets [32] in the
upcoming § 4.1.

4.1. Coverability in Well-Structured Transition Systems. Well-structured
transition systems (WSTS) form an abstract family of computational models where
the set of configurations is equipped with a well-quasi-ordering “compatible” with
the computation steps. This wqo ensures the termination of generic algorithms
checking some important behavioural properties like coverability and termination.
While the idea can be traced back to the 1980’s [21], this framework has been
especially popularised through two landmark surveys [1, 22] that emphasised its
wide applicability, and new WSTS models keep being invented in multiple areas to
this day.

4.1.1. Well-Structured Transition Systems. A well-structured transition system
(WSTS) [1, 22] is a triple (X, →, ≤) where X is a set of configurations, → ⊆ X ×X is
a transition relation, and (X, ≤) is a wqo with the following compatibility condition:
if x ≤ x′ and x → y, then there exists y′ ≥ y with x′ → y′.

The coverability problem below corresponds to the verification of safety properties,
i.e., to checking that no bad configuration can ever be reached from a given initial
configuration s ∈ X. Here we are given an error configuration t ∈ X, and we assume
that any configuration larger than t is also an error.
Problem (Coverability in well-structured transition systems).

input: a well-structured transition system (X, →, ≤) and two configurations
s and t in X

question: does s cover t, i.e., does there exist t′ ∈ X such that s →∗ t′ ≥ t?
4.1.2. The Backward Coverability Algorithm. The first published version of this
algorithm seems to date back to [3], where it was used to show the decidability of
coverability in vector addition systems extended with reset capabilities, before it
was rediscovered and generalised to well-structured transition systems [1].

The Algorithm. Given an instance of the coverability problem, the backward cover-
ability algorithm [3, 1, 22] computes (a finite basis for) the upwards-closed set

U∗
def= {x ∈ X | ∃t′ ≥ t . x →∗ t′} (12)

of all the configurations that cover t, and then checks whether s ∈ U∗.
The set U∗ itself is computed by letting

U0
def= ↑t , Uk+1

def= Uk ∪ Pre∃(Uk) , (13)
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where, for a set S ⊆ X,
Pre∃(S) def= {x ∈ X | ∃y ∈ S . x → y}.

Then Uk = {x ∈ X | ∃t′ ≥ t . x →≤k t′} is the set of configurations that can
cover t in at most k steps. Equation (13) defines a chain U0 ⊆ U1 ⊆ · · · of upwards-
closed subsets of X. Furthermore, if Uℓ = Uℓ+1 at some step, then we have reached
stabilisation: Uℓ = Uℓ+k = U∗ for all k. Thus we focus in this algorithm on ascending
chains U0 ⊊ U1 ⊊ · · · , which are finite thanks to the ascending chain condition of
the wqo (X, ≤). In order to turn (13) into an actual algorithm, one needs to make
some effectiveness assumptions on (X, →, ≤), typically that ≤ is decidable and a
finite basis for Pre∃(↑x) can be computed for all x ∈ X [22, Prop. 3.5].

A Dual View. Lazić and Schmitz [32] take a dual view of the algorithm and define
from (13) a descending chain D0 ⊋ D1 ⊋ · · · of the same length where

Dk
def= X \ Uk (14)

for each k; this stops with D∗ = X \ U∗ the set of configurations that do not cover t.
The entire computation in (13) can be recast in this dual view, by setting

D0
def= X \ ↑t , Dk+1

def= Dk ∩ Pre∀(Dk) , (15)
where, for a set S ⊆ X,

Pre∀(S) def= {x ∈ X | ∀y ∈ X . (x → y =⇒ y ∈ S)} = X \ (Pre∃(X \ S)).
Under some effectiveness assumptions, in particular for manipulating ideal repres-
entations over X, this can be turned into an actual algorithm [32, Sec. 3.1].

4.2. Coverability in Vector Addition Systems. Vector addition systems are a
well-established model for simple concurrent processes [27] equivalent to Petri nets,
with far-reaching connections to many topics in theoretical computer science. In
particular, their coverability problem, which essentially captures safety checking,
has been thoroughly investigated from both a theoretical [27, 34, 37, 13, 32, 30] and
a more practical [19, 8, 24, 10] standpoint.

4.2.1. Vector Addition Systems. A d-dimensional vector addition system (VAS) [27]
is a finite set A of vectors in Zd. It defines a well-structured transition system
(Nd, →A, ⊑) with Nd as set of configurations and transitions u →A u + a for all u
in Nd and a in A such that u + a is in Nd. We work with a unary encoding, and let
∥u∥ def= max1≤i≤d |u(i)| and ∥A∥ def= maxa∈A ∥a∥ for all u ∈ Zd and A ⊆ Zd finite.

The coverability problem in vector addition systems was first shown decidable
in 1969 by Karp and Miller [27], before being proven EXPSPACE-complete when
d is part of the input by Lipton [34] and Rackoff [37]. Note that the problem
parameterised by d is trivial for d = 1 (a target t is coverable if and only if s ≥ t or
there exists a ∈ A with a > 0), hence we will assume d ≥ 2.

4.2.2. Complexity Upper Bounds. The dual backward coverability algorithm of §4.1.2
is straightforward to instantiate in the case of a vector addition system. Figure 1
displays the computed descending chain for the 2-dimensional VAS A÷2

def= {(−2, 1)}
and target configuration t def= (0, 5) [32, Ex. 3.6].

Fact 4.1 ([32, claims 3.9 and 4.3]). The descending chain D0 ⊋ D1 ⊋ · · · defined
by equations (13–15) for a d-dimensional VAS A and a target vector t is (g, n0)-
controlled for g(x) def= x + ∥A∥ and n0

def= ∥t∥, and is ω-monotone.
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The length of the descending chain defined by equations (13–15) is the main
source of complexity for the whole backward coverability algorithm, and we can
apply our own Theorem 3.6 instead of [32, Thm. 4.4] in order to prove the following
bound on this length, where the combinatorics are somewhat similar to those of [30,
Lem. 3.5].

Theorem 4.2. The backward coverability algorithm terminates after at most n2O(d)

iterations on a d-dimensional VAS encoded in unary.

Proof. Let n be the size of the input to the coverability problem; we assume in the
following that n, d ≥ 2. By Fact 4.1 and due to the unary encoding, the descending
chain D0 ⊋ D1 ⊋ · · · ⊋ Dℓ = D∗ is (g, n0)-controlled for g(x) def= x + n and n0

def= n,
and is ω-monotone and thus strongly monotone. By Theorem 3.6, ℓ ≤ Ld + 1. Let
us bound this value.

Claim 4.3. Let g(x) def= x + n and n0
def= n. Then, for all i ≤ d,

Ni+1 = n · (Li + 2) , Li + 4 ≤ n3i·(lg d+1) .

Proof of Claim 4.3. In the case of Ni+1, by the definition of Ni+1 in (6), Ni+1 =
gLi+1(n0) = n + (Li + 1) · n = n · (Li + 2) as desired.

Regarding Li, we proceed by induction over i. For the base case i = 0, L0 + 4 =
4 ≤ n30·(lg d+1) since we assumed n, d ≥ 2. For the induction step, by the definition
of Li+1 in (7)

Li+1 + 4 = Li + 4 +
∏

0≤j≤i

(d − j)(Nj+1 + 1)

≤ Li + 4 +
∏

0≤j≤i

(d − j) · n · (Lj + 3)

≤ 2 · (dn)i+1 ·
∏

0≤j≤i

(Lj + 3) .

Here, since n ≥ 2,

2 · (dn)i+1 ≤ n(i+1)(lg d+1)+1

and by induction hypothesis for j ≤ i∏
0≤j≤i

(Lj + 3) ≤ n

∑
0≤j≤i

3j(lg d+1)
.

Thus, it only remains to see that, since i > 0,

3i+1 · (lg d + 1) = (1 + 2 ·
∑

0≤j≤i

3j) · (lg d + 1)

≥ (1 + 30 + 3i) · (lg d + 1) +
∑

0≤j≤i

3j · (lg d + 1)

≥ (i + 1) · (lg d + 1) + 1 +
∑

0≤j≤i

3j · (lg d + 1) . [4.3]

Thus Ld + 1 ≤ n3d·(lg d+1) by Claim 4.3, which is in n2O(d) . □
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Remark 4.4 (Branching or alternating vector addition systems). The improved
upper bound parameterised by the dimension d in Theorem 4.2 also applies to
some extensions of vector addition systems, for which Lazić and Schmitz [32] have
shown that the backward coverability algorithm was constructing an ω-monotone
descending chain controlled as in Fact 4.1, namely

• in [32, claims 6.7 and 6.8] for bottom-up coverability in branching vector
addition systems (BVAS)—which is 2EXP-complete [16]—, and

• in [32, claims 5.4 and 5.5] for top-down coverability in alternating vector
addition systems (AVAS)—which is 2EXP-complete as well [15]. □

Recall that Uℓ is the set of configurations that can cover the target t in at
most ℓ steps, hence Theorem 4.2 provides an alternative proof for [30, Thm. 3.3]:
if there exists a covering execution, then there is one of length in n2O(d) , from
which an algorithm in n2O(d) follows by [30, Thm. 3.2]. Regarding the optimality
of Theorem 4.2, recall that Lipton [34] shows an n2Ω(d) lower bound on the length
of a minimal covering execution, which translates into the same lower bound on
the number ℓ of iterations of the backward coverability algorithm [13, Cor. 2].
Finally, this also yields an improved upper bound on the complexity of the (original)
backward coverability algorithm. Here, we can rely on the analysis performed by
Bozzelli and Ganty [13, Sec. 3] and simply replace Rackoff’s n2O(d lg d) bound on the
length of minimal covering executions by the bound from Theorem 4.2.

Corollary 4.5. The backward coverability algorithm runs in time n2O(d) on d-
dimensional VAS encoded in unary.

Proof. Let n be the size of the input to the coverability problem and U0 ⊊ U1 ⊊
· · · ⊊ Uℓ = U∗ be the ascending chain constructed by the backward coverability
according to (13). By Theorem 4.2, ℓ is in n2O(d) .

Let Bk
def= min⊑ Uk be the minimal basis at each step k. The algorithm computes

Bk+1 from Bk as per (13) by computing min⊑ Pre∃(↑v) for each v ∈ Bk, adding
the elements of Bk, and removing any non-minimal vector. Thus each step can
be performed in time polynomial in n, d, and the number of vectors in Bk. Here,
Bozzelli and Ganty’s analysis in [13, Sec. 3] shows that ∥v′∥ ≤ g(∥v∥) for all
v′ ∈ min⊑ Pre∃(↑v), yielding a bound of |Bk| ≤ (gk(n) + 1)d ≤ ((ℓ + 1) · n + 1)d,
which is still in n2O(d) .

We can do slightly better. By Corollary 3.7, all the ideals in the canonical
decomposition of Dk

def= Nd \ Uk are thin, and in turn Proposition 3.8 shows that all
the vectors in Bk are nearly thin. Accordingly, let us denote by Filthin+1(Nd) the
set of order filters ↑v such that v is nearly thin. Then |Bk| ≤ |Filthin+1(Nd)|, and
the latter is in n2O(d) :

|Filthin+1(Nd)| ≤ d! ·
∏

1≤i≤d

(Ni + 2)

≤ d! · nd ·
∏

0≤i≤d−1
(Li + 4) (by Claim 4.3 on Ni)

≤ n
2d+

∑
0≤i≤d−1

3i·(lg d+1) (because d ≤ n and by Claim 4.3 on Li)

≤ n3d·(lg d+1) . (16)
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Therefore, the overall complexity of the backward coverability algorithm is
polynomial in ℓ, max0≤k≤ℓ |Bk|, n, and d, which is in n2O(d) .

Observe that the dual version of the backward coverability algorithm enjoys
the same upper bound: at each step k, the algorithm computes Dk+1 from Dk

as per (15); this computation of Dk+1 can be performed in time polynomial in n,
d, and the number of ideals in the canonical decomposition of Dk [32, Sec. 3.2.1].
By Corollary 3.7 and Remark 3.3, |Dk| ≤ |Idlthin(Nd)| ≤ 1 + Ld, hence the overall
complexity of the dual algorithm is polynomial in Ld, n, and d, which is still in
n2O(d) . □

The bounds in n2O(d) for ∥v∥ ≤ Nd + 1 for all v ∈ min⊑ Uk and for | min⊑ Uk| ≤
|Filthin+1(Nd)| in the previous proof also improve on the corresponding bounds in [44,
Thm. 9] and [13, Thm. 2]. Recall that Künnemann et al. [30, Thm. 4.2] show that,
assuming the exponential time hypothesis, there does not exist a deterministic no(2d)

time algorithm deciding coverability in unary encoded d-dimensional VAS, hence
the backward coverability algorithm is conditionally optimal.

4.3. Coverability in Affine Nets. Affine nets [23], also known as affine vector
addition systems, are a broad generalisation of VAS and Petri nets encompassing
multiple extended VAS operations designed for greater modelling power.

4.3.1. Affine Nets. A d-dimensional (well-structured) affine net [23] is a finite set N
of triples (a, A, b) ∈ Nd × Nd×d × Nd. It defines a well-structured transition system
(Nd, →N , ⊑) with Nd as set of configurations and transitions u →N A · (u − a) + b
for all u in Nd and (a, A, b) in N such that u − a is in Nd. This model encompasses
notably

• VAS and Petri nets when (each such) A is the identity matrix Id,
• reset nets [2, 3] when A is component-wise smaller or equal to Id,
• transfer nets [14] when the sum of values in every column of A is one,
• post self-modifying nets [43]—also known as strongly increasing affine

nets [23, 12]—when A is component-wise larger or equal to Id, and
• invertible affine nets [7] when A is invertible over the rationals, i.e., A ∈

GLd(Q).
As in the case of VAS, we will work with a unary encoding, and we let ∥N ∥ def=

max{∥a∥ | (a, A, b) ∈ N }; note that the entries from b and A are not taken into
account.

Example 4.6. Consider the affine nets

N1
def=

{[
2
0

]
,

[
1 0
0 1

]
,

[
0
1

]}

N2
def=

{[
0
0

]
,

[
1 1
0 0

]
,

[
0
0

]}

N3
def=

{[
0
0

]
,

[
1 1
2 0

]
,

[
0
0

]}
.

Then N1 defines the same WSTS as the 2-dimensional VAS A÷2 = {(−2, 1)}.
Focusing on the effects of their transition matrices, N2 performs a transfer from its
second component into its first component, while N3 sums the values of its first two
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components into the first one, and puts the double of its first component into its
second one. □

The coverability problem for reset VAS was first shown decidable in 1978 by
Arnold and Latteux [3] using the backward coverability algorithm, and the same
algorithm applies to all affine nets [18, 23]. Its complexity is considerable: their
coverability problem has already an Ackermannian complexity in the reset or transfer
cases [42, 20, 40]. In the strongly increasing case, Bonnet, Finkel, and Praveen [12,
Lem. 11 and Thm. 13] show how to adapt Rackoff’s original argument to derive an
upper bound in n2O(d lg d) on the length of minimal coverability witnesses, with an
EXPSPACE upper bound for the problem when d is part of the input, while in the
invertible case, Benedikt et al. [7, Thm. 6] show a 2EXPSPACE upper bound.

Control. Before we turn to the case of invertible affine nets, let us show that the
descending chains defined by the backward coverability algorithm for affine nets are
controlled, with a control very similar to the VAS case (c.f. Fact 4.1).

Proposition 4.7. The descending chain D0 ⊋ D1 ⊋ · · · defined by equations (13–
15) for a d-dimensional affine net N and a target vector t is (g, n0)-controlled for
g(x) def= x + ∥N ∥ and n0

def= ∥t∥.

Proof. Rather than handling Pre∀ computations directly, we use the fact that
Pre∀(S) = Nd \ (Pre∃(Nd \ S)) for all S ⊆ Nd and the following statement on Pre∃
computations.

Claim 4.8. If u′ ∈ min⊑ Pre∃(↑u), then ∥u′∥ ≤ ∥u∥ + ∥N ∥.

Proof of Claim 4.8. In such a situation, there exists a triple (a, A, b) ∈ N such that
u′ ⊒ a and A · (u′ − a) ⊒ u − b. Let y be defined by y(i) def= max(u(i), b(i)) − b(i)
for all 1 ≤ i ≤ d, thus of size ∥y∥ ≤ ∥u∥. Then u′ = x + a where x is a ⊑-minimal
solution of the system of inequalities Ax ⊒ y.

We are going to show that if x is an ⊑-minimal solution, then ∥x∥ ≤ ∥y∥.
This will yield the result, as then ∥u′∥ ≤ ∥y∥ + ∥a∥ ≤ ∥u∥ + ∥N ∥. Assume by
contradiction that x is a ⊑-minimal solution with x(j) > ∥y∥ for some 1 ≤ j ≤ d.
Consider x′ defined by x′(j) def= ∥y∥ and x′(i) def= x(i) for all i ̸= j; note that x′ Ĺ x.
Let us show that x′ is also a solution, i.e., that Ax′ ⊒ y: for all 1 ≤ i ≤ d,

• if A(i, j) > 0 then
∑

1≤k≤d A(i, k) · x′(k) ≥ x′(j) ≥ ∥y∥ ≥ y(i), and
• otherwise

∑
1≤k≤d A(i, k) · x′(k) =

∑
1≤k≤d A(i, k) · x(k) ≥ y(i) since x is

a solution.
Thus x′ is a solution, contradicting the ⊑-minimality of x. [4.8]

Now, since D0 = Nd \↑t, ∥D0∥ ≤ ∥t∥−1 by [32, Lem. 3.8]. Regarding the control
function, Dk+1 = Dk ∩ Pre∀(Dk) is such that ∥Dk+1∥ ≤ max(∥Dk∥, ∥Pre∀(Dk)∥)
also by [32, Lem. 3.8]. In turn, regarding Pre∀(Dk) = Nd \ Pre∃(Uk), the minimal
elements u of Uk = Nd \ Dk have size ∥u∥ ≤ ∥Dk∥ + 1 still by [32, Lem. 3.8], thus
the minimal elements u′ of Pre∃(Uk) have size ∥u′∥ ≤ ∥Dk∥+1+∥N ∥ by Claim 4.8,
hence ∥Pre∀(Dk)∥ ≤ ∥Dk∥ + ∥N ∥ by a last application of [32, Lem. 3.8]. □

4.3.2. Invertible Affine Nets. The restriction to invertible affine nets [7] is somehow
orthogonal to the usual restrictions to reset/transfer/post self-modifying/. . . nets.
For instance, in Example 4.6, the identity matrix in N1 is clearly invertible, and the
transfer matrix in N2 is not. More generally, reset nets are never invertible (when
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they perform resets), and transfer nets are invertible exactly when their matrices are
permutation matrices. Nevertheless, some more involved affine nets are invertible,
like N3 in Example 4.6, whose matrix is invertible with inverse

[
0 1/2
1 −1/2

]
.

Strong Monotonicity. When dealing with a descending sequence of downwards-
closed sets produced by the dual backward coverability algorithm for WSTS, a key
observation made in [32] allows to sometimes derive monotonocity. For this, in a
WSTS (X, →, ≤), define Post∃(S) def= {y ∈ X | ∃x ∈ S . x → y}. Following [9], for
two order ideals I and I ′, write I ⇝ I ′ if I ′ appears in the canonical decomposition
of ↓Post∃(I).
Fact 4.9 ([32, Claim 4.2]). Let D0 ⊋ D1 ⊋ · · · be a descending chain of downwards-
closed sets defined by equations (13–15). If Ik+1 is a ideal proper at step k + 1,
then there exists an order ideal I and an order ideal Ik proper at step k such that
Ik+1 ⇝ I ⊆ Ik.

In the case of affine nets, and identifying order ideals I with vectors in Nd
ω with

ω + n = ω − n = ω · n = ω for all n in N, ↓Post∃(I) = ↓{A · (I − a) + b | (a, A, b) ∈
N , I ⊒ a}.
Proposition 4.10. The descending chain D0 ⊋ D1 ⊋ · · · defined by equations (13–
15) for a d-dimensional invertible affine net N and a target vector t is strongly
monotone.

Proof. Let Ik+1 be proper at step k + 1. By Fact 4.9, there exists an order ideal I
and an order ideal Ik proper at step k such that Ik+1 ⇝N I ⊆ Ik. Let us show that
dim Ik+1 ≤ dim I; as dim I ≤ dim Ik because I ⊆ Ik, this will yield the result.

Since Ik+1 ⇝N I, there exists (a, A, b) in N such that I − b = A · (Ik+1 − a).
For this to hold, note that for all i ∈ fin(I), the ith row of A must be such that
A(i, j) = 0 for all j ∈ ω(Ik+1). As A is invertible, those (fdim I)-many rows must be
linearly independent. As just argued, the jth column for each of these rows is made
of zeroes whenever j ∈ ω(Ik+1). Thus the remaining (fdim Ik+1)-many columns must
make those fdim I rows linearly independent, hence necessarily fdim Ik+1 ≥ fdim I,
i.e., dim Ik+1 ≤ dim I. □

Observe that the proof of Proposition 4.10 does not work for the transfer net N2 of
Example 4.6:

[
ω
ω

]
⇝N2

[
ω
0

]
; this is exactly the kind of non-monotone behaviour

invertibility was designed to prevent. Also observe that
[

2
ω

]
⇝N3

[
ω
4

]
in the

invertible affine net N3, which is not an ω-monotone behaviour: this illustrates the
usefulness of capturing strongly monotone descending chains, as [32, Thm. 4.4 and
Cor. 4.6] do not apply.

Complexity Upper Bounds. We are now equipped to analyse the complexity of the
backward coverability algorithm in invertible affine nets. Regarding the length ℓ of
the chain constructed by the algorithm, by propositions 4.7 and 4.10 we are in the
same situation as in Theorem 4.2 and we can simply repeat the arguments from its
proof.

Theorem 4.11. The backward coverability algorithm terminates after at most n2O(d)

iterations on d-dimensional invertible affine nets encoded in unary when d ≥ 2.
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We deduce two corollaries from Theorem 4.11: one pertaining to the complexity
of the backward coverability algorithm in dimension d, which mirrors Corollary 4.5,
and one for the coverability problem when d is part of the input. Let us start with
the backward coverability algorithm.

Corollary 4.12. The backward coverability algorithm runs in time n2O(d) on d-
dimensional invertible affine nets encoded in unary when d ≥ 2.

Proof. Theorem 4.11 shows that the length ℓ of the ascending chain U0 ⊊ U1 ⊊
· · · ⊊ Uℓ = U∗ constructed by the backward coverability algorithm is at most Ld + 1,
which is in n2O(d) .

Let Bk
def= min⊑ Uk denote the minimal basis at step k. In order to compute

Bk+1 as per (13), thanks to Claim 4.8, we could essentially argue as in the proof
of Corollary 4.5, with the caveat that computing bluntly min⊑ Pre∃(↑v) for each
v ∈ Bk is dangerously similar to a linear integer programming question and will
incur an additional cost.

Alternatively, recall from equation (16) that Filthin+1(Nd), the set of order filters ↑v

such that v is nearly thin, has at most n2O(d) elements, and that |Bk| ≤ |Filthin+1(Nd)|
by Corollary 3.7 and Proposition 3.8. Thus in order to compute Bk+1 one can
enumerate the nearly thin vectors v′ ∈ Filthin+1(Nd) and check for each (a, A, b) ∈ N
such that v′ ⊒ a whether there exists v ∈ Bk such that A · (v′ − a) + b ⊒ v. Each
such check can be performed in time polynomial in ∥v′∥ ≤ Nd +1 = n ·(Ld−1 +2)+1,
n, d, and |Bk| ≤ |Filthin+1(Nd)|. Thus the entire computation can be carried out in
n2O(d) .

The same upper bound holds for the dual version of the backward coverability
algorithm. At each step k, by Corollary 3.7, in order to compute Dk+1 one can
enumerate the thin order ideals I ∈ Idlthin(Nd) and check for each such I whether
I ⊆ Dk and I ⊆ Pre∀(Dk), before removing the non-maximal ones. Note that
I ⊆ Pre∀(Dk) if and only if Post∃(I) ⊆ Dk, if and only if {A · (I − a) + b |
(a, A, b) ∈ N , I ⊒ a} ⊆ Dk, which can be checked in time polynomial in ∥I∥ ≤
Nd = n · (Ld−1 + 2), n, d, and |Dk| ≤ |Idlthin(Nd)| ≤ Ld + 1 by Remark 3.3. The
entire computation can be performed in time polynomial in Ld, n, and d, and this
remains in n2O(d) . □

As VAS are a particular case of invertible affine nets, the upper bounds in Corol-
lary 4.12 are optimal assuming the exponential time hypothesis by [30, Thm. 4.2].

Our last result concerns the complexity of coverability in invertible affine nets
when d is part of the input. Note that the arguments leading to an algorithm
working in space O(d lg(n · ℓ)) in the VAS case [30, Thm. 3.2]—which are essentially
the same as those used to derive a 2EXPSPACE upper bound for invertible affine
nets in [7, Thm. 6]—do not work here, as the configurations along an execution of
an affine net can grow exponentially with ℓ.

Corollary 4.13. The coverability problem for invertible affine nets is EXPSPACE-
complete.

Proof. The hardness for EXPSPACE follows from the hardness of the coverability
problem for VAS [34].

Regarding the upper bound, consider the execution of the classical backward
coverability algorithm as defined in equation (13) on an invertible affine net N
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with target configuration t: this is an ascending chain U0 ⊊ U1 ⊊ · · · ⊊ Uℓ where
Uℓ = Uℓ+1 = U∗. The following characterisation of coverability actually holds more
generally in WSTS.

Claim 4.14. In an affine net N , s covers t if and only if there exists ℓ′ ≤ ℓ and a
sequence of configurations t0, . . . , tℓ′ , called a coverability pseudo-witness, satisfying

t0
def= t , tk+1 ∈ min

⊑
Pre∃(↑tk) , tℓ′ ⊑ s . (17)

Proof of Claim 4.14. If a coverability pseudo-witness exists, then we claim that for
all ℓ′ ≥ k ≥ 0 there exists sk ⊒ tk such that s = sℓ′ →N sℓ′−1 →N · · · →N sk,
and thus in particular s →∗

N s0 ≥ t0 for k = 0. We can check this by induction
over k. For the base case k = ℓ′, define sℓ′

def= s. For the induction step k, since
tk+1 ∈ Pre∃(↑tk) there exists s′

k ⊒ tk such that tk+1 →N s′
k; by WSTS compatibility

and since sk+1 ⊒ tk+1, there exists sk ⊒ s′
k such that sk+1 →N sk.

Conversely, assume that s covers t in N . Then s ∈ Uℓ, and let ℓ′ ≤ ℓ be the
least index such that s ∈ Uℓ′ . Then either ℓ′ = 0, i.e., s ⊒ t = t0 and we are
done, or ℓ′ > 0. Because s ∈ Uℓ′ there must be some tℓ′ ∈ min⊑ Uℓ′ with s ⊒ tℓ′ ,
and tℓ′ ̸∈ Uℓ′−1 as otherwise s would be in Uℓ′−1, contradicting the minimality
of ℓ′. In general, if we have found a sequence (tj)ℓ′≥j≥k>0 satisfying (17) until
rank k + 1 included and know that tk ∈ (min⊑ Uk) \ Uk−1, then either k = 1 and
t1 ∈ min⊑ Pre∃(↑t0) by definition of U0 and U1 in (13), or k > 1 and because
tk ̸∈ Uk−1, there exists tk−1 ∈ min⊑ Uk−1 such that tk ∈ min⊑ Pre∃(↑tk−1), and
tk−1 ̸∈ Uk−2 as otherwise we would have tk in Uk−1. Repeating this process yields
a coverability pseudo-witness. [4.14]

By Claim 4.14, a non-deterministic algorithm for coverability can guess and check
the existence of a coverability pseudo-witness. By Theorem 4.11, such a pseudo-
witness has a length ℓ′ ≤ ℓ in n2O(d) . Furthermore, by Claim 4.8 the components in
each tk in such a pseudo-witness are bounded by ∥t∥ + ∥N ∥ · k ≤ (ℓ + 1) · n, which
is still in n2O(d) . Thus exponential space suffices. Note that this also holds when we
assume the invertible affine net to be encoded in binary, by substituting 2n for n in
the bound n2O(d) . □

Remark 4.15 (Strictly increasing affine nets). Strictly increasing affine nets [43,
23, 12] are intuitively the affine nets devoid of any form of reset or transfer; in
Example 4.6, only N1 is strictly increasing. All the results we have proven for
invertible affine nets in this section—namely in Theorem 4.11 and corollaries 4.12
and 4.13—also hold for strictly increasing affine nets, because the descending chains
of downwards-closed sets they generate when running the backward coverability
algorithm are ω-monotone.

Claim 4.16. The descending chain D0 ⊋ D1 ⊋ · · · defined by equations (13–15) for
a d-dimensional strictly increasing affine net N and a target vector t is ω-monotone.

Proof of Claim 4.16. Let Ik+1 be proper at step k + 1. By Fact 4.9, there exists an
order ideal I and an order ideal Ik proper at step k such that Ik+1 ⇝N I ⊆ Ik. Let
us show that ω(Ik+1) ⊆ ω(I); as ω(I) ⊆ ω(Ik) because I ⊆ Ik, this will yield the
result.

Since Ik+1 ⇝N I, there exists (a, A, b) in N such that Ik+1 ⊒ a and I =
A · (Ik+1 − a) + b. Because N is strictly increasing, A = Id + A′ for some matrix



20 S. SCHMITZ AND L. SCHÜTZE

A′ ∈ Nd×d, hence I = Ik+1 − a + A′ · (Ik+1 − a) + b. Thus I ⊒ (Ik+1 − a) and
therefore ω(I) ⊇ ω(Ik+1). [4.16]

An EXPSPACE upper bound was already shown by Bonnet et al. [12] for the
coverability problem, but the n2O(d) bound for the problem parameterised by d is
an improvement over the n2O(d lg d) bounds of [12, Lem. 11 and Thm. 13], and the
bounds for the backward coverability algorithm are new. □
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