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ABSTRACT

Traditional approaches to ensure group fairness in algorithmic

decision making aim to equalize “total” error rates for different

subgroups in the population. In contrast, we argue that the fairness

approaches should instead focus only on equalizing errors arising

due to model uncertainty (a.k.a epistemic uncertainty), caused due

to lack of knowledge about the best model or due to lack of data. In

other words, our proposal calls for ignoring the errors that occur

due to uncertainty inherent in the data, i.e., aleatoric uncertainty.
We draw a connection between predictive multiplicity and model
uncertainty and argue that the techniques from predictive multiplic-

ity could be used to identify errors made due to model uncertainty.

We propose scalable convex proxies to come up with classifiers

that exhibit predictive multiplicity and empirically show that our

methods are comparable in performance and up to four orders of

magnitude faster than the current state-of-the-art. We further pro-

pose methods to achieve our goal of equalizing group error rates

arising due to model uncertainty in algorithmic decision making

and demonstrate the effectiveness of these methods using synthetic

and real-world datasets.
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1 INTRODUCTION

Prediction systems are being used for several socially impactful

tasks, e.g., predicting recidivism risk in order to help judges make
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bail decisions, assessing credit ratings, assessing the risk of de-

faulting on a loan and predicting the risk of accident for insurance

purposes. This development has raised concerns about prediction

systems being discriminatory. To address this concern, researchers

have proposed a class of group fairness methods, which seek to

equalize overall errors across different groups of sensitive attributes

such as gender or race [1, 13, 27, 29]. This approach treats all errors

as equal. However, not all errors are the same.

It is well-known that errors in prediction models arise out of

both epistemic (model) uncertainty and aleatoric (inherent) uncer-

tainty [5, 14, 20]. Equalizing total error could lead to unjustifiably

wrong decisions for some datapoints. Consider Figure 1, where a

traditional fair classifier that equalizes total errors including the

irreducible ones that arise due to aleatoric uncertainty. This results

in many datapoints getting a negative outcome even though they

clearly belong to the positive cluster. These errors are particularly

consequential in socially impactful applications.

In this paper, we argue to distinguish between the errors caused

by different types of uncertainty. Specifically, we introduce the

notions of aleatoric errors and epistemic errors. We refer to the

errors that occur only due to model or epistemic uncertainty as

epistemic errors and the ones that occur due to aleatoric uncertainty,
we call the aleatoric errors. Figure 1 shows an example of both types

of errors. The errors made by the classifiers C1 and C2 that are

highlighted by the regionA are due to the noise in the data, as these

wrongly predicted datapoints are surrounded by predominantly

the other class label, i.e., ground truth positive or ground truth

negative datapoints. We refer to these types of errors as aleatoric
errors. While the errors in the region marked by E are due to model

uncertainty as one could resolve this uncertainty by gathering more

data or by choosing a more complex model. These types of errors

are epistemic errors. Our proposal is to ignore the aleatoric errors
which are likely to be irreducible due to inherent uncertainty in the

data or the prediction task at hand and we argue to only equalize

the epistemic errors, i.e., the ones that occur due to methodological

limitations.

In order to identify the epistemic errors that are caused by model

uncertainty, we leverage the work on predictive multiplicity by

Marx et al. [21]. Predictive multiplicity refers to the scenario where

multiple predictive models have similar predictive performance

(e.g., similarly accurate) but assign contradictory predictions on a

subset of the datapoints, which characterize the ambiguous regions.
We draw a connection between predictive multiplicity and model
uncertainty.



Model uncertainty is defined as the level of spread or ’disagree-

ment’ in the decisions of an ensemble sampled from the poste-

rior [20]. We use predictive multiplicity to identify model uncer-

tainty, i.e., we argue that the disagreement in equally well perform-

ingmodels signals uncertainty in themodel parameters. Specifically,

we argue that if the classifiers exhibiting predictive multiplicity are

chosen from a complex enough hypothesis class, then the regions

in the feature space with high model uncertainty that are likely

to have the epistemic errors would coincide with the ambiguous

regions produced by predictive multiplicity. Therefore, our proposal

of equalizing only the epistemic errors translates into equalizing

errors in the ambiguous regions, while ignoring the ones in the

unambiguous regions.

One of the key properties of our proposal is that people whose
outcomes are affected by our fairness requirements are the people

whose outcomes are ambiguous or uncertain in the first place. Put

differently, we do not alter the outcomes of people with unambigu-

ously positive or negative outcomes. In contrast, current methods

for achieving equal error rates might alter outcomes for people

with unambiguous outcomes as well, creating a difficult accuracy-

fairness tradeoff dilemma. We believe that our proposal would be

easier to justify in many practical scenarios.

Key technical contributions of our approach are (a) designing ef-

ficient and scalable methods for identifying ambiguous regions, and

(b) designing mechanisms for equalizing group error rates in the

ambiguous regions. In order to solve the first challenge, we propose

convex proxies to find models that exhibit predictive multiplicity.

For the second challenge, our key insight is to reuse the highly ac-
curate models trained to identify the ambiguous regions in the first

place. Specifically, given the set of classifiers identifying ambiguous

regions, we propose to stochastically pick a classifier from this set

when making a decision. The probabilities of picking the classifiers

are chosen in a way that equalizes group error rates in the ambigu-

ous regions in expectation. An additional benefit of our approach

compared to the traditional way of making a deterministic decision

is that we account for model uncertainty by introducing stochastic-

ity in our predictions, and thus many datapoints in the ambiguous
region have a non-zero probability of receiving a favorable outcome.

As there is some chance of getting a favorable outcome for most

datapoints affected by our fairness notion, it would make our pro-

posal more desirable than the traditional approach of assigning

decisions deterministically.

Contributions and Outline:

• Conceptual contribution: We argue that uncertainty in

prediction should be accounted for when designing fairness

approaches. To this end, we propose to only equalize errors

occurring due to model uncertainty, i.e., the epistemic errors.

• Technical contributions: i) We propose tractable scalable

convex proxies to identify ambiguous regions. That is, for
a given dataset D, we identify a set of linear or nonlinear

classifiers that are equally accurate, but they conflict in their

predictions for a subset of datapoints (see Section 3.1). ii) We

also formalize our proposal to only equalize the epistemic

errors and present a fairness approach that equalizes group

errors in the ambiguous regions (see Section 3.2).

Figure 1: Illustrative example: Consider a binary classifica-

tion task with two features and a sensitive feature (z) rep-

resented by the shape of the points, i.e., circles and trian-

gles. Green and red colors represent ground truth positive

and negative labels, respectively. Classifiers C1 and C2 are

equally accurate classifiers achieving 80% accuracy. The dif-

ference between false positives of triangles and circles forC1

is 32% and −25% with C2. However, these two classifiers dis-

agree on their decision on 29% of the data, i.e., which lies

in the ambiguous region between the two classifiers. The

errors made by these classifiers in the ambiguous regions

marked by E are epistemic errors. While the errors high-

lighted by the region A are aleatoric errors. If we were to

pick one of these classifiers as the final decision boundary it

would be unfair to the points receiving a favorable decision

with the other classifier. On the other hand, a fair classifier

equalizing false positive rates, using [29], gives an accuracy

of only 68%. However, as it does not disregard the aleatoric

uncertainty it changes the decisions of several points that

clearly belong to the positive cluster.

• Empirical contributions: i) Our experimental results show

that our proposed scalable convex proxies to identify regions

with predictive multiplicity are comparable in performance

and up to four orders of magnitude faster than the current

state-of-the-art (see Section 4.4, Table 2). ii) Our experimental

results on a synthetic and two real-world datasets show that

our fairness methods improve fairness in the ambiguous

regions while achieving comparable accuracy to the best

classifier (see Sections 4.4 and 4.5).

2 PRELIMINARIES AND BACKGROUND

In this section, we present the necessary background on binary

classification and predictive multiplicity.



2.1 Binary Classification

Given a training dataset D = {(xi ,yi )}Ni=1
, the goal of a binary

classifier is to learn a function ϕ : Rd → {−1, 1} between the

feature vectors x ∈ Rd and the class labels y ∈ {−1, 1}. In order

to learn this function one has to solve ϕ∗ = argminϕ RD (ϕ) :

RD (ϕ) = 1

N
∑
xi ,yi 1[ϕ(xi ) , yi ]. However, this function is non-

convex in ϕ and worse, it is intractable, which makes it especially

difficult to solve for large datasets. In the rest of the text we drop

the subscript, D, for brevity. To efficiently solve the problem, it is

a standard practice to use a convex proxy. One minimizes a given

convex loss L(θ ) over D, i.e., θ∗ = argminθ L(θ ), in order to find

θ∗ for convex decision-boundary-based classifiers like linear/non-

linear SVM and logistic regression, where θ ∈ Rd . Then, for a given
(potentially unseen) feature vector x , one predicts the class label
ŷ = 1 if dθ ∗ (x) ≥ 0 and ŷ = −1 otherwise, where dθ ∗ (x) denotes the
signed distance from x to the decision boundary. For convenience,

we define θ∗(x) = 1 if dθ ∗ (x) ≥ 0 and θ∗(x) = −1 if dθ ∗ (x) < 0.

In the rest of the paper, we consider θbest to be the most accurate

classifier yielded by minimizing logistic regression loss with L2

regularizer, where weights of the regularizer were picked based

on the performance on the validation set. Similarly, we consider

ϕbest to be the best classifier using 0-1 loss (RD ), selected using a

validation set.

2.2 Background on Predictive Multiplicity

In this section, we formally introduce the notion of predictive mul-

tiplicity and discuss the existing measures and mechanisms to com-

pute predictive multiplicity.

Predictive multiplicity. A prediction problem exhibits predictive

multiplicity if one can find a classifier ϕ for a given small value

ϵ such that R(ϕ) − R(ϕbest ) <= ϵ , and there exists at least one

datapoint with feature vector xi such that ϕ(xi ) , ϕbest (xi ) [21].
The definition for classifiers trained with proxy loses is similar. One

could consider ϵ to be 0 but in practice a classifier that is slightly

less accurate on the training data might be equally or even more

accurate on the test data.

Predictive multiplicity is defined for a set of two or more classi-

fiers, referred to as the ϵ-level set. Given the most accurate classifier

ϕbest , the ϵ-level set of ϕbest is a set of classifiers which have an

accuracy only up to ϵ lower than ϕbest . Formally, over the dataset

D, Cϵ,ϕbest = {ϕ : R(ϕ) − R(ϕbest ) ≤ ϵ}.
Measures of predictive multiplicity. Marx et al. [21] propose

two measures for predictive multiplicity for a given set of classifiers,

namely Discrepancy and Ambiguity.
For a given set of classifiers, Discrepancy is defined as the max-

imum fraction of the datapoints on which any classifier in the

set disagrees on the outcomes with the most accurate classifier.

Formally, given Cϵ,ϕbest and dataset D,

δϵ (ϕ) = max

ϕ ∈Cϵ

1

n

∑
xi ∈D

1[ϕ(xi ) , ϕbest (xi )], (1)

i.e., discrepancy is the maximum fraction of conflicting decisions

yielded by any classifier in Cϵ,ϕbest compared to ϕbest .
Ambiguity of a set of classifiers for a prediction task is defined

as the fraction of datapoints given a different decision than the best

classifier. Formally, given set Cϵ,ϕbest and dataset D,

αϵ (ϕ) =
1

n

∑
xi

max

ϕ ∈Cϵ,ϕbest

1[ϕ(xi ) , ϕbest (xi )], (2)

where maxϕ ∈Cϵ,ϕbest
1[ϕ(xi ) , ϕbest (xi )] is 1 if there exists at

least one classifier in Cϵ,ϕbest which gives a datapoint with fea-

tures xi a different outcome than ϕbest , otherwise it is 0. Hence,

ambiguity is the fraction of datapoints on which any classifiers in

Cϵ,ϕbest disagrees on the outcome with ϕbest .

Methods to identify predictive multiplicity. Inspired by the

measures discrepancy and ambiguity, Marx et al. [21] propose two

methods that maximize these measures in order to find the clas-

sifiers that exhibit maximum predictive multiplicity for the given

allowance of accuracy reduction. This would indicate the extent of

predictive multiplicity for the prediction task at hand.

Exact discrepancy maximization (Dsc-Exact). Given a value

of ϵ , the authors propose to train classifiers that minimize the

agreement to ϕbest under the constraint that its accuracy is only

up to ϵ lower than ϕbest , i.e.,

minimize

ϕ

∑
xi

1[ϕ(xi ) = ϕbest ]︸                                      ︷︷                                      ︸
maximize discrepancy

(P1)

subject to R(ϕ) ≤ R(ϕbest ) + η︸                     ︷︷                     ︸
bound accuracy reduction

whereη ∈ (0,ϵ). One can obtain a set Cϵ,ϕbest by solving the above
formulation for several η values.

Exact ambiguity maximization (Amb-Exact). In order to find

the classifiers that maximize the ambiguity measure for a given

threshold of accuracy reduction, Marx et al. [21] propose to train

a classifier for each datatpoint in the training data that gives the

datapoint a different decision than themost accurate classifier. Then,

they pick the classifiers whose accuracy lies within the threshold

of the allowed accuracy reduction. Specifically, they propose to

train classifiers that change their decisions compared to ϕbest for
individual datapoints while minimizing 0-1 loss, i.e.,

minimize

ϕ
R(ϕ)︸             ︷︷             ︸

maximize accuracy

subject to ϕ(xi ) , ϕbest (xi )︸                 ︷︷                 ︸
change decision of xi w.r.t ϕbest

∀xi .

(P2)

Then, one can select Cϵ,ϕbest by pruning the set of classifiers

resulting from the solution of the problem above, i.e., by selecting

classifiers which are only ϵ lower in accuracy than ϕbest .
To solve both Problems P1 and P2, Marx et al. [21] propose mixed

integer programming formulations. However, these formulations i)

work only for linear classifiers and ii) have slow performance as

these are exact, intractable and non-convex.

3 PROPOSED APPROACH

In this section, we aim to answer the question:What is a fair model
under model uncertainty?

We characterize model uncertainty using predictive multiplicity.

Given a set of classifiersCϵ,θbest that exhibit predictive multiplicity,



Figure 2: [Synthetic dataset] Figure demonstrates that state of the art fairness methods are effected by label noise.

Figure 3: [Synthetic dataset] Figure shows the expected class while equalizing FPRs using the classifiers solving P4. It demon-

strates that our method is stable under label noise, as it consistently identifies same regions as ambiguous for different levels

of noise values.

we considerxi to have an ambiguous decision if any of the classifiers
in Cϵ,θbest gives it a conflicting decision compared to any other

classifier. Formally a set of ambiguous points are defined as:

A := {xi : θ j (xi ) , θk (xi )∀θ j ,θk ∈ Cϵ,θbest }.

These points characterize the ambiguous region. By choosing a

single model from Cϵ,θbest as the final model we might be unfair to

some group in the ambiguous region. Our proposal of only equaliz-

ing the epistemic errors boils down to equalizing group error rates

in the ambiguous region A.

The key assumption we make is that the hypothesis class for the

classifiers, Cϵ,θbest , exhibiting predictive multiplicity is sufficiently

complex, i.e., if the data is nonlinearly separable the hypothesis

class should include nonlinear classifiers. Under this assumption,

all the errors in the the unambiguous region, i.e., where all the

classifiers in the set Cϵ,θbest agree in their decisions, would only
be due aleatoric uncertainty. The argument is as follows: Given the

classifiers in set Cϵ,θbest are picked from a sufficiently complex

hypothesis class for the given data. Under this assumption, if all the

classifiers agree in their prediction for a subset of the datapoints,

then the resulting errors for these datapoints could only be due

to inherent stochasticity of the prediction task or random noise,

i.e., aleatoric errors. On the other hand, the ambiguous region, A,

would identify regions with high model uncertainty. The intuition

is as follows: Given that the classifiers for set Cϵ,θbest are chosen
from a sufficiently complex hypothesis class. Under this assumption,

if these equally accurate classifiers disagree on some datapoints

this would include all the datapoints whose decisions are uncertain

due to lack of data. This implies that all the epistemic errors will

lie in the ambiguous region. The ambiguous region could also have

random noise hence causing some aleatoric errors. The results using

the Synthetic dataset in Section 4.4 confirm our hypotheses.

Next, we present our proposals for identifying the ambiguous re-

gion using scalable convex methods. Then, we discuss our methods

for equalizing groups errors in the ambiguous region A.

3.1 Scalable Methods for Predictive

Multiplicity

In this section, we propose two convex methods to find the ambigu-

ous region A.

Approximate Discrepancy maximization (Dsc-Approx). We

propose the following convex and tractable proxy constraint that

bounds similarity between θ and θbest , akin to the objective in

Problem P1 that maximizes discrepancy:

1

N

∑
x

max(0,dθ (x )dθbest (x )) ≤ γ , (3)

where dθ (x ) represents the distance of the datapoint with feature

vector x from the decision boundary of θ . max(0, ·) represents the

agreement of decisions between θ and θbest . Specifically, if the
decision for a subject with feature vector x stays the same under

θ compared to θbest , only then does the term max(0, ·) produce

a non-zero number. Thus, by bounding the left hand side we are

limiting the average allowed distance of the datapoints which have

the same decisions under θ and θbest . Making this bound tighter

would preferably admit θ whose decisions are different on some

of the datapoints than θbest , as those datapoints contribute 0 to

the sum on the left hand side. This implies that one can control the

number of decisions allowed to be the same between θ and θbest



by changing the value of γ ∈ R+. For example, γ = +∞would yield

θ = θbest meaning that all the decisions between θ and θbest are
the same, i.e., θ would yield a discrepancy of 0 compared to θbest .
Similarly, forγ = 0 one aims to learnθ whose decisions are different

on all datapoints than to θbest , i.e. a classifier yielding maximum

discrepancy compared to θbest . The value of γ also controls the

reduction in accuracy under θ compared to θbest .
For linear boundary-based classifiers (logistic regression, linear

SVM), dθ (x) = θT x . For nonlinear SVM, one can write dβ (x) =∑N
i=1

βiyik(xi ,x) for the optimization variables β and a positive

semidefinite kernel function k(., .). Hence, in both linear and non-

linear cases the constraint stays convex since the distance from

the decision boundary is linear with respect to the optimization

variables.

One can write a convex and tractable version of Problem P1

using the logistic regression loss as follows:

minimize

θ
−

1

N

∑
xi ,yi

p(yi |xi ;θ )︸                                     ︷︷                                     ︸
maximize accuracy

(P3)

subject to

1

N

∑
xi

max(0,dθ (xi )dθbest (xi )) ≤ γ︸                                        ︷︷                                        ︸
enforce discrepancy

where p(y = 1|x ,θ ) = 1

1+exp(−θT x )
.

One can learn an appropriate γ value using a validation set, for

a given η in P1. We construct Cϵ,θbest by training classifiers with

varying values of γ and then picking the ones whose accuracy is

only ϵ lower than θbest .
Approximate ambiguitymaximization (Amb-Approx).Wepro-

pose the following convex and tractable constraints equivalent to

the constraint in Problem P2.

dθ (xi ) < 0 if dθbest (xi ) ≥ 0 ∀xi (4)

dθ (xi ) ≥ 0 if dθbest (xi ) < 0 ∀xi ,
where dθ is the distance from decisions boundary of θ . The con-
straints above require θ to make a different decision than θbest
on the datapoint xi . The constraints stay convex for both linear

and nonlinear boundary based classifiers because one can write

the distance from the decision boundary as a linear function of the

optimization parameter in both cases. One can write a convex and

scalable version of Problem P2 as follows:

minimize

θ
−

1

N

∑
xi ,yi

p(yi |xi ;θ )︸                                     ︷︷                                     ︸
maximize accuracy

(P4)

subject to dθ (xi ) < 0 if dθbest (xi ) ≥ 0 ∀xi
dθ (xi ) ≥ 0 if dθbest (xi ) < 0 ∀xi︸                                     ︷︷                                     ︸

change decision of xi w.r.t θbest

,

where p(y = 1|x ,θ ) = 1

1+exp(−θT x )
. We pick Cϵ,θbest by training

a set of classifiers which assign conflicting decisions to all the

datapoints in the training set. Then, we pick the classifiers which

are only ϵ lower in accuracy than θbest .

3.2 Leveraging Predictive Multiplicity towards

Fairness under Model Uncertainty

In this section, we propose to learn a meta classifier in order to

equalize group errors arising due to model uncertainty.

In order to do that, our key insight is to use the highly accurate

classifiers that we trained to identify the ambiguous regions in

the first place. Specifically, given the validation set of datapoints

and Cϵ,θbest , picked by solving Dsc-Approx, P3, or Amb-Approx,

P4, we first identify the points with ambiguous decisions. We then

construct a meta classifier by picking the classifiers stochastically

from the set Cϵ,θbest . The probabilities for picking these classifiers
are chosen in a way that aims to equalize group error rates on

the ambiguous datapoints among different groups of a sensitive

feature such as race or gender. For a binary valued sensitive feature

z = {0, 1}, we propose

minimize

w
|
∑
θ ∈Cϵ

wθ · (Errz=1(θ ) − Errz=0(θ )︸                        ︷︷                        ︸
FPR/FNR difference

)| (P5)

subject to 0 ≤ wθ ≤ 1 and

∑
θ

wθ = 1,

where Errz=0(θ ) and Errz=1(θ ) are false positive rates (FPR) or false
negative rates (FNR) for group 0 and 1 of the sensitive feature in the
ambiguous region, A. As the set of classifiers is predetermined, the

error rates can be precomputed. Hence, the problem is convex and

efficiently solvable, as the objective function is a linear function of

optimization variablew .

The intuition is that the difference of the errors rates between

the two groups, i.e., Errz=1(θ ) − Errz=0(θ ), might be positive for

some of the classifiers in Cϵ,θbest and it might be negative for the

others. We can then assign the probabilitieswθ to these classifiers

in a way such that they cancel each others biases and the expected

unfairness is minimized. Our experimental results on the real-world

and synthetic datasets confirm our intuition (Tables 1, 3, 4).

In the case of a non-binary valued sensitive feature, one can

replace the error rate difference between two groups with pair-wise

differences among all the groups. We learn the probability mass

functionw using the validation datapoints, and when classifying

the unseen test datapoints we use w to pick the classifiers from

Cϵ,θbest .

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our methods

using synthetic and real-word datasets. Specifically, we answer the

following evaluation questions:

– Q1. How effective and fast are our methods in identifying the

ambiguous regions?

– Q2.What is the fairness and accuracy trade-off of our methods?

– Q3. Are our methods robust to noisy data?



4.1 Datasets

We use a Synthetic dataset because i) we could easily alter the

size of the datasets, which is useful as Dsc-Exact and Amb-Exact

have slow performance on larger complex datasets, especially with

continuous valued features; ii) we could provide intuition for the

type of ambiguous regions identified by our methods; iii) we could

introduce noise in the data and check the robustness of our methods

vs the existing methods. The data comprises 10000 datapoints and 2

features and a binary valued sensitive feature, z. The data is sampled

from the following Gaussian distributions:

N1([−35; 65], [60, 1; 1, 120]), N2([15;−25], [60, 1; 1, 120]),

N3([30; 65], [70, 1; 1, 100]), N4([35; 40], [70, 1; 1, 100]),

N5([−55; 5], [70, 1; 1, 100]) andN6([−55;−20], [70, 1; 1, 100])

FromN1, 4500 points were sampled. Amongst these, 95% of which

were labeled ground truth positive and 65% of these points were

uniformly at random assigned to the non-protected class of the

sensitive feature, i.e, z = 0. A total of 4500 points were sampled from

N2, 95% of which are ground truth negative points and 65% of these

points were uniformly at random assigned to the protected class of

the sensitive feature, i.e., z = 0. Finally, 250 points were sampled

from N3 and N5 each, with ground truth negative labels, and 250

points were sampled from N4 and N6 each and were assigned

ground truth positive labels. 80% of the points sampled from N3

and N4 and 20% of the points sampled from N5 and N6, were

uniformly at randomly assigned z = 1. After sampling these points

they were normalized to have a unit mean and a unit variance. A

visual representation is shown in Figure 2. We flipped the class label

of a fraction of datapoints which induced aleatoric errors through

out the data. However, model uncertainty only exists in the sparse

clusters shown in Figure 2 as that could be reduced by gathering

more data. Our hope is that predictive multiplicity would be able

to identify regions with predominantly model uncertainty, i.e., the

sparse clusters as the ambiguous regions for different levels of

aleatoric uncertainty. We also experimented with other variations

of the parameters and got similar results.

We processed the ProPublica COMPAS dataset [19] similar to Za-

far et al. [28], which resulted in 5, 287 subjects and 7 features. Given

these features we have to predict whether a criminal defendant

would recidivate within two years (positive class) or not (negative

class). We consider race, with values African-Americans, z = 0, and

white, z = 1, to be a sensitive feature in this dataset.

The NYPD SQF dataset comprises features of pedestrians, such as

race, gender, height etc. and the goal is to predict whether (negative
class) or not (positive class) a weapon was discovered on inspection.

We use race as a sensitive feature, z, in our experiments, with

African-Americans (z = 0) and white (z = 1) as two values of this

feature. After processing the data similar to Zafar et al. [28] the

dataset consists of 5, 832 subjects and 22 features.

4.2 Experimental Setup

The datasets were split into 50% training, 25% validation and 25%

test datapoints. Training data was used to train the classifiers, val-

idation data for tuning hyper parameters and test data to report

the results. The CVXPy library [7] was used to solve all the for-

mulations. We show results using linear classifiers, as decisions

Table 1: [Synthetic dataset] Signed differences in FPR/FNR

Unfairness Accuracy

total unamb amb

Acc. -0.13/-0.14 0.05/-0.06 0.46/-0.45 0.89

Fair 0.03/-0.02 0.05/-0.06 -0.14/0.29 0.77/0.89

Uni-P3 0.04/-0.04 0.05/-0.06 -0.22/0.20 0.89 / 0.89

Our-P3 0.07/-0.07 0.05/-0.06 0.0/-0.01 0.89/0.89

With P4

Acc. 0.13/-0.14 0.06/-0.07 0.30/-0.35 0.89

Fair 0.03/-0.02 0.05/-0.07 -0.06/0.18 0.77/0.89

Uni-P4 0.10/-0.10 0.06/-0.07 0.16/-0.16 0.88 / 0.88

Our-P4 0.06/-0.07 0.06/-0.07 0.01/-0.03 0.88/ 0.88

This table demonstrates that our method is effective in re-

moving unfairness at a very small cost of decrease in the

accuracy. Please refer to Section 4.4

made by the linear classifiers are relatively easier to explain, which

is an import goal for applications with social significance such as

recidivism risk prediction. Additionally, data are likely to be lin-

early separable in higher dimensions. We show some results using

nonlinear boundaries with our methods in the appendix.

Selecting Cϵ,θbest . We generate Cϵ,θbest by solving Dsc-Approx,

given by Problem P3, for a range of γ values or Amb-Approx, given

by Problem P4, for each training datapoint. Then, we use the valida-

tion data to prune the resulting classifiers which lie within a given

ϵ threshold of the most accurate classifier. The results are averaged

over 5 runs of these steps using different seed values to initialize

the data-split and the solver. For Dsc-Approx, we pick the Cϵ from

the aggregated solutions of all the seeds and present the averaged

statistics over all the seeds.

We assume that ϵ is chosen by the experts for the prediction task

at hand. We present results for ϵ = 0.02 for the synthetic dataset,

and ϵ = 0.01 for real-world datasets. We experimented with several

values of ϵ and obtained similar results.

4.3 Benchmarks and Metrics

In this section, we discuss the benchmarks and metrics we used to

evaluate our proposals.

Ambiguous regions computation benchmarks. In order to demon-

strate the efficiency of our methods to identify the ambiguous

regions using Dsc-Approx and Amb-Approx, we compare with

Dsc-Exact and Amb-Exact. We solved the Dsc-Exact and Amb-

Exact problems using the CPLEX library, with the code provided

by the authors [21].

Metrics for evaluating ambiguous regions computation. Since

the best classifiers for non-scalable and our scalable methods, i.e.,

ϕbest and θbest , are different, we report the ambiguity α̂ and dis-

crepancy
ˆδ between any two classifiers in Cϵ , for the respective

methods. They are formally defined as follows:

ˆδϵ (ϕ) = max

ϕ, ˆϕ ∈Cϵ

1

n

∑
xi

1[ϕ(xi ) , ˆϕ(xi )] (5)



Table 2: Comparison identifying ambiguous regions

ϵ P1 P2 P3 P4

-
ˆδ α̂ ˆδ α̂ ˆδ α̂ ˆδ α̂

0.03 0.15 0.16 0.18 0.28 0.14 0.16 0.18 0.26

0.05 0.17 0.19 0.22 0.38 0.16 0.17 0.23 0.36

0.09 0.22 0.24 0.32 0.56 0.2 0.20 0.32 0.51

Training Time

Time P1 P2 P3 P4

mins 510 19227 5 5

The table above shows maximum discrepancy and ambi-

guity between any two classifiers in the Cϵ,ψ :ψ ∈{ϕbest ,θbest } .

The bottom table shows the time it took to compute the am-

biguous regions with each method. It shows that our meth-

ods, given by P3 and P4, achieve comparable performance

compared to P1 and P2 and they are upto four orders ofmag-

nitude faster. Please refer to Section 4.4

α̂ϵ (ϕ) =
1

n

∑
xi

max

ϕ, ˆϕ ∈Cϵ

1[ϕ(xi ) , ˆϕ(xi )]. (6)

High values of these measures are desired, as that would imply that

the Cϵ contains diverse classifiers which can identify more number

of datapoints that have a contradictory decision for a given value of

ϵ . We also report the time it takes to compute the set of classifiers

Cϵ .

Fairness benchmark. For results on fairness in the ambiguous re-

gions, we compare our method given by Problem P5 using Cϵ,θbest ,
picking classifiers uniformly at random from Cϵ,θbest , the most

accurate classifier and a traditional fair classifier. We chose one

traditional fair method as a baseline, as Zafar et al. [29] show com-

parison to other approaches and get similar results. Its formulation

([29] and [1]) is given as follows,

minimize −
1

|D|

∑
(x ,y)∈D

logp(y |x ,θ ) + λ | |θ | | (P6)

subject to

1

|D∗ |

���� ∑
(x ,z)∈D∗

(z − z̄)dθ (xi )

���� < c,

where D∗ was set to datapoints with ground truth negative labels

and ground truth positive labels for equalizing false positive rates

(FPR) and false negative rates (FNR), respectively. z represents

the value of the sensitive feature and c represents the allowed

correlation between z and the decision boundary, dθ .
We train accurate classifiers by solving

minimize − 1

|D |

∑
(x ,y)∈D logp(y |x ,θ ) + λ | |θ | | for different λ.

Logistic regression loss was used to train all the classifier. More

details such as ranges for the hyper parameter search values, seeds,

specifications of the machines used and other training details are

included in the appendix.

Metrics for fairness. We assume a binary valued sensitive at-

tribute and report a signed difference of FPR and FNR between the

Table 3: [COMPAS] Signed differences in FPR/FNR

Unfairness Accuracy

total unamb amb

Acc. -0.19/0.33 -0.23/0.41 0.08/-0.20 0.66

Fair 0.02/0.03 -0.09/0.18 0.83/-0.92 0.66/0.65

Uni-P3 -0.20/0.35 -0.23/0.41 -0.08/-0.004 0.66 /0.66

Our-P3 -0.20/0.35 -0.23/0.41 -0.08/-0.02 0.66/0.66

With P4

Acc. -0.19/0.33 -0.24/0.54 -0.11/0.15 0.66

Fair 0.02/0.03 -0.24/0.54 0.34/0.-0.42 0.66/0.65

Uni-P4 -0.19/0.34 -0.24/0.54 -0.11/0.15 0.66/ 0.66

Our-P4 -0.14/0.26 -0.24/0.54 -0.01/0.03 0.66/ 0.66

This table demonstrates that ourmethods are effective in re-

moving unfairness in the ambiguous regions at no expense

of accuracy. Please refer to Section 4.5

unprotected and the protected group for the sensitive feature z.

unfairness-FPR = FPRz=1 − FPRz=0, (7)

unfairness-FNR = FNRz=1 − FNRz=0 (8)

We present these numbers for the overall data, for the unambiguous

regions, i.e., where all the classifiers give unanimous decisions, and

for the ambiguous regions. We also report the accuracies. We aim to

achieve low disparity in group error rates in the ambiguous regions,

while achieving an accuracy similar to the most accurate classifier.

4.4 Synthetic Experiments

In this section, we answer the evaluations questions using the

synthetic dataset.

Q1: Ambiguous regions coverage and speed.We compared our

methods, Dsc-Approx and Amb-Approx, of identifying the ambigu-

ous regions with Dsc-Exact and Amb-Exact. Table 2 reports the

time it took to compute the ambiguous regions as well as themetrics

described in Section 4.2. The results demonstrates that our methods

are comparable or even better in coverage of the ambiguous regions

on the test data, while being up to four orders of magnitude faster.

Q2: Accuracy fairness trade-off.We compare our method with

the benchmarks described in Section 4.2. The results in Table 1

demonstrate that:

Existing fairness methods sometime achieves overall fairness at

the expense of a significant decrease in accuracy. Additionally, over-

all fairness is achieved by being biased towards different groups for

different types of errors, i.e., ones in the unambiguous vs ambiguous

regions. On the other hand, our method is effective in removing

unfairness in the ambiguous regions and ignoring the unfairness

in the unambiguous regions, as desired. Our method also achieves

accuracy similar to the most accurate classifiers.

Q3: Robustness to noisy data. In order to demonstrate the sen-

sitivity of existing fairness methods towards noise, we flipped the

ground truth labels of 0.0% to 20% of the datapoints uniformly at



random. Figures 2 and 3 present our findings. We compare an ac-

curate classifier, a fair classifier and our method equalizing FPR

using Amb-Approx. The key takeaways are as follows: In an effort

to equalize all errors, existing fairness methods are affected by label

noise and end up classifying a significant number of datapoints in

the wrong class, as hypothesized in the introduction. In contrast,

our method is robust to noise as it identifies similar regions as am-

biguous for varying level of noise. Secondly, this experiment also

confirms our hypothesis, by showing that the ambiguous region

coincide with regions with predominantly high model uncertainty,

i.e., the sparse clusters.

4.5 Evaluation on Real-World Datasets

In this section, we answer our evaluation questions using two real-

world datasets.

Q1: Ambiguous regions coverage and speed. We identify the

datapoints with ambiguous decisions using Dsc-Approx, given by

Problem P3 and Amb-Approx, given by Problem P4, for the same

value of ϵ . We also tried Dsc-Exact and Amb-Exact, however after

several hours of computations they still did not yield any results.

So, we compare the results of our two proposals, using α̂ metric

given by Equation 6. Takeaways remain similar for
ˆδ , given by

Equation 5.

For the Compas data, our method Dsc-Approx and Amb-Approx

categorized 0.12 and 0.5 of the datapoints as having an ambiguous

decision, respectively. While for the SQF dataset, 0.12 and 0.53 of

the datapoints were identified as having an ambiguous decision

by Dsc-Approx and Amb-Approx, respectively. It is noteworthy

that Amb-Approx identifies more datapoints as ambiguous. This is

due to the fact that with Amb-Approx we train one classifier per

training datapoint, i.e., we perform a more exhaustive search for the

classifiers that exhibit predictive multiplicity. This process, however,

takes a longer time. Hence, there is a trade-off between the speed

and effectiveness for both the proposed methods of identifying the

ambiguous regions.

Q2: Accuracy fairness trade-off. Similar to the synthetic dataset,

we compare our method of equalizing group error rates (FPR and

FNR) in the ambiguous regions, identified by Dsc-Approx and

Amb-Approx, with three benchmarks described in Section 4.2. The

takeaways from results presented in Tables 3 and 4 are the following.

Existing fair classifiers that focus on equalizing overall error have

high unfairness in the ambiguous regions in most cases, which

confirms our hypothesis. Although these classifiers achieve fairness

in the overall data, they sometimes result in a significant drop

in accuracy. Additionally, in many cases, existing fair classifiers

achieve overall fairness by being unfair to different groups in the

ambiguous vs unambiguous regions.

In comparison, our method that only equalizes errors in the

ambiguous regions, in most cases, provides the fairest solution in

the ambiguous regions while achieving a comparable accuracy to

the most accurate classifier.

In a few cases where our approach is not the only best solution, it

provides additional benefits, e.g., in one case our solution is equally

fair in the ambiguous region compared to the accurate classifier (cf.

Table 4). However, our method assigns decisions to datapoints in the

ambiguous regions stochastically. So, in practice, most datapoint

Table 4: [SQF] Signed differences in FPR/FNR

Unfairness Accuracy

total unamb amb

Acc. -0.28/0.12 -0.29/0.13 -0.07/0.017 0.75

Fair 0.04/0.02 0.02/0.03 0.07/-0.15 0.65/0.71

Uni-P3 -0.28/0.12 -0.29/0.13 -0.05/0.014 0.75 / 0.75

Our-P3 -0.28/0.11 -0.29/0.13 -0.02/-0.017 0.75/ 0.75

With P4

Acc. -0.28/0.12 -0.24/0.17 -0.25/0.07 0.75

Fair 0.04/0.02 -0.06/0.12 0.15/-0.08 0.65/0.71

Uni-P4 -0.27/0.14 -0.24/0.17 -0.25/0.09 0.74/ 0.74

Our-P4 -0.24/0.13 -0.24/0.17 -0.18/0.07 0.73/ 0.74

This table demonstrates effectiveness of our methods.

Please refer to Section 4.5

in the ambiguous region have a non-zero probability to be in the

favorable class. This is desirable over a deterministic decision, since

there is ambiguity in decisions for these datapoints. In another case,

Table 3, selecting classifiers uniformly at random is 1.6% more fair

on the test data. However, our solution is still 90% and 18% better

than the benchmark fair classifier and the accurate classifier, which

are the current standards.

5 RELATEDWORK

Fairness in ML. In recent years a number of fairness methods and

notions have been proposed for classification tasks [1, 4, 9, 10, 12,

13, 17, 18, 24, 26–30]. A family of these methods aim to enforce

fairness across socially salient groups in the society that equalize

’total’ errors e.g., [1, 13, 27, 28]. In contrast, we argue to focus only

on the errors arising due tomodel uncertainty. We do so by building

on existing work in predictive multiplicity.

Modeling uncertainty. Prior works on categorizing uncertainties

have proposed to distinguish between aleatoric (irreducible) uncer-

tainty and model (reducible) uncertainty[6, 14, 15]. A lot of works

in machine learning have addressed this distinction in different

subfields. Depeweg et al. [5] propose to decompose the two types

of uncertainties using bayesian neural networks and latent vari-

ables. Kendall and Gal [16] consider this distinction in computer

vision problems. McAllister [22] distinguish between the types of

uncertainties in reinforcement learning problems.

We believe that we are the first ones to propose to distinguish

between different types of uncertainties for fairness in predictive

tasks.

Predictive multiplicity. In their seminal work, Breiman et al. [3]

introduced the concept of the Rashomon effect in the context of

model explanations. The Rashomon effect refers to the scenario

where data admits multiple different models that yield similar accu-

racy. Breiman et al. [3] argue that one should not use the explana-

tions of a single model to draw conclusions about the data and the



prediction task at hand. Rashomon sets, defined as ϵ-set of models,

i.e. those whose empirical training loss is within ϵ-loss of a baseline
classifier, are used by Dong and Rudin [8], Fisher et al. [11] to study

the problem of variable importance.

The notion of predictive multiplicity in a classification setting

was introduced by Marx et al. [21]. They proposed mixed integer

programming methods using non-convex loss functions to train

classifiers which would yield predictive multiplicity for linear clas-

sifiers. We build on this work, and extend it by proposing tractable

convex problem formulations which yield fast solutions, and work

for both linear and non-linear classifiers.

There is a growing interest in predictive multiplicity due to

its societal implications on algorithmic decision-making system.

Bhatt et al. [2] look at it from a fairness perspective, and aim to

find counterfactual accuracy of a classifier which would give a

selected test datapoint favorable outcome. Specifically, they aim

to find the minimum decrease in accuarcy, ϵ , that would give an

individual a favorable outcome. Pawelczyk et al. [23] provide an

upper bound for the costs of finding counterfactual explanations

under predictive multiplicity. However, none of these works have

made the connections between predictive multiplicity and model

uncertainty.

6 CONCLUDING DISCUSSION

In this work, we propose that while designing fairness approaches

one must account for the uncertainties of the prediction task at

hand. Specifically, we argue that only the errors arising due to lack

of knowledge about the best model or due to lack of data, i.e., the

epistemic errors should be taken into account while designing fair-

ness methods and errors due to inherent noise should be ignored.

Our proposal stands in contrast to the current group fairness ap-

proach that aims to equalize ’total’ errors. With this goal in mind,

we build upon predictive multiplicity techniques to identify the

regions with model uncertainty.

In addition, we propose convex and scalable formulations to find

classifiers that exhibit predictive multiplicity, which are approxi-

mately equally effective compared to their non-convex counterparts,

while being up to four orders of magnitude faster. We also propose

convex formulations to equalize errors arising due to model uncer-

tainty. Using synthetic and real-world datasets, we demonstrate that

our methods are effective and more robust to label noise compared

to existing group fairness methods.

Our key insight is that not all types of errors are equal and when

improving parity in the error rates one must account for the type

of uncertainty inducing the error. We believe that this insight and

our predictive multiplicity methods open new avenues for research

on how to account for uncertainties when designing fair machine

learning methods.
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A TRAINING DETAILS

In this section we explain the training details for our methods.

In order to train Dsc-Approx and Amb-Approx, presented in

Section 4.1 of the paper, we used CPLEX library [25]. Dsc-Approx

is give as follows,

min

θ
−

1

N

∑
xi ,yi

p(yi |xi ;θ )︸                          ︷︷                          ︸
maximize accuracy

(P3)

subject to:

1

N

∑
xi

max(0,dθ (xi )dθbest (xi )) ≤ γ︸                                        ︷︷                                        ︸
limit agreement to θbest

For synthetic dataset described in the paper we trained 1000

classifiers with γ ∈ (1e − 15, 2.0) picked linearly. For SQF dataset

we also trained 1000 classifiers with γ ∈ (0.0, 2.0) and for com-

pas dataset we trained 1000 classifiers with γ ∈ (0.0, 10.0) picked

linearly.

In order to train the baselines mentioned in the experiment

section of the paper, we trained 100 classifiers using logistic regres-

sionwith L2 regularizer, minimize − 1

|D |

∑
(x ,y)∈D logp(y |x ,θ )+

λ | |θ | | , with λ ∈ (1e − 1, 1), where p(y = 1|x ,θ ) = 1

1+exp(−θT x )
. We

picked the λ that yielded the best accuracy on the validation set.

For traditional fairness methods given by,

minimize −
1

|D|

∑
(x ,y)∈D

logp(y |x ,θ ) + λ | |θ | | (P6)

subject to

1

|D∗ |

���� ∑
(x ,z)∈D∗

(z − z̄)dθ (xi )

���� < c,

where p(y = 1|x ,θ ) = 1

1+exp(−θT x )
and z is the sensitive at-

tribute, same λ was used which we picked by training the accurate

classifier. We trained 100 fair classifiers for each dataset by varying

c values, which could be written as the product of correlation be-

tween different the sensitive attribute and θbest and multiplicative

factor varying between zero and 1 [29], i.e., c = t · cov(θbest , z).
For synthetic dataset we used we use t ∈ (0, 0.2) and for real world

datasets t ∈ (0.0, 1e − 5). We train a pool of benchmark fair classi-

fiers for varying values of c and a pool of accurate classifiers on 5

different shuffles of the data and then pick the fairest classifier and

most accurate classifiers, respectively, for each shuffle from this

pool.

We aggregated the results using these 5 seed values, [1122334455,

2211334455, 1133224455, 3322441155, 1122443355]. We used Intel(R)

Xeon(R) CPU E7-8857 v2 @ 3.00GH with 48 cores to run all the

experiments.

B PREDICTIVE MULTIPLICITY

COMPARISON

In this section we show the visualization of the ambiguous regions

with different methods introduced in the paper. Figure 5 shows

ambiguous regions identified by the exact methods proposed by

Marx et al. [21], Dsc-Exact and Amb-Exact, and our methods Dsc-

Approx and Amb-Approx. The figure demonstrates that visually

our methods identify similar regions with ambiguous results. In

general, we also see that ambiguous regions are the more sparse

regions of feature space, where decisions are difficult to make.

B.1 Results using nonlinear Classifiers

In this section we show the results using kernalized logistic re-

gression to identify ambiguous regions, with Dsc-Approx. Figure 4

demonstrate the results.



Figure 4: [Synthetic dataset-non-linear] The figure on the left shows the 2 moons dataset, the middle figure shows the best

non-linear boundary with green regions classified as positive and red regions as negative and the one on the right shows the

ambiguous regions identified using our method. The figure demonstrate that unlike Marx et al. [21] our methods can also be

used to identify predictive multiplicity for non-linear classifiers.

Figure 5: [Synthetic dataset] This figure shows the ambiguous regions identified by the four methods discussed in the paper.

From left to right figures corresponds toDsc-Exact,Amb-Exact,Dsc-Approx,Amb-Approx. It demonstrates that ourmethods

identify similar ambiguous regions compared to the exact methods proposed by Marx et al. [21].
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