Multi-Layered Abstraction-Based Controller Synthesis for Continuous-Time Systems

Kyle Hsu† Rupak Majumdar† Kaushik Mallik† Anne-Kathrin Schmuck‡
†University of Toronto, Canada ‡MPI-SWS, Kaiserslautern, Germany
{kylehsu,rupak,kmallik,akschmuck}@mpi-sws.org

ABSTRACT
We present multi-layered abstraction-based controller synthesis, which extends standard abstraction-based controller synthesis (ABCS) algorithms for continuous-time control systems by simultaneously maintaining several “layers” of abstract systems with decreasing precision. The resulting abstract multi-layered controller uses the coarsest abstraction whenever this is feasible, and dynamically adjusts the precision—by moving to a more precise abstraction and back to a coarser abstraction—based on the structure of the given control problem. Abstract multi-layered controllers can be refined to controllers with non-uniform resolution using feedback refinement relations established between each abstract layer and the concrete system, resulting in a sound ABCS method. We provide multi-layered controller synthesis algorithms for reachability, safety, and generalized Büchi specifications; our approach can be generalized to any ω-regular objective. Our algorithms are complete relative to single-layered synthesis on the finest layer. We empirically demonstrate that multi-layered synthesis can outperform standard (single-layer) ABCS algorithms on a number of examples, despite the additional cost of constructing multiple abstract systems.

1. INTRODUCTION
Abstraction-based controller synthesis (ABCS) [18] is a general technique for automatic synthesis of controllers for non-linear dynamical systems such that the closed-loop system satisfies a temporal logic specification. In this approach, a time-sampled version of the continuous dynamics of the open-loop system (the concrete system) is abstracted by a symbolic finite state model (the abstract system). Then, automata-theoretic algorithms from finite-state reactive synthesis [7, 14] are used to synthesize a discrete controller on the abstract system for a given temporal logic specification. If there is a feedback refinement relation (FRR) [16] between the concrete and abstract systems, the abstract controller can be easily refined to a controller for the concrete system such that the resulting closed loop satisfies the specification.

In practice, the abstract system is computed by first fixing a parameter τ for the sample time and a parameter η for the state and input spaces, and then representing the abstract state space as a set of hypercubes, each of diameter η. The hypercubes partition the continuous concrete state space. The abstract transition relation adds a transition between two hypercubes if there exists some state in the first hypercube which can reach some state of the second by following the original dynamics for time τ. Clearly, this is an over-approximation of the original dynamics. The success of ABCS depends on the choice of η and τ. Intuitively, increasing η (and τ) results in fewer hypercubes but leads to a more imprecise abstract transition relation. Thus, one may not be able to find a controller for the abstract system.

On the other hand, decreasing η (and τ) results in more precise abstraction and a higher chance of successful controller synthesis. However, the larger state space can make the synthesis problem computationally intractable.

In this paper, we extend ABCS to a multi-layered setting, i.e., we maintain several “layers” of abstract systems by picking hypercube partitions of different resolution. The resulting abstract controller synthesis procedure tries to find a controller for the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. We provide multi-layered controller synthesis algorithms for reachability, safety, and generalized Büchi conditions; our approach can be generalized to any ω-regular objective.

One might believe that soundness of our algorithms should immediately follow from techniques developed for abstraction refinement [5, 12]. Indeed, FRR is an instance of abstract interpretation [6]. However, abstraction refinement approaches usually assume a strong property: that there is an abstraction relation between every pair of abstract systems. This is not true in our setting. Thus, our algorithms and soundness proofs use a different approach. We introduce abstract multi-layered controllers which are each constructed from a set of “local” single-layered abstract controllers computed by a fixed-point algorithm. Based on ranking functions induced by such fixed-point algorithms, we show that abstract multi-layered controllers are sound. We obtain a sound ABCS method by refining controllers locally using the FRR between each abstract layer and the concrete system. Our algorithms are also complete relative to single-layered synthesis on the finest layer.

We have implemented our algorithms on top of SCOTS [17]. Our implementation maintains the different layers symbolically using binary decision diagrams (BDDs) and structures the BDD representations for different layers in a way that allows for efficient switching between abstractions. We use our implementation to empirically evaluate the inherent trade-off in applying our approach to a synthesis problem: while the controller synthesis algorithm runs faster, we pay the up-front cost of constructing multiple abstract transition relations of varying coarseness. Our method is effective if the number of state variables of the concrete system is small and

†Usually, τ is increased along with η to reduce nondeterminism due to self loops.
the cost of constructing the abstractions can be amortized over multiple controller synthesis problems. Using our implementation, we show that for Generalized Büchi control objectives arising in robot motion planning problems, one can gain significant savings in running times. More savings can be expected when the same dynamical system is used for multiple synthesis problems, e.g., in the design of motion primitives.

Informal Overview. We now provide an informal overview of our method. Consider the problem of controlling the motion of a vehicle in a given space (Pic. 1 in Fig. 1) s.t. a specified target (red region) is reached while avoiding static obstacles (black regions). Fix η and τ, and consider three abstractions S_1, S_2, and S_3 of the system, with parameters (η, τ), $(2\eta, 2\tau)$, and $(4\eta, 4\tau)$, respectively. Thus, S_1 is the finest abstraction, and S_3 is the coarsest. Each abstract state space is a set of squares (2D hypercubes) partitioning the underlying 2D space. The abstract transition function for each S_i allows transitions only between cells that share a corner.

Given Fig. 1, we see that we can only cross the passage between the obstacles by using S_1, yet S_2 and S_3 suffice in the remaining parts of the state space. This suggests an algorithm, like the one informally stated in Fig. 2, which tries to use the coarsest abstraction S_3, but switches to a finer abstraction (and back) when necessary.

When applying this algorithm to the problem in Pic. 1 of Fig. 1, we start by running a usual fixed-point algorithm for reachability (REACH) on S_3 using the red regions as the target. All states returned by REACH (marked in blue in Pic. 2) allow us to apply a (sequence of) control input(s) to steer the system to the red region, and are therefore usually called winning states. At this point, we proceed to the next finer layer S_2 and run REACH for S_2 by using the previously computed winning states as the new target (marked in red in Pic. 3). We see that this fixed-point terminates after one step. Therefore, we go down to S_1 (Pic. 4).

At this point, we could run the controller synthesis algorithm in S_1 until convergence. While correct, this does not capture the intuition that S_2 and S_3 suffice for controller synthesis after crossing the passage. Hence, our synthesis algorithm uses a tuning parameter m (equal to 2 in Fig. 1) to specify that, for layers that are not the coarsest, the reachability fixed-point iterates for up to m steps and returns the current winning set. After iterating REACH on S_1 for $m = 2$ steps (gaining the blue states in Pic. 4), we switch to layer 2 and see that no new states are added to the target set for S_2 compared to Pic. 3. We thus immediately return to S_1 and run REACH for two more iterations (gaining the cyan states in Pic. 4). As REACH did not converge for S_1, we move to S_2 and run $m = 2$ iterations of REACH over S_2, but now for the new target (Pic. 5). Since this also does not converge, we finally move back to S_3 and run REACH until convergence (Pic. 6). At this point, we can verify that the set of states is a fixed-point for every layer; hence, the algorithm terminates.

As a by-product of the algorithm, we obtain a partition of the state space where each sub-region corresponds to the domain of one locally computed controller. This is illustrated in Pic. 7 of Fig. 1. The overall abstract controller is given by the union of all local ones, and its soundness follows from the fact that each local controller treats the union of all lower ranked controllers’ domains (i.e., controllers computed earlier in the algorithm) as its target. By refining this controller to the underlying concrete system, we obtain a controller with non-uniform resolution which works as follows: for each continuous state x whose related abstract state \hat{x} is in the domain of one local controller computed for l, the control input corresponding to \hat{x} is applied for duration τ_l to the underlying control system.

Related Work in ABCS. Multi-layered ABCS was first proposed by Girard et al. [3, 4] (recently revisited in [10]) in the special case of safety and reachability control of unperturbed switched systems, i.e., the considered systems and specifications are both a strict subclass of ours. Furthermore, [10] uses a modified version of approximate bisimula-
tion results, relating to a deterministic abstract model, which allows for a forward search based technique to synthesize safety controllers. While forward search is usually faster for reachability or safety, it is not known how to synthesize controllers for ω-regular objectives efficiently, or efficiently (symbolically) handle external disturbances and non-determinism in the abstraction, in a forward algorithm. For this reason, we use a backward search-based symbolic technique and employ FRR as the abstraction relation. Similarly, [13] presents a multi-resolution path planning technique which adaptively reduces the time step in order to find a path to the target. Due to the used forward computation over an unperturbed system model, it is more closely related to [10] than to our work.

In the context of multi-layered abstraction methods, [19] proposes a technique where a coarse abstraction is refined locally to bound accumulated errors w.r.t. the underlying system dynamics. Non-uniform state space partitioning has also been presented for stochastic systems [8]. Both methods are different from our technique in that refinement is triggered by the underlying system dynamics, while our multi-layered abstraction is induced by the multi-layered controller computed for a particular control problem. For uniformly coarse abstractions, [20] presents a technique to optimize the discretization parameter η in order to minimize the number of outgoing transitions from constructed abstract states. Furthermore, [9] discretizes inputs (instead of states) non-uniformly. Both techniques could be incorporated in our method for choosing the abstraction parameter of the lowest layer and obtaining abstract control inputs, respectively.

2. PRELIMINARIES

Notation. We use the symbols $N, \mathbb{R}, \mathbb{R}_{\geq 0}, \mathbb{R}_{> 0}, Z, \mathbb{Z}_{> 0}$ to denote the sets of natural numbers, reals, non-negative reals, positive reals, integers, and positive integers, respectively. Given $a, b \in \mathbb{R}$ s.t. $a \leq b$, we denote by $[a, b]$ a closed interval and define $\{a, b\} = [a, b] \cap \mathbb{Z}$ as its discrete counterpart. Given $a, b \in \mathbb{R}^n$, we denote by a_i and b_i their i-th element and write $[a, b]$ for the closed hyper-interval $\mathbb{R}^n \cap \bigcup_{i} [a_i, b_i] \times \ldots \times [a_i, b_i]$. We define the relations $<, \leq, \geq, >$ on a, b component-wise.

For a set W, we write W^+, W^*, and W^ω for the sets of finite sequences, non-empty finite sequences, and infinite sequences over W, respectively. We define $W^\omega = W^* \cup W^\omega$. For $w \in W^\omega$, we write $|w|$ for the length of w; the length $w \in W^\omega$ is ∞. We define $\text{dom}(w) = \{0, \ldots, |w| - 1\}$ if $w \in W^*$, and $\text{dom}(w) = \emptyset$ if $w \in W^\omega$. We denote by $\text{dom}^+(w) = \text{dom}(w) \setminus \{0\}$ the positive domain of w. For $k \in \text{dom}(w)$ we write $w(k)$ for the k-th symbol of w and $w[0:k]$ for the restriction of w to the domain $[0, k]$. If $W = A \times B$, the projection of $w \in W^\omega$ on A is denoted by $w|A$.

Given two sets A and B, $f : A \rightarrow B$ and $f : A \rightarrow B$ denote a set-valued and ordinary map, respectively. f is called strict if $f(a) \neq \emptyset$ for all $a \in A$. We identify set-valued maps with their respective binary relation over $A \times B$, i.e., $(a, b) \in f$ iff $b \in f(a)$. The inverse mapping $f^{-1} : B \rightarrow A$ is defined via its respective binary relation: $f^{-1}(b) = \{a \in A \mid b \in f(a)\}$. 2

2.1 Abstraction-Based Controller Synthesis

We now recall the general procedure of abstraction-based controller synthesis (ABCS) using the framework of feedback refinement relations (FRR) as introduced in [16].

Systems. A system $S = (X, U, Y, F, H)$ consists of a state space X, an input space U, an output space Y, and set-valued maps $F : X \times U \rightarrow X$ and $H : X \times U \rightarrow Y$ representing the transition function and the output function, respectively. A system S is finite if X, U, Y are finite. It is simple if $X = Y$ and $H(x, u) = x$ for all $x \in X$ and $u \in U$, and static if X is a singleton. If S is simple (resp. static) we use the triple $S = (X, U, F)$ (resp. $S = (U, Y, H)$ with $H : U \rightarrow Y$) for notational convenience. The behavior $B(S)$ of a system $S = (X, U, Y, F, H)$ is given by the set

$$\{x \in X^\omega \mid \forall k \in \text{dom}^+(x) \cdot (\mathcal{F}(k) \in \bigcup_{u \in U} F(\mathcal{F}(k - 1), u))\}.$$ 1

Controllers and Closed Loop Systems. A controller is a triple $C = (Z, B, Y^e, F^c, G)$, where Z, B, and Y^e are the state, input and output space of C, respectively, and $F^c : X \times B \rightarrow Z$ and $G : X \times B \rightarrow Y^e$ are the transition and output function of C, respectively. Given a system $S = (X, U, F)$, we say that $C = (Z, B, Y^e, F^c, G)$ is composable with S iff $B \subseteq Y$ and $Y^e \subseteq U$. For notational simplicity, we only consider controllers where $Y^e = U$. Given a system $S = (X, U, F)$ and a controller $C = (Z, B, Y^e, F^c, G)$, the closed loop system formed by interconnecting S and C in feedback is defined by the system

$$S^C = (X \times Z, U \times B, F^c)$$

$$F^C((x, z), (u, b)) = \begin{cases} \{z' \mid z' \in F^c(x, u), b = x, z' \in F(x, u)\} \end{cases}.$$ 2

Control Problem. We consider ω-regular specifications whose atomic predicates are interpreted as sets of states. We omit the standard definitions. Given a specification ψ, a system S, and an interpretation of the predicates as sets of states of S, we write $\{\psi\}S \subseteq B(S)$ for the set of behaviors of S satisfying ψ. The pair (S, ψ) is called a control problem on S for ψ. A controller C solves the control problem (S, ψ) if it is composable with S and $B(S^C) \subseteq \{\psi\}S$. The set of all controllers solving (S, ψ) is denoted by $C(S, \psi)$.

Feedback Refinement Relations. Let $S_1 = (X_1, U_1, F_1)$, $S_2 = (X_2, U_2, F_2)$, and $S_3 = (X_3, U_3, F_3)$. A feedback refinement relation (FRR) from S_1 to S_2 is a strict relation $\rightarrow \subseteq X_1 \times X_2$ s.t. for all $(x_1, x_2) \in \rightarrow$, we have (i) $U_1(x_2) \subseteq U_2(x_1)$, and (ii) $u \in U_2(x_2) \Rightarrow F_1(x_1, u) \subseteq F_2(x_2, u)$ where $U_2(x_1) := \{u \in U_1 \mid F_1(x_1, u) \neq \emptyset\}$. We write $S_1 \rightarrow S_2$ if \rightarrow is an FRR from S_1 to S_2.

Consider two simple systems S_1 and S_2, with $S_1 \rightarrow S_2$. Let $C = (Z, B, \bar{U}, F^c, G)$ be a controller composable with S_2. Then, as shown in [16], C can be refined into a controller composable with S_1, defined by $C \circ Q = (Z, B, Y^e, F^c, G)$ with $\bar{B} = \lnot Q^{-1}(B)$, $F^c(x, z) = \{z' \mid 3x \in Q(x) \land z' \in F^c(z, x)\}$, and $G(z, x) = \{u \mid 3x' \in Q(x) \land u \in G(x, z')\}$ for all $z \in Z$ and $x \in B$. This implies soundness for ABCS.

PROPOSITION 1 ([16], Def. VI.2, Thm. VI.3.). Let $S_1 \rightarrow S_2$ and $C \in C(S_2, \psi)$ for a specification ψ. If for all $\xi_1 \in B(S_1)$ and $\xi_2 \in B(S_2)$ with $\text{dom}(\xi_1) = \text{dom}(\xi_2)$

2In [16] a system is feedback composable with a controller if $X \subseteq B$. We invert this relationship; we consider controllers whose domain is only a subset of the system’s state space and assume that controllers do not have other inputs.

In contrast to the definition used in [16], we keep the input used in F^c explicit. This allows us to apply feedback refinement relations to closed loop systems.
and \((\xi_1(k), \xi_2(k)) \in Q\) for all \(k \in \text{dom}(\xi_1)\) holds that \(\xi_2 \in \{\psi\}_{S_2} \Rightarrow \xi_1 \in \{\psi\}_{S_1}\), then \(C \cap Q \subseteq C(S_1, \psi)\).

2.2 ABCs for Continuous Control Systems

We now recall how ABCs can be applied to continuous-time systems by delineating the abstraction procedure [16].

Continuous-Time Control Systems. A control system \(\Sigma = (X, U, W, f)\) consists of a state space \(X = \mathbb{R}^n\), a non-empty input space \(U \subseteq \mathbb{R}^m\), a disturbance space \(W = [-w, w] \times [0, \tau]\) s.t. \(w \in \mathbb{R}_{>0}\) and a nonlinear differential inclusion

\[
\dot{x} \in f(x(t), u(t)) + W
\]

(3)

where \(f(\cdot, u)\) is locally Lipschitz for all \(u \in U\). \(\Sigma\) defines a perturbed continuous-time nonlinear system, and \(w\) is a component wise bound on perturbations to its dynamics.

Given a positive parameter \(\tau > 0\) and a constant input trajectory \(\mu : [0, \tau] \rightarrow U\) which maps every \(t \in [0, \tau]\) to \(u\), a solution of the inclusion in (3) on \([0, \tau]\) is an absolutely continuous function \(\xi : [0, \tau] \rightarrow X\) that fulfills (3) for almost every \(t \in [0, \tau]\). We collect all such solutions in the set \(\operatorname{Sol}_f(\tau, u)\). Given an initial condition \(x \in X\), the solution to the unperturbed control system \(\dot{x} = f(\xi(t), u(t))\) associated with (3) is unique, and its value at time \(t \in [0, \tau]\) is denoted by \(\xi(t, x, \mu)\).

Given a subset of states \(X' \subseteq X\), and a subset of inputs \(U' \subseteq U\) s.t. \(U' \times X' \times U' \subseteq \text{dom}(\xi)\), the map \(\beta_r : \mathbb{R}^m_{>0} \times U' \rightarrow \mathbb{R}^m_{>0}\) is a growth bound on \(X'\) and \(U'\) associated with \(\tau\) and (3) if

\[
\forall r, r' \in \mathbb{R}^m_{>0}, \ u \in U'. \ r \geq r' \Rightarrow \beta_r(r, u) \geq \beta_{r'}(r', u) \quad \text{and} \quad \forall \xi \in \operatorname{Sol}_f(\tau, u), x_0 \in X'.
\]

\[
\xi(0) \in X' \Rightarrow |\xi(\tau) - \xi(r, x_0, \mu)| \leq \beta_r(|\tau - x_0|, u).
\]

Time-Sampled System. Given a time sampling parameter \(\tau > 0\), we define by \(\tilde{S}(\Sigma, \tau) = (X, U, \tilde{F})\) the (simple) time-sampled system associated with \(\Sigma\), where

\[
x' = \tilde{F}(x, u) \Leftrightarrow \exists \xi \in \operatorname{Sol}_f(\tau, u), \xi(0) = x \wedge \xi(\tau) = x'.
\]

(4)

The state space of \(\tilde{S}(\Sigma, \tau)\) is still infinite; we next define a finite system associated with \(\Sigma\).

Abstract System. A cover \(\hat{X}\) of the state space \(X\) is a set of non-empty, closed hyper-intervals \([a, b]\) with \(a, b \in \mathbb{R} \cup \{±\infty\}\) called cells, such that every \(x \in X\) belongs to some cell in \(\hat{X}\). We assume that there exists a compact subset \(X' \subseteq X\) of the state space, which is quantized by compact cells, whereas the (unbounded) region covered by \(X \setminus X'\) is not of interest to the control problem and is covered by a finite number of large unbounded cells.

Given a grid parameter \(\eta \in \mathbb{R}^m_{>0}\) and \(X' \subseteq X\) with \(X' = [\alpha, \beta]\) s.t. \(\beta - \alpha = k\eta n\) for some \(k \in \mathbb{Z}^n\), the set

\[
\eta Z^n = \left\{c \in X' : \exists k \in \mathbb{Z}^n, \left(\forall i \in [1;n], c_i = \alpha_i + k_i\eta_i + \frac{\eta_i}{2} \right) \right\}
\]

defines the center points of cells in \(\hat{X}'\) with diameter \(\eta_i\), i.e.

\[
\hat{x} \in \hat{X}' \Rightarrow \exists c \in \eta Z^n, \hat{x} = c + [-\eta/2, \eta/2].
\]

(6)

This results in congruent cells which are uniformly aligned on a grid.\(^4\) We denote by \(c_0\) the unique center point of \(\hat{x}\).

\(^4\)In the standard distribution of SCSs, the grid is aligned such that an extension of \(\eta Z^n\) has a center point that coincides with the origin. Shifting this grid by \(\eta/2\) yields

The (simple) system \(\tilde{S}(\Sigma, \tau, \eta, \beta_r) = (\hat{X}, \tilde{U}, \tilde{F})\) is a symbolic abstract system associated with \(\Sigma, \tau, \eta, \) and \(\beta_r\) if the following holds: (i) \(\hat{X}\) is a finite cover of \(X\), there exists a non-empty subset \(X' \subseteq X\) s.t. \(X'\) satisfies (6), and \(\beta_r\) is a growth bound on \(\hat{X}'\) and \(\tilde{U}\). (ii) \(\tilde{U} \subseteq U\). (iii) for all \(\hat{x} \in \hat{X} \setminus X'\) and \(u \in U\) it holds that \(\tilde{F}(\hat{x}, u) = \emptyset\), and (iv) for all \(\hat{x} \in \hat{X}'\), \(\hat{z} \in \hat{X}\), and \(u \in U\) it holds that \(\hat{z} \in \tilde{F}(\hat{x}, u)\) if

\[
\left(\zeta(\tau, c_0, u) + [-\beta_r(\eta, u), \beta_r(\eta, u)]\right) \cap \hat{z} \neq \emptyset.
\]

(7)

If the control system \(\Sigma\) and parameters \(\tau, \eta, \) and \(\beta_r\) are clear from the context, we omit them in \(\tilde{S}\) and \(\hat{S}\).

Induced FRR. It was shown in [16], Thm. III.5 that the relation \(\hat{Q} \subseteq X \times \hat{X}\) defined by \((x, \hat{x}) \in \hat{Q}\) iff \(x \in \hat{x}\) is an FRR between \(\hat{S}\) and \(\tilde{S}\), i.e., \(\hat{S} \vartriangleright_{\hat{Q}} \tilde{S}\). Hence, we can apply ABCs as described in Sec. 2.1 by computing a controller for \(\hat{S}\) which can then be refined to a controller for \(\tilde{S}\) under the pre-conditions of Prop. 1.

3. A MULTI-LAYERED SETTING

We now extend ABCs to a multi-layered setting with \(L\) levels. The abstract states in layer \(l \in [1; L]\) are hyper-cells with parameter \(\eta_l\), and transitions are calculated with sampling time \(\tau_l\). A control system \(\Sigma\) may be abstracted non-uniformly by considering a partition of its state space and using a different layer for each region in the partition.

3.1 Multi-Layered Systems

Given a grid parameter \(\eta_l\), a time sampling parameter \(\tau_l\), and a parameter \(L \in \mathbb{Z}_{>0}\), define\(^6\) \(\eta_l = 2^{-l} \eta\) and \(\tau_l = 2^{-l} \tau\). Fix a control system \(\Sigma\) and a subset \(X_l' \subseteq X\) with \(X' = [\alpha, \beta]\), s.t. \(\beta - \alpha = k\eta_l\) for some \(k \in \mathbb{Z}^n\). For each \(l \in [1; L]\), we define the grid \(\eta_l Z^n\) and the cover \(X_l'\) as in (5) and (6), respectively, by substituting \(\eta_l \) with \(\eta_l\).

This construction induces a sequence of time-sampled systems \(\{S_l(\Sigma, \tau_l)\}_{l

We consider a universal growth bound for notational simplicity. There exist systems where abstract controller synthesis is successful only if different growth bounds for different regions of the state space are considered (see [20]).

Our method is applicable to grid parameters defined by \(\eta_l = \eta_l = \gamma \eta_l\) for \(l \in [1; L - 1]\) and \(\gamma \in \{2^k | k \in \mathbb{N}\}\), and sampling times \(\eta_l = \alpha(l)\) for \(l \in [1; L]\) → \(\mathbb{R}\) is a monotonically increasing function. For notational simplicity, we restrict our attention to \(\gamma = 2\) and \(\alpha(l) = 2^{-l-1}\).
tem $\hat{S} = (X, U, F)$, where $X = \bigcup_{l \in [1; L]} \hat{X}_l$ and
\[
F(x, u) = \bigcup_{l \in [1; L]} R_{l} \hat{F}_{l}(\hat{x}, \hat{u})
\]
for all $\hat{x} \in \hat{X}_l$, $l \in [1; L]$, and $\hat{u} \in \hat{U}$. Intuitively, \hat{S} is a non-deterministic system; for every state $\hat{x} \in \hat{X}_l$, and input $\hat{u} \in \hat{U}$ transitions to states of all layers are possible. That is, $\hat{x}' \in F(x, u)$ if there exists an $x'' \in \hat{X}_{l'}$ s.t. $\hat{x}'' \in \hat{F}_{l'}(\hat{x}, \hat{u})$ and $\hat{x}' \in \hat{R}_{l'}(\hat{x}'')$ for some $l \in [1; L]$

Similarly, given the sequence of $\{\hat{S}_l\}_{l \in [1; L]}$ with $\hat{S}_l = (X_l, U, \hat{F}_l)$, we define a (simple) time-sampled multi-layered system $\bar{S} = (X, U, \bar{F})$ s.t.
\[
\bar{F}(x, u) = \bigcup_{l \in [1; L]} \bar{F}_l(x, u)
\]
for all $x \in X$ and $u \in U$. Again, \bar{S} is a non-deterministic system; in every state $x \in X$ transitions of any duration τ_l for $l \in [1; L]$ can be chosen, which correspond to some $\bar{F}_l(x, u)$.

The behaviors $B(\bar{S})$ and $B(\bar{S})$ are defined via (1).

Remark 1. Even though we have $\hat{S}_l \models Q_l \hat{S}_l$ for all $l \in [1; L]$, each relation is evaluated for a different sampling time τ_l. Therefore, the relations $\hat{R}_{l'}$ cannot define a FRR between \hat{S}_l and $\hat{S}_{l'}$ using the definition from Sec. 2.

Given that $\tau_l = 2^{l-1} \tau$, a natural extension of FRR seems to be that, for any $(\hat{x}_{l+1}, \hat{x}_l) \in \hat{R}_{l+1}(\hat{x}_l, \hat{x}_l)$, it holds that
\[
\hat{u} \in \hat{U} \Rightarrow \hat{R}_{l+1}(\hat{x}_{l+1}, \hat{x}_l, \hat{u}) \subseteq \hat{R}_{l}(\hat{x}_{l+1}, \hat{x}_l, \hat{u}).
\]
That is, we would expect that states $\hat{x}_l \in \hat{X}_l$ and $\hat{x}_{l+1} \in \hat{X}_{l+1}$ related via $\hat{R}_{l+1}(\hat{x}_l, \hat{x}_l)$ remain related when the l-th layer transition function is applied to \hat{x}_l twice for τ_l (resulting in a duration $2\tau_l = \tau_{l+1}$) and when the $l+1$-th layer transition function is only applied once to \hat{x}_{l+1} (also resulting in a duration τ_{l+1}). While this seems intuitive, we can prove that (11) does not hold in general. Intuitively, this is because applying the l-th layer transition function twice introduces an additional over-approximation step which is caused by (7).

3.2 Multi-Layered Controllers

Given \bar{S} as in (9) and some $P \in \mathbb{N}$, we define a multi-layered controller compatible with \bar{S} as the tuple
\[
\mathbb{C} = (Z, \{B^p\}_{p \in [1; P]}, U, F^c, \{G^p\}_{p \in [1; P]})
\]
\[
s.t. \ \forall p \in [1; P]. \ \exists l_p \in [1; L]. \ B^p \subseteq \hat{X}_{l_p},
\]
and $F^c : Z \times X \supseteq Z$ and $G^p : Z \times B^p \supseteq \hat{U}$ are the transition and output functions of \mathbb{C}, respectively. We call \mathbb{C} static, if Z is a singleton. In this case, we can omit the state dependence of \mathbb{C} and simplify its notation to the set $\mathbb{C} = (G^p)_{p \in [1; P]}$ with $C^p = (B^p, \hat{U}, G^p)$ and $G^p : B^p \supseteq \hat{U}$.

We denote by $\text{dom}(G^p, z) = \{\hat{x} \in \hat{X}_{l_p} \mid G^p(z, \hat{x}) \neq \emptyset\}$ the domain of G^p w.r.t. $z \in Z$. We do not require any connection between P and L. In particular, we allow for multiple controllers to be composable with the same layer, i.e., $l_p = l_q$ for $p, q \in [1; P], p \neq q$ and there might exists an $l \in [1; L]$ s.t. there exists no $p \in [1; P]$ s.t. $l_p = l$.

Given a multi-layered controller \mathbb{C} compatible with \bar{S}, we define the quantizer induced by C as the strict map $Q : (X \times Z) \supseteq (X \times Z)$ s.t. for all $(x, z) \in X \times Z$ holds that $(\hat{x}, \hat{z}) \in Q(x, z)$ iff either

(i) there exists a $p \in [1; P]$ s.t. $\hat{x} \in \hat{Q}_{l_p}(x)$ and $\hat{z} \in \text{dom}(G^p, \hat{z})$

and there exists no other $p' \in [1; P]$ with $l_{p'} > l_p$ s.t. $\hat{R}_{l_{p'}}(\hat{x}) \in \text{dom}(G^{l_{p'}}, z)$,

or (ii) $\hat{x} \in \hat{Q}_1(x)$ and there exists no $p \in [1; P]$ s.t. $\hat{R}_{l_p}(\hat{x}) \in \text{dom}(G^p, \hat{z})$.

We identify Q with the map $Q_c : X \equiv X$ s.t. $\hat{x} \in Q_c(x)$ iff $(\hat{x}, z) \in Q(x, z)$. We define $\text{img}(Q_c) = \{\hat{x} \in X \mid \exists x \in X : \hat{x} \in Q_c(x)\}$. If C is strict, Q_c is simply denoted by Q.

Intuitively, Q_c maps states $\hat{x} \in X$ to the coarsest abstract state \hat{x} that is both related to x and in the domain of the controller C (condition (i)). However, if such an abstract state does not exist, Q_c maps x to its related layer $l = 1$ states (condition (ii)). It should be noted that Q_1 is non-deterministic for states which lie at the boundary of two cells $\hat{x}, \hat{x}' \in \hat{X}_l$. If such an x happens to be located at the boundary of controller domains computed for different layers, Q_c maps x to two abstract cells within different layers.

3.3 Multi-Layered Closed Loops

Given a multi-layered controller C which is compatible with the multi-layered abstract system \bar{S}, the usual construction of a closed loop in (2) results in a system which selects the layer l' of the next state non-deterministically (due to (9)). This will result in a blocking-behavior of the closed loop whenever the selected layer does not correspond to a layer currently allowing for a control input.

We therefore propose a different closed-loop definition for multi-layered systems which restricts available transitions to those connecting states in the image of Q. Formally, the closed loop formed by \bar{S} and C is defined as the abstract multi-layered closed loop system
\[
\hat{S}^c = (X \times Z, U \times B, \hat{F}^c) \text{ s.t.}
\]
\[
\hat{F}^c((\hat{x}, z), (\hat{u}, b)) = \begin{cases} (\hat{x}', \hat{z}') & |\hat{x} \in \text{img}(Q_c) \cap \hat{X}_{l_p}, \hat{u} \in G^p(z, \hat{x}), b = \hat{x} \\ (\hat{x}', \hat{z}') & |\hat{x} \in \Lambda((\hat{x}, z), \hat{u})
\end{cases}
\]
where $\hat{x}', \hat{z}' \in \hat{F}^c_{l_p}(\hat{x}, \hat{u}) \times F^c(z, \hat{x}) \cdot \hat{x}' \in Q_{l_p}(\hat{Q}_{l_p}(\hat{x}'))$.

When refining C via Q to a controller for \bar{S}, the resulting controller should select (i) the current input $u \in U \subseteq U$, and (ii) the duration τ_l for which this input should be applied to the underlying continuous system. As Q might map a particular state $x \in X$ to multiple abstract states within different layers, we cannot define the refined controller as the serial composition $C \circ Q$ in analogy to Sec. 2.1. Instead, we directly define the time-sampled multi-layered closed loop system in analogy to \hat{S}^d by
\[
\bar{S}^d = (X \times Z, U \times B, \bar{F}^d) \text{ s.t.}
\]
\[
\bar{F}^d((x, z), (u, \hat{x})) = \begin{cases} (x', \hat{z}') & |\hat{x} \in \bar{Q}_l(x) \cap \hat{X}_{l_p}, \hat{u} \in G^p(z, \hat{x}) \\ (x', \hat{z}') & |\hat{x} \in \bar{F}^d_{l_p}(x, \hat{u}), \hat{z}' \in F^d(z, \hat{x})
\end{cases}
\]

where \bar{S}^d and $B(\bar{S}^d)$ can now be defined via (1).

3.4 Soundness
Intuitively, $S_1 \not\subseteq S_2$ ensures that, given a state $x_1 \in X_1$, no matter which related state $x_2 \in X(x_1)$ and enabled control input $u \in E(x_2)$ is used, all resulting states in $F_1(x_1, u)$ and $F_2(x_2, u)$ are related. This intuition can be transferred to the closed loop systems S^{cl}_1 and S^{cl}_2 as follows. Intuitively, S^{cl}_1 and S^{cl}_2 can generate all closed-loop trajectories without resolving the non-determinism induced by the set-valued maps Q and G^p. If Q is a FRR from S^{cl}_1 to S^{cl}_2, any implementation resolving this non-determinism in Q and G^p returns a sound closed loop. This leads us to the following theorem.

Theorem 1. Let C be a multi-layered controller composable with the abstract multi-layered system S, Q the quantizer induced by C, and S^{cl}_1 and S^{cl}_2 the time-sampled and abstract multi-layered closed loop systems defined in (14) and (13), respectively. Then $S^{cl}_1 \not\subseteq Q S^{cl}_2$.

Proof. We prove both conditions for FRR separately.

(i) Show $F^{cl}((x', z), (u, \check{x})) \not\emptyset \Rightarrow F^{cl}((x, z), (u, \check{x})) \not\emptyset$: First observe that for any $l \in [1; L]$, it follows from the construction of \check{S}_l and \check{S}_l from Σ that, for any $u \in U \subseteq U$, $\check{x} \in X_l$, and $x \in X$, it holds that $\check{F}(\check{x}, u) \not\emptyset \Rightarrow F(\check{x}, u) \not\emptyset$. With this, it follows from (13) and the fact that Q_1 is strict that $F^{cl}((x', z), (u, \check{x})) \not\emptyset$ if $\check{x} \in \img(Q_1) \cap X_{l'}$ and $\check{u} \in G^p(x', z)$, implying $F^{cl}((x', z), (u, \check{x})) \not\emptyset$ from (14).

(ii) Pick $(x', z), (x, z) \in Q$ and $(\check{x}, \check{u}) \in U_{\check{G}}(x', z)$ and show $Q(F^{cl}((x', z), (u, \check{x}))) \subseteq F^{cl}((x, z), (u, \check{x}))$: first, consider the case that $x \in Q_1(x')$ and case (ii) in the definition of Q. Then follows $F^{cl}((x', z), (u, \check{x})) \not\emptyset$ and hence $U_{\check{G}}(x', z) \not\emptyset$, i.e., the statement trivially holds. Therefore, assume that case (i) of the definition of Q holds, implying that there exists some $p \in [1; P]$ s.t. $\check{x} \in Q_p(x) \cap X_{l'}$, and $\check{x} \in \dom(G^p, z)$. This implies $\check{u} \in G^p(\check{x}, z)$ (from part (ii)) and therefore $(x', z') \in Q(F^{cl}((x, z), (u, \check{x})))$ iff $z' \in F^p((x, z), (u, \check{x}))$.

Using the properties of feedback refinement relations, Thm. 1 implies that the usual soundness property of ABCS stated in Prop. 1 can be transferred to the multi-layered setting. This is summarized by the following corollary.

Corollary 1. Given the preliminaries of Thm. 1, let $C \in C(S, \psi)$ for a specification ψ with associated behavior $\{\psi\}_B \subseteq B(S)$ and $\{\psi\}_S \subseteq B(S)$. Suppose that for all $\xi \in B(S)$ and $\xi' \in B(S)$ s.t. (i) $dom(\xi) = dom(\xi')$ and (ii) for all $k \in dom(\xi)$ there exists a $z \in Z$ s.t. $(\xi(k), \xi(k)) \in Q_1$, it also holds that (iii) $\xi \in \{\psi\}_B \Rightarrow \xi \in \{\psi\}_S$. Then $B(S^{cl}_1) \subseteq \{\psi\}_S$, i.e., the time-sampled multi-layered closed loop S^{cl}_1 defined in (14) fulfills specification ψ.

Cor. 1 can be interpreted as follows. Consider the control system Σ at state x_0. This state is mapped by Q_{x_0} to $x_0 \in B^p$. Choosing any $u_0 \in G^p(x_0, z_0)$ and applying this input for time t_{ψ} to $x_0 \in X$ results in a continuous trajectory $x \in \{\psi\}_S$. Applying this procedure leads to an infinite trajectory ξ, with sampled version $\xi = x_0, x_1, \ldots \in B(S)$ and abstract version $\xi = x_0, x_1, \ldots \in B(S)$. As $C \in C(S, \psi)$ condition (iii) in Cor. 1 ensures that $\xi \in \{\psi\}_S$. For reachability, this implies that ξ (and ξ') eventually reaches the target. For safety this implies that ξ (i.e. sampling instances of ξ) lies inside the safe set.

4. MULTI-LAYERED SYNTHESIS

We now provide algorithms for synthesizing multi-layered controllers for given (abstract) control problems which are compatible with \check{S}. We use the following notational conventions from μ-calculus [2] and linear temporal logic [15]. Let f denote a monotone operator on a finite set Q, i.e., $f(P') \subseteq f(P''') \subseteq Q$ for all $P' \subseteq P'' \subseteq Q$. The least and greatest fixed-points exist uniquely and are denoted $\mu \nu P. f(P)$ and $\nu \mu P. f(P)$, respectively. We use \diamond and \lozenge to denote the temporal operators “eventually” and “always”.

4.1 Reachability

Given an abstract multi-layered system $\check{S} = (\check{X}, \check{U}, \check{F})$, a reachability control problem is the control problem (\check{S}, T) where T is interpreted as a subset of X_1 and

$$\{\diamond T\}_S = \{\xi \in B(\check{S}) \mid \exists k \in \dom(\check{\xi}). \check{\xi}(k) \in T\}.$$ (16)

We furthermore define $\text{Pre}_{\check{S}}(A_1) = \{x \mid \exists u. \check{F}(x, u) \subseteq A_1\}$ for any $A_1 \subseteq X_1$ and $l \in [1; L]$.

Single-Layered Systems. When $L = 1$, the reachability control problem reduces to (\check{S}_1, T), and is solved by computing the minimal fixed-point [14]:

$$W(\diamond T) = \mu W. \text{Pre}_{\check{S}_1}(W) \cup T.$$ (17)

This fixed-point is evaluated iteratively by computing

$$W^0 = T \text{ and } W^{l+1} = \text{Pre}_{\check{S}_1}(W^l) \cup T$$ (18)

until we reach some $N \in \mathbb{N}$ s.t. $W^N = W^{N+1}$. This defines a static controller $C = (B, U, G)$ with $B = W^N \setminus T$ and

$$G(x) = \{u \in U \mid \check{F}(x, u) \subseteq W^l\}.$$ (19)

for all $x \in B$, where $i^* = \min\{i \mid x \in W^l \setminus T\} - 1$. The controller C is sound: the closed loop system S^{cl}_1 composed from C and \check{S}_1 satisfies $B(S^{cl}_1) \subseteq \{\diamond T\}_S$, and the system can be steered to the target T from any state x in the controller domain B.

Using the set $\{W^l\}_{l \in [1; N]}$ computed by (18) one can also define a multi-layered controller $C = \{C^l\}_{l \in [1; N]}$ by iterating each iteration in (18) as the computation of a simple controller $C^l = (B^l, U^l, G^l)$, with domain $B^l = W^l \setminus W^{l-1}$ and output function $G^l(x) = \{u \in U \mid \check{F}(x, u) \subseteq W^l\}$. This interpretation of (18), not too useful when $L = 1$, is convenient for the multi-layered setting.

Multi-Layered Systems. The simplest way to extend C to the general case ($L > 1$) is to pick an arbitrary granularity l_i in every iteration of (18). First, we introduce the operator

$$\Gamma_{l_i}(A_t) = \begin{cases} \check{R}_t(A_t), & l \leq t' \\ \{\check{z}_t \in X_1 \mid \check{R}_{l_t}(\check{z}_t) \subseteq A_t\}, & l > t' \end{cases}$$ (20)

which underapproximates a set $A_t \subseteq X_1$ by a set $A_t = \Gamma_{l_i}(A_t) \subseteq X_1$. Then, for any sequence $\{l_i\}_{i \geq 1}$ with l_i
Algorithm 1 \textsc{REACH}_{m,L}

Require: \(\mathcal{T} \subseteq \hat{X}_l, \theta, C \)
1: if \(l = L \) then
2: \(\langle W, C \rangle \leftarrow \text{REACH}_{\infty}(\Gamma_{L,1}(T), l) \)
3: \(C \leftarrow C \cup \{C\} \)
4: \(\mathcal{T} \leftarrow \mathcal{T} \cup \Gamma_{l}(W) \)/ \text{// Save \(W \) to \(\mathcal{T} \)}
5: if \(l = 1 \) then
6: \(\text{return} \ (\mathcal{T}, C) \)
7: else
8: \(\langle \mathcal{T}, C \rangle \leftarrow \text{REACH}_{m,L} \mathcal{T}, l - 1, C \)
9: \(\text{return} \ (\mathcal{T}, C) \)
10: end if
11: else
12: \(\langle W, C \rangle \leftarrow \text{REACH}_{m,L}(\Gamma_{1}(\mathcal{T}), l) \)
13: \(C \leftarrow C \cup \{C\} \)
14: \(\mathcal{T} \leftarrow \mathcal{T} \cup \Gamma_{l}(W) \)/ \text{// Save \(W \) to \(\mathcal{T} \)}
15: if fixed-point is reached in line 12 then
16: if \(l = 1 \) then // Finest layer reached
17: \(\text{return} \ (\mathcal{T}, C) \)
18: else // Go finer
19: \(\langle \mathcal{T}, C \rangle \leftarrow \text{REACH}_{m,L}(\mathcal{T}, l - 1, C) \)
20: \(\text{return} \ (\mathcal{T}, C) \)
21: end if
22: else // Go coarser
23: \(\langle \mathcal{T}, C \rangle \leftarrow \text{REACH}_{m,L}(\mathcal{T}, l + 1, C) \)
24: \(\text{return} \ (\mathcal{T}, C) \)
25: end if
26: end if

\[W^0 = T, \ l_0 = 1 \] and \[W^{l+1} = \text{Pre}_{\hat{X}_{l+1}}(\Gamma_{l+1}(W^l)) \cup \Gamma_{l+1}(T) \]
iteratively until \(W^{l+1} = \Gamma_{l+1}(W^l) \). When the fixed-point converges, we get a multi-layered controller \(C \) as described before. It is easy to see that \(C \) is sound no matter how \(\{l_i\} \) is chosen: each state in the winning set can be controlled using \(C \) to reach \(T \). Unfortunately, this simple algorithm is not complete due to two reasons: (i) the iteration can reach a fixed point at level \(l \) even if more states can be added at a lower level, and (ii) lower level winning states can be lost via \(\Gamma_{l'} \), which only gives an exact map for \(l \leq l' \) (recall Pic. 2 and Fig. 3 in Pic. 1).

To fix these problems, we propose \textsc{REACH}_{m,L} (Alg. 1) which follows the flowchart in Fig. 2. The overall multi-layered reachability algorithm, \textsc{ML-REACH}_{m} (with tuning parameter \(m \in \mathbb{N} \)), calls \textsc{REACH}_{m,L}(T, l, \emptyset) with target \(T \), level \(l \), and an empty controller, and returns its result. The subroutine \textsc{REACH}_{m} called in Alg. 1 (line 2 and 12) runs \(m \) iterations of (18). Formally, given the input \(\Lambda \subseteq \hat{X}_l \) and \(l \in [1, L] \), it returns a set \(W \subseteq \hat{X}_l \) s.t. \(W = W^l \), where \(W^l \) is computed via (18) and either \(j \leq m \) with \(W^j = W^{j-1} \) (then line 15 of Alg. 1 evaluates to true) or \(j = m \) otherwise. Additionally, \textsc{REACH}_{m,L} returns the controller \(C = (W \setminus \Lambda, \hat{U}, G) \) with \(G \) computed using (19). We extend \textsc{REACH}_{m} to \textsc{REACH}_{\infty} in the obvious way, s.t. the returned \(W \) is the fixed-point of (18). The set \(\mathcal{T} \) is used in Alg. 1 to save computed winning states to the lowest layer \(l = 1 \). To see why this is necessary, recall Pic. 4 in Fig. 1. There, we first computed \textsc{REACH} for \(l = 1 \) and \(m = 2 \) (obtaining the blue states) and moved to layer \(l = 2 \), observing that no winning states were added in this layer. If we had not saved the blue states to \(\mathcal{T} \), they would have been lost after returning to layer 1 and would be re-generated, causing an infinite loop.

Soundness and Completeness. To see why \textsc{ML-REACH}_{m} is sound, consider the following induction on the depth of recursive calls \(d \) of \textsc{REACH}_{m,L}. For depth 1 (base case), the single controller that we get in the set \(C \) is sound: this follows from the fact that \textsc{REACH}_{\infty} (in Alg. 1 Line. 2) is sound. Moreover, it is not difficult to observe that the controller obtained in depth \(d + 1 \) can enforce a visit (in at most \(m \) steps) to the winning region of the controller obtained in depth \(d \) (from Line 8, 19, and 23), implying soundness by induction.

Now recall that any controller \(C \) computed via \textsc{REACH} has the property that any state in \(B \) can reach the target. Therefore, the multi-layered controller \(C \) computed by \textsc{ML-REACH}_{m} is complete w.r.t. the single-layered controller \(C \) computed via \textsc{REACH} if

\[\hat{Q}^{-1}(B) \subseteq \bigcup_{d \in [1, D]} Q^{-1}(B^d), \]

where \(D \) is the maximum number of recursive calls of \textsc{REACH}_{m,L}, and \(C^d \) is the controller synthesized in recursion depth \(d \) of \textsc{REACH}_{m,L}.

First, it should be noted that for any state \(x \in X \) for which \(Q(x) \cap B^d \neq \emptyset \) holds, we have: if there exists \(d' \in [1, D] \) and \(\check{x} \in Q(x) \cap B^{d'} \) s.t. \(R_{d'}(\check{x}) \cap B^d \neq \emptyset \) then \(d' \leq d \). Hence, the quantizer \(Q \) formally defined via a ranking over layers \(l_d \) in Sec. 3.2 is equivalent to a quantizer defined via the ranking induced by the induction depth \(d \).

To see why (21) holds, recall that, for any \(x \in \hat{Q}^{-1}(B) \), every trajectory \(\xi \in B(S^1_l) \) with \(\xi(0) = x \) will reach (the projection of) the target \(T \), and that Alg. 1 will eventually reach \(l = 1 \). Now assume that Alg. 1 was run until depth \(d \) where \(l = 1 \) and let \(k' \in \text{dom}(\xi) \) be s.t. for all \(k > k' \) with \(k \in \text{dom}(\xi) \), \(k \in \bigcup_{d < d'} Q^{-1}(B^{d'}) \) while this is not true for \(k'(x) \). Given that \(l_d = 1 \), we execute \textsc{REACH} for \(l = 1 \) implying that \(k'(x) \) up to \(k'(x) - m \) will be added to the domain of controller \(B^d \) and saved in \(\mathcal{T} \). As \(x \in \hat{Q}^{-1}(B) \), Alg. 1 can only terminate if \(\hat{Q}^{-1}(\mathcal{T}(0)) \) is eventually reached. Therefore, we can apply the above argument iteratively to prove the statement.

4.2 Generalized Büchi Control Problems
As the simplest extension of reachability control problems whose solution requires an internal controller state, we discuss generalized Büchi control problems in this section.

Given an abstract multi-layered system \(\mathcal{S} = (X, \hat{U}, F) \), a generalized Büchi control problem is the control problem \((\mathcal{S}, \bigwedge_{a \in A} \Diamond T_a) \) where each \(T_a \) is interpreted as a subset of \(X_1 \) and \(\bigwedge_{a \in A} \Diamond T_a \) is defined by the set

\[\{ \xi \in B(\mathcal{S}) \mid \forall a \in A. \forall k \in \mathbb{N}. \exists k' \in \mathbb{N}. k' > k \land \xi(k') \in T_a \}. \]

We assume \(A = [1, N] \) for some \(N \). If \(|A| = 1 \), the above control problem is usually referred to as a Büchi control problem and simplified to \((\mathcal{S}, \Diamond T) \) with \(T \subseteq X_1 \).

Single-Layered Systems. Again, we first examine the simple case where \(L = 1 \) and associate \((\mathcal{S}, \bigwedge_{a \in A} \Diamond T_a) \) with \((\hat{S}, \bigwedge_{a \in A} T_a) \). Generalized Büchi control problems are solved by the help of the chained two-nested fixed-point:

\[
\nu \left[\begin{array}{c}
V_1 \\
V_2 \\
\vdots \\
V_A \\
\end{array} \right] = \left[\begin{array}{c}
\mu W . \text{Pre}_{\hat{S}_1}(W) \cup \text{Pre}_{\hat{S}_1}(V_2) \cap T_1 \\
\mu W . \text{Pre}_{\hat{S}_1}(W) \cup \text{Pre}_{\hat{S}_1}(V_3) \cap T_2 \\
\vdots \\
\mu W . \text{Pre}_{\hat{S}_1}(W) \cup \text{Pre}_{\hat{S}_1}(V_A) \cap T_A \\
\end{array} \right] \]
For any fixed V_a, every line of (22) reduces to the reachability fixed point in (17) with target $\text{Pre}_{S_l}(V_{a+1}) \cap T_a$, where a^+ denotes $(a \mod |A|) + 1$. Hence, the fixed point in (22) is evaluated iteratively by computing

$$V_a^0 = \hat{X} \text{ and } V_a = \text{REACH}(\text{Pre}_{S_l}(V_{a+1}) \cap T_a), \tag{23}$$

where $\text{REACH}(T)$ denotes the reachability fixed point in (18) for target T, until we reach some $N \in \mathbb{N}$ s.t. $V_N = V_{N+1}$ for all $a \in A$. Based on the last call of REACH which computes V_N, we can construct a static controller $C_n = (B_n, \hat{U}, G_n)$ using (19) and extend it by re-defining $B_n = V_n^N$ and extending G_n s.t. $G_n(x) = \{\bar{u} \in \hat{U} \mid \hat{F}(\bar{x}, \bar{u}) \subseteq V_n^{N+1}\}$ for all $x \in V_N \cap T_a$. To enable switching between the computed controllers, we introduce an internal controller state space $Z = \{1, \ldots, |A|\}$ and define

$$F^a(a, x) = a \text{ if } x \notin T_a \text{ and } F^a(a, x) = a^+ \text{ if } x \in T_a.$$

If we keep the single controllers C_n after introducing the internal state Z, we get the multi-layered controller\(^7\)

$$C = \{Z, \{B_n\}_{a \in A}, \hat{U}, F^c, \{G_n\}_{a \in A}\}. \tag{22}$$

The usual synthesis algorithm for controllers solving any generalized Büchi control problem by calling ML-REACH_m instead of REACH in (23). For simplicity, we compute the next target of ML-REACH_m on the lowest layer $l = 1$, resulting in an iteration over

$$(V^l_1, C_n) = \text{ML-REACH}_m(\text{Pre}_{S_l}(V^l_{a+1}) \cap T_a). \tag{24}$$

where $V^0_1 = \hat{X}_1$. After reaching a fixed-point after N steps, C_n is a multi-layered controller for reaching $V^N_1 \cap T_a$ for every $a \in A$. Instead of manipulating this controller, we simply add another simple controller (B_n', \hat{U}, G^c_n') to C_n with $p = p_n + 1$ which steers the system from the target region T_a to the part of the state space that allows $C_n^{'a+1}$ to steer the system to the next target V^N_1, i.e. to V^N_1. This region is ensured to exist due to the properties of the fixed-point. The resulting multi-layered controller $C = (Z, B, \hat{U}, F^c, G)$ with $Z = A$, $B = \bigcup_{a \in A}(B_n^a)$, $G = \bigcup_{a \in A}(G_n^a)$, and $G' = \bigcup_{a \in A}(G_n^a)$ collects all these multi-layered controllers $C_n^{'a+1}$ by slightly abusing notation and having $|A|$ different index sets P_a. We refer to the described routine of computing C by ML-GBÜCHI_m.

When running C in feedback with S, a certain state $x \in X$ might be mapped to a different controller depending on the current target T_a. This functionality is realized by Q_{ω}.

Soundness and Completeness. Soundness of the resulting multi-layered controller C follows directly from the soundness of ML-REACH_m by extending the ranking argument to the finally added controller C_n^{a+1}, which ensures that the domain of the multi-layered controller $C_n^{'a+1}$ is reached. Similarly, completeness relative to $l = 1$ trivially follows from the completeness of ML-REACH_m, as the additional controller C_n^{a+1} was computed on layer $l = 1$ and therefore does not require any special abstraction.

4.3 Safety

Note that the ABCS method already incorporates the possibility to restrict any control problem to a designated safe region X' of the state space $X \supset X'$ by constructing the abstract system such that it blocks for every abstract state in $X \setminus X'$. For the problem of reaching a target region $R \subseteq X'$ while staying safely inside X', this simplifies to removing all abstract states $X \setminus X'$ before running the algorithm for reachability. This feature was implicitly used in the example of Sec. 1. However, safety control problems may arise as sub-problems in other synthesis tasks, and so we now give an algorithm for multi-layered synthesis for safety properties.

Given an abstract multi-layered system $S = (X, \hat{U}, \hat{F})$, a **safety control problem** is the control problem (\hat{S}, \hat{T}) where the set $T \subseteq X_1$ in layer 1 is associated with the multi-layered collection of safe sets $T = \{\hat{F}_{l}(T)\}_{l \in \{1, \ldots, L\}}$

$$\hat{T}_{l} = \{\bar{z} \in \hat{U} \mid \forall k \in \mathbb{N}, z(k) \in T\}. \tag{25}$$

For a single-layered system, safety controllers can be synthesized by evaluating the maximal fixed-point [14]

$$\hat{T}_{l} = \nu V . \ \text{Pre}_{S_l}(V) \cap T \tag{26}$$

by computing

$$V^0 = \hat{X} \text{ and } V^{l+1} = T \cap \text{Pre}_{S_l}(V^l) \tag{27}$$

iteratively. Since (27) is initialized by the full state set \hat{X}, which shrinks in every iteration, we cannot apply the same intuition as in the reachability case to obtain a construction of a multi-layered safety controller. Instead, our algorithm computes the winning set layer-by-layer. First, in layer L, we compute the fixed-point of (27). In lower layers $l < L$, we win either by staying forever in T or by reaching, through T, an already computed winning state in a higher layer. Formally, we compute the layer-wise maximal fixed-point

$$\hat{W}^l = \nu V . \ \text{Pre}_{S_l}(V) \cap T \tag{28}$$

and

$$\hat{W}^l = \nu V . \ \text{Pre}_{S_l}(V \cup \Omega_l) \cap T \tag{29}$$

where $\Omega_l = \bigcup_{l > \omega \geq l} \hat{F}^l(\hat{W}^l)$ and $T = \hat{F}_{l}(T) \setminus \Omega_l$. The resulting winning sets define the static multi-layered controller $C = \{\hat{W}^l, \hat{U}, \hat{F}^l\}$ where $G^l(\bar{x}) = \{\bar{u} \in \hat{U} \mid \hat{F}(\bar{x}, \bar{u}) \subseteq \hat{W}^{l+1} \cup \Omega_l\}$. The soundness of C relies on the fact that whenever Ω_l is reached, a controller $C^{l'}$ with $l' > l$ can be used to keep the trajectory safe or move this obligation to an even higher layer. We refer to the described routine of computing C by ML-SAFE.

4.4 ω-Regular Properties

Sec. 4.2 showed that a multi-layered controller solving the generalized Büchi control problem calls ML-REACH_m, repeatedly. Given the soundness of ML-REACH_m, soundness also follows for the generalized Büchi case. In a similar manner, one can construct synthesis algorithms for multi-layered controllers solving any ω-regular objective. The key insight is that by adding a finite number of controller states, one can reduce such objectives to parity games [7], and the fixed-point characterization of parity games alternates between safety and reachability. Specifically, we can synthesize multi-layered controllers for GR(1) objectives [1].
5. IMPLEMENTATION AND CASE STUDY

We have implemented the presented multi-layered controller synthesis algorithms in C++ as an extension to SCOTs [17]. SCOTs is a tool for ABCS using FRR. It natively supports the fixed-point computations for reachability, safety, and reach-while-avoid specifications. Like SCOTs, our implementation uses binary decision diagrams (BDDs); a set of abstract states \(\hat{X}' \) is represented as a BDD over a set of boolean variables. An assignment of the boolean variables uniquely represents one state \(\hat{x} \in \hat{X}' \).

Key to our multi-layered algorithms is the efficient implementation of the operator \(\Gamma^{i}_{\mathcal{W}} \) in (20). To reduce the number of \(\eta \)'s of two adjacent layers is 2 (see Sec. 3.1), the BDD variables across different layers can be allocated to follow a particular pattern (shown in Fig. 3 for the simple case \(|\hat{X}_L| = 2 \)).

With this observation in mind, we now describe an efficient BDD implementation for \(\Gamma^{i}_{\mathcal{W}}(\cdot) \) assuming a one-dimensional state space; our implementation generalizes to any state space dimension. Let \(\hat{W}_i \subseteq \hat{X}_i \) be a set of states in layer \(i \) represented by the BDD \(\hat{W}_i \) over a set of boolean variables \(\{b_{j_1}, b_{j_2}, \ldots, b_{j_l}\} \). We compute the BDD representations \(\hat{W}_{i+1} \) and \(\hat{W}_{i-1} \) of \(\Gamma^{i+1}_{\mathcal{W}}(\hat{W}_i) \) and \(\Gamma^{i-1}_{\mathcal{W}}(\hat{W}_i) \) by simple transformations

\[
\hat{W}_{i+1} = [b \hat{b} \hat{W}_i][(b_{j_1}, \ldots, b_k) / (b_{j_k}, \ldots, b_{j_{l-2}})]
\]

and

\[
\hat{W}_{i-1} = [\hat{b} \hat{W}_i][(b_{j_1}, \ldots, b_k) / (b_{j_{l-1}}, b_{j_{l-2}})]
\]

where \([\hat{B}][(x_1, \ldots, x_p) / (y_1, \ldots, y_p)] \) represents the renaming of the variables \(\{x_1, \ldots, x_p\} \) of the BDD \(\hat{B} \) to the variables \(\{y_1, \ldots, y_p\} \). Recall that BDD renaming is linear in the size of the BDD.

5.1 Performance Evaluation

In this section, we evaluate our multi-layered ABCS method and compare the performance of our algorithms to single-layered versions. All computation times presented in this section were obtained by running the respective algorithms on an Intel Core i5 2.7 GHz processor.

Vehicle Motion Planning. Consider an autonomous vehicle whose dynamics are given by a unicycle model. This results in a control system with three state dimensions—the two-dimensional position of the vehicle’s center of mass and its heading—and a non-linear state transition function \(f \).

Three abstraction layers were constructed. The restricted state space \(X' = [0,11.4] \times [0,11.4] \times [-\pi - 0.4, \pi + 0.4] \) was discretized by grid parameters \(\eta_1 = [0.15, 0.15, 0.075]^T \), \(\eta_2 = [0.3, 0.3, 0.15]^T \), and \(\eta_3 = [0.6, 0.6, 0.3]^T \). The abstract input space was \(\mathcal{U} = [u_0, u_1] \times [-1.05 + 0.3u_1, u_1 + 0.05, 0.07], u_2 = [-1.5 + 0.2u_1, u_2] \times [0, 0.15] \). The dynamics were sampled using sampling times \(\tau_1 = 0.225, \tau_2 = 0.45 \), and \(\tau_3 = 0.9 \) and a perturbation bound \(w = [0.05, 0.05, 0.07]^T \). The 2D workspace depicted in Fig. 4 shows the first two components of \(X' \) with obstacles (gray) and a target (red).

We first compare the single- and multi-layered reachability algorithms (REACH and ML_REACH_m with \(m = 6 \)); see Table 1. We observe that it takes slightly more time to compute two and three abstractions (first line, second and third column) than it does to compute only \(\hat{S}_1 \) (first line, first column). However, multi-layered controller synthesis results in significant savings over single-layered synthesis (second line, second and third column compared to the first). Therefore, ML_REACH_6 with \(L > 1 \) outperforms REACH (i.e., ML_REACH with \(L = 1 \)) on this particular reachability control problem. Fig. 4 shows (the 2D projection of) the domains of all local controllers \(C^p \) contained in \(C \) resulting from ML_REACH_6 run for \(L = 3 \). We see that layer 1 is required to traverse narrow passages or to approach the small target, whereas coarser abstractions are used in more open parts of the state space.

Secondly, we compare the results of GB_UCHI and ML_GB_UCHI_m with \(m = 5 \) run over the same workspace but with three spatially distributed targets; see Table 3. Computation times for the abstractions are almost equivalent to the ones in Table 1. As expected, the savings in controller synthesis time are higher than in the simple reachability case, as an equally complex reachability control problem has to be solved at least three (but in general, more than three) times for the generalized Büchi objective considered.

We have also performed a comparative study between the execution times of GB_UCHI and ML_GB_UCHI_m with \(m = 5 \) while increasing the number of targets (see Fig. 5). We see that ML_GB_UCHI scales much better than GB_UCHI since the abstraction construction times stay constant while the synthesis savings build with each added target.

Boost DC-DC Power Converter. Consider a boost DC-DC converter from [11], Sec. V.A. This converter is modeled as a switched system with two modes, a two dimensional state (consisting of the inductor current and the capacitor voltage), and an affine transition function for each mode.

Table 1: REACH vs. ML_REACH_6

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>L = 1</th>
<th>L = 2</th>
<th>L = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraction</td>
<td>2200</td>
<td>2400</td>
<td>2420</td>
</tr>
<tr>
<td>Synthesis</td>
<td>860</td>
<td>139</td>
<td>113</td>
</tr>
<tr>
<td>Total</td>
<td>3060</td>
<td>2540</td>
<td>2530</td>
</tr>
<tr>
<td>(100%)</td>
<td>(83.0%)</td>
<td>(82.7%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: SAFE vs. ML_SAFE

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>L = 1</th>
<th>L = 2</th>
<th>L = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraction</td>
<td>21.2</td>
<td>27.0</td>
<td>29.2</td>
</tr>
<tr>
<td>Synthesis</td>
<td>203</td>
<td>14.3</td>
<td>7.25</td>
</tr>
<tr>
<td>Total</td>
<td>224</td>
<td>41.3</td>
<td>36.5</td>
</tr>
<tr>
<td>(100%)</td>
<td>(18.4%)</td>
<td>(16.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: GB_UCHI vs. ML_GB_UCHI_6

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>L = 1</th>
<th>L = 2</th>
<th>L = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraction</td>
<td>2210</td>
<td>2410</td>
<td>2460</td>
</tr>
<tr>
<td>Synthesis</td>
<td>3570</td>
<td>568</td>
<td>444</td>
</tr>
<tr>
<td>Total</td>
<td>5580</td>
<td>2970</td>
<td>2900</td>
</tr>
<tr>
<td>(100%)</td>
<td>(53.2%)</td>
<td>(52.0%)</td>
<td></td>
</tr>
</tbody>
</table>
L. target cells in controller domains synthesized in layers \(l_1\), \(l_2\), and \(l_3\) are resp. orange, purple, and green. Obstacle and target cells in \(l_1\) are resp. gray and red. The black trajectory reaches the target despite perturbations.

Figure 4: Vehicle workspace projected to \(\mathbb{R}^2\). Local controller domains synthesized in layers \(l_1\), \(l_2\), and \(l_3\) are resp. orange, purple, and green. Obstacle and target cells in \(l_1\) are resp. gray and red. The black trajectory reaches the target despite perturbations.

Three abstraction layers were constructed. The restricted state space \(X' = [1.15, 1.55] \times [5.45, 5.85]\) was discretized by grid parameters \(\eta_1 = [0.0005, 0.0005]^T\), \(\eta_2 = [0.001, 0.001]^T\), and \(\eta_3 = [0.002, 0.002]^T\). The abstract input space was \(U = \{0, 1\}\) representing the activation of the two modes. The dynamics were sampled using sampling time \(\tau = 0.5\) and a perturbation bound \(w = [0.05, 0.05, 0]^T\) for all layers.

Table 2 shows the performance comparison between the single-layer safety algorithm for \(S_1\) (first column) and the multi-layered algorithm for two and three abstractions. We see that using more than one layer leads to substantial improvements of the overall performance.

Parameter choices. Tuning parameters \(\eta_1\), \(\tau_1\), \(L\), and \(m\) are chosen by the user. While the algorithms are sound for any choice, optimality of these parameters is not fully determined by the system dynamics but also depends on the specification. For example, in the unicycle example, \(\eta_1\) must be chosen such that it allows for passing narrow passages (to achieve large coverage) and \(L\) can be chosen s.t. there exists an open space which fits boxes of size \(\eta_L\).

6. CONCLUSION

We have presented a method to use multiple abstractions during abstract controller synthesis. The resulting abstract multi-layered controller induces a quantizer which enables the application of this controller to the underlying concrete system. Empirically, our synthesis algorithm runs faster than standard (single-layered) algorithms on various control problems.

Acknowledgements. This research was sponsored in part by the European Research Council Synergy award IMPACT. Kyle Hsu was supported by the DAAD RISE Fellowship.

7. REFERENCES