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ABSTRACT

We consider expansions of Presburger arithmetic with families
of monadic polynomial predicates. (Examples of such predicates
are the set of perfect squares, or the set of integers of the form
2n® — 5n + 3, etc.) Although the full attendant first-order theories
are well known to be undecidable, very little is known when one
restricts the number of variables. For single-variable theories, we
obtain positive results for the following two families of predicates:
(i) for perfect fixed powers, decidability of the corresponding theory
follows from the solvability of hyperelliptic Diophantine equations;
and (ii) for polynomials of degree at most three, we establish decid-
ability by relying on the low genus of the resulting algebraic curves.
Finally, we discuss limitations and hardness results (via encodings
of longstanding open Diophantine problems) as soon as any of the
above restrictions are lifted.
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1 INTRODUCTION

Presburger arithmetic was introduced and proven decidable in 1929
as a preliminary step towards Hilbert’s goal of mechanising all of
number theory, and in particular algorithmically determining the
satisfiability of arbitrary Diophantine equations. Unfortunately, the
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famous works of Godel, Church, and Turing in the 1930s brought
the Hilbert program to a screeching halt, and Matiyasevich dealt
the final blow in 1970 by proving, building on a large body of work
by himself and others, that solving polynomial equations over the
integers was in general algorithmically infeasible; in other words
that Hilbert’s tenth problem was undecidable.

Somewhat paradoxically, the demise of Hilbert’s program did
not dampen the scientific community’s appetite for investigating
the decidability of various logical theories of arithmetic and beyond:
research into non-linear expansions and fragments of Presburger
arithmetic, for example, remains a topic of active interest; see, for
instance, the surveys [4, 10, 17]. A recent breakthrough by Hi-
eronymi and Schulz shows that expanding Presburger arithmetic
by two or more power predicates over multiplicatively indepen-
dent bases leads to undecidability; in other words, for example,
the first-order theory FO(Z;0, 1, +, <, 2N 3N) is undecidable, where
2N and 3N stand for the sets of powers or 2 and powers of 3, re-
spectively. Decidability can however be recovered when restricting
to the existential fragment, viz. 3FO(Z;0, 1, +, <, oN SN) [14]. (The
problem remains wide open when three or more power predicates
are simultaneously in play.)

Let us turn to monadic polynomial predicates, i.e., sets of the
form R = {f(x) | x € Z}, where f € Q[x] is an integer-valued
polynomial with rational coefficients.! It is folklore that, when-
ever R corresponds to a polynomial of degree at least 2, the theory
FO(Z;0,1,+, <,R) is automatically undecidable, via a simple en-
coding of multiplication within. In the 1970s, Biichi considered
specifically the case of perfect squares, i.e., the predicate Z? :=
{n? | n € Z}, and asked about the decidability of the existential
fragment AFO(Z; 0, 1, +, <, Zz). As we describe in greater detail in
Sec. 5, Biichi in fact formulated a conjecture implying undecid-
ability of this theory; a proof of Biichi’s conjecture was recently
announced by Xiao [24], finally establishing undecidability of the
corresponding logical theory after some five decades! Note that
Xiao’s proof only concerns the perfect-square predicate, and the
general question of the decidability of 3FO(Z;0, 1, +, <, R), where
R is an arbitrary non-linear polynomial predicate, remains open.

In addition to restricting the number and use of quantifiers, an-
other classical means of attempting to recover decidability involves

!Note that, whilst all polynomials with integer coefficients are automatically integer
valued over Z, the converse does not hold; consider, for example, the polynomial

Flx) =
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bounding the number of variables; standard references on bounded-
variable logics include [7-9, 15, 19].

We are now in a position to describe our main contributions.
We focus on variable- and quantifier-bounded expansions of Pres-
burger arithmetic with families of monadic polynomial predicates.
Since variables and quantifiers are now in short supply, we expand
our base signature to maximise expressiveness and flexibility,> by
considering the following, where k is the bound on the number
of allowable distinct variables and the binary relation symbol =,
refers to congruence modulo m:

e FO* (Z;0,1,+,—, <, (Em)m>2) denotes the first-order frag-
ment with no restrictions on quantifiers;

e JFO* (Z;0,1,+,—, <, (Em)m>2) denotes the existential frag-
ment;

o SMT* (Z;0,1,+,—, <, (Em)m>2) denotes the satisfiability mod-
ulo theories fragment, i.e., existential formulas in prenex nor-
mal form: Ixy, ..., xg . @(x1,...,xx), where @(x1,...,xg) is
quantifier free.

Somewhat surprisingly, even restricting to a single variable (i.e.,
k = 1) immediately leads to well-known open problems: let Ry
and R be predicates corresponding to polynomials f; and f2; in
general the decidability of whether there are integers u and v such
that f(u) = g(v) — a severely restricted instance of Hilbert’s tenth
problem — is open. But such a query is easily encodable within
the bare theory SMT? (Z;R1,Rz2), by asking for the truth value of
Jx . R1(x) A Ra(x). Even in the case of a single predicate R (with
underlying polynomial f), decidability remains open. Consider,
for arbitrary integer constants a, b, ¢, d, the sentence Ix . R(ax +
b) AR(cx+d), which is readily expressible in SMTY(Z;0,1,+ —, R).
This formula asserts the existence of integers u and v such that
cf(u)+ad = af (v)+cb; however in general it is not known whether
such Diophantine equations can always be solved.

Our main positive results exclusively concern single-variable the-
ories (in which case the first-order, existential, and SMT fragments
essentially all coincide). We establish decidability of the following:

e Single-variable expansions of Presburger arithmetic by arbi-
trarily many polynomial predicates corresponding to perfect
fixed powers (Thm. 3.1):

FONZ:0,1,+,—, <, (Em)ms2 (Z)s2) -

e Single-variable expansions of Presburger arithmetic by ar-
bitrarily many polynomial predicates of degree at most 3
(Thm. 4.1):

FONZ;0,1,+,—, <, (Em)m>2, (Ri)i) -

Amongst other ingredients, these theorems are obtained by mak-
ing use of deep results on the solvability of hyperelliptic Diophan-
tine equations and equations corresponding to algebraic curves of
low genus.

Finally, we establish undecidability of expansions involving the
perfect-square predicate Z? when several variables are allowed
(Thm. 5.2), and discuss various other limitations and hardness re-
sults in Sec. 5. It is worth noting that the famous perfect-Euler-brick

2For example, the subtraction operator is typically not included in the signature of
Presburger-arithmetic theories, since a term such as —x can be recovered through
existential quantification: 3y . y + x = 0. Likewise, modular-arithmetic constraints
are usually implicit: x is an even number if and only if 3y . x = y + y, etc.
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problem, which asks whether there exists a rectangular box with
integer sides, and all of whose diagonals are moreover also integers,
is easily encodable within SMT3 (Z;0,+, Zz); as this problem has
been open for over two centuries, decidability of this three-variable
fragment should therefore be considered well out of reach. On
the other hand, the two-variable fragments of the various theories
considered in this paper remain open and fascinating avenues for
further research.

2 TECHNICAL PRELIMINARIES

Integer-Valued Polynomials

We refer to [5] for basic properties of univariate integer-valued
polynomials. In particular, a univariate integer-valued polynomial
of degree k can uniquely be written as an integer linear combination
ZI:ZO f+(7), where (7) is the binomial polynomial w
and is always integer valued. By convention, we take ({) = 1 and

()=x

Linear Recurrence Sequences

Linear recurrence sequences enable us to describe solution sets of
certain Diophantine equations that arise in our analysis.
A linear recurrence relation over Q is an equation of the form

Unid = Qllipsd—1 + -+ +aqlin, (1
where ay,...,a5 € Q and ay # 0. The initial values ug, u1, ..., ug_1
and (1) together uniquely define a sequence of rationals (un),,
as well as a bi-sequence (up),>_.,. We refer to the former as a
linear recurrence sequence (LRS) and the latter as a linear recurrence
bi-sequence (LRBS). The smallest integer d for which a sequence
obeys a relation of the form (1) is the order of the sequence.

Note that if ay,...,ag,up,...,ug_; € Z and ay = +1, then (1)
implies that the LRBS u = (up),-_ is entirely contained in Z.
In fact, an old result of Fatou [6] (see also [3, Chapter 7]) implies
that an LRBS u satisfying (1), with a1, ...,ag,uo, ..., ug_1 € Z, is
contained in Z if and only if ap = +1. In this case, we say that u is
reversible.

Note that u has an exponential-polynomial form

S
Un = Zpi(nw
i=1

where A; are characteristic roots, that is, roots of the characteristic
polynomial

g(x) =x% - ag_yx®!
and P; are polynomials with algebraic coefficients with degree one
less than the multiplicity of A; as a root of g. We say that u is simple
if none of the roots of g are repeated, which in turn is equivalent to
each P; being constant.

- —aqg,

Diophantine Equations

A Diophantine equation is a multivariate polynomial equality with
integer coefficients for which one seeks integer solutions. In this
section we detail some Diophantine equations that arise later, and
how to obtain their solution sets.

Definition 2.1. A Pell equation is a Diophantine equation of the
form w? — nz? = 1, where the coefficient n > 0 is required not to be



On Variable-Bounded Non-Linear Expansions of Presburger Arithmetic

a perfect square. The solution (wy, zo) with wg, zp > 0 which min-
imises w is called its fundamental solution. Diophantine equations
of the form w? — nz? = N (where n > 0 is not a perfect square and
N # 0) are called generalised Pell equations.

The history of Pell equations goes back to ancient times, and
it is well known that the fundamental solution exists and can be
computed. We refer the reader to [11] for a comprehensive account
and modern developments. We are specifically interested in [11,
Chap. 16.3], which shows that the fundamental solution (wy, z9) is
the one for which wy, zg are positive and wq + z¢y/n is minimal.

LEMMA 2.2. [11, Thm. 16.3] Consider the generalised Pell equation
w? —nz? = N, and let (wo, zo) be the fundamental solution of w? —
nz® = 1. We can compute a finite set S of generating pairs (wj, z;)
such that every solution (w’, z") to the above generalised Pell equation
satisfies w’ +2’y/n = (w; +zivn) (wo +zo\n)™ for some (wj, z;) € S
andm € Z.

COROLLARY 2.3. The set of solutions (w, z) to a generalised Pell
equation w? — nz? = N is obtained as a finite union of pairs of simple
reversible LRBS.

ProoOF. By Lem. 2.2 every solution (w; m, z; m) satisfies
Wim + zimVn = (wi + zivn) (wo + z0Vn)™ (2)

for m € Z and a finite set of pairs (wj, z;). By equating coefficients
of 1 and y/n in (2) and using wg - nzg = 1, one verifies that

Wim+2 = 2WoWim+1 — Wim
Zim+2 = 2W0Zim+1 — Zim

50 each (Wi m ) m=—oo a0d (2i m)m=— oo define reversible LRBS. These
could only fail to be simple if the discriminant 4w§ -4 =0,1ie.,
if wo = 1. But this would imply zyp = 0, contradicting the strict
positivity of zg. Therefore each (w; m ) o= —co aNd (Zi m ) m=— oo define
simple reversible LRBS. O

LEMMA 2.4. Consider the system of simultaneous generalised Pell
equations w2 — nlzf = N1,w2 - nzzg = Ny, where nins is not a
perfect square and N1 # No. This system has only finitely many
solutions which can moreover be effectively enumerated.

PRrRoOOF. Writing z = njnpz;izy, it suffices to prove that Z2 =
ninz(w? — N1)(w? — N») has only finitely many solutions which
can moreover be effectively enumerated. This is done by a direct
application of [1] or [2, Thm. 4.2]° (see in particular the comment
at the beginning of the proof, which clarifies that the case Y? =
(X —a1) -+ (X — ay) is also handled by the proof). O

We remark that algorithms to find solutions have been further
refined, see e.g., [22, 23]. The work of Baker [1] implies the following
lemma for so-called hyperelliptic equations.

LEMMA 2.5. Letk > 2, j > 3, N # 0, and n be integers. The
Diophantine equation wk = nz/ + N has only finitely many solutions,
which can moreover be effectively enumerated.

3The original 1975 print makes a mistake of omission in the statement of the theorem,
which was subsequently corrected in later editions.
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3 FIXED-POWER PREDICATES

In this section, we prove the following theorem regarding single-
variable Presburger arithmetic, where =, is a binary relation sym-
bol denoting congruence modulo m, and the predicate Zk is the set
{(nk | nez} of perfect k-th powers.

THEOREM 3.1. The theory FO'(Z;0,1,+, —, <, (Sm)m>2 (Zk)kzz)
is decidable.

The core subroutine in the decision procedure solves systems
of Diophantine equations of the form wk —nzl = N. We begin by
describing the pre-processing that leads to its invocation, which is
summarised in the following proposition.

PRroPOSITION 3.2. The decision problem in Thm. 3.1 Turing-reduces
to deciding whether there exists x € Z that satisfies a given set of
constraints, which includes exactly one constraint of the form x > c,
and constraints of the form Z¥ (ax + b) and —=Z* (ax + b), where all
coefficients are strictly positive.

ProoF. We first prove that deciding the theory indeed reduces
to a constraint satisfaction problem. Any sentence in the theory
may be written in prenex normal form as Qx . ¢y where Q is a quan-
tifier and ¢ is a quantifier-free formula. Note that since Vx . ¢ is
equivalent to =3x . -, we may reduce to deciding the truth of
existential sentences, i.e., when Q is 3. By putting ¢ in disjunctive
normal form, we may rewrite Ix .1 as Jx.\/; ¢; where each ¢;
is a conjunction of literals, and this may further be rewritten as
V/; 3x . ¢i. In this way we reduce to deciding the satisfiability of
a given conjunction of literals, and we proceed by analysing the
constraints that may arise from literals in the theory.

By suitably rearranging and simplifying, we can assume that
literals are of the formx = ¢, x < ¢, x > ¢, x = ¢, Zk(ax +Db),
and —ZK (ax + b). Observe that this requires rewriting —(x = c) as
(x<c)V(x>c),~(ax =y b)as v?:?)}r#b ax =y, r,and ax =, b

m-—1

r=0,ar=,,b
To eliminate the modular-arithmetic constraints, we use an ex-

tended version of the Chinese Remainder Theorem (see e.g., [12,
Thm. 3.12]) to coalesce the modular-arithmetic constraints x =, c;
into a single conjunct x =ps r, or prove that they are infeasible. We
now make this constraint implicit by replacing all occurrences of x
by My + r, and simplifying the resulting expressions.

We can assume x = ¢ does not occur, and that the only inequal-
ity that occurs is x > ¢ for some ¢ € Z. (If a term x = ¢ does
occur, we simply perform the obvious substitution, reducing to a
quantifier-free formula.) If the remaining conjuncts imply that x
is in a bounded interval, i.e., there are terms x > ¢; and x < ca,
this case is readily solved by finite inspection. Thus at most one
inequality appears. If no such constraint occurs, we simply case
split by considering in turn x < 0, and x = 0, and x > 0. This proves
our claim. If no such inequality occurs and x < c, the obvious linear
substitution x — —x turns this term into one of the form x > c.

We finally address the positivity of the coefficients of x in the
power predicates. If k is odd, we can assume that in all instances

as X=EmT.

(positive and negative) of ZK (ax +b), the coefficient a is positive, by
possibly replacing ZX (ax +b) by ZK (—ax—b). If k is even and a < 0
in a positive occurrence of such an atom, we have an upper bound
on x (as x is assumed to be lower-bounded), and the conjunction
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can be handled trivially. If a < 0 for a term —Zk (ax + b), this term
always holds when x exceeds a computable bound and can thus be
disposed of straightforwardly. We can therefore reduce to the case
where all coefficients of x in the power predicates are positive. O

We make a further observation: certain power constraints can be
“redundant” in view of other power constraints. For example, con-
sider the following three constraints: Z?(x), Z2(3x), and Z*(16x).
If Z*(16x) holds, then Z2(x) also holds and Z2(3x) does not. We
therefore say that Z2(x) and Z2(3x) are both redundant with respect
to Z*(16x), since the (positive) truth of Z*(16x) uniquely deter-
mines the truth values of the other two constraints. We formalise
this idea in the following definition:

Definition 3.3. The constraint Z¥ (cx+d) is redundant with respect
toZ’ (ax + b) if k | j and ad = be.

In general, if zk (cx + d) is redundant with respect to Z/ (ax + b)
then the (positive) truth of Z/ (ax + b) determines the truth value of
7 (cx+d). Indeed, if ax+b isa perfect j-th power, then in particular
it is a perfect k-th power, and so is ck(ax+b) = ack L (cx+d) (using
ad = bc). We thus have that c¢x + d is a perfect k-th power if and
only if ack~! is, and the latter can be effectively checked. The
above discussion shows that we can identify and discard (positive
or negative) constraints that are redundant with respect to some
given positive constraint.

In the same vein, we define the notion of similar constraints.

Definition 3.4. The constraint Z/ (cx+d) is similar to a constraint
Z* (ax + b) if ad = be.

Note that the notion of being similar is a transitive property.
Though similar constraints cannot be as immediately discarded as
redundant constraints, we will show that a conjunction of similar
positive constraints can be coalesced into a single positive con-
straint.

For the proof, we require the notion of p-adic valuation. Recall
that for a prime p, the p-adic valuation of a non-zero integer n,
denoted v, (n), is equal to the highest power of p that divides n,
e.g., 02(20) = 2. We take v, (0) = oco. The valuation v, extends to
rational numbers as vy, (m/n) = vp(m) — vp(n).

LEMMA 3.5. Given similar constraints ZF1 (a1x+b1), ..., Zki (a;x+
by), either they are not simultaneously satisfiable, or we may find a
constraint ZK (Ax + B) that is satisfied if and only if Z¥i (a;x + b;) is
satisfied for all 1 < i < . Furthermore, K = lem(ky, ..., k;), where
lem denotes the least common multiple.

ProoOF. Assume that Z¥1 (a1x +b1),...,Z% (ajx +b;) are similar,
and let b/a with a > 0 be the reduced form of the rational constant
bi/a; (which is independent of i as a;bj = bja; forall 1 < i,j < ).

If all constraints are satisfied, we have that vy (a;x + b;) = 0
mod k; for all primes p and indices i = 1,...,I. This can be rear-
ranged as

vp(ax +b) =vp(a) —vp(a;) mod k; 3)

for each p, i. Note that v, (a) — vp(a;) =0 mod k; holds for all i
for all but finitely many primes that divide some a; — let us call
such primes interesting. For each interesting prime p, we apply
the (extended) Chinese Remainder Theorem [12, Thm. 3.12] to
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determine whether the constraints given by (3) fori = 1,...,1 are
simultaneously satisfiable, and if so, compute a residue r, such
that they hold if and only if vy(ax + b) = —rp, mod K, where
K =lem(ky, .. ., k). This is equivalent to (ax + b) [1, p"» being a
perfect K-th power. By construction, ZX ((ax + b) T] p p"P) holds if
and only if Z¥ (a;x + b;) holds forall 1 < i < . O

Remark 1. If Zk (a1x+b1),..., zki (ajx+b;) are similar and simul-
taneously satisfiable, by Lem. 3.5 we may discard each Z¥i (a;x +b;)
to be replaced by the single constraint ZX (Ax + B). We say that we
coalesce Z¥1 (a1x + by), ..., Zk (ax + by) into ZK (Ax + B).

In the sequel, we shall assume there are no pairs of redundant
constraints or similar positive constraints: we first discard redun-
dant constraints, then coalesce similar positive constraints into a
single positive constraint, and then again discard redundant con-
straints. As an example, if we had Z2 (5x), Z3 (4x), ~Z°(24x), the last
constraint becomes redundant only after the first two are coalesced
into Z%(500x).

Once the pre-processing step is completed, our strategy for solv-
ing the satisfiability problem consists in handling the various con-
straints (x > c, positive constraints of the form Z*(ax +b), and
negative constraints of the form =Z* (ax + b)) sequentially in the
order given. More precisely, starting with a candidate solution set
for x of Z, we iteratively shrink this solution set until a definitive
conclusion can be drawn, i.e., the solution set either becomes empty
(or finite, in which case we finalise the decision by inspection), or
infinite and no further positive constraints remain, at which point
we conclude that the system is satisfiable. Intuitively, the justifica-
tion of correctness is as follows. Denote the solution set at a given
stage by S. If S is infinite, then upon taking account of a further
positive constraint of the form ZX (ax + b), the resulting new so-
lution set can be computed and furthermore is either finite, or is
infinite and has relative density 0 in S. If the solution set is infinite
and no further positive constraint remains, we can show that no
conjunction of negative constraints can fully deplete the solution
set, and the system is therefore automatically satisfiable.

To formalise this argument, we first analyse the solution sets
arising from positive constraints.

PROPOSITION 3.6. The solution set of all x € Z satisfying | non-
similar constraints of the form ZKi (a;x +b;) witha; > 0 for1 < i <1
is effectively computable and has the following structure.

(1) Ifl=0thenS =Z.

(2) If1 = 1 then either S = @ or S is a finite union of sets of the
form f(Z) where f is a polynomial of degree k1 with a positive
leading coefficient.

(3) Ifl = 2 then either S = @ or one of the following holds.

(a) Ifmax{ki, k2} > 2 then S is finite.
(b) Ifk1,ky = 2 then S is a union of finitely many simple re-
versible LRBS.

(4) If1 = 3 then'S is finite.

Proor. Case (1) is obvious.

Case (2): If I = 1 then S = @ if b1 is not a ki-th power mod a1,
and this can be checked algorithmically by enumerating all k1-th
powers mod aj. Conversely, if by is a k1-th power mod a; then
there are infinitely many solutions and they can be parametrised
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as follows. Pick u € N such that u¥! = b; mod a;. Then consider
the polynomial f,, r, 4, € Z[t] that satisfies

(u+ta)) = ay f g, 0 (D) + b1
Then f, k, 4, has degree ki and a positive leading coefficient (as
a; > 0). Every t € Z gives rise to a solution x = f, r, 4,(t) of
Z¥(a1x + by). Conversely, whenever x € Z is a solution, then
(a1x + bl)l/k1 must be of the form u + ta; for some u such that

w1 = b mod a; and some t € Z. Therefore the solution set is
exactly
s= U fika®.
0<u<a;

uk1=p; mod a;
Case (3): Suppose | = 2 and (without loss of generality) ky > k;.
We have the system

aix+by = yfl A asx +by = ylzC2 . (4)

By taking a linear combination, we eliminate x to obtain the system
k ks
azy’ — a1y,’ = azb1 — a1by (5)
k k:
yll =q, b1 A yzz =g, by. (6)

By multiplying (5) by alzcl_l, and setting w = ayy; and z == y we
obtain the system

whi — (ala’z‘l‘l)z’” = a’;l_l(azbl —arby) (7)

W =g, 211 N Z=g, 2. (8)
0<r;<a;
rfl Ealbl,r§25a2b2
Case (3a): If ky > 3 then (7) satisfies the conditions of Lem. 2.5 (note
that azby — a1by # 0 by non-similarity) and so there are finitely
many effectively computable solutions, which may be checked
against the modular constraints.
Case (3b): Suppose k1 = ky = 2. If alalzq_1 is a perfect square,
then the left-hand side of (7) may be factored using the difference
of two squares, and by considering prime factorisations there are

finitely many solutions. Otherwise, if alalgl “lisnota perfect square,
(7) comprises a generalised Pell equation, and by Cor. 2.3 the so-
lutions (w, z) are exactly the value sets of finitely many pairs of
simple reversible LRBS.

Since reversible LRBS are periodic modulo N for any N > 1,
given an LRBS u one can effectively find an integer M such that
each subsequence (Upfnts)me—oo 1S constant mod ajay for each
0 < s < M — 1. Therefore the solution set of pairs (w, z) satisfying
(7) and (8) is comprised of a finite union of such subsequences
(or possibly the empty set if none of the modular constraints are
satisfied).

For every solution pair (w, z), we recover a solution x to the

ka _
original system (4) by x = Z Zaz b2 Since for any simple LRBS u,
k; — b9 . .
we have % is also a simple LRBS, and moreover for any z

k2 —p,
a
the set S of solutions x is a union of finitely many simple reversible

LRBS.
Case (4): If | > 3 then if max{ky, kg, k3} > 3 then S is finite and

effectively computable by Case (3). Otherwise, k1 = kz = k3 = 2,

satisfying the modular constraints (8) we have is an integer,

Conference’17, July 2017, Washington, DC, USA

and by the same process as in Case (3) we obtain a system
azy} — arys = azby — arby ©)
asy? — a1y5 = asby — arbs (10)

along with some modular constraints which we omit. By multiply-
ing (9) by agag and (10) by agag, and setting w = azasy1, z2 = Y2,
z3 = y3, we obtain the simultaneous equations

w? — alazagzg = azag(agbl —a1by) (11)
w? - ala%a3z§ = a%ag(agbl —aib3). (12)

If either ajap a% or aj a% as is a perfect square then there are finitely

many solutions by factoring the left-hand side of (11) or (12) using
the difference of two squares. Otherwise, noting that azb; — ajb
and asby — ajb3 are non-zero by non-similarity, we have a system
of simultaneous Pell equations in w, z3, z3, which has finitely many
effectively computable solutions by Lem. 2.4, so S is finite and
effectively computable. O

Prop. 3.6 already gives an algorithm to decide the satisfiability
of any set of constraints of the form x > ¢ and positive constraints
Z* (ax + b). We now show that when the solution set is infinite,
negative constraints can only be violated on a subset of relative
density 0 within the solution set, meaning that arbitrarily many
negative constraints will still leave infinitely many solutions overall.

Definition 3.7. Let @ # T € N and S C T. Define the (upper)
density of S inside T to be
. 1S N [0, n]]
limsup ———— .
n—eo |TN[0,n]]

First we need an elementary lemma. Given a function f : Z — Z,
define Sg(c,n) = Im(f) N [c,n].

LEMMA 3.8. Suppose f € Z[x] has degree d and a positive leading
coefficient, c1,co, N > 0, and g : Z — Z is a function such that for
all |yl = N we have |g(y)| > czyd“. Then we have

i Sg(c1.n) N S¢(er, n)l
1m su =
n~>oop |Sf(C], n)l

Proor. It is sufficient to show that

. 1Sg(0, m)|
limsup ———— =

NN TRTr )

There is a constant C > 0 such that f(y) < Cyd for all y € N. Thus
1S£(0,n)| > (n/C)V/4 while [S,(0.n)| < N + (n/cz)"/ (@) Then
the result follows when considering |S¢(0,n)| > 0

154(0.n)|
Sr0ml =

N + (n/cy)/(d+1)
(n/C)1/d

PROPOSITION 3.9. Let S be the set of solutions x to a system of
constraints given by x > c¢ and non-similar constraints Zki (a;x + by)
fori=1,...,1,a; > 0.IfS is infinite, then the subset S’ C S for which
any non-redundant negative constraint —|Zk(ax + b) is violated has
density 0 relative to S.
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PROOF. A negative constraint =Z¥ (cx+d) being violated is equiv-
alent to the positive constraint zk (cx + d) holding. It is sufficient
to prove the result for a single negative constraint -Z¥(cx +d) as
the union of finitely many null-density sets again has null density.
We go through the cases given by Prop. 3.6.

Case (1): ] = 0. Then S = [c+1, o). The discarded set S” with the
constraint Z¥ (ax + b) added becomes a finite union of sets of the
form g(Z) N [c + 1, o) where g is a polynomial with degg = k > 2
and positive leading coefficient, by Prop. 3.6. Apply Lem. 3.8 with
f(y) = y and each g to conclude S’ has density 0 relative to S.

Case (2): [ = 1. First, suppose Zk(ax + b) is similar (but not
redundant) to Z¥1 (a1x + by). By Lem. 3.5, these constraints get
coalesced into ZX (Ax + B) where K is the least common multiple
of k and kj. Then the solution set S to x > ¢ and zZk (a1x+by)isa
finite union of sets of the form f(Z) N [c + 1, c0) for a polynomial f
with positive leading coefficient and degree k1, and the discarded
set S’ to x > ¢ and ZK (Ax + B) is a finite union of sets of the form
g(Z) N [c + 1, ) for polynomials g of degree K > k1. Therefore
we may again apply Lem. 3.8 with f, g to conclude S’ has density 0
relative to S.

Otherwise, suppose Z¥ (ax + b) is not similar to Z¥ (a;x + by).
Then by Prop. 3.6, if the discarded set S" to x > ¢, zki (a1x +
b1),Z¥ (ax + b) is infinite, then k = k; = 2 and &’ is a union of
finitely many simple reversible LRBS restricted to [¢ + 1, ). For
any simple reversible LRBS (upn)p~_o, We have that |u,| grows
exponentially as |n| — oo. Therefore we may apply Lem. 3.8 to f
and the function g(y) = uy for each LRBS u forming part of the
discarded set of §/, to get that S’ has density 0 relative to S.

Case (3): | = 2. The only way in which S is infinite is if k; =
ks = 2. In that case, it is impossible for S’ to be infinite. Indeed, by
Prop. 3.6 we have that §’ is infinite only if there are at most two non-
similar constraints among Z5 (a1x +b1), ZR2 (apx + bo), Z¥ (ax +b),
meaning that (without loss of generality) Z¥ (ax + b) is similar to
Z¥1 (a1x + by). By Lem. 3.5 we can coalesce these constraints into
7K (Ax + B), where K is the least common multiple of k, k. But by
non-redundancy, we cannot have k | k; nor k1 | k so K > ky = 2.
Therefore by Prop. 3.6 S is finite, and so trivially has density 0
relative to S. O

Prop. 3.9 was the final step in our proof of Thm. 3.1, to the effect
that FO! (Z;0,1,+,—, <, (Em)m>1, (Zk)k>1> is decidable. Indeed, in
summary, we use Prop. 3.2 to reduce to considering satisfiability
of constraints of the form x > ¢, Z¥(ax + b), =Z¥(ax + b). We
may further reduce to the case in which the positive constraints
Z¥ (ax + b) are all non-similar, and all power constraints are non-
redundant with respect to each other. Prop. 3.6 shows that the
solution set to any number of positive constraints Z¥(ax +b) is
effectively computable, and in the case for which the solution set is
infinite, Prop. 3.9 shows that the addition of any negative constraints
—ZK¥ (ax+b) removes at most a subset of null density, so the solution
set remains infinite. Meanwhile if the solution set is finite, one
solves the decision problem by simply enumerating every solution
and checking against all constraints.
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4 QUADRATIC AND CUBIC PREDICATES

In this section, we adapt the techniques used to prove Thm. 3.1 to
decide single-variable Presburger arithmetic expanded with multi-
ple predicates (R;);, where each predicate R; corresponds to the
value set of an integer-valued univariate polynomial f; of degree at
most 3, i.e., R;(x) holds if and only if there exists an integer u such
that f;(u) = x. Formally, we prove the following.

THEOREM 4.1. Let (R;); be predicates corresponding to value sets
of integer-valued polynomials (f;); of degree at most 3. Then the
theory FO? (Z;0,1,+,—, <, (Em)m>2, (Ri)i) is decidable.

Before proceeding with the technical proof, we record a few
simplifying assumptions. These assumptions establish an analogue
of Prop. 3.2 (i.e., the pre-processing step) mutatis mutandis. More-
over, a polynomial f; of degree 0 is constant and so R;(ax + b) is
equivalent to ax + b = f;(0), and for a polynomial f;(t) = dt + e of
degree 1, Rj(ax +b) is equivalent to ax+b = e (mod d). Hence we
can assume that the polynomials f; are of degree 2 or 3. In summary,
we obtain the following.

LEMMA 4.2. The decision problem in Thm. 4.1 Turing-reduces to
deciding whether there exists x > 0 satisfying a conjunction of exactly
one constraint x > c together with other constraints of the form
Ri(ax +b) and =R;i(ax + b), where R; = f;(Z) for a polynomial f;

of degree two or three.

Next we want to restrict the kinds of polynomials that can appear.
Recall that a polynomial f(t) = cdtd+cd,1td_1 +- - -+cq is depressed
if its second-highest coefficient, c¢;_1, is zero.

Let R(ax + b, g, r) denote the predicate {f(qu+r) | u € Z}. We
add this ternary predicate in our signature and henceforth always
assume that all our polynomials are depressed and monic.

LEMMA 4.3. For any integer-valued polynomial f of degree at
most 3 and corresponding predicate R and constants a, b € Z, we can
compute a depressed monic polynomial f with integer coefficients,
together with constants d, l; q, 1, such that for all x, R(ax + b) is
equivalent to ﬁ(&x + I; q.7).

Proor. We tackle the degree-3 case, the degree-2 case being
similar and simpler.

The predicate R (ax+b) is equivalent to Ju . c3u +eul+eiutey =
ax + b. We can multiply through by an appropriate integer and
assume without loss of generality that cs, ..., co are integers, and
c3 is positive. We “complete the cube” by multiplying through by
27c§ and write the equivalent statement

3

Ju. (Besu+cz) + 27clc§u + 27coc§ - 9030314 - c% = 27c§(ax +b),
which can be further rearranged as

Ju. (3csu+c2) + (9cic3 — 3(:%)(303u +c2)

= 27ac§x + (27bc§ - 27c0c§ +9c1cpc3 — 2cg),
or in other words Ju .f(303u +c¢y) =ax+ b. O

We continue following a very similar strategy to find a witness
x that satisfies all constraints as in Sec. 3. Each predicate R; can
occur both positively and negatively, and we want to show that we
can enumerate a solution set satisfying positive constraints when
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it is finite; and when it is infinite, adding a further “non-similar”
positive constraint would in all but one case restrict the solution
set to a subset of relative null density. In the exceptional case, the
solutions to the positive constraints are parametrised as an LRS,
and the discarded indices form arithmetic progressions. Thus, in
this case too, we can effectively determine whether there remains
a value of x not discarded by the negative constraints.

As we did previously, we need to account for redundant con-
straints, but it is not immediately clear what a meaningful definition
of redundancy is. Recall that a multivariate polynomial is absolutely
irreducible if it is irreducible over the complex numbers.

Definition 4.4. The constraint Ry (a1x + b1) is redundant with

respect to Ra(azx+b2) if deg(f1) | deg(fz) and az fi (u1)—a1 fo(u2) -
azby + a1by is not absolutely irreducible.

As the polynomials defining our predicates have degrees 2 or
3, two constraints can only be in a redundancy relationship if the
underlying polynomials have the same degree. We now have:

PROPOSITION 4.5. Let Ri(aix + b1) be redundant with respect to
Rz(agx + bz). Then (llbg = agbl.

Proor. Recall from Lem. 4.3, we assume that fj and f; are de-
pressed and satisfy f;(0) = 0. Thus, when deg(f1) = deg(f2) = 2,
write fi(u;) = c,'ui2 for i = 1, 2. Then we have, by the definition of
absolutely reducibility:

Aluf —Azug + albz - a2b1 =A (u1 + Coup +D)(u1 + Céuz + DI),

where A1 = azcy and Ay = ajcy are non-zero. Then, A1C2C§ =—Ay,
Co +Cé =0,D+D’ =0, DC; +D’Cy =0,and A1DD’ = a1by —azb;.
Thus the second and third equations imply that D = —D’ and
Cy = —Cé, and the first implies that C; # 0 as Ay # 0. Hence the
fourth equation implies that D = 0 and so the last equation yields
airby —axby = 0.

When deg(f1) = deg(f2) = 3, let fi(u;) = ciu? +dju; fori=1,2.
Then we have by absolute reducibility:

Alu% + Biug — Azug — Bouy + a1b2 - azbl
=A (u1 + Coug + D) (ufll + Eququg + Céug + Eouq + Esug + D/) s

where A1 = azcq and Ay = ajcy are non-zero, By = asd; and
By = ajdy. Then, A1C2Cé = —Ay and A1DD’ = a1bs — azb; and
E1+Cy, Eo + D, Cé + E1Cy, E3 + CoE9 + E1D, CoE3 + DC; are all
zero. Substituting E; = —C; and E; = -D gives that C — Cg,
E3—2CyD, and CyE3 +DC§ are all zero. Hence, as Cy # 0 as Ay # 0,
E3 = C2D, which forces that CoD = 0 and thus that D = 0. Thus
aibs — axby = 0. O

In the case of redundancy with cubic polynomials, we can thus
solve the (Diophantine) equation az fi (u1) — a1 f2(u2) = 0 via the
factorisation A1x3+Byx — Azy® — Boy = Aq(ug +muy) (uf —mujuy+
mzug + B1/A1), where m = —B1 /By = —(Az/Al)l/3 is non-zero.
This follows using the notation in the proof above. We shall assume
that m is rational. This is of course the case when By # 0, or when
B1 = By = 0and Az/A; is a perfect cube. Otherwise, it is impossible
for Ajx® — A»y> = 0 to have integer solutions.

Looking at the proof of the lemma above, when two redundant
predicates are both satisfied, a linear relationship between u; and
us has to hold, or in the cubic case, u; and uy have to lie on a certain
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conic. This conic is uf —muquy +m2u§ +B1/A; = 0, which represents

an ellipse, which thus contains finitely many integer points (u1, uz)
that we can effectively compute. Hence we conclude the following.

LEMMA 4.6. Let ¢(x) be a conjunction of two redundant predicates
Ri(a1x + b1,q1,r1) and either Ra(azx + by, q2,r2) or =Ry (azx +
b2, q2,72). Then ¢(x) can be written as the conjunction of one predi-
cate R3(asx + b3, q3,r3) and a finite number of atoms definable in
quantifier-free Presburger arithmetic.

As we can observe from the factorisation, the solution set to
azfi(u1) — a1f2(uz) = 0 is the union of integer points on a line
(passing through the origin and having rational slope m = —s/t),
and finitely many integer points on a bounded conic. In other words,
a solution u; corresponds to a solution uy if and only if the former
takes one of finitely many values, or satisfies a set of divisibility
constraints. The constraint on asx + by is thus “redundant” in view
of the constraint on aix + by in the sense that it does not add
“algebraic” information beyond modular-arithmetic annotation.

We can henceforth focus on the case where there is no redun-
dancy, and at least one of the predicates corresponds to a cubic
polynomial.

PROPOSITION 4.7. The solution set of all x € Z satisfying | non-
redundant constraints of the form Ri(aix + b, qi, ri) witha; > 0
and d; = deg(f;) for1 < i <l is effectively computable and has the
following structure.

(1) Ifl=0thenS =Z.

(2) If1 = 1 then either S = @ or S is a finite union of sets of the
form f(Z) where f is a polynomial of degree di and with a
positive leading coefficient.

(3) Ifl = 2 then either S = @ or one of the following holds.

(@) Ifd1 = dp =3 thenS is finite.

(b) Ifdi = da = 2 then S is a union of finitely many simple
reversible LRBS.

(c) Ifdi # do then either S is finite or S is a finite union of sets
of the form f(Z) where f is a polynomial of degree 6.

(4) If1 = 3 then either S = @ or one of the following holds.

(a) Ifany twoi # j exist such that d; = 3 = dj, then S is finite.
(b) Ifd; =dy =ds =2 then S is finite.
(c) Otherwise S is a union of finitely many simple reversible
LRBS.
(5) Ifl > 4 thenS is finite.

Proor. Case (1) is obvious.

Case (2): Write f(u) for fi(quu+r1). Ifl = 1 then S = @ if
b1 does not lie in the value set of f modulo a;, and this can be
checked algorithmically by enumerating all values of f modulo
ay. Conversely, if by does lie in the value set of f modulo a; then
there are infinitely many solutions and they can be parametrised
as follows. Pick u € N such that f(u) = by mod a;. Then consider
the polynomial g, 4, 4, € Z[t] that satisfies

f(u+ta) = a19ukya (t)+by1.

Then g, k, 4, has degree k1 and a positive leading coefficient (as
ai,q1 > 0). Every t € Z gives rise to a solution x = g, , 4, (t)
of Ri(a1x + b1, q1,r1). Conversely, whenever x € Z is a solution,
then there must exist some y = u + taj such that f(y) = ajx + by,
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f(u) = by mod ay, and t € Z. Therefore the solution set is exactly

S = U gu,kl,al(z)~

0<u<a;
f(u)=by; mod a;

Case (3a) We claim that a pair of non-redundant cubic positive
constraints Ry (a1x+b1, q1, 1), R2(a2x+ba, q2, r2) has finitely many
solutions, which can moreover be effectively enumerated. Indeed,
homogenising the cubic curve

az fi(u1) — arfo(uz) —azby +ajbz =0

into the projective plane over an appropriate algebraic extension of
the rationals gives an absolutely irreducible curve. This curve has
three places at infinity, ([p; : 1 : 0])?:1 where each p; is a complex
cube root of az/a; (because fi and f, are monic, evaluating this
curve at [u; : uz : 0] gives azu? - alug = 0). If this curve has
genus 1, then its finitely many integer points can be enumerated
by [2, Thm. 4.3]. Otherwise, the curve has genus 0, in which case
its finitely many integer points can be enumerated by [18].

Case (3b) Follows from Case 3b) of Prop 3.6 mutatis mutandis.

Case (3c) We now consider the case of two positive constraints,
where the first R;(a1x + b1, g1, r1) corresponds to a quadratic poly-
nomial. The attendant curve a1 f2(u2) — azfi(u1) = a1bz — azbq can
then be simplified to have the form (azu1)? = a2 (a1 fa(u2) + azb; —
aiby) = ajazg(uz), where g € Q[uz] is monic, and a1g € Z[uz]. If
g has three distinct roots (i.e., an elliptic curve has arisen), then the
finitely many integer points on the curve can be enumerated by [1,
Thm. 2].

Otherwise, g has a repeated root, which is necessarily rational
because it corresponds to the common factor of g and its derivative.
By Gauss’s lemma, a;g thus splits over Z as (auz + f)?(yuz + 5).
We then make the substitution vy = a‘jf;:ﬂ’ and observe that vf =
az(yuz +9). In this manner, the values of u; and uy are parametrised
by v1. If we have constraints that u; and uy are respectively r;
modulo ¢; and r; modulo g2, we enforce the following modular-
arithmetic constraints on v1:

Uf = ayray +a28 mod azyqy,
owf + (a2fy — agad)v; = a%rly mod a%yql,

Inserting Uf = ay(yuz + 8) into (aup + B)?(yuz + &) we obtain that
x is parametrised as a degree 6 polynomial in v;.

We thus get solutions to our constraints whenever v; satisfies
the above: such values for vy, if they exist, form a union of finitely
many arithmetic progressions by the Chinese Remainder Theorem.

Case (4a) immediately follows from Case (3a).

Case (4b) follows from Case 4 of Prop 3.6 mutatis mutandis.

Case(4c) We freely borrow notation from case (3c). Assume f;
has degree 3 and that f; and f3 have degree 2. Then, as in case (3c),
we construct v1 and v3 that give the system

U% =ax(y1uz +61),
v3 = az(ysuz + 53),

where as before, v; = a_(zjzlfﬁ_ . Eliminating uy yields the equation

y30? — y103 = az(y361 — y163).
We argue that the constant on the right is non-zero. Suppose for
the sake of deriving a contradiction that y36; —y183 = 0. This would
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imply that the polynomials ajasg; = as(aifz + azb1 — a1bz) and
a1asgs = aj(asfa + azbs — asbz) have the root 81 /y; in common.
This would also have to be a root of their difference az(asb; —aibs),
which by our assumption of non-redundancy, is a non-zero constant:
a contradiction, as desired.

The equation y3vf -n U% = az(y31 — y163) thus has infinitely
many solutions only if it is a generalised Pell equation. In this
case, by Cor. 2.3 the values of v; for which all three constraints
are satisfied form a union of finitely many exponentially-growing
LRBS.

Case (5): Four non-redundant (positive) constraints will have
finitely many solutions by virtue of containing two cubic constraints
(Case (3a)) or three quadratic constraints (Case (4b)) and may be
effectively enumerated. O

PROPOSITION 4.8. Let S be the set of solutions x to a system of
constraints given by x > ¢ and non-redundant constraints R;(a;x +
bi,qi,ri) fori = 1,...,1, a; > 0. If S is infinite, then the subset
S’ C S for which any non-redundant negative constraint =R (ax + b)
is violated has density 0 relative to S, unless S is of the form (3b) and
S is of the form (4c) in Prop. 4.7

ProOOF. A negative constraint ~R;(cx+d) being violated is equiv-
alent to the positive constraint R;(cx + d) holding. We go through
the cases given by Prop. 4.7. In each case, we show that a negative
constraint discards either a subset of relative density 0, or that the
set of parameters (of the solutions to the positive constraints) inval-
idated by forming finitely many arithmetic progressions. In either
case, we can effectively determine whether there remain solutions
after accounting for finitely many negative constraints.

Case (1): ] = 0. Then S = [c+1, ). The discarded set S with the
constraint R;(ax + b) added becomes a finite union of sets of the
form h(Z) N [c + 1, 00) where h is a polynomial with degh =d > 2
and positive leading coefficient, by Prop. 4.7. Apply Lem. 3.8 with
g(y) =y and each h to conclude S’ has density 0 relative to S.

Case (2): [ = 1. Then the solution set S to x > ¢ and Ry (a;x+b1)
is a finite union of sets of the form g(Z) N [c+1, c0) for a polynomial
g with positive leading coefficient and degree d;. S” will satisfy the
conclusion of either case (3a), (3b), or (3c). In case S’ satisfies (3a) it
is finite and thus has density 0 relative to S. The case of $’ satisfying
(3b) has been handled in Prop. 3.9 mutatis mutandis and S’ thus has
density 0 relative to S. And in case S’ satisfies (3c), the discarded
set S’ is a finite union of sets of the form h(Z) N [c¢ + 1, c0) for
polynomials h of degree 6, which is greater than d;. Therefore we
may again apply Lem. 3.8 with f, g to conclude S’ has density 0
relative to S.

Case (3): [ = 2. S is infinite only if d; = 2,d = 3,0rd; = dp =
2. In the former case, S’ can be infinite only if d3 = 2. Then by
Prop. 4.7, if the discarded set S’ is infinite, then S’ is a union of
finitely many simple reversible LRBS restricted to [c¢ + 1, ). As
before we conclude by Lem. 3.8 that §’ is a null-density subset of S.
The case di = dy = 2,d3 = 3 results in finitely many solutions being
discarded if a pair of constraints gives rise to an elliptic curve (see
the first part of Case (3c) of Prop. 4.7); the case where it does not
result in infinite LRBS of solutions being discarded. This discarded
set can have positive relative density; however we have from Case
(3c) of Prop. 4.7 that the solutions to the positive constraints are
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themselves parametrised as LRBS. Prop. 4.10 shows that the indices
of discarded solutions form arithmetic progressions, and hence
we can effectively determine whether there exists a solution not
discarded by the negative constraints.

Case (4) §’ is finite and hence has density 0 relative to S. O

The following is a special case of [20, Prop. 2].

LEMMA 4.9 (PARAMETRISATION OF X VALUES RULED OUT). Let
an,ﬂn be a sequence of solutions to the generalised Pell equation
a?—D1-p% = Ny, which are Pell multiples of a generating pair (', ).
Assume further that, for a subsequence (o, fr) withk € K C N, we
have

(ak: Pr) = ($1(0m). $2(Tm)) (14)
for rational polynomials ¢; and a sequence (opm, Tm) of Pell values
satisfying the equation o® — Dat? = Ny. Assume K is infinite and
the D; are square-free. Then

(i) Dy = D.

(ii) deg ¢1 = deg ¢2 =X

(iii) K is parametrisable, i.e., there exists an integer ¢ such that

k=yx-m+cforallk € K.

ProoOF. It is clear from the polynomial relations that Q(vD;) =
Q(+D2), which can happen only if D; = D
We have
-k 1 k -k
(s i) = (A1 +Bre™*, ——(A1ek + B1e7F))
vb !

and

(om, Tm) = (Aze™ + Bye™™, — (Age™ + Bpe ™),

vD
where ¢ is the fundamental unit associated with the underlying Pell
equation.

Substituting the latter equation into (14) and comparing growth
rates, (i.e., for the polynomial identity to hold for infinitely many
pairs of (k, m)) gives deg ¢1 = deg ¢p2 (which we call y). Further, for
every such pair, one has k = y - m + ¢ for a constant integer c not
depending on k or m. This can be seen by dividing out by ¢X"™ after
making the substitution in (14), and taking the limit as k, m — co.In

particular, we must have Ef(—km converges to a constant as k, m — oo.
As € > 1, we have that this sequence becomes eventually constant,
ie., £k /eX'™ = ¢ for some fixed integer c. We moreover claim that
this holds for all k, as one can construct the error-term Laurent
polynomial in €™, of degree bounded independent of k or m, given
by A(e™) = $1(0m, Tm) — @y-m+c. As this polynomial has infinitely
many roots, it must be identically zero, giving k = y - m+c for all k.

Further, this constant integer ¢ can be effectively determined
from the constants in the equations. This enables us to paramet-
rically rule out Pell-pairs (e, f) contributing to integral values
of x. O

PROPOSITION 4.10. Suppose S is of the form (3b) and S’ is of the
form (4c) of Prop. 4.7. Then S’ consists of indices of S in arithmetic
progressions. These may be computed effectively.

Proor. We borrow notation from the relevant cases. Note that
S is parametrised by uj, u3 satisfying the generalised Pell equation
yguf -n ug = C for some C depending on the data, and that further

u% = (oquz + p1)?(y1uz + 61) and also u§ = (azuz + P3)%(y3us +
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83). Note that §” is parametrised by v1, 03 satisfying ygvf - yw% =
az(y361 — y183) with v.z = az(ylug + 6;) for i = 1,3. hence uy =

v?—ayd; U -a 5
‘Yaz and thus u = (o =2 ﬂz)z fori = 1,3sou; =
2
+(oj— /3,) \F for i = 1,3. If \/ay is irrational the claim is

vacuous, otherw1se we apply Lem. 4.9 four times for each choice of
sign and get the desired conclusion. O

The above results justify the correctness of the following algo-
rithm: We first compute S. Should S be of the form (3b) and any
n > 1 negative constraint gives rise to a discarded set S’ of the
form (4c) we compute the resulting S \ UL, S; using Prop 4.10.
Weset§ =5\ UL, S; in this case. Otherw1se weset S = S.If S is
finite we enumerate S and check all constraints. If § is infinite we
simply return true as any negative constraint will remove only a
null-density subset.

5 UNDECIDABILITY
5.1 Biichi’s Problem

Biichi formulated the following problem while studying the existen-
tial fragment of Presburger arithmetic expanded with the perfect-
square predicate Z2: does there exist an M such that any integer
sequence of M squares whose second difference is constant and
equal to 2 is necessarily a sequence of consecutive squares? Thatis, is
there an M such that for all x1, . . ., xp such that xl 2 2xiz_'_1 +xi2 =2
fori = 1,...,M—2,Wehavethatxl =xjp1—1fori=1,... M—1? A
positive answer to Biichi’s problem enables one to define the squar-
ing function from the perfect-square predicate without the need
for quantifiers. Indeed, the assertion y = x? would be equivalent
to /\M 172 (y + 2ix + i%). Multiplication would in turn be positive-
existentially defined using the identity 4xy = (x+y)?—(x—y)?. The
undecidability of the existential fragment of Presburger arithmetic
expanded with the perfect-square predicate Z% would hence follow.
Biichi himself conjectured that M = 5, and a proof has recently
been announced by Xiao [24].

We show that the (negation of the) Biichi conjecture can be en-
coded in SMT? (Z;+,0,1, Zz). Indeed, any counterexample sequence
must have the form i2 + ¢1i + ¢o for i = 1,...,5, where cg, ¢; are
integers and the polynomial g(t) = 2 + ¢t + ¢ is not of the form
(x + b)?. By the contrapositive of [16, Cor. 1.7], there exists M such
that g(M) is not a perfect square: by appropriate shifting, we can
assume M = 6. The negation of the Biichi conjecture is then simply
the formula

5
Feg, 1 - (/\ Zz(co +icy + iz)) A —|Zz(c0 +6¢c1 +36) .
i=1

The following technical but elementary lemma shows how one
can encode arbitrary Diophantine equations in the signature of
(Z;0,1,+,—, ZZ> with a limited budget of first-order variables.

LEMMA 5.1. Leth € Z[xy,...,xn]. The assertion h(xy,...,xn) =
0, where x1, ..., xp are integer-valued variables, can be encoded in
FO(Z;0,1,+, —, Z%) via a formula that uses at most 4 bound variables,
all of which are existentially quantified.

Proor. We need existentially quantified variables to implement
multiplication using the identity 4xy = (x + y)? — (x — y)?, e.g.,
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the proposition ¢t = 4xy is equivalent to Juv . (t =u —0) A (u =
(x +y)?) A (v = (x — y)?), where the last conjunct is written
as /\;.l:0 Z%(v + 2i(x — y) + i%), and similarly for the penultimate
conjunct.

We momentarily leave aside the issue of the scarcity of exis-
tentially quantified variables and introduce rewrite rules (that re-
place polynomials with linear combinations of variables and sim-
pler polynomials), with each application introducing fresh quan-
tified variables. For convenience, we refer to the sum of monomi-
als r through m of h(x1,...,xp) as hy, and the r-th monomial g1
of degree d, is constructed through the intermediate monomials
Jrs = 45—11 ]_[;i’s xj;. In the rewrite rules that follow, the subformulas
are assumed to be minimal.

(1) A subformula of the form ¢ (hy, . ..) is rewritten as

3t [hr/(t+gr)] A (t = hry1),

reducing the number of monomials.
(2) A subformula of the form ¢ (gys, . . .) is rewritten as

Fu,0. 9 [grs/(u—0)] A u=(xj, +grsr1)’ A 0= (=xj, + grss1)’s

reducing the degree of the monomial.
(3) A subformula of the form w = T? is rewritten as

4
N7 (w+2iT+i2),
i=0

where T is a linear combination of variables.

We observe that we can first repeatedly apply Rule 1 until the
formula involves only monomials, then repeatedly apply Rule 2
until all propositions are either linear equations or assertions of a
square relation, and finally apply Rule 3 to encode the latter in our
signature.

Finally, we show that while applying the rewrite rules to the
formula A(x1, ..., x,) = 0 and thus introducing existentially quanti-
fied variables, we can recycle these variables so that we only need 4
of them. The key observation is that if a variable ¢ does not occur in
a subformula  being rewritten, it can be recycled for the purpose.

We claim that we can alternate between introducing ¢y and #; as
we repeatedly apply Rule 1. For instance, h = 0 gets rewritten to
Aty . to+g11 = OAty = hy, which itself gets rewritten to ¢y . to+g11 =
0 A (3t .to = t1 + g21 A t1 = h3). We use our key observation that
the previously quantified ¢y does not occur in t; = h3, and can be
recycled for this purpose of rewriting it. The intermediate formula
after completing the applications of Rule 1 recycles tp,#; in an
alternating manner while introducing quantified variables.

We now have subformulas of the form t;, = t;_j + gr1 that we
need to rewrite using Rule 2. We cannot use ty, t1, and hence must
use fy, 13 to obtain

2 2
Etg,tg.tb =li_ptia—t3 NIy = (x+gr2) Aty = (—x+gr2) s

to which Rule 2 may need to be reapplied. This time, however, we
have access to to, t; while rewriting t = (x + gr2)?. In this manner,
we can alternate between introducing to, t1, and tz, t3 while applying
Rule 2. This leaves us with subformulas of the form t, = (x+£;,— te)?
to rewrite using Rule 3. This is merely a syntactic rewrite, and we
have indeed proven that we need only 4 existentially quantified
variables. O

Trovato et al.

5.2 Universal Diophantine Equations and
Undecidability

It is well known that Hilbert’s tenth problem, i.e., deciding whether
a given polynomial equation has integer solutions, is undecidable.
Thanks to Xiao’s proof of Biichi’s conjecture [24], together with
Lem. 5.1 and the bounds on the degree of the polynomial and
number of variables, we now establish undecidability results for
bounded-variable Presburger arithmetic expanded with the perfect-
square predicate. More specifically, Jones [13] constructs universal
Diophantine equations, i.e., polynomials h in several unknowns
X1, ..., Xxn and parameters x, y, z, w € N such that

Ixt, ..., xn € NLR(x,y, 2, W, x1,...,Xp) =0

if and only if x is contained in the recursively enumerable set
indexed by (y, z, w).

THEOREM 5.2. The following theories are undecidable:
(1) IFO'3(Z;0,1,+, —, <, Z%),

(2) IFO™(Z;0,1,+,—,Z2),

(3) SMT®(Z:0,1,+,—, <, Z%),

(4) SMT%*2%0(7: 0,1, +, —, Z?).

Proor. Item (1) follows from Matiyasevich’s construction (see
[13, Sec. 3]), which when given x € N and a recursively enumerable
set W, produces a Diophantine equation with 9 positive-integer
unknowns that has a solution if and only if x € W. Item (2) follows
from the analogue due to Sun [21, Thm. 1.1(ii)], where the con-
structed equation has 9 integer unknowns and 1 nonzero-integer
unknown.

Item (3) follows from Jones’s concrete example of a universal Dio-
phantine equation of degree 4 with 58 positive-integer unknowns,
which can be implemented with at most 100 arithmetic operations
[13, Thm. 5]. Note that each multiplication would introduce at most
5 fresh variables to be encoded in our SMT instance (as discussed in
the proof of Lem. 5.1). We take 600 = 100 + 100 - 5 as a conservative
estimate for the total number of variables.

Item (4) follows from converting each positive-integer unknown
into a regular integer unknown by introducing fresh variables and
using the Lagrange four-squares theorem, i.e., 3 x > 0 replaced
by Jyi1,...,ys. /\‘il:1 Sq(yi), and every occurrence of x is replaced
by (y1 + - - + ya4). A conservative upper bound on the number of
variables introduced in this manner is 4 - 4 - 100, and combining
them with the original variables gives a sound estimate of 2200. O
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