Accounting for Model Uncertainty in Algorithmic Discrimination

1. Motivation: Limitation of existing fairness approaches

- Current group fairness methods treat all errors equally
- Our proposal: Account for types of uncertainty
- Types of uncertainty
- Aleatoric uncertainty (irreducible) due to inherent noise or stochasticity in the task, e.g., overlapping classes
- Model uncertainty a.k.a epistemic uncertainty (reducible) due lack of knowledge about the best model or lack of data

3. Characterizing model uncertainty

Idea: Use existing methods on predictive multiplicity to identify errors due to model uncertainty

Predictive multiplicity

Classifiers C1 and C2 are equally accurate classifiers that disagree on a subset of the data (Ambiguous region).

Assumption:

Hypothesis class for finding the classifiers is sufficiently complex.

- Synthetic dataset: Group fair classifier makes several unjustifiable mistakes to equalize all errors. • Please refer to the paper for detailed results.

Junaid Ali, Preethi Lahoti*, Krishna P. Gummadi Max Planck Institute for Software Systems, Max Planck Institute for Informatics*

$$\begin{array}{l} \textit{minimize}_{w} & |\sum_{\theta \in C} w_{\theta} \cdot (\textit{Err}_{z=1}(\theta) - \textit{Err}_{z=0}(\theta))| \\ \textit{st} & 0 \leq w_{\theta} \leq 1 \quad \text{and} \quad \sum_{\theta} w_{\theta} = 1 \\ \textit{C: is the set of classifiers exhibiting predictive multiplicity} \end{array}$$

Color represents the expected predicted class

Synthetic c	lataset	t: Equa	lizing	FP

		Unfairness		Accuracy			Unfairness		\parallel Accur
	total	unamb	amb			total	unamb	amb	
Acc.	-0.13/-0.14	0.05/-0.06	0.46/-0.45	0.89	Acc.	-0.19/0.33	-0.24/0.54	-0.11/0.15	0.60
Fair	0.03/-0.02	0.05/-0.06	-0.14/0.29	0.77/0.89	Fair	0.02/0.03	-0.24/0.54	0.34/00.42	0.66/0
Uniform	0.04/-0.04	0.05/-0.06	-0.22/0.20	0.89 / 0.89	Uniform	-0.19/0.34	-0.24/0.54	-0.11/0.15	0.66/ 0
Ours	0.07/-0.07	0.05/-0.06	0.0/-0.01	0.89/0.89	Ours	-0.14/0.26	-0.24/0.54	-0.01/0.03	0.66/ (

• Our fairness method only equalizes errors in the regions more prone to model uncertainty.

• We only change decisions of the datapoints whose decisions are ambiguous or uncertain in the first place.