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The Value Problem for weighted timed games (WTGs) consists in determining, given a two-player weighted

timed game with a reachability objective and a rational threshold, whether or not the value of the game

exceeds the threshold. This problem was shown to be undecidable some ten years ago for WTGs making

use of at least three clocks, and is known to be decidable for single-clock WTGs. In this paper, we establish

undecidability for two-clock WTGs making use of non-negative weights, even in a time-bounded setting,

closing one of the last remaining major gaps in our algorithmic understanding of WTGs.
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1 Introduction
Real-time systems are not only ubiquitous in modern technological society, they are in fact increas-

ingly pervasive in critical applications — from embedded controllers in automotive and avionics

platforms to resource-constrained communication protocols. In such systems, exacting timing

constraints and quantitative objectives must often be met simultaneously. Weighted Timed Games

(WTGs), introduced over two decades ago [1–3, 11, 13], provide a powerful modelling framework

for the automatic synthesis of controllers in such settings: they combine the expressiveness of Alur

and Dill’s clock-based timed automata with Min-Max gameplay and non-negative integer weights

on both locations and transitions, enabling one to reason about quantitative aspects such as energy

consumption, response times, or resource utilisation under adversarial conditions.

A central algorithmic task for WTGs is the Value Problem: given a two-player, turn-based WTG

with a designated start configuration and a rational threshold 𝑐 , determine whether PlayerMin can

guarantee reaching a goal location with cumulative cost at most 𝑐 , despite best adversarial play by

PlayerMax. This problem lies at the heart of quantitative controller synthesis and performance

analysis for real-time systems.

Unfortunately, fundamental algorithmic barriers are well known. In particular, the Value Problem

is known to be undecidable in general, both for WTGs making use of three or more clocks [4],

as well as for two-clock extensions of WTGs in which arbitrary integer (positive and negative)

weights are allowed [8]. In fact, even approximating the value of three-clock WTGs with integer

weights is known to be computationally unsolvable [10]. On the positive side, the Value Problem
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for WTGs making use of a single clock is decidable, regardless of whether weights range over N or

Z [5, 15]. There is a voluminous literature in this general area; for a comprehensive overview and

discussion of the state of the art, we refer the reader to [9]. See also Fig. 1 in which we summarise

some of the key existing results.

Clocks Weights in Value Problem

1

N decidable [5]

Z decidable [15]

2

N undecidable
Z undecidable [8]

3+
N undecidable [4]

Z
undecidable [4]

inapproximable [10]

Fig. 1. State of the art on the Value Problem for weighted timed games. Approximability for 2-clock WTGs,
and 3-clock WTGs with weights in N, remain open. This paper’s main contribution (undecidability for WTGs
with two clocks and weights in N) is highlighted in boldface blue.

The case of WTGs with exactly two clocks (and non-negative weights) has remained stubbornly

open. Resolving this question is essential, since two clocks suffice to encode most practical timing

constraints (e.g., deadline plus cooldown), and efficient single-clock algorithms cannot in general

be lifted to richer timing scenarios. The main contribution of this paper is to close this gap by

establish undecidability:

Theorem 1.1. The Value Problem for two-player, turn-based, time-bounded, two-clock, weighted
timed games with non-negative integer weights is undecidable. The same holds for weighted timed
games over unbounded time otherwise satisfying the same hypotheses.

Our reduction is from the halting problem for deterministic two-counter machines and proceeds

via a careful encoding of counter values in clock valuations, combined with “punishment” gadgets

that force faithful simulation or allow the adversary to drive the accumulated cost up. Key technical

novelties include:

• Counter-Evolution Control (CEC) modules, which enforce precise proportional delays encod-

ing incrementation and decrementation of counters.

• Multiplication-Control (MC) gadgets, allowing the adversary to verify whether simulated

counter updates match exact multiplication factors.

• Zero and Non-Zero control schemes, enabling precise zero-testing within the two-clock

framework and ensuring that any deviation from a faithful simulation triggers a cost penalty.

Together, these constructions fit within the two-clock timing structure and utilise only non-

negative integer weights, thereby demonstrating that even the two-clock fragment — previously

the only remaining decidability candidate — admits no algorithmic solution for the Value Problem.

As a complementary result, we also show that the related Existence Problem (does Min have a

strategy to achieve cost at most 𝑐?) is undecidable under the same hypotheses.

Let us conclude by noting that our reduction is implemented via WTGs having bounded duration

by construction. This is notable in view of the fact that many algorithmic problems for real-time

and hybrid systems that are known to be undecidable over unbounded time become decidable in a

time-bounded setting; see, e.g., [6, 7, 12, 16, 17].
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The Value Problem for Weighted Timed Games with Two Clocks is Undecidable 3

2 Weighted Timed Games
2.1 Definitions
Let X be a finite set of clocks. Clock constraints over X are expressions of the form 𝑥 ⊲⊳ 𝑛, where

𝑥,𝑦 ∈ X are clocks, ⊲⊳ ∈ {<,≤,=,≥, >} is a comparison symbol, and 𝑛 ∈ N is a natural number. We

write C to denote the set of all clock constraints overX. A valuation onX is a function 𝜈 : X → R+.
For 𝑑 ∈ R+ we denote by 𝜈 + 𝑑 the valuation such that, for all clocks 𝑥 ∈ X, (𝜈 + 𝑑) (𝑥) = 𝜈 (𝑥) + 𝑑 .

Let 𝑋 ⊆ X be a set of clocks. We write 𝜈 [𝑋 := 0] for the valuation such that, for all clocks 𝑥 ∈ 𝑋 ,

𝜈 [𝑋 := 0] (𝑥) = 0, and 𝜈 [𝑋 := 0] (𝑦) = 𝜈 (𝑦) for all other clocks 𝑦 ∉ 𝑋 . For 𝐶 ⊆ C a set of clock

constraints over X, we say that the valuation 𝜈 satisfies 𝐶 , denoted 𝜈 |= 𝐶 , if and only if all the

comparisons in 𝐶 hold when replacing each clock 𝑥 by its corresponding value 𝜈 (𝑥). Finally, we
write 0 to denote the valuation that assigns 0 to every clock.

Definition 2.1. A weighted timed game (WTG) is a tuple G = (𝐿,𝐺,X,𝑇Min,𝑇Max,𝑤), where:
• 𝐿 is a set of locations.
• 𝐺 ⊆ 𝐿 are the goal locations.
• X is a set of clocks.

• 𝑇Min,𝑇Max ⊆ (𝐿 \𝐺) × 2
C × 2

X × 𝐿 are sets of (discrete) transitions belonging to players
Min and Max respectively. We denote 𝑇G =𝑇Min ∪𝑇Max the set of all transitions. Transition

ℓ
𝐶,𝑋−−−→ ℓ ′ enables moving from location ℓ to location ℓ ′, provided all clock constraints in 𝐶

are satisfied, and afterwards resetting all clocks in 𝑋 to zero.

• 𝑤 : (𝐿 \𝐺) ∪𝑇 → Z is a weight function.
In the above, we assume that all data (set of locations, set of clocks, set of transitions, set of clock

constraints) are finite.

Definition 2.2. AWTG G = (𝐿,𝐺,X,𝑇Min,𝑇Max,𝑤) is said to be turn-based if for any location

ℓ ∈ 𝐿 the set of transitions from ℓ is entirely contained either in 𝑇Min or 𝑇Max. In this case we

may partition 𝐿 \𝐺 into 𝐿Min and 𝐿Max, the sets of locations from which every transition belongs

to Min and Max, respectively. Abusing notation, we may then equivalently refer to G as the

tuple (𝐿Min, 𝐿Max,𝐺,X,𝑇 ,𝑤). Finally, a WTG which is not turn-based is called concurrent. In the

remainder of this paper, we shall exclusively work with turn-based weighted timed games.

LetG = (𝐿,𝐺,X,𝑇Min,𝑇Max,𝑤) be a weighted timed game. A configuration overG is a pair (ℓ, 𝜈),
where ℓ ∈ 𝐿 and 𝜈 is a valuation on X. We write 𝒞G = 𝐿 × RX

≥0 to denote the set of configurations

over G. Let 𝑑 ∈ R≥0 be a delay and 𝑡 = ℓ
𝐶,𝑋−−−→ ℓ ′ ∈ 𝑇 be a discrete transition. One has a delayed

transition (or simply a transition if the context is clear) (ℓ, 𝜈) 𝑑,𝑡−−→ (ℓ ′, 𝜈 ′) provided that 𝜈 +𝑑 |=𝐶

and 𝜈 ′ = (𝜈 + 𝑑) [𝑋 := 0]. Intuitively, control remains in location ℓ for 𝑑 time units, after which it

transitions to location ℓ ′, resetting all the clocks in 𝑋 to zero in the process. The weight of such a

delayed transition is 𝑑 ·𝑤 (ℓ) +𝑤 (𝑡), taking into account both the time spent in ℓ as well as the

weight of the discrete transition 𝑡 .

As noted in [9], without loss of generality one can assume that no configuration (other than

those associated with goal locations) is deadlocked; in other words, for any location ℓ ∈ 𝐿 \𝐺 and

valuation 𝜈 ∈ RX
≥0, there exists 𝑑 ∈ R≥0 and 𝑡 ∈ 𝑇 such that (ℓ, 𝜈) 𝑑,𝑡−−→ (ℓ ′, 𝜈 ′).1

1
In our setting, this can be achieved by adding unguarded transitions to a sink location for all locations controlled by

Min and unguarded transitions to a goal location for the ones controlled by Max (noting that in all our constructions,

Max-controlled locations always have weight 0). Nevertheless, in the pictorial representations of timed-game fragments

that appear in this paper, in the interest of clarity we omit such extraneous transitions and locations; we merely assume

instead that neither player allows themself to end up in a deadlocked situation, unless a goal location has been reached.
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4 Quentin Guilmant, Joël Ouaknine, and Isa Vialard

Let 𝑘 ∈ N. A run 𝜌 of length |𝜌 | = 𝑘 over G from a given configuration (ℓ0, 𝜈0) is a sequence of
matching delayed transitions, as follows:

𝜌 = (ℓ0, 𝜈0)
𝑑0,𝑡0−−−→ (ℓ1, 𝜈1)

𝑑1,𝑡1−−−→ · · · 𝑑𝑘−1,𝑡𝑘−1−−−−−−−→ (ℓ𝑘 , 𝜈𝑘 ) .
We denote by 𝜌𝒞

𝑖
= (ℓ𝑖 , 𝜈𝑖 ) the 𝑖-th configuration reached along the run 𝜌 and 𝜌𝑇𝑖 = (𝑑𝑖 , 𝑡𝑖 ) the

delayed transition picked from state configuration 𝜌𝒞
𝑖
in 𝜌 . We also write 𝜌 |𝑛 , for 𝑛 ≤ |𝜌 |, to denote

the truncated run ending in configuration 𝜌𝒞𝑛 . The weight of 𝜌 is the cumulative weight of the

underlying delayed transitions:

weight(𝜌) =
|𝜌 |−1∑︁
𝑖=0

(𝑑𝑖 ·𝑤 (ℓ𝑖 ) +𝑤 (𝑡𝑖 )) .

This definition can be extended to infinite runs; however, since no goal location is ever reached,

the weight of an infinite run 𝜌 is defined to be infinite: weight(𝜌) = +∞.

A run is maximal if it is either infinite or cannot be extended further. Thanks to our deadlock-

freedom assumption, finite maximal runs must end in a goal location. We refer to maximal runs as

plays.

2.2 Graphical notation for WTG
In this paper, WTG are represented pictorially. We follow the conventions below:

• Blue circles represent locations controlled byMin.
• Red squares represent locations controlled byMax.
• Green circles are goal locations.

• Arrows represent transitions.

• Guards and resets are written next to the transition they are associated with.

• Resetting a clock 𝑥 is denoted 𝑥 := 0.

• Grey rectangles are modules, or in other words subgames: a transition entering a module

transfers control to the starting location of the module. Modules can have outgoing edges.

• Numbers attached to locations denote their respective weight.

• Numbers in grey boxes attached to arrows denote the weight of the corresponding transition.

Transitions without such boxes have weight 0.

• Green boxes attached to transitions are comments (or assertions) on the values of the clocks.

Such assertions hold upon taking the transition. They are occasionally complemented by

orange boxes which are assertions on the corresponding cost incurred.

• Some locations are decorated with a numbered flag for ease of reference in proofs.

2.3 Strategies and value of a game
We now define the notion of strategy. Recall that transitions of G are partitioned into sets

𝑇Min and 𝑇Max, belonging respectively to Players Min and Max. Let Player P ∈ {Min,Max}, and
write FRP

G to denote the collection of all non-maximal finite runs of G ending in a location

belonging to Player P. A strategy for Player P is a mapping 𝜎P : FRP
G → R≥0 × 𝑇 such that

for all finite runs 𝜌 ∈ FRP
G ending in configuration (ℓ, 𝜈) with ℓ ∈ 𝐿P, if 𝜎P (𝜌) = (𝑑, 𝑡), then the

delayed transition (ℓ, 𝜈) 𝑑,𝑡−−→ (ℓ ′, 𝜈 ′) is valid, where 𝜎P (𝜌) = (𝑑, 𝑡) and (ℓ ′, 𝜈 ′) is some configuration

(uniquely determined by 𝜎P (𝜌) and 𝜈).
Let us fix a starting configuration (ℓ0, 𝜈0), and let 𝜎Min and 𝜎Max be strategies for PlayersMin and

Max respectively (one speaks of a strategy profile). We write playG ((ℓ0, 𝜈0), 𝜎Min, 𝜎Max) to denote
the unique maximal run starting from configuration (ℓ0, 𝜈0) and unfolding according to the strategy
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profile (𝜎Min, 𝜎Max): in other words, for every strict finite prefix 𝜌 of playG ((ℓ0, 𝜈0), 𝜎Min, 𝜎Max) in
FRP

G , the delayed transition immediately following 𝜌 in playG ((ℓ0, 𝜈0), 𝜎Min, 𝜎Max) is labelled with

𝜎P (𝜌).
Recall that the objective of PlayerMin is to reach a goal location through a play whose weight

is as small as possible. PlayerMax has an opposite objective, trying to avoid goal locations, and,

if not possible, to maximise the cumulative weight of any attendant play. This gives rise to the

following symmetrical definitions:

ValG (ℓ0, 𝜈0) = inf

𝜎Min

{
sup

𝜎Max

{
weight(playG ((ℓ0, 𝜈0), 𝜎Min, 𝜎Max))

}}
and

ValG (ℓ0, 𝜈0) = sup

𝜎Max

{
inf

𝜎Min

{
weight(playG ((ℓ0, 𝜈0), 𝜎Min, 𝜎Max))

}}
.

ValG (ℓ0, 𝜈0) represents the smallest possible weight that PlayerMin can possibly achieve, starting

from configuration (ℓ0, 𝜈0), against best play from Player Max, and conversely for ValG (ℓ0, 𝜈0): the
latter represents the largest possible weight that PlayerMax can enforce, against best play from

PlayerMin.2 As noted in [9], turned-based weighted timed games are determined, and therefore

ValG (ℓ0, 𝜈0) = ValG (ℓ0, 𝜈0) for any starting configuration (ℓ0, 𝜈0); we denote this common value by

ValG (ℓ0, 𝜈0).

Remark 2.3. Note that ValG (ℓ0, 𝜈0) can take on real numbers, or either of the values −∞ and +∞.

We can now state:

Definition 2.4 (Value Problem). Given a WTG G with starting location ℓ0 and a threshold 𝑐 ∈ Q,
the Value Problem asks whether ValG (ℓ0, 0) ≤ 𝑐 .

The Value Problem differs subtly but importantly from the Existence Problem:

Definition 2.5 (Existence Problem). Given a WTG G with starting location ℓ0 and a threshold

𝑐 ∈ Q, the Existence Problem asks whetherMin has a strategy 𝜎Min such that

sup

𝜎Max

{
weight(playG ((ℓ0, 𝜈0), 𝜎Min, 𝜎Max))

}
≤ 𝑐 .

3 Undecidability
To establish our undecidability result, we reduce the Halting Problem for two-counter machines

to the Value Problem. A two-counter machine is a tupleM = (𝑄,𝑞𝑖 , 𝑞ℎ,𝑇 ) where 𝑄 is a finite set

of states, 𝑞𝑖 , 𝑞ℎ ∈ 𝑄 are the initial and final state and 𝑇 ⊆ (𝑄 × {𝑐, 𝑑} ×𝑄) ∪ (𝑄 × {𝑐, 𝑑} ×𝑄 ×𝑄)
is a set of transitions. A two-counter machine is deterministic if for any state 𝑞 there is at most

one transition 𝑡 ∈ 𝑇 which has 𝑞 as first component. As its name suggests, a two-counter machine

comes equipped with two counters, 𝑐 and 𝑑 , which are variables with values in N. The semantics is

as follows: a transition (𝑞, 𝑒, 𝑞′) increases the value of counter 𝑒 ∈ {𝑐, 𝑑} by 1 and moves to state 𝑞′.
A transition (𝑞, 𝑒, 𝑞′, 𝑞′′) moves to 𝑞′ if 𝑒 = 0 and to 𝑞′′ otherwise. In the latter case, it also decreases

the value of 𝑒 by 1. The Halting Problem for (deterministic) two-counter machines is known to be

undecidable (see [14, Thm. 14-1]).

2
Technically speaking, these values may not be literally achievable; however given any 𝜀 > 0, both players are guaranteed

to have strategies that can take them to within 𝜀 of the optimal value.
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6 Quentin Guilmant, Joël Ouaknine, and Isa Vialard

3.1 Overview of the reduction
Let M be a two-counter machine with counters 𝑐 and 𝑑 . We consider a WTG GM between players

Min andMax with two clocks 𝑥 and 𝑦.Min is in charge of simulating the two-counter machineM
whileMax has the opportunity to punishMin’s errors. In encodingM as through GM , some of the

locations of GM will represent states ofM. Upon entering a location of GM , a faithful encoding of

counters 𝑐 and 𝑑 is represented through a clock valuation in which 𝑦 = 0 and

𝑥 = 1 − 1

2
𝑐
3
𝑑
5
𝑛
,

where 𝑛 is the number of steps of the execution ofM that have been simulated so far. Furthermore,

in order to simulate the next step faithfully,

• If the current state requires 𝑐 to be incremented, Min should wait in this location until 𝑥

reaches value 1 − 1

2
𝑐+1

3
𝑑
5
𝑛+1 ; this means thatMin should wait

9

10
(1 − 𝑥) time units.

• If the current state requires 𝑑 to be incremented, Min should wait in this location until 𝑥

reaches value 1 − 1

2
𝑐
3
𝑑+1

5
𝑛+1 ; this means thatMin should wait

14

15
(1 − 𝑥) time units.

• If the current state requires 𝑐 to be decremented, Min should wait in this location until 𝑥

reaches value 1 − 1

2
𝑐−1

3
𝑑
5
𝑛+1 ; this means thatMin should wait

3

5
(1 − 𝑥) time units.

• If the current state requires 𝑑 to be decremented, Min should wait in this location until 𝑥

reaches value 1 − 1

2
𝑐
3
𝑑−1

5
𝑛+1 ; this means thatMin should wait

2

5
(1 − 𝑥) time units.

• If the current state is a succesful zero-test for 𝑐 or 𝑑 , Min should wait in this location until 𝑥

reaches value 1 − 1

2
𝑐
3
𝑑
5
𝑛+1 ; this means thatMin should wait

4

5
(1 − 𝑥) time units.

After Min has chosen the waiting time, Max is given the opportunity to end the game with

an increased cost if Min “cheated”. In the case of a zero-test, if Min takes a transition towards

the wrong state, Max is also given the opportunity to end the game asking for a proof that the

corresponding counter is indeed 0 (respectively not 0). Finally, before simulating another step,Min
is also given the opportunity to exit the game. Note also that since the halting state ofM has no

outgoing transitions,Min will be forced to end the game if she reaches the location representing

this state.

3.2 Controlling the evolution of counters
In the overview, we have seen that there are two distinct instances in which Max is able to punish

Min: either following an incorrect update of clock 𝑥 , or an incorrect transition on a zero-test. In

this subsection, we introduce a gadget for the first instance: the CEC (Counter Evolution Control)

module. The module CEC
𝑀,𝑁

𝛼,𝛽
(𝑥,𝑦), depicted in Fig. 2, requires that 0 ≤ 𝑦 ≤ 𝑥 < 1. We will denote

𝑎 + 𝑏 and 𝑏 the initial values of 𝑥 and 𝑦, respectively. In a faithful run we expect 𝑎 to have value

1− 1

2
𝑐
3
𝑑
5
𝑛
and 𝑏 to be the time needed so that 𝑎 +𝑏 corresponds to the correct numerical encoding

for the updated values of the counters. More precisely, depending on the cases described in the

previous subsection, we need the CEC to enforce

𝑏 = 𝛾 (1 − 𝑎) with 𝛾 ∈
{
2

5

,
3

5

,
4

5

,
9

10

,
14

15

}
.
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CECM,N
α,β (x, y)

0

β

2α β

G
y = 1

x ≤ 1

x ≤ 1
y := 0 x = 1

y = 1

M

x = 2

N
x = a + b

y = b

x = 1 + a
y = 1

x = 1
y = 1 − a

1

Fig. 2. The CEC (Counter Evolution Control) module

Lemma 3.1. Let 𝑡 be the time Max spends in state
1

of CEC𝑀,𝑁

𝛼,𝛽
(𝑥,𝑦). Provided that the initial

values of 𝑥 and 𝑦 upon entering the state
1

in CEC
𝑀,𝑁

𝛼,𝛽
(𝑥,𝑦) are in [0, 1) with 𝑥 ≥ 𝑦, denoting by 𝑏

the initial value of 𝑦 and by 𝑎+𝑏 the initial value of 𝑥 , and assuming that the overall cost accumulated
so far is 𝛼 (𝑎 + 𝑏) + 𝐸,Max can choose between the following three cases:
(1) The game continues with 𝑥 = 𝑎+𝑏 + 𝑡 , 𝑦 = 0 and the accumulated cost is 𝛼 (𝑎+𝑏 + 𝑡) + (𝐸 −𝛼𝑡).
(2) The game stops with cost

(𝛼 − 𝛽) (1 − 𝑎) − 𝛼𝑏 − 2𝛼𝑡 + 𝛼 + 𝛽 +𝑀 + 𝐸 = (𝛽 − 𝛼)𝑎 − 𝛼𝑏 − 2𝛼𝑡 + 2𝛼 +𝑀 + 𝐸 .

(3) The game stops with cost

𝛼𝑏 − (𝛼 − 𝛽) (1 − 𝑎) + 𝛼 + 𝑁 + 𝐸 = 𝛼𝑏 − (𝛽 − 𝛼)𝑎 + 𝛽 + 𝑁 + 𝐸 .

Proof. The first case corresponds to the cost when Max decides to exit the module, the second

when he goes through the upper path and the third case when he goes through the lower path. □

Corollary 3.2. Let 0 ≤ 𝛽 < 𝛼 . Let 𝜀 > 0. Provided that the initial values of 𝑥 and 𝑦 upon entering

the state
1

in CEC
𝑀,𝑀+𝛽
𝛼,𝛽

(𝑥,𝑦) are in [0, 1) with 𝑥 ≥ 𝑦, denoting by 𝑏 the initial value of 𝑦 and by
𝑎 +𝑏 the initial value of 𝑥 , and assuming that the overall cost accumulated so far is 𝛼 (𝑎 +𝑏) + 𝐸,Max
can either end the game with a final cost of

𝛼

(
1 +

����𝑏 −
(
1 − 𝛽

𝛼

)
(1 − 𝑎)

����) + 𝐸 +𝑀 + 𝛽

or exit the module with 𝑥 = 𝑎 + 𝑏 + 𝑡 , 𝑦 = 0 and accumulated cost 𝛼 (𝑎 + 𝑏 + 𝑡) + (𝐸 − 𝛼𝑡).

Proof. This is a direct application of Lem. 3.1 with 𝑁 =𝑀 + 𝛽 . □
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Thus, if we take 𝛼 = 30 and 𝛽 ∈ {18, 12, 6, 3, 2}, the value of 𝑏 minimising the cost of Max
reaching the goal location is indeed

𝑏 = 𝛾 (1 − 𝑎) for 𝛾 ∈
{
2

5

,
3

5

,
4

5

,
9

10

,
14

15

}
.

3.3 Controlling whether a counter is zero
We now handle the case in which Min has chosen the wrong state to move to when simulating

a zero-test. To do so, depending on the case, Max has access to either a control-if-zero (ZC) or

control-if-not-zero (NZC) module that checks whether a counter is indeed zero or not through a

series of multiplications by suitable coefficients to reach 1. We first present the module that controls

the multiplication (MC). It is depicted in Fig. 3.

MCM,N
α,β,k(x, y)

0

α− β 0 k

α+ β k G

x ≤ 1

x ≤ 1

x ≤ 1
y := 0

x = 1
y = 1

M

x = 1 y = 1

x = 2 N

x = a + b
y = b

x = 1
y = 1 − a

x = 1 + a
y = 1

1

Fig. 3. TheMC (Multiplication Control) module

MC
𝑀,𝑁

𝛼,𝛽,𝑘
(𝑥,𝑦) requires that 0 ≤ 𝑦 ≤ 𝑥 < 1. We will denote by 𝑎+𝑏 and 𝑏 the initial values of 𝑥 and

𝑦, respectively. As such, this module behaves similarly to the CEC module. However, whereas the

CECmodule checks that, for 𝑎 of the form 1− 1

2
𝑐
3
𝑑
5
𝑛
, 𝑎 +𝑏 is of the same form, hereMC

𝑀,𝑁

𝛼,𝛽,𝑘
(𝑥,𝑦),

for 𝑘 ∈ {2, 3, 5}, checks that, for 𝑎 of the form 1

2
𝑐
3
𝑑
5
𝑛
, 𝑎+𝑏 = 𝑘𝑎 ∈ { 1

2
𝑐−1

3
𝑑
5
𝑛
,

1

2
𝑐
3
𝑑−1

5
𝑛
,

1

2
𝑐
3
𝑑
5
𝑛−1 }.

Lemma 3.3. Let 𝑡 be the time Max spends in state
1

of MC
𝑀,𝑁

𝛼,𝛽,𝑘
(𝑥,𝑦). Provided that the initial

values of 𝑥 and 𝑦 upon entering the state
1

inMC
𝑀,𝑁

𝛼,𝛽,𝑘
(𝑥,𝑦) are in [0, 1) with 𝑥 ≥ 𝑦, denoting by 𝑏

the initial value of 𝑦 and by 𝑎+𝑏 the initial value of 𝑥 , and assuming that the overall cost accumulated
so far is 𝛼 (𝑎 + 𝑏) + 𝐸,Max can choose between the three following cases:
(1) The game continues with 𝑥 = 𝑎+𝑏 + 𝑡 , 𝑦 = 0 and the accumulated cost is 𝛼 (𝑎+𝑏 + 𝑡) + (𝐸 −𝛼𝑡).
(2) The game stops with cost 𝛼 + 𝛽 +𝑀 + 𝐸 − (𝛼 + 𝛽)𝑡 − 𝛽𝑏 + (𝑘 − 𝛽)𝑎.
(3) The game stops with cost 𝛼 − 𝛽 + 𝑁 + 𝐸 − (𝛼 − 𝛽)𝑡 + 𝛽𝑏 + 𝑘 − (𝑘 − 𝛽)𝑎.
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Proof. The first case corresponds to the cost when Max decides to exit the module, the second

when he goes through the upper path and the third case when he goes through the lower path. □

Corollary 3.4. Let 0 ≤ 𝛽 ≤ 𝛼 . Provided that the initial values of 𝑥 and 𝑦 upon entering the state
1

inMC
𝑀,𝑀+2𝛽
𝛼,𝛽,𝑘𝛽

(𝑥,𝑦) are in [0, 1) with 𝑥 ≥ 𝑦, denoting by 𝑏 the initial value of 𝑦 and by 𝑎 + 𝑏 the
initial value of 𝑥 , and assuming that the overall cost accumulated so far is 𝛼 (𝑎 + 𝑏) + 𝐸, Max can
either end the game with final cost

𝛼 + 𝛽 +𝑀 + 𝐸 + 𝛽 |𝑏 − (𝑘 − 1)𝑎 |

or exit the module with 𝑥 = 𝑎 + 𝑏 + 𝑡 , 𝑦 = 0 and accumulated cost 𝛼 (𝑎 + 𝑏 + 𝑡) + (𝐸 − 𝛼𝑡).

Here we see clearly that theMC module checks for multiplication. The cost ofMax ending the

game is minimised for 𝑏 = (𝑘 − 1)𝑎, hence 𝑥 = 𝑎 + 𝑏 = 𝑘𝑎.

We now introduce modules to control whether a counter is indeed 0 or not.
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10 Quentin Guilmant, Joël Ouaknine, and Isa Vialard

ZCM
k (x, y)

60 30 MCM,M+2
30,1,4−k(y, x)

tests whether a + b = (4 − k)a

0 30 MCM,M+2
30,1,5 (y, x)

tests whether a + b = 5a

35

G

1 2

3

4

y := 0

x = 1
x := 0x = 1

x := 0

x = 0

x = 0

x = 0
y = 1

M + 1

y = 1

M + 1
x := 0

x := 0

x = 1 − a
y = 0

x = 0
y = a

x = b
y = a + b

NZCM
k (x, y)

60 30 MCM,M+2
30,1,k+1(y, x)

tests whether a + b = (k + 1)a

30 MCM,M+2
30,1,4−k(y, x)

tests whether a + b = (4 − k)a

0

30 MCM,M+2
30,1,5 (y, x)

tests whether a + b = 5a

G

y := 0

x = 1
x := 0

x = 0

x = 0

x = 0

x = 0
y = 1

M + 1
x := 0

x := 0

x := 0

Fig. 4. The Zero-Control and Non-Zero-Control modules.

In these two modules, observe thatMC is always invoked asMC(𝑦, 𝑥), i.e., by swapping the roles
of the two clocks. This is because it is easier to translate the encoding (1 − 𝑎, 0) into (0, 𝑎) rather
than (𝑎, 0). This translation is the first step of both modules.
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Proposition 3.5. Let 𝑘 ∈ {1, 2}. Let 1−𝑎 ∈ [0, 1) be the initial value of 𝑥 upon entering the module
ZC

𝑀
𝑘
(𝑥,𝑦). Let 30(1 − 𝑎) + 𝐸 be the overall cost accumulated to date upon entering the module. Let

𝜇 =min

{���� 1

(4 − 𝑘)𝑑5𝑛
− 𝑎

���� : 𝑑, 𝑛 ∈ N
}
.

Then
• Min has a strategy that ensures a final cost of at most 61 +𝑀 + 𝐸 + 5𝜇.
• Max has a strategy that ensures a final cost of at least 61 +𝑀 + 𝐸 + 𝜇.

Proof. Let 𝑝 ∈ N \ {0}. We introduce the following quantities:

• 𝑎𝑝 is the value of clock 𝑦 upon entering

1

for the 𝑝-th time (if it exists).

• 𝐶𝑝 is the accumulated cost so far upon entering

1

for the 𝑝-th time (if it exists).

• 𝑡𝑝 is the time spent byMin in one of the states

2

or

3

upon leaving

1

for the 𝑝-th time (if

it exists).

• 𝜀𝑝 is the timeMax waits in one of the locations of MC controlled by him for the 𝑝-th time (if

it exists).

• 𝐸𝑝 =𝐶𝑝 − 30(1 + 𝑎𝑝 ) is the difference between the expected and actual costs.

We have the following initial conditions:

𝑎1 = 𝑎 𝐶1 = 30(1 + 𝑎) + 𝐸1 and 𝐸1 = 𝐸 .

When everything is well defined we have the following recurrence relations:

𝑎𝑝+1 = 𝑎𝑝 + 𝑡𝑝 + 𝜀𝑝 𝐶𝑝+1 =𝐶𝑝 + 30𝑡𝑝 and 𝐸𝑝+1 = 𝐸𝑝 − 30𝜀𝑝 .

Overall we have

𝑎𝑝 = 𝑎 +
𝑝−1∑︁
𝑞=0

(𝑡𝑞 + 𝜀𝑞) 𝐸𝑝 = 𝐸 − 30

(
𝑝−1∑︁
𝑞=0

𝜀𝑞

)
and 𝐶𝑝 = 30(1 + 𝑎𝑝 ) + 𝐸𝑝 .

• Let us prove the first assertion of the proposition. Let 𝑑𝑝 and 𝑛𝑝 be integers that minimise

𝜇𝑝
def

= |𝛿𝑝 | for 𝛿𝑝
def

=
1

(4 − 𝑘)𝑑𝑝 5𝑛𝑝
− 𝑎𝑝 . Now consider the following strategy for Min: If

0 < 1 − 𝑎 ≤ 3 − 𝑘

8 − 2𝑘
then Min takes the transition to State

4

. Otherwise Min moves to

State

1

. IfMin is in

1

for the 𝑝-th time then:

(1) If 𝑑𝑝 ≥ 1 then go to State

3

and wait 𝑡𝑝 = (3 − 𝑘)𝑎𝑝 + (4 − 𝑘)𝛿𝑝 . Doing so, 𝑦 has value

1

(4 − 𝑘)𝑑𝑝−15𝑛𝑝
upon entering theMC module. Note that 𝑡𝑝 ≥ 0, since otherwise

1

(4 − 𝑘)𝑑𝑝 5𝑛𝑝
<

1

(4 − 𝑘)𝑑𝑝−15𝑛𝑝
< 𝑎𝑝

and thus ���� 1

(4 − 𝑘)𝑑𝑝−15𝑛𝑝
− 𝑎𝑝

���� < 𝜇𝑝

which is a contradiction.

(2) If 𝑑𝑝 = 0 and 𝑛𝑝 ≥ 1 then go to state

2

and wait 𝑡𝑝 = 4𝑎𝑝 + 5𝛿𝑝 . Doing so, 𝑦 has value

1

5
𝑛𝑝−1 upon entering theMC module. Note that for the same reason as earlier, 𝑡𝑝 ≥ 0.
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12 Quentin Guilmant, Joël Ouaknine, and Isa Vialard

(3) If 𝑑𝑝 = 𝑛𝑝 = 0 and 𝑎𝑝 < 1, then go to state

3

and wait 1 − 𝑎𝑝 .

(4) If 𝑎𝑝 = 1, then go to the goal state.

Note that following this strategy,Min always selects 𝑡𝑝 in such a way that 𝑎𝑝 + 𝑡𝑝 is of the

form

1

(4 − 𝑘)𝑑5𝑛
. Hence if 𝑝 > 1 then

𝜀𝑝−1 ∈
{���� 1

(4 − 𝑘)𝑑5𝑛
− 𝑎𝑝

���� : 𝑑, 𝑛 ∈ N
}
.

Therefore 𝜇𝑝 ≤ 𝜀𝑝−1. We then have the following alternatives:

– Min goes to state

4

. In this case, the final cost is

30(1 − 𝑎) + 𝐸 + 60𝑎 + 35(1 − 𝑎) +𝑀 + 1 = 61 +𝑀 + 𝐸 + 5(1 − 𝑎) .

Also here we have 𝑎 ≥ 5 − 𝑘

8 − 2𝑘
=
1

2

(
1 + 1

4 − 𝑘

)
, which entails that 𝜇 = 1 − 𝑎.

– Max decides to end the game after Case 1 of the above strategy.

If 𝑝 = 1, using Cor. 3.4, with optimal play fromMax, the final cost is exactly

61 +𝑀 + 𝐸 + (4 − 𝑘)𝜇1 ≤ 61 +𝑀 + 𝐸 + 5𝜇 .

If 𝑝 > 1, using Cor. 3.4, with optimal play fromMax, the final cost is exactly

61 +𝑀 + 𝐸𝑝 + (4 − 𝑘)𝜇𝑝 = 61 +𝑀 + 𝐸 − 30

𝑝−1∑︁
𝑞=0

𝜀𝑞 + (4 − 𝑘)𝜇𝑝

≤ 61 +𝑀 + 𝐸 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 − (26 + 𝑘)𝜀𝑝−1 since 𝜇𝑝 ≤ 𝜀𝑝−1

≤ 61 +𝑀 + 𝐸 + 5𝜇 .

– Max decides to end the game after Case 2 of the above strategy. If 𝑝 = 1, using Cor. 3.4,

with optimal play fromMax, the final cost is exactly

61 +𝑀 + 𝐸 + 5𝜇 .

If 𝑝 > 1, using Cor. 3.4, with optimal play fromMax, the final cost is exactly

61 +𝑀 + 𝐸𝑝 + 5𝜇𝑝 = 61 +𝑀 + 𝐸 − 30

𝑝−1∑︁
𝑞=0

𝜀𝑞 + 5𝜇𝑝

≤ 61 +𝑀 + 𝐸 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 − 25𝜀𝑝−1 since 𝜇𝑝 ≤ 𝜀𝑝−1

≤ 61 +𝑀 + 𝐸 + 5𝜇 .

– Max decides to end the game after Case 3 of the above strategy. First, observe that in this

case 𝑝 > 1. Indeed, in Case 3, 𝑑𝑝 = 𝑛𝑝 = 0, which in turn entails that

5 − 𝑘

8 − 2𝑘
≤ 𝑎𝑝 < 1, i.e.,

𝑎𝑝 is closer to 1 than to

1

4 − 𝑘
, which (for 𝑝 = 1) mandates moving to state

4

instead of

state

1

.
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Using Cor. 3.4, with optimal play fromMax, the final cost is exactly

61 +𝑀 + 𝐸𝑝 + |1 − (4 − 𝑘)𝑎𝑝 | = 61 +𝑀 + 𝐸 − 30

𝑝−1∑︁
𝑞=0

𝜀𝑞 + |1 − (4 − 𝑘)𝑎𝑝 | .

Following Min’s strategy, we know that 𝑎𝑝−1 + 𝑡𝑝−1 is of the form
1

(4 − 𝑘)𝑑5𝑛
with either

𝑑 > 0 or 𝑛 > 0. Therefore 𝑎𝑝−1 + 𝑡𝑝−1 ≤ 1

4 − 𝑘
and 𝑎𝑝 ≥ 5 − 𝑘

8 − 2𝑘
, hence 𝜀𝑝−1 ≥ 3 − 𝑘

8 − 2𝑘
.

Therefore |1 − (4 − 𝑘)𝑎𝑝 | ≤ 3 − 𝑘 ≤ 30𝜀𝑝−1, and

61 +𝑀 + 𝐸 − 30

𝑝−1∑︁
𝑞=0

𝜀𝑞 + |1 − (4 − 𝑘)𝑎𝑝 | ≤ 61 +𝑀 + 𝐸 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 ≤ 61 +𝑀 + 𝐸 + 5𝜇 .

– Finally if the game ends via Case 4 of the above strategy then the final cost is exactly

61 +𝑀 + 𝐸𝑝 = 61 +𝑀 + 𝐸 − 30

𝑝−1∑︁
𝑞=0

𝜀𝑞 ≤ 61 +𝑀 + 𝐸 + 5𝜇 .

In all the above cases,Min ensures a cost of at most 61 +𝑀 + 𝐸 + 5𝜇.

• Let us prove the second assertion of the proposition. Assume that Min has gone to State

1

instead of

4

. Let us write:

– 𝑘𝑝 =

 5 ifMin chooses State

2

at step 𝑝

4 − 𝑘 ifMin chooses State

3

at step 𝑝 .

– 𝜂𝑝 =
��𝑡𝑝 − (𝑘𝑝 − 1)𝑎𝑝

��
.

Consider the following strategy forMax:
(1) Always choose 𝜀𝑝 = 0.

(2) IfMax is in an 𝐿Max location of aMCmodule for the 𝑝-th time and ifMin has just left State

2

with 𝜂𝑝 ≥ 𝜇 then immediately end the game through the path maximising the cost.

(3) Otherwise, immediately accept and go back to state

1

.

Using Cor. 3.4, ifMax ends the game in Case 2, he secures a final cost of

61 +𝑀 + 𝐸𝑝 + 𝜂𝑝 = 61 +𝑀 + 𝐸 + 𝜂𝑝 ≥ 61 +𝑀 + 𝐸 + 𝜇 .

Assume now that we always have 𝜂𝑝 < 𝜇, i.e., Max never ends the game by himself. By

contradiction, let us show thatMin can never achieve the condition 𝑦 = 1 needed to exit from

State

1

. Since 𝜀𝑝 = 0 for all 𝑝 , and sinceMax always takes the transition back to State

1

,

we have 𝑡𝑝 = 𝑎𝑝+1 − 𝑎𝑝 for all 𝑝 . Therefore 𝜂𝑝 = |𝑎𝑝+1 − 𝑘𝑝𝑎𝑝 |.
If the game has an infinite number of transitions then Max wins hence the value of the run

is infinite (and thus greater than 61 +𝑀 + 𝐸 + 𝜇). If the game ends at step 𝑃 for some 𝑃 ∈ N,
we must have 𝑎𝑃 = 1. Let us consider the following property for 𝑝 ∈ {1, . . . , 𝑃 − 1}:

(𝒫𝑝 ) :
����� 𝑝∏
𝑞=1

1

𝑘𝑃−𝑞
− 𝑎𝑃−𝑝

����� < 𝜇

𝑝∑︁
𝑚=1

𝑝∏
𝑞=𝑚

1

𝑘𝑃−𝑞
.

We prove this property by induction on 𝑝 .
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– We have |1 − 𝑘𝑃−1𝑎𝑃−1 | = |𝑎𝑃 − 𝑘𝑃−1𝑎𝑃−1 | = 𝜂𝑃−1 < 𝜇. This can be rewritten as���� 1

𝑘𝑃−1
− 𝑎𝑃−1

���� < 𝜇

𝑘𝑃−1
,

which is exactly (𝒫1).
– Assume that (𝒫𝑝 ) has been proven for some 𝑝 ∈ {1, . . . , 𝑃 − 2}. We have����� 𝑝∏

𝑞=1

1

𝑘𝑃−𝑞
− 𝑘𝑃−(𝑝+1)𝑎𝑃−(𝑝+1)

����� ≤
����� 𝑝∏
𝑞=1

1

𝑘𝑃−𝑞
− 𝑎𝑃−𝑝

����� + ��𝑎𝑃−𝑝 − 𝑘𝑃−(𝑝+1)𝑎𝑃−(𝑝+1)
��

≤
����� 𝑝∏
𝑞=1

1

𝑘𝑃−𝑞
− 𝑎𝑃−𝑝

����� + 𝜂𝑃−𝑝

< 𝜇

(
𝑝∑︁

𝑚=1

𝑝∏
𝑞=𝑚

1

𝑘𝑃−𝑞

)
+ 𝜇 .

Thus�����𝑝+1∏
𝑞=1

1

𝑘𝑃−𝑞
− 𝑎𝑃−(𝑝+1)

����� < 𝜇

(
𝑝∑︁

𝑚=1

𝑝+1∏
𝑞=𝑚

1

𝑘𝑃−𝑞

)
+ 𝜇

𝑘𝑃−(𝑝+1)
= 𝜇

𝑝+1∑︁
𝑚=1

𝑝+1∏
𝑞=𝑚

1

𝑘𝑃−𝑞
.

This proves (𝒫𝑝+1), which concludes our induction.

We have�����𝑃−1∏
𝑞=1

1

𝑘𝑃−𝑞
− 𝑎1

����� < 𝜇

𝑃−1∑︁
𝑚=1

𝑃−1∏
𝑞=𝑚

1

𝑘𝑃−𝑞︸︷︷︸
< 1

4−𝑘

≤ 𝜇

𝑃−1∑︁
𝑚=1

1

(4 − 𝑘)𝑃−𝑚
= 𝜇

𝑃−1∑︁
𝑚=1

1

(4 − 𝑘)𝑚︸          ︷︷          ︸
< 1

3−𝑘 <1

< 𝜇 .

But we notice that�����𝑃−1∏
𝑞=1

1

𝑘𝑃−𝑞
− 𝑎1

����� =
�����𝑃−1∏
𝑞=1

1

𝑘𝑃−𝑞
− 𝑎

����� ∈ {���� 1

(4 − 𝑘)𝑑5𝑛
− 𝑎

���� : 𝑑, 𝑛 ∈ N
}
.

Thus by definition of 𝜇,

𝜇 ≤
�����𝑃−1∏
𝑞=1

1

𝑘𝑃−𝑞
− 𝑎1

����� < 𝜇 ,

a contradiction. Intuitively, in order to exit from State

1

, Min needs to compensate the gap

𝜇, and cannot do so without triggering case (2) of Max’s strategy. Therefore we conclude

thatMin never transitions to the goal state from State

1

. This means that the strategy for

Max under consideration ensures a cost of at least 61 +𝑀 + 𝐸 + 𝜇, as required. □

Proposition 3.6. Let 𝑘 ∈ {1, 2}. Let 1 − 𝑎 ∈ [0, 1) be the initial value of 𝑥 upon entering module
NZC

𝑀
𝑘
(𝑥,𝑦). Let 30(1 − 𝑎) + 𝐸 be the overall cost accumulated thus far when entering the module. Let

𝜇 =min

{���� 1

(𝑘 + 1)𝑐 (4 − 𝑘)𝑑5𝑛
− 𝑎

���� : 𝑐, 𝑑, 𝑛 ∈ N 𝑐 > 0

}
.

Then
• Min has a strategy that ensures a final cost of at most 61 +𝑀 + 𝐸 + 5𝜇.
• Max has a strategy that ensures a final cost of at least 61 +𝑀 + 𝐸 + 𝜇.
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The Value Problem for Weighted Timed Games with Two Clocks is Undecidable 15

Proof. The proof is almost identical to that of Prop. 3.5. The main difference between modules

ZC
𝑀
𝑘

and NZC
𝑀
𝑘

is that NZC
𝑀
𝑘

forces Min to do a multiplication by 𝑘 + 1 before multiplying by

𝑘 + 1, 4 − 𝑘 , and 5 arbitrarily many times. □

3.4 Combining modules
Definition 3.7. LetM = (𝑄,𝑞𝑖 , 𝑞ℎ,𝑇 ) be a deterministic two-counter machine.We assumewithout

loss of generality that𝑞ℎ has no outgoing transitions. Define theWTGGM = (𝐿Min, 𝐿Max,𝐺,X,𝑇 ′,𝑤)
as follows:

• 𝐿Min contains 𝑄 .

• For 𝑞 ∈ 𝑄 ,𝑤 (𝑞) = 30.

• X = {𝑥,𝑦}.
• For every 𝑒 = (𝑞, 𝑘, 𝑞′) ∈ 𝑇 , with 𝑞, 𝑞′ ∈ 𝑄 and 𝑘 ∈ {1, 2}, we add the module 𝑇𝑒 to GM
defined as follows:

30

q

CEC27+k,31
30,4−k (x, y) 30

q′

Fig. 5. Transition module for increments.

• For every 𝑒 = (𝑞, 𝑘, 𝑞𝑧, 𝑞𝑛𝑧) ∈ 𝑇 , with 𝑞, 𝑞𝑧, 𝑞𝑛𝑧 ∈ 𝑄 and 𝑘 ∈ {1, 2}, we add the module 𝑇𝑒 to

G defined as follows:

Te

30

q

0

0

30

30

ZC0
k+1(x, y)

NZC0
k+1(x, y)

CEC25,31
30,6 (x, y)

CEC25−6k,31
30,6+6k (x, y)

30

qz

30

qnz

y = 0

y = 0

y = 0

y = 0

y = 0

y = 0

Fig. 6. Transition module for branches.

• Finally, for every 𝑞 ∈ 𝑄 (including 𝑞ℎ), we add the following exit module forMin:
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16 Quentin Guilmant, Joël Ouaknine, and Isa Vialard

Exit

30

q

31 G
y = 0

x = 1

31

Fig. 7. Min’s exit module.

Proposition 3.8. LetM = (𝑄,𝑞𝑖 , 𝑞ℎ,𝑇 ) be a deterministic two-counter machine.
• IfM does not halt then GM , starting from configuration (𝑞𝑖 , 0), has value at most 61.
• IfM halts in at most 𝑁 steps then GM , starting from configuration from (𝑞𝑖 , 0), has value at
least 61 + 11

12×305𝑁 .

Proof. We first introduce some key quantities. Let 𝑝 ∈ N \ {0}. We let

(
𝑞𝑝 , 𝑐𝑝 , 𝑑𝑝

)
𝑝
be the unique

sequence of states and values of the two counters along the (deterministic) execution ofM. Here,

for all 𝑝 , 𝑐𝑝 +𝑑𝑝 ≤ 𝑝 . Recall that the locations of GM comprise those contained in𝑄 . We let

(
𝑞𝑝

)
be

the sequence of states in 𝑄 visited along a given play of GM . Let us write, upon entering a state 𝑞𝑝 :

• 𝑎𝑝 to denote the value of clock 𝑥 .

• 𝐶𝑝 for the accumulated cost so far.

• 𝐸𝑝 =𝐶𝑝 − 30𝑎𝑝 for the difference between the expected cost and the actual one.

• 𝜇𝑝 =min

{����1 − 1

2
𝑐
3
𝑑
5
𝑝
− 𝑎𝑝

���� : 𝑐, 𝑑 ∈ N 𝑐 + 𝑑 ≤ 𝑝

}
to denote theminimal difference between

𝑎𝑝 and a valid counter encoding.

• �̂�𝑝 and 𝑑𝑝 to stand for natural numbers such that �̂�𝑝 + 𝑑𝑝 ≤ 𝑝 and����1 − 1

2
�̂�𝑝
3
𝑑𝑝
5
𝑝
− 𝑎𝑝

���� = 𝜇𝑝 .

• 𝛿𝑝 = 1 − 1

2
�̂�𝑝
3
𝑑𝑝
5
𝑝
− 𝑎𝑝 .

We have the following initial conditions:

𝑎1 = 0 𝜇1 = 𝛿1 = 0 𝐸1 = 0 and 𝐶1 = 0 .

After entering a state 𝑞𝑝 , and until visiting the next state 𝑞𝑝+1,Min can wait in a state of weight

30, immediately followed by a CEC whereMax can also wait. We let 𝑡𝑝 be the time spent byMin
before the CEC module is entered, and 𝜀𝑝 be the time spent by Max in his state of the CEC module

before 𝑞𝑝+1.
When everything is well defined we have the following recurrence relations:

𝑎𝑝+1 = 𝑎𝑝 + 𝑡𝑝 + 𝜀𝑝 𝐶𝑝+1 =𝐶𝑝 + 30𝑡𝑝 and 𝐸𝑝+1 = 𝐸𝑝 − 30𝜀𝑝 .

Overall we have

𝑎𝑝 =

𝑝−1∑︁
𝑞=0

(𝑡𝑞 + 𝜀𝑞) 𝐸𝑝 = −30
𝑝∑︁

𝑞=0

𝜀𝑞 and 𝐶𝑝 = 30𝑎𝑝 + 𝐸𝑝 = 30

𝑝−1∑︁
𝑞=10

𝑡𝑞 .
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The Value Problem for Weighted Timed Games with Two Clocks is Undecidable 17

• Assume that M does not halt. Let 𝑁 ∈ N. Consider the following strategy for Min: upon
entering 𝑞𝑝 :

(1) If 1 − 𝑎𝑝 <
1

30
𝑁

then take the exit module.

(2) If 1 − 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 − 𝑎𝑝 < 0 then take the exit module.

(3) If 1 − 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 − 𝑎𝑝 ≥ 0 thenMin plays in order to reach 𝑞𝑝+1, and waits

𝑡𝑝 = 1 − 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 − 𝑎𝑝 = 𝛿𝑝 +

1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
− 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 .

As long as the game continues, we have that for 𝑝 > 0,

𝑎𝑝+1 = 𝑎𝑝 + 𝑡𝑝 + 𝜀𝑝 and 𝑎𝑝 + 𝑡𝑝 = 1 − 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 .

Therefore

𝜀𝑝 ∈
{����1 − 1

2
𝑐
3
𝑑
5
𝑝+1 − 𝑎𝑝+1

���� : 𝑐, 𝑑 ∈ N 𝑐 + 𝑑 ≤ 𝑝

}
,

hence 𝜀𝑝 ≥ 𝜇𝑝+1.
– IfMin ends the game in Case 1, then the final cost is

𝐶𝑝 + 31(1 − 𝑎𝑝 ) + 31 = 61 + 𝐸𝑝 + 1 − 𝑎𝑝 < 61 + 1

30
𝑁
.

– IfMax ends the game in a ZC𝑘 module, then Prop. 3.5 ensures thatMin can secure a cost

of at most

61 + 𝐸𝑝 + 5min

{ ���� 1

(4 − 𝑘)𝑑5𝑛
− 1 + 𝑎𝑝

���� ���� 𝑑, 𝑛 ∈ N
}
≤ 61 + 𝐸𝑝 + 5𝜇𝑝 .

Note that, if 𝑝 = 1, then 𝑎𝑝 = 0 and this quantity is actually 61 < 61+ 1

30
𝑁 . Otherwise, since

𝜀𝑝−1 ≥ 𝜇𝑝 ,Min can secure a cost of at most

61 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 − 30𝜀𝑝−1 + 5𝜀𝑝−1 ≤ 61 < 61 + 1

30
𝑁
.

– Similarly, if Max ends the game in a NZC𝑘 module, then Prop. 3.6 ensures that Min and

secure a cost of at most 61 < 61 + 1

30
𝑁 .

– IfMax ends the game in a CEC
31−𝛽,31
30,𝛽

module, Cor. 3.2 ensures that the final cost is

61 + 𝐸𝑝 + 30

����𝑡𝑝 − (
1 − 𝛽

30

)
(1 − 𝑎𝑝 )

���� .
SinceMin plays according to the execution ofM, the parameter 𝛽 is actually such that(

1 − 𝛽

30

)
1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
=

1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
− 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 .
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18 Quentin Guilmant, Joël Ouaknine, and Isa Vialard

Hence

𝑡𝑝 −
(
1 − 𝛽

30

)
(1 − 𝑎𝑝 ) = 1 − 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 − 𝑎𝑝 −

(
1 − 𝛽

30

) (
𝛿𝑝 +

1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝

)
= 1 − 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
− 𝑎𝑝 −

(
1 − 𝛽

30

)
𝛿𝑝

= 𝛿𝑝 −
(
1 − 𝛽

30

)
𝛿𝑝

=
𝛽

30

𝛿𝑝 .

We then conclude that the final cost is

61 + 𝐸𝑝 + 𝛽 |𝛿𝑝 | = 61 + 𝐸𝑝 + 𝛽𝜇𝑝 .

Thus if 𝑝 = 1 then the cost is 61, and if 𝑝 > 1, since 𝜇𝑝 ≤ 𝜀𝑝−1 and 𝛽 ∈ {2, 3, 6, 12, 18}, we
have 𝛽 < 30 and the final cost is at most

61 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 − (30 − 𝛽)𝜀𝑝−1 ≤ 61 < 61 + 1

30
𝑁
.

– Finally, ifMin ends the game in Case 2 then the total cost is

61 + 𝐸𝑝 + 1 − 𝑎𝑝 = 61 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 − 30𝜀𝑝−1 + 1 − 𝑎𝑝 .

By assumption, in Case 2 we have

1 − 𝑎𝑝 <
1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 .

However, since

𝑎𝑝−1 + 𝑡𝑝−1 = 1 − 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
,

we know thatMax has made an important mistake to trigger Case 2:

𝜀𝑝−1 = 𝑎𝑝 − 𝑎𝑝−1 − 𝑡𝑝−1 = 𝑎𝑝 − 1 + 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝

>
1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
− 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 .

Note also that there is 𝛾 ∈
{
2

5

,
3

5

,
1

5

,
1

10

1

15

}
such that

1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 = 𝛾

1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
.

Thus

1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
≥ 5

3

1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 and 𝜀𝑝−1 >

2

3

1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 .

, Vol. 1, No. 1, Article . Publication date: July 2025.



The Value Problem for Weighted Timed Games with Two Clocks is Undecidable 19

Combining all of this, the final cost after the exit module is at most

61 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 − 30𝜀𝑝−1 + 1 − 𝑎𝑝 < 61 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 −
2

3

30

1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 + 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1

< 61 − 30

𝑝−2∑︁
𝑞=0

𝜀𝑞 − 19

1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1

< 61 < 61 + 1

30
𝑁
.

Overall, for any 𝑁 ∈ N, Min can secure a cost of at most 61 + 1

30
𝑁
. Thus the value of the

game GM is at most 61.

• Assume thatM halts in 𝑁 steps. Consider the following strategy forMax:
(1) Always choose 𝜀𝑝 = 0.

(2) Immediately punish a wrong transition going to ZC
0

𝑘
or NZC

0

𝑘
ifMin unfaithfully simulates

a zero-test.

(3) If Max is in his state of a CEC
31−𝛽,31
30,𝛽

module for the 𝑝-th time then accept the transition if����𝑡𝑝 − (
1 − 𝛽

30

)
(1 − 𝑎𝑝 )

���� < 1

30
5𝑁+1 and punish otherwise.

Note that, in particular, 𝐸𝑝 = 0 for all 𝑝 . We show that as long as 𝑞𝑝 exists (i.e., 𝑝 ≤ 𝑁 ) and

that the game runs at least until 𝑞𝑝 is reached, the following property holds:

(𝒫𝑝 ) : (�̂�𝑝 , 𝑑𝑝 ) = (𝑐𝑝 , 𝑑𝑝 ) ∧ 𝜇𝑝 ≤ 1

12 × 30
5𝑁

.

– (𝒫1) holds by definition.

– Assume that (𝒫𝑝 ) holds and that state 𝑞𝑝+1 exists. Supposing that we reach 𝑞𝑝+1 entails
thatMin did choose the correct transition in case of zero-tests and that she did not exit via

the exit module. The game also did go through a CEC
31−𝛽,31
30,𝛽

module where 𝛽 is such that

𝛽

30

1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
=

1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 .

Also, accordingMax’s strategy, we must have

����𝑡𝑝 − (
1 − 𝛽

30

)
(1 − 𝑎𝑝 )

���� < 1

30
5𝑁+1 .
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20 Quentin Guilmant, Joël Ouaknine, and Isa Vialard

since otherwiseMax would have ended the game. Thus����1 − 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 − 𝑎𝑝+1

���� = ����1 − 𝛽

30

1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
− 𝑎𝑝 − 𝑡𝑝

����
=

����1 − 𝑎𝑝 −
𝛽

30

(
1 − 𝑎𝑝 − 𝛿𝑝

)
− 𝑡𝑝

����
=

����(1 − 𝛽

30

)
(1 − 𝑎𝑝 ) +

𝛽

30

𝛿𝑝 − 𝑡𝑝

����
≤ 𝛽

30

𝜇𝑝 +
����𝑡𝑝 − (

1 − 𝛽

30

)
(1 − 𝑎𝑝 )

����
<

3

5

𝜇𝑝 +
1

30
5𝑁+1

≤ 3

5

1

12 × 30
5𝑁

+ 1

30
5𝑁+1 =

1

12 × 30
5𝑁

.

Also, since 5
2(𝑝+1) > 2

𝑐𝑝+1
3
𝑑𝑝+1

5
𝑝+1

, we have

min


���� 1

2
𝑐
3
𝑑
5
𝑛
− 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1

���� : 𝑐, 𝑑, 𝑛 ∈ N
𝑐 + 𝑑 ≤ 𝑛

(𝑐, 𝑑, 𝑛) ≠ (𝑐𝑝+1, 𝑑𝑝+1, 𝑝 + 1)


=min


���� 1

2
𝑐
3
𝑑
5
𝑛
− 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1

���� : 𝑐, 𝑑, 𝑛 ∈ {0, . . . , 2(𝑝 + 1)}
𝑐 + 𝑑 ≤ 𝑛

(𝑐, 𝑑, 𝑛) ≠ (𝑐𝑝+1, 𝑑𝑝+1, 𝑝 + 1)


Observe that any element of the above set is a multiple of

1

30
2(𝑝+1) and cannot be 0.

Therefore

min


���� 1

2
𝑐
3
𝑑
5
𝑛
− 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1

���� : 𝑐, 𝑑, 𝑛 ∈ {0, . . . , 2(𝑝 + 1)}
𝑐 + 𝑑 ≤ 𝑛

(𝑐, 𝑑, 𝑛) ≠ (𝑐𝑝+1, 𝑑𝑝+1, 𝑝 + 1)

 ≥ 1

30
2(𝑝+1) ≥ 1

30
2𝑁

because, by assumption, 𝑞𝑝+1 exists hence 𝑝 + 1 ≤ 𝑁 . Hence, for any 𝑐, 𝑑, 𝑛 such that

𝑐 + 𝑑 ≤ 𝑛 and differ from 𝑐𝑝+1, 𝑑𝑝+1, and 𝑝 + 1, respectively, we have����1 − 1

2
𝑐
3
𝑑
5
𝑛
− 𝑎𝑝

���� ≥ 1

30
2𝑁

− 1

12 × 30
5𝑁

>
1

12 × 30
5𝑁

.

Therefore (�̂�𝑝+1, 𝑑𝑝+1) = (𝑐𝑝+1, 𝑑𝑝+1) and

𝜇𝑝+1 =

����1 − 1

2
𝑐𝑝+1

3
𝑑𝑝+1

5
𝑝+1 − 𝑎𝑝+1

���� ≤ 1

12 × 30
5𝑁

.

By induction, we conclude that (𝒫𝑝 ) holds for any 𝑝 ≤ 𝑃 , where 𝑃 ≤ 𝑁 is the number of

consecutive states ofM that are correctly simulated by the play of our game GM .

– Assume thatMin ends the game at step 𝑝 ≤ 𝑁 . The final cost is then

61 + 1 − 𝑎𝑝 = 61 + 𝛿𝑝 +
1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
≥ 61 + 𝛿𝑝 +

1

5
2𝑁

≥ 61 + 1

5
2𝑁

− 1

12 × 30
5𝑁

≥ 61 + 11

12 × 30
5𝑁

.
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– Assume that Max ends the game with the ZC
0

1
module. Here we have 𝑐𝑝 ≠ 0. Then, using

Prop. 3.5,Max can secure a cost of

61 +min

{���� 1

3
𝑑
5
𝑛
− 1 + 𝑎𝑝

���� : 𝑑, 𝑛 ∈ N
}

= 61 +min

{���� 1

3
𝑑
5
𝑛
− 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝
− 𝛿𝑝

���� : 𝑑, 𝑛 ∈ N
}

≥ 61 +min

{���� 1

3
𝑑
5
𝑛
− 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝

���� : 𝑑, 𝑛 ∈ N
}
− 𝜇𝑝

≥ 61 +min

{���� 1

3
𝑑
5
𝑛
− 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝

���� : 𝑑, 𝑛 ∈ N
}
− 1

12 × 30
5𝑁

.

Since 𝑐𝑝 + 𝑑𝑝 ≤ 𝑝 , we have 33𝑝 > 5
2𝑝 > 2

𝑐𝑝
3
𝑑𝑝
5
𝑝
and hence

min

{���� 1

3
𝑑
5
𝑛
− 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝

���� : 𝑑, 𝑛 ∈ N
}
=min

{���� 1

3
𝑑
5
𝑛
− 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝

���� : 𝑑 ∈ {0, . . . , 3𝑝}
𝑛 ∈ {0, . . . , 2𝑝}

}
.

Note that all the elements in

{���� 1

3
𝑑
5
𝑛
− 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝

���� : 𝑑 ∈ {0, . . . , 3𝑝}
𝑛 ∈ {0, . . . , 2𝑝}

}
are multiples of

1

30
3𝑝

and cannot be 0 since 𝑐𝑝 ≠ 0. Also, since we are simulating a transition, we must have

𝑝 ≤ 𝑁 . We can then conclude thatMax can secure a cost of at least

61 + 1

30
3𝑝

− 1

12 × 30
5𝑁

≥ 61 + 11

12 × 30
5𝑁

.

Similar reasoning and calculations are used in the three following cases.

– Assume that Max ends the game with the ZC
0

2
module. Here, we have 𝑑𝑝 ≠ 0. Then using

Prop. 3.5,Max can secure a cost of

61 +min

{���� 1

2
𝑐
5
𝑛
− 1

2
𝑐𝑝
3
𝑑𝑝
5
𝑝

���� : 𝑐, 𝑛 ∈ N
}
− 1

12 × 30
5𝑁

.

Using the fact that 𝑐𝑝 + 𝑑𝑝 ≤ 𝑝 , 25𝑝 > 5
2𝑝 > 2

𝑐𝑝
3
𝑑𝑝
5
𝑝
, we conclude that Max can secure a

cost of at least

61 + 1

30
5𝑝

− 1

12 × 30
5𝑁

≥ 61 + 11

12 × 30
5𝑁

.

– Assume thatMax ends the game with the NZC
0

1
module. Here, we have 𝑐𝑝 = 0. Then using

Prop. 3.6,Max can secure a cost of

61 +min

{���� 1

2
𝑐
3
𝑑
5
𝑛
− 1

3
𝑑𝑝
5
𝑝

���� : 𝑐, 𝑑, 𝑛 ∈ N 𝑐 > 0

}
− 1

12 × 30
5𝑁

.

Using that 𝑑𝑝 ≤ 𝑝 , 25𝑝 > 3
3𝑝 > 5

2𝑝 > 3
𝑑𝑝
5
𝑝
and we conclude that Max can secure a cost of

at least

61 + 1

30
5𝑝

− 1

12 × 30
5𝑁

≥ 61 + 11

12 × 30
5𝑁

.

– Assume thatMax ends the game with the NZC
0

2
module. We then just switch the roles of 𝑐

and 𝑑 in this previous case to get thatMax can secure a cost of at least

61 + 1

30
5𝑝

− 1

12 × 30
5𝑁

≥ 61 + 11

12 × 30
5𝑁

.
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– IfMax ends the game in a CEC
31−𝛽,31
30,𝛽

module, Cor. 3.2 ensures that the final cost is

61 + 𝐸𝑝 + 30

����𝑡𝑝 − (
1 − 𝛽

30

)
(1 − 𝑎𝑝 )

���� .
By assumption, in this case we have

����𝑡𝑝 − (
1 − 𝛽

30

)
(1 − 𝑎𝑝 )

���� ≥ 1

30
5𝑁+1 , leading to a cost of

at least 61 + 1

30
5𝑁 ≥ 61 + 11

12×305𝑁 .

In all cases in which we reach the goal state, the cost is at least 61+ 11

12×305𝑁 , which concludes

the proof. □

Theorem 1.1. The Value Problem for two-player, turn-based, time-bounded, two-clock, weighted
timed games with non-negative integer weights is undecidable. The same holds for weighted timed
games over unbounded time otherwise satisfying the same hypotheses.

Proof. Let M be a deterministic two-counter machine. Note that in GM , clock 𝑥 is never reset

(except in some specific exiting modules ending the game) and is always upper-bounded by 1.

Therefore any play has duration at most 1 time unit plus the total time spent in the control modules,

which one easily verifies is at most 2 time units. In other words, by construction the WTG GM
requires at most 3 time units for any execution. Prop. 3.8 asserts that the halting problem for a

deterministic two-counter machine reduces to the Value problem for 2-clock weighted timed games,

which concludes the proof. □

Theorem 3.9. The Existence Problem for two-player, turn-based, time-bounded, two-clock, weighted
timed games with non-negative integer weights is undecidable. The same holds for weighted timed
games over unbounded time otherwise satisfying the same hypotheses.

Proof sketch. Let M be a deterministic two-counter machine. We define G𝐸
M similarly to GM ,

except that we add a “soft-exit” module for Min to halting states of M. The soft-exit module is

simply the exit module where the location cost of 31 has been replaced by 30. Then Min has a

strategy to enforce a cost of at most 61 iffM halts.

Indeed, if M halts, then Min can reach a halting state without cheating (i.e., she faithfully

simulatesM), and exits at cost 61 through a soft-exit module. IfMax chooses to leave through a

CEC or MC module, this also yields a cost of at most 61. As seen in Prop. 3.8, every delay taken by

Max in a CEC or MC module is a net negative for Max. On the other hand, if M does not halt, the

only way forMin to exit the game through a soft-exit module is to cheat in order to reach a halting

state. The normal exit module forMin yields cost strictly greater than 61. Consider the strategy

where Max punishes any cheating by exiting the game, no matter how small. Then either Min
never cheats, and the game never ends, thereby incurring cost +∞, or Min cheats and is punished,

in which case the game ends with cost strictly above 61. □
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