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ABSTRACT
We consider expansions of Presburger arithmetic with families

of monadic polynomial predicates. (Examples of such predicates

are the set of perfect squares, or the set of integers of the form

2𝑛3 − 5𝑛 + 3, etc.) Although the full attendant first-order theories

are well known to be undecidable, very little is known when one

restricts the number of variables. For single-variable theories, we

obtain positive results for the following two families of predicates:

(i) for perfect fixed powers, decidability of the corresponding theory

follows from the solvability of hyperelliptic Diophantine equations;

and (ii) for polynomials of degree at most three, we establish decid-

ability by relying on the low genus of the resulting algebraic curves.

Finally, we discuss limitations and hardness results (via encodings

of longstanding open Diophantine problems) as soon as any of the

above restrictions are lifted.

CCS CONCEPTS
• Theory of computation→ Logic and verification.
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1 INTRODUCTION
Presburger arithmetic was introduced and proven decidable in 1929

as a preliminary step towards Hilbert’s goal of mechanising all of

number theory, and in particular algorithmically determining the

satisfiability of arbitrary Diophantine equations. Unfortunately, the
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famous works of Gödel, Church, and Turing in the 1930s brought

the Hilbert program to a screeching halt, and Matiyasevich dealt

the final blow in 1970 by proving, building on a large body of work

by himself and others, that solving polynomial equations over the

integers was in general algorithmically infeasible; in other words

that Hilbert’s tenth problem was undecidable.

Somewhat paradoxically, the demise of Hilbert’s program did

not dampen the scientific community’s appetite for investigating

the decidability of various logical theories of arithmetic and beyond:

research into non-linear expansions and fragments of Presburger

arithmetic, for example, remains a topic of active interest; see, for

instance, the surveys [4, 10, 17]. A recent breakthrough by Hi-

eronymi and Schulz shows that expanding Presburger arithmetic

by two or more power predicates over multiplicatively indepen-

dent bases leads to undecidability; in other words, for example,

the first-order theory FO⟨Z; 0, 1, +, <, 2N, 3N⟩ is undecidable, where
2
N
and 3

N
stand for the sets of powers or 2 and powers of 3, re-

spectively. Decidability can however be recovered when restricting

to the existential fragment, viz. ∃FO⟨Z; 0, 1, +, <, 2N, 3N⟩ [14]. (The
problem remains wide open when three or more power predicates

are simultaneously in play.)

Let us turn to monadic polynomial predicates, i.e., sets of the
form R = {𝑓 (𝑥) | 𝑥 ∈ Z}, where 𝑓 ∈ Q[𝑥] is an integer-valued

polynomial with rational coefficients.
1
It is folklore that, when-

ever R corresponds to a polynomial of degree at least 2, the theory

FO⟨Z; 0, 1, +, <,R⟩ is automatically undecidable, via a simple en-

coding of multiplication within. In the 1970s, Büchi considered

specifically the case of perfect squares, i.e., the predicate Z2
:=

{𝑛2 | 𝑛 ∈ Z}, and asked about the decidability of the existential
fragment ∃FO⟨Z; 0, 1, +, <,Z2⟩. As we describe in greater detail in

Sec. 5, Büchi in fact formulated a conjecture implying undecid-

ability of this theory; a proof of Büchi’s conjecture was recently

announced by Xiao [24], finally establishing undecidability of the

corresponding logical theory after some five decades! Note that

Xiao’s proof only concerns the perfect-square predicate, and the

general question of the decidability of ∃FO⟨Z; 0, 1, +, <,R⟩, where
R is an arbitrary non-linear polynomial predicate, remains open.

In addition to restricting the number and use of quantifiers, an-

other classical means of attempting to recover decidability involves

1
Note that, whilst all polynomials with integer coefficients are automatically integer

valued over Z, the converse does not hold; consider, for example, the polynomial

𝑓 (𝑥 ) = 𝑥2+𝑥
2

.
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bounding the number of variables; standard references on bounded-

variable logics include [7–9, 15, 19].

We are now in a position to describe our main contributions.

We focus on variable- and quantifier-bounded expansions of Pres-

burger arithmetic with families of monadic polynomial predicates.

Since variables and quantifiers are now in short supply, we expand

our base signature to maximise expressiveness and flexibility,
2
by

considering the following, where 𝑘 is the bound on the number

of allowable distinct variables and the binary relation symbol ≡𝑚
refers to congruence modulo𝑚:

• FO𝑘 ⟨Z; 0, 1, +,−, <, (≡𝑚)𝑚≥2⟩ denotes the first-order frag-

ment with no restrictions on quantifiers;

• ∃FO𝑘 ⟨Z; 0, 1, +,−, <, (≡𝑚)𝑚≥2⟩ denotes the existential frag-
ment;

• SMT𝑘 ⟨Z; 0, 1, +,−, <, (≡𝑚)𝑚≥2⟩ denotes the satisfiabilitymod-
ulo theories fragment, i.e., existential formulas in prenex nor-

mal form: ∃𝑥1, . . . , 𝑥𝑘 . 𝜑 (𝑥1, . . . , 𝑥𝑘 ), where 𝜑 (𝑥1, . . . , 𝑥𝑘 ) is
quantifier free.

Somewhat surprisingly, even restricting to a single variable (i.e.,
𝑘 = 1) immediately leads to well-known open problems: let R1

and R2 be predicates corresponding to polynomials 𝑓1 and 𝑓2; in

general the decidability of whether there are integers 𝑢 and 𝑣 such

that 𝑓 (𝑢) = 𝑔(𝑣) — a severely restricted instance of Hilbert’s tenth

problem — is open. But such a query is easily encodable within

the bare theory SMT1⟨Z;R1,R2⟩, by asking for the truth value of

∃𝑥 .R1 (𝑥) ∧ R2 (𝑥). Even in the case of a single predicate R (with

underlying polynomial 𝑓 ), decidability remains open. Consider,

for arbitrary integer constants 𝑎, 𝑏, 𝑐, 𝑑 , the sentence ∃𝑥 .R(𝑎𝑥 +
𝑏) ∧R(𝑐𝑥 +𝑑), which is readily expressible in SMT1⟨Z; 0, 1, +,−,R⟩.
This formula asserts the existence of integers 𝑢 and 𝑣 such that

𝑐 𝑓 (𝑢)+𝑎𝑑 = 𝑎𝑓 (𝑣)+𝑐𝑏; however in general it is not known whether
such Diophantine equations can always be solved.

Our main positive results exclusively concern single-variable the-

ories (in which case the first-order, existential, and SMT fragments

essentially all coincide). We establish decidability of the following:

• Single-variable expansions of Presburger arithmetic by arbi-

trarily many polynomial predicates corresponding to perfect

fixed powers (Thm. 3.1):

FO1⟨Z; 0, 1, +,−, <, (≡𝑚)𝑚≥2, (Z𝑘 )𝑘≥2⟩ .
• Single-variable expansions of Presburger arithmetic by ar-

bitrarily many polynomial predicates of degree at most 3

(Thm. 4.1):

FO1⟨Z; 0, 1, +,−, <, (≡𝑚)𝑚≥2, (R𝑖 )𝑖 ⟩ .
Amongst other ingredients, these theorems are obtained by mak-

ing use of deep results on the solvability of hyperelliptic Diophan-

tine equations and equations corresponding to algebraic curves of

low genus.

Finally, we establish undecidability of expansions involving the

perfect-square predicate Z2
when several variables are allowed

(Thm. 5.2), and discuss various other limitations and hardness re-

sults in Sec. 5. It is worth noting that the famous perfect-Euler-brick

2
For example, the subtraction operator is typically not included in the signature of

Presburger-arithmetic theories, since a term such as −𝑥 can be recovered through

existential quantification: ∃𝑦 . 𝑦 + 𝑥 = 0. Likewise, modular-arithmetic constraints

are usually implicit: 𝑥 is an even number if and only if ∃𝑦 . 𝑥 = 𝑦 + 𝑦, etc.

problem, which asks whether there exists a rectangular box with

integer sides, and all of whose diagonals are moreover also integers,

is easily encodable within SMT3⟨Z; 0, +,Z2⟩; as this problem has

been open for over two centuries, decidability of this three-variable

fragment should therefore be considered well out of reach. On

the other hand, the two-variable fragments of the various theories

considered in this paper remain open and fascinating avenues for

further research.

2 TECHNICAL PRELIMINARIES
Integer-Valued Polynomials
We refer to [5] for basic properties of univariate integer-valued

polynomials. In particular, a univariate integer-valued polynomial

of degree𝑘 can uniquely be written as an integer linear combination∑𝑘
𝑟=0 𝑓𝑟

(𝑥
𝑟

)
, where

(𝑥
𝑟

)
is the binomial polynomial

𝑥 (𝑥−1) ·· · (𝑥−𝑟+1)
𝑟 !

and is always integer valued. By convention, we take

(𝑥
0

)
= 1 and(𝑥

1

)
= 𝑥 .

Linear Recurrence Sequences
Linear recurrence sequences enable us to describe solution sets of

certain Diophantine equations that arise in our analysis.

A linear recurrence relation over Q is an equation of the form

𝑢𝑛+𝑑 = 𝑎1𝑢𝑛+𝑑−1 + · · · + 𝑎𝑑𝑢𝑛 , (1)

where 𝑎1, . . . , 𝑎𝑑 ∈ Q and 𝑎𝑑 ≠ 0. The initial values 𝑢0, 𝑢1, . . . , 𝑢𝑑−1
and (1) together uniquely define a sequence of rationals ⟨𝑢𝑛⟩∞𝑛=0
as well as a bi-sequence ⟨𝑢𝑛⟩∞𝑛=−∞. We refer to the former as a

linear recurrence sequence (LRS) and the latter as a linear recurrence
bi-sequence (LRBS). The smallest integer 𝑑 for which a sequence

obeys a relation of the form (1) is the order of the sequence.
Note that if 𝑎1, . . . , 𝑎𝑑 , 𝑢0, . . . , 𝑢𝑑−1 ∈ Z and 𝑎𝑑 = ±1, then (1)

implies that the LRBS 𝒖 = ⟨𝑢𝑛⟩∞𝑛=−∞ is entirely contained in Z.
In fact, an old result of Fatou [6] (see also [3, Chapter 7]) implies

that an LRBS 𝒖 satisfying (1), with 𝑎1, . . . , 𝑎𝑑 , 𝑢0, . . . , 𝑢𝑑−1 ∈ Z, is
contained in Z if and only if 𝑎0 = ±1. In this case, we say that 𝒖 is

reversible.
Note that 𝒖 has an exponential-polynomial form

𝑢𝑛 =

𝑠∑︁
𝑖=1

𝑃𝑖 (𝑛)𝜆𝑛𝑖

where 𝜆𝑖 are characteristic roots, that is, roots of the characteristic
polynomial

𝑔(𝑥) = 𝑥𝑑 − 𝑎𝑑−1𝑥𝑑−1 − · · · − 𝑎0 ,
and 𝑃𝑖 are polynomials with algebraic coefficients with degree one

less than the multiplicity of 𝜆𝑖 as a root of 𝑔. We say that 𝒖 is simple
if none of the roots of 𝑔 are repeated, which in turn is equivalent to

each 𝑃𝑖 being constant.

Diophantine Equations
A Diophantine equation is a multivariate polynomial equality with

integer coefficients for which one seeks integer solutions. In this

section we detail some Diophantine equations that arise later, and

how to obtain their solution sets.

Definition 2.1. A Pell equation is a Diophantine equation of the

form𝑤2 −𝑛𝑧2 = 1, where the coefficient 𝑛 > 0 is required not to be
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a perfect square. The solution (𝑤0, 𝑧0) with𝑤0, 𝑧0 > 0 which min-

imises𝑤 is called its fundamental solution. Diophantine equations
of the form𝑤2 − 𝑛𝑧2 = 𝑁 (where 𝑛 > 0 is not a perfect square and

𝑁 ≠ 0) are called generalised Pell equations.

The history of Pell equations goes back to ancient times, and

it is well known that the fundamental solution exists and can be

computed. We refer the reader to [11] for a comprehensive account

and modern developments. We are specifically interested in [11,

Chap. 16.3], which shows that the fundamental solution (𝑤0, 𝑧0) is
the one for which𝑤0, 𝑧0 are positive and𝑤0 + 𝑧0

√
𝑛 is minimal.

Lemma 2.2. [11, Thm. 16.3] Consider the generalised Pell equation
𝑤2 − 𝑛𝑧2 = 𝑁 , and let (𝑤0, 𝑧0) be the fundamental solution of𝑤2 −
𝑛𝑧2 = 1. We can compute a finite set 𝑆 of generating pairs (𝑤𝑖 , 𝑧𝑖 )
such that every solution (𝑤 ′, 𝑧′) to the above generalised Pell equation
satisfies𝑤 ′ +𝑧′

√
𝑛 = (𝑤𝑖 +𝑧𝑖

√
𝑛) (𝑤0 +𝑧0

√
𝑛)𝑚 for some (𝑤𝑖 , 𝑧𝑖 ) ∈ 𝑆

and𝑚 ∈ Z.

Corollary 2.3. The set of solutions (𝑤, 𝑧) to a generalised Pell
equation𝑤2 −𝑛𝑧2 = 𝑁 is obtained as a finite union of pairs of simple
reversible LRBS.

Proof. By Lem. 2.2 every solution (𝑤𝑖,𝑚, 𝑧𝑖,𝑚) satisfies

𝑤𝑖,𝑚 + 𝑧𝑖,𝑚
√
𝑛 = (𝑤𝑖 + 𝑧𝑖

√
𝑛) (𝑤0 + 𝑧0

√
𝑛)𝑚 (2)

for𝑚 ∈ Z and a finite set of pairs (𝑤𝑖 , 𝑧𝑖 ). By equating coefficients

of 1 and

√
𝑛 in (2) and using𝑤2

0
− 𝑛𝑧2

0
= 1, one verifies that

𝑤𝑖,𝑚+2 = 2𝑤0𝑤𝑖,𝑚+1 −𝑤𝑖,𝑚
𝑧𝑖,𝑚+2 = 2𝑤0𝑧𝑖,𝑚+1 − 𝑧𝑖,𝑚 ,

so each ⟨𝑤𝑖,𝑚⟩∞𝑚=−∞ and ⟨𝑧𝑖,𝑚⟩∞𝑚=−∞ define reversible LRBS. These

could only fail to be simple if the discriminant 4𝑤2

0
− 4 = 0, i.e.,

if 𝑤0 = 1. But this would imply 𝑧0 = 0, contradicting the strict

positivity of 𝑧0. Therefore each ⟨𝑤𝑖,𝑚⟩∞𝑚=−∞ and ⟨𝑧𝑖,𝑚⟩∞𝑚=−∞ define

simple reversible LRBS. □

Lemma 2.4. Consider the system of simultaneous generalised Pell
equations 𝑤2 − 𝑛1𝑧2

1
= 𝑁1,𝑤

2 − 𝑛2𝑧2
2
= 𝑁2, where 𝑛1𝑛2 is not a

perfect square and 𝑁1 ≠ 𝑁2. This system has only finitely many
solutions which can moreover be effectively enumerated.

Proof. Writing 𝑧 = 𝑛1𝑛2𝑧1𝑧2, it suffices to prove that 𝑧2 =

𝑛1𝑛2 (𝑤2 − 𝑁1) (𝑤2 − 𝑁2) has only finitely many solutions which

can moreover be effectively enumerated. This is done by a direct

application of [1] or [2, Thm. 4.2]
3
(see in particular the comment

at the beginning of the proof, which clarifies that the case 𝑌 2 =

𝑐 (𝑋 − 𝛼1) · · · (𝑋 − 𝛼𝑛) is also handled by the proof). □

We remark that algorithms to find solutions have been further

refined, see e.g., [22, 23]. Thework of Baker [1] implies the following

lemma for so-called hyperelliptic equations.

Lemma 2.5. Let 𝑘 ≥ 2, 𝑗 ≥ 3, 𝑁 ≠ 0, and 𝑛 be integers. The
Diophantine equation𝑤𝑘 = 𝑛𝑧 𝑗 +𝑁 has only finitely many solutions,
which can moreover be effectively enumerated.

3
The original 1975 print makes a mistake of omission in the statement of the theorem,

which was subsequently corrected in later editions.

3 FIXED-POWER PREDICATES
In this section, we prove the following theorem regarding single-

variable Presburger arithmetic, where ≡𝑚 is a binary relation sym-

bol denoting congruence modulo𝑚, and the predicate Z𝑘 is the set

{𝑛𝑘 | 𝑛 ∈ Z} of perfect 𝑘-th powers.

Theorem 3.1. The theory FO1⟨Z; 0, 1, +,−, <, (≡𝑚)𝑚≥2, (Z𝑘 )𝑘≥2⟩
is decidable.

The core subroutine in the decision procedure solves systems

of Diophantine equations of the form𝑤𝑘 − 𝑛𝑧 𝑗 = 𝑁 . We begin by

describing the pre-processing that leads to its invocation, which is

summarised in the following proposition.

Proposition 3.2. The decision problem in Thm. 3.1 Turing-reduces
to deciding whether there exists 𝑥 ∈ Z that satisfies a given set of
constraints, which includes exactly one constraint of the form 𝑥 > 𝑐 ,
and constraints of the form Z𝑘 (𝑎𝑥 + 𝑏) and ¬Z𝑘 (𝑎𝑥 + 𝑏), where all
coefficients are strictly positive.

Proof. We first prove that deciding the theory indeed reduces

to a constraint satisfaction problem. Any sentence in the theory

may be written in prenex normal form as𝑄𝑥 .𝜓 where𝑄 is a quan-

tifier and 𝜓 is a quantifier-free formula. Note that since ∀𝑥 .𝜓 is

equivalent to ¬∃𝑥 .¬𝜓 , we may reduce to deciding the truth of

existential sentences, i.e., when 𝑄 is ∃. By putting𝜓 in disjunctive

normal form, we may rewrite ∃𝑥 .𝜓 as ∃𝑥 .∨𝑖 𝜑𝑖 where each 𝜑𝑖
is a conjunction of literals, and this may further be rewritten as∨
𝑖 ∃𝑥 . 𝜑𝑖 . In this way we reduce to deciding the satisfiability of

a given conjunction of literals, and we proceed by analysing the

constraints that may arise from literals in the theory.

By suitably rearranging and simplifying, we can assume that

literals are of the form 𝑥 = 𝑐 , 𝑥 < 𝑐 , 𝑥 > 𝑐 , 𝑥 ≡𝑚 𝑐 , Z𝑘 (𝑎𝑥 + 𝑏),
and ¬Z𝑘 (𝑎𝑥 + 𝑏). Observe that this requires rewriting ¬(𝑥 = 𝑐) as
(𝑥 < 𝑐) ∨ (𝑥 > 𝑐), ¬(𝑎𝑥 ≡𝑚 𝑏) as ∨𝑚−1

𝑟=0,𝑟≠𝑏
𝑎𝑥 ≡𝑚 𝑟 , and 𝑎𝑥 ≡𝑚 𝑏

as

∨𝑚−1
𝑟=0,𝑎𝑟≡𝑚𝑏 𝑥 ≡𝑚 𝑟 .

To eliminate the modular-arithmetic constraints, we use an ex-

tended version of the Chinese Remainder Theorem (see e.g., [12,

Thm. 3.12]) to coalesce the modular-arithmetic constraints 𝑥 ≡𝑚𝑖
𝑐𝑖

into a single conjunct 𝑥 ≡𝑀 𝑟 , or prove that they are infeasible. We

now make this constraint implicit by replacing all occurrences of 𝑥

by𝑀𝑦 + 𝑟 , and simplifying the resulting expressions.

We can assume 𝑥 = 𝑐 does not occur, and that the only inequal-

ity that occurs is 𝑥 > 𝑐 for some 𝑐 ∈ Z. (If a term 𝑥 = 𝑐 does

occur, we simply perform the obvious substitution, reducing to a

quantifier-free formula.) If the remaining conjuncts imply that 𝑥

is in a bounded interval, i.e., there are terms 𝑥 > 𝑐1 and 𝑥 < 𝑐2,

this case is readily solved by finite inspection. Thus at most one

inequality appears. If no such constraint occurs, we simply case

split by considering in turn 𝑥 < 0, and 𝑥 = 0, and 𝑥 > 0. This proves

our claim. If no such inequality occurs and 𝑥 < 𝑐 , the obvious linear

substitution 𝑥 ↦→ −𝑥 turns this term into one of the form 𝑥 > 𝑐 .

We finally address the positivity of the coefficients of 𝑥 in the

power predicates. If 𝑘 is odd, we can assume that in all instances

(positive and negative) of Z𝑘 (𝑎𝑥 +𝑏), the coefficient 𝑎 is positive, by

possibly replacing Z𝑘 (𝑎𝑥 +𝑏) by Z𝑘 (−𝑎𝑥 −𝑏). If 𝑘 is even and 𝑎 < 0

in a positive occurrence of such an atom, we have an upper bound

on 𝑥 (as 𝑥 is assumed to be lower-bounded), and the conjunction
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can be handled trivially. If 𝑎 < 0 for a term ¬Z𝑘 (𝑎𝑥 + 𝑏), this term
always holds when 𝑥 exceeds a computable bound and can thus be

disposed of straightforwardly. We can therefore reduce to the case

where all coefficients of 𝑥 in the power predicates are positive. □

Wemake a further observation: certain power constraints can be

“redundant” in view of other power constraints. For example, con-

sider the following three constraints: Z2 (𝑥), Z2 (3𝑥), and Z4 (16𝑥).
If Z4 (16𝑥) holds, then Z2 (𝑥) also holds and Z2 (3𝑥) does not. We

therefore say that Z2 (𝑥) and Z2 (3𝑥) are both redundant with respect
to Z4 (16𝑥), since the (positive) truth of Z4 (16𝑥) uniquely deter-

mines the truth values of the other two constraints. We formalise

this idea in the following definition:

Definition 3.3. The constraint Z𝑘 (𝑐𝑥+𝑑) is redundant with respect
to Z𝑗 (𝑎𝑥 + 𝑏) if 𝑘 | 𝑗 and 𝑎𝑑 = 𝑏𝑐 .

In general, if Z𝑘 (𝑐𝑥 +𝑑) is redundant with respect to Z𝑗 (𝑎𝑥 + 𝑏)
then the (positive) truth of Z𝑗 (𝑎𝑥 +𝑏) determines the truth value of

Z𝑘 (𝑐𝑥+𝑑). Indeed, if 𝑎𝑥+𝑏 is a perfect 𝑗-th power, then in particular
it is a perfect 𝑘-th power, and so is 𝑐𝑘 (𝑎𝑥 +𝑏) = 𝑎𝑐𝑘−1 (𝑐𝑥 +𝑑) (using
𝑎𝑑 = 𝑏𝑐). We thus have that 𝑐𝑥 + 𝑑 is a perfect 𝑘-th power if and

only if 𝑎𝑐𝑘−1 is, and the latter can be effectively checked. The

above discussion shows that we can identify and discard (positive

or negative) constraints that are redundant with respect to some

given positive constraint.

In the same vein, we define the notion of similar constraints.

Definition 3.4. The constraint Z𝑗 (𝑐𝑥 +𝑑) is similar to a constraint
Z𝑘 (𝑎𝑥 + 𝑏) if 𝑎𝑑 = 𝑏𝑐 .

Note that the notion of being similar is a transitive property.

Though similar constraints cannot be as immediately discarded as

redundant constraints, we will show that a conjunction of similar

positive constraints can be coalesced into a single positive con-

straint.

For the proof, we require the notion of 𝑝-adic valuation. Recall
that for a prime 𝑝 , the 𝑝-adic valuation of a non-zero integer 𝑛,

denoted 𝔳𝑝 (𝑛), is equal to the highest power of 𝑝 that divides 𝑛,

e.g., 𝔳2 (20) = 2. We take 𝔳𝑝 (0) = ∞. The valuation 𝔳𝑝 extends to

rational numbers as 𝔳𝑝 (𝑚/𝑛) = 𝔳𝑝 (𝑚) − 𝔳𝑝 (𝑛).

Lemma 3.5. Given similar constraints Z𝑘1 (𝑎1𝑥+𝑏1), . . . ,Z𝑘𝑙 (𝑎𝑙𝑥+
𝑏𝑙 ), either they are not simultaneously satisfiable, or we may find a
constraint Z𝐾 (𝐴𝑥 + 𝐵) that is satisfied if and only if Z𝑘𝑖 (𝑎𝑖𝑥 + 𝑏𝑖 ) is
satisfied for all 1 ≤ 𝑖 ≤ 𝑙 . Furthermore, 𝐾 = lcm(𝑘1, . . . , 𝑘𝑙 ), where
lcm denotes the least common multiple.

Proof. Assume that Z𝑘1 (𝑎1𝑥 +𝑏1), . . . ,Z𝑘𝑙 (𝑎𝑙𝑥 +𝑏𝑙 ) are similar,

and let 𝑏/𝑎 with 𝑎 > 0 be the reduced form of the rational constant

𝑏𝑖/𝑎𝑖 (which is independent of 𝑖 as 𝑎𝑖𝑏 𝑗 = 𝑏𝑖𝑎 𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑙 ).
If all constraints are satisfied, we have that 𝔳𝑝 (𝑎𝑖𝑥 + 𝑏𝑖 ) ≡ 0

mod 𝑘𝑖 for all primes 𝑝 and indices 𝑖 = 1, . . . , 𝑙 . This can be rear-

ranged as

𝔳𝑝 (𝑎𝑥 + 𝑏) ≡ 𝔳𝑝 (𝑎) − 𝔳𝑝 (𝑎𝑖 ) mod 𝑘𝑖 (3)

for each 𝑝, 𝑖 . Note that 𝔳𝑝 (𝑎) − 𝔳𝑝 (𝑎𝑖 ) ≡ 0 mod 𝑘𝑖 holds for all 𝑖

for all but finitely many primes that divide some 𝑎𝑖 — let us call

such primes interesting. For each interesting prime 𝑝 , we apply

the (extended) Chinese Remainder Theorem [12, Thm. 3.12] to

determine whether the constraints given by (3) for 𝑖 = 1, . . . , 𝑙 are

simultaneously satisfiable, and if so, compute a residue 𝑟𝑝 such

that they hold if and only if 𝔳𝑝 (𝑎𝑥 + 𝑏) ≡ −𝑟𝑝 mod 𝐾 , where

𝐾 = lcm(𝑘1, . . . , 𝑘𝑙 ). This is equivalent to (𝑎𝑥 + 𝑏)∏𝑝 𝑝
𝑟𝑝

being a

perfect 𝐾-th power. By construction, Z𝐾 ((𝑎𝑥 + 𝑏)∏𝑝 𝑝
𝑟𝑝 ) holds if

and only if Z𝑘𝑖 (𝑎𝑖𝑥 + 𝑏𝑖 ) holds for all 1 ≤ 𝑖 ≤ 𝑙 . □

Remark 1. If Z𝑘1 (𝑎1𝑥+𝑏1), . . . ,Z𝑘𝑙 (𝑎𝑙𝑥+𝑏𝑙 ) are similar and simul-

taneously satisfiable, by Lem. 3.5 we may discard each Z𝑘𝑖 (𝑎𝑖𝑥 +𝑏𝑖 )
to be replaced by the single constraint Z𝐾 (𝐴𝑥 + 𝐵). We say that we

coalesce Z𝑘1 (𝑎1𝑥 + 𝑏1), . . . ,Z𝑘𝑙 (𝑎𝑙𝑥 + 𝑏𝑙 ) into Z𝐾 (𝐴𝑥 + 𝐵).

In the sequel, we shall assume there are no pairs of redundant

constraints or similar positive constraints: we first discard redun-

dant constraints, then coalesce similar positive constraints into a

single positive constraint, and then again discard redundant con-

straints. As an example, if we hadZ2 (5𝑥),Z3 (4𝑥),¬Z6 (24𝑥), the last
constraint becomes redundant only after the first two are coalesced

into Z6 (500𝑥).
Once the pre-processing step is completed, our strategy for solv-

ing the satisfiability problem consists in handling the various con-

straints (𝑥 > 𝑐 , positive constraints of the form Z𝑘 (𝑎𝑥 + 𝑏), and
negative constraints of the form ¬Z𝑘 (𝑎𝑥 + 𝑏)) sequentially in the

order given. More precisely, starting with a candidate solution set

for 𝑥 of Z, we iteratively shrink this solution set until a definitive

conclusion can be drawn, i.e., the solution set either becomes empty

(or finite, in which case we finalise the decision by inspection), or

infinite and no further positive constraints remain, at which point

we conclude that the system is satisfiable. Intuitively, the justifica-

tion of correctness is as follows. Denote the solution set at a given

stage by 𝑆 . If 𝑆 is infinite, then upon taking account of a further

positive constraint of the form Z𝑘 (𝑎𝑥 + 𝑏), the resulting new so-

lution set can be computed and furthermore is either finite, or is

infinite and has relative density 0 in 𝑆 . If the solution set is infinite

and no further positive constraint remains, we can show that no

conjunction of negative constraints can fully deplete the solution

set, and the system is therefore automatically satisfiable.

To formalise this argument, we first analyse the solution sets

arising from positive constraints.

Proposition 3.6. The solution set of all 𝑥 ∈ Z satisfying 𝑙 non-
similar constraints of the form Z𝑘𝑖 (𝑎𝑖𝑥 +𝑏𝑖 ) with 𝑎𝑖 > 0 for 1 ≤ 𝑖 ≤ 𝑙
is effectively computable and has the following structure.

(1) If 𝑙 = 0 then 𝑆 = Z.
(2) If 𝑙 = 1 then either 𝑆 = ∅ or 𝑆 is a finite union of sets of the

form 𝑓 (Z) where 𝑓 is a polynomial of degree 𝑘1 with a positive
leading coefficient.

(3) If 𝑙 = 2 then either 𝑆 = ∅ or one of the following holds.
(a) If max{𝑘1, 𝑘2} > 2 then 𝑆 is finite.
(b) If 𝑘1, 𝑘2 = 2 then 𝑆 is a union of finitely many simple re-

versible LRBS.
(4) If 𝑙 ≥ 3 then 𝑆 is finite.

Proof. Case (1) is obvious.
Case (2): If 𝑙 = 1 then 𝑆 = ∅ if 𝑏1 is not a 𝑘1-th power mod 𝑎1,

and this can be checked algorithmically by enumerating all 𝑘1-th

powers mod 𝑎1. Conversely, if 𝑏1 is a 𝑘1-th power mod 𝑎1 then

there are infinitely many solutions and they can be parametrised
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as follows. Pick 𝑢 ∈ N such that 𝑢𝑘1 ≡ 𝑏1 mod 𝑎1. Then consider

the polynomial 𝑓𝑢,𝑘1,𝑎1 ∈ Z[𝑡] that satisfies

(𝑢 + 𝑡𝑎1)𝑘1 = 𝑎1 𝑓𝑢,𝑘1,𝑎1 (𝑡) + 𝑏1 .
Then 𝑓𝑢,𝑘1,𝑎1 has degree 𝑘1 and a positive leading coefficient (as

𝑎1 > 0). Every 𝑡 ∈ Z gives rise to a solution 𝑥 = 𝑓𝑢,𝑘1,𝑎1 (𝑡) of
Z𝑘 (𝑎1𝑥 + 𝑏1). Conversely, whenever 𝑥 ∈ Z is a solution, then

(𝑎1𝑥 + 𝑏1)1/𝑘1 must be of the form 𝑢 + 𝑡𝑎1 for some 𝑢 such that

𝑢𝑘1 ≡ 𝑏1 mod 𝑎1 and some 𝑡 ∈ Z. Therefore the solution set is

exactly

𝑆 =
⋃

0≤𝑢<𝑎1
𝑢𝑘1≡𝑏1 mod 𝑎1

𝑓𝑢,𝑘1,𝑎1 (Z) .

Case (3): Suppose 𝑙 = 2 and (without loss of generality) 𝑘2 ≥ 𝑘1.

We have the system

𝑎1𝑥 + 𝑏1 = 𝑦𝑘1
1

∧ 𝑎2𝑥 + 𝑏2 = 𝑦𝑘2
2
. (4)

By taking a linear combination, we eliminate 𝑥 to obtain the system

𝑎2𝑦
𝑘1
1

− 𝑎1𝑦𝑘2
2

= 𝑎2𝑏1 − 𝑎1𝑏2 (5)

𝑦
𝑘1
1

≡𝑎1 𝑏1 ∧ 𝑦
𝑘2
2

≡𝑎2 𝑏2 . (6)

By multiplying (5) by 𝑎
𝑘1−1
2

, and setting𝑤 ≔ 𝑎2𝑦1 and 𝑧 ≔ 𝑦2 we

obtain the system

𝑤𝑘1 − (𝑎1𝑎𝑘1−1
2

)𝑧𝑘2 = 𝑎𝑘1−1
2

(𝑎2𝑏1 − 𝑎1𝑏2) (7)∨
0≤𝑟𝑖<𝑎𝑖

𝑟
𝑘
1

1
≡𝑎

1
𝑏1, 𝑟

𝑘
2

2
≡𝑎

2
𝑏2

𝑤 ≡𝑎1𝑎2 𝑎2𝑟1 ∧ 𝑧 ≡𝑎2 𝑟2 . (8)

Case (3a): If𝑘2 ≥ 3 then (7) satisfies the conditions of Lem. 2.5 (note

that 𝑎2𝑏1 − 𝑎1𝑏2 ≠ 0 by non-similarity) and so there are finitely

many effectively computable solutions, which may be checked

against the modular constraints.

Case (3b): Suppose 𝑘1 = 𝑘2 = 2. If 𝑎1𝑎
𝑘1−1
2

is a perfect square,

then the left-hand side of (7) may be factored using the difference

of two squares, and by considering prime factorisations there are

finitelymany solutions. Otherwise, if𝑎1𝑎
𝑘1−1
2

is not a perfect square,

(7) comprises a generalised Pell equation, and by Cor. 2.3 the so-

lutions (𝑤, 𝑧) are exactly the value sets of finitely many pairs of

simple reversible LRBS.

Since reversible LRBS are periodic modulo 𝑁 for any 𝑁 ≥ 1,

given an LRBS 𝒖 one can effectively find an integer 𝑀 such that

each subsequence ⟨𝑢𝑀𝑛+𝑠 ⟩∞𝑛=−∞ is constant mod 𝑎1𝑎2 for each

0 ≤ 𝑠 ≤ 𝑀 − 1. Therefore the solution set of pairs (𝑤, 𝑧) satisfying
(7) and (8) is comprised of a finite union of such subsequences

(or possibly the empty set if none of the modular constraints are

satisfied).

For every solution pair (𝑤, 𝑧), we recover a solution 𝑥 to the

original system (4) by 𝑥 =
𝑧𝑘2−𝑏2
𝑎2

. Since for any simple LRBS 𝒖,

we have
𝑢𝑘2−𝑏2
𝑎2

is also a simple LRBS, and moreover for any 𝑧

satisfying the modular constraints (8) we have
𝑧𝑘2−𝑏2
𝑎2

is an integer,

the set 𝑆 of solutions 𝑥 is a union of finitely many simple reversible

LRBS.

Case (4): If 𝑙 ≥ 3 then if max{𝑘1, 𝑘2, 𝑘3} ≥ 3 then 𝑆 is finite and

effectively computable by Case (3). Otherwise, 𝑘1 = 𝑘2 = 𝑘3 = 2,

and by the same process as in Case (3) we obtain a system

𝑎2𝑦
2

1
− 𝑎1𝑦22 = 𝑎2𝑏1 − 𝑎1𝑏2 (9)

𝑎3𝑦
2

1
− 𝑎1𝑦23 = 𝑎3𝑏1 − 𝑎1𝑏3 (10)

along with some modular constraints which we omit. By multiply-

ing (9) by 𝑎2𝑎
2

3
and (10) by 𝑎3𝑎

2

2
, and setting𝑤 ≔ 𝑎2𝑎3𝑦1, 𝑧2 ≔ 𝑦2,

𝑧3 ≔ 𝑦3, we obtain the simultaneous equations

𝑤2 − 𝑎1𝑎2𝑎23𝑧
2

2
= 𝑎2𝑎

2

3
(𝑎2𝑏1 − 𝑎1𝑏2) (11)

𝑤2 − 𝑎1𝑎22𝑎3𝑧
2

3
= 𝑎2

2
𝑎3 (𝑎3𝑏1 − 𝑎1𝑏3) . (12)

If either 𝑎1𝑎2𝑎
2

3
or 𝑎1𝑎

2

2
𝑎3 is a perfect square then there are finitely

many solutions by factoring the left-hand side of (11) or (12) using

the difference of two squares. Otherwise, noting that 𝑎2𝑏1 − 𝑎1𝑏2
and 𝑎3𝑏1 − 𝑎1𝑏3 are non-zero by non-similarity, we have a system

of simultaneous Pell equations in𝑤, 𝑧2, 𝑧3, which has finitely many

effectively computable solutions by Lem. 2.4, so 𝑆 is finite and

effectively computable. □

Prop. 3.6 already gives an algorithm to decide the satisfiability

of any set of constraints of the form 𝑥 > 𝑐 and positive constraints

Z𝑘 (𝑎𝑥 + 𝑏). We now show that when the solution set is infinite,

negative constraints can only be violated on a subset of relative

density 0 within the solution set, meaning that arbitrarily many

negative constraints will still leave infinitely many solutions overall.

Definition 3.7. Let ∅ ≠ 𝑇 ⊆ N and 𝑆 ⊆ 𝑇 . Define the (upper)
density of 𝑆 inside 𝑇 to be

lim sup

𝑛→∞

|𝑆 ∩ [0, 𝑛] |
|𝑇 ∩ [0, 𝑛] | .

First we need an elementary lemma. Given a function 𝑓 : Z → Z,
define 𝑆𝑓 (𝑐, 𝑛) = Im(𝑓 ) ∩ [𝑐, 𝑛].

Lemma 3.8. Suppose 𝑓 ∈ Z[𝑥] has degree 𝑑 and a positive leading
coefficient, 𝑐1, 𝑐2, 𝑁 > 0, and 𝑔 : Z → Z is a function such that for
all |𝑦 | ≥ 𝑁 we have |𝑔(𝑦) | > 𝑐2𝑦𝑑+1. Then we have

lim sup

𝑛→∞

|𝑆𝑔 (𝑐1, 𝑛) ∩ 𝑆𝑓 (𝑐1, 𝑛) |
|𝑆𝑓 (𝑐1, 𝑛) |

= 0 .

Proof. It is sufficient to show that

lim sup

𝑛→∞

|𝑆𝑔 (0, 𝑛) |
|𝑆𝑓 (0, 𝑛) |

= 0 . (13)

There is a constant 𝐶 > 0 such that 𝑓 (𝑦) ≤ 𝐶𝑦𝑑 for all 𝑦 ∈ N. Thus
|𝑆𝑓 (0, 𝑛) | ≥ (𝑛/𝐶)1/𝑑 while |𝑆𝑔 (0, 𝑛) | ≤ 𝑁 + (𝑛/𝑐2)1/(𝑑+1) . Then
the result follows when considering |𝑆𝑓 (0, 𝑛) | > 0

|𝑆𝑔 (0, 𝑛) |
|𝑆𝑓 (0, 𝑛) |

≤ 𝑁 + (𝑛/𝑐2)1/(𝑑+1)

(𝑛/𝐶)1/𝑑
. □

Proposition 3.9. Let 𝑆 be the set of solutions 𝑥 to a system of
constraints given by 𝑥 > 𝑐 and non-similar constraints Z𝑘𝑖 (𝑎𝑖𝑥 + 𝑏𝑖 )
for 𝑖 = 1, . . . , 𝑙 , 𝑎𝑖 > 0. If 𝑆 is infinite, then the subset 𝑆 ′ ⊆ 𝑆 for which
any non-redundant negative constraint ¬Z𝑘 (𝑎𝑥 + 𝑏) is violated has
density 0 relative to 𝑆 .



Conference’17, July 2017, Washington, DC, USA Trovato et al.

Proof. A negative constraint¬Z𝑘 (𝑐𝑥+𝑑) being violated is equiv-
alent to the positive constraint Z𝑘 (𝑐𝑥 + 𝑑) holding. It is sufficient

to prove the result for a single negative constraint ¬Z𝑘 (𝑐𝑥 + 𝑑) as
the union of finitely many null-density sets again has null density.

We go through the cases given by Prop. 3.6.

Case (1): 𝑙 = 0. Then 𝑆 = [𝑐 +1,∞). The discarded set 𝑆 ′ with the
constraint Z𝑘 (𝑎𝑥 + 𝑏) added becomes a finite union of sets of the

form 𝑔(Z) ∩ [𝑐 + 1,∞) where 𝑔 is a polynomial with deg𝑔 = 𝑘 ≥ 2

and positive leading coefficient, by Prop. 3.6. Apply Lem. 3.8 with

𝑓 (𝑦) = 𝑦 and each 𝑔 to conclude 𝑆 ′ has density 0 relative to 𝑆 .

Case (2): 𝑙 = 1. First, suppose Z𝑘 (𝑎𝑥 + 𝑏) is similar (but not

redundant) to Z𝑘1 (𝑎1𝑥 + 𝑏1). By Lem. 3.5, these constraints get

coalesced into Z𝐾 (𝐴𝑥 + 𝐵) where 𝐾 is the least common multiple

of 𝑘 and 𝑘1. Then the solution set 𝑆 to 𝑥 > 𝑐 and Z𝑘1 (𝑎1𝑥 + 𝑏1) is a
finite union of sets of the form 𝑓 (Z) ∩ [𝑐 + 1,∞) for a polynomial 𝑓

with positive leading coefficient and degree 𝑘1, and the discarded

set 𝑆 ′ to 𝑥 > 𝑐 and Z𝐾 (𝐴𝑥 + 𝐵) is a finite union of sets of the form

𝑔(Z) ∩ [𝑐 + 1,∞) for polynomials 𝑔 of degree 𝐾 > 𝑘1. Therefore

we may again apply Lem. 3.8 with 𝑓 , 𝑔 to conclude 𝑆 ′ has density 0

relative to 𝑆 .

Otherwise, suppose Z𝑘 (𝑎𝑥 + 𝑏) is not similar to Z𝑘1 (𝑎1𝑥 + 𝑏1).
Then by Prop. 3.6, if the discarded set 𝑆 ′ to 𝑥 > 𝑐,Z𝑘1 (𝑎1𝑥 +
𝑏1),Z𝑘 (𝑎𝑥 + 𝑏) is infinite, then 𝑘 = 𝑘1 = 2 and 𝑆 ′ is a union of

finitely many simple reversible LRBS restricted to [𝑐 + 1,∞). For
any simple reversible LRBS ⟨𝑢𝑛⟩∞𝑛=−∞, we have that |𝑢𝑛 | grows
exponentially as |𝑛 | → ∞. Therefore we may apply Lem. 3.8 to 𝑓

and the function 𝑔(𝑦) = 𝑢𝑦 for each LRBS 𝒖 forming part of the

discarded set of 𝑆 ′, to get that 𝑆 ′ has density 0 relative to 𝑆 .

Case (3): 𝑙 = 2. The only way in which 𝑆 is infinite is if 𝑘1 =

𝑘2 = 2. In that case, it is impossible for 𝑆 ′ to be infinite. Indeed, by

Prop. 3.6 we have that 𝑆 ′ is infinite only if there are at most two non-

similar constraints among Z𝑘1 (𝑎1𝑥 +𝑏1),Z𝑘2 (𝑎2𝑥 +𝑏2),Z𝑘 (𝑎𝑥 +𝑏),
meaning that (without loss of generality) Z𝑘 (𝑎𝑥 + 𝑏) is similar to

Z𝑘1 (𝑎1𝑥 + 𝑏1). By Lem. 3.5 we can coalesce these constraints into

Z𝐾 (𝐴𝑥 + 𝐵), where 𝐾 is the least common multiple of 𝑘, 𝑘1. But by

non-redundancy, we cannot have 𝑘 | 𝑘1 nor 𝑘1 | 𝑘 so 𝐾 > 𝑘1 = 2.

Therefore by Prop. 3.6 𝑆 ′ is finite, and so trivially has density 0

relative to 𝑆 . □

Prop. 3.9 was the final step in our proof of Thm. 3.1, to the effect

that FO1⟨Z; 0, 1, +,−, <, (≡𝑚)𝑚>1, (Z𝑘 )𝑘>1⟩ is decidable. Indeed, in
summary, we use Prop. 3.2 to reduce to considering satisfiability

of constraints of the form 𝑥 > 𝑐,Z𝑘 (𝑎𝑥 + 𝑏),¬Z𝑘 (𝑎𝑥 + 𝑏). We

may further reduce to the case in which the positive constraints

Z𝑘 (𝑎𝑥 + 𝑏) are all non-similar, and all power constraints are non-

redundant with respect to each other. Prop. 3.6 shows that the

solution set to any number of positive constraints Z𝑘 (𝑎𝑥 + 𝑏) is
effectively computable, and in the case for which the solution set is

infinite, Prop. 3.9 shows that the addition of any negative constraints

¬Z𝑘 (𝑎𝑥+𝑏) removes at most a subset of null density, so the solution

set remains infinite. Meanwhile if the solution set is finite, one

solves the decision problem by simply enumerating every solution

and checking against all constraints.

4 QUADRATIC AND CUBIC PREDICATES
In this section, we adapt the techniques used to prove Thm. 3.1 to

decide single-variable Presburger arithmetic expanded with multi-

ple predicates (R𝑖 )𝑖 , where each predicate R𝑖 corresponds to the

value set of an integer-valued univariate polynomial 𝑓𝑖 of degree at

most 3, i.e., R𝑖 (𝑥) holds if and only if there exists an integer 𝑢 such

that 𝑓𝑖 (𝑢) = 𝑥 . Formally, we prove the following.

Theorem 4.1. Let (R𝑖 )𝑖 be predicates corresponding to value sets
of integer-valued polynomials (𝑓𝑖 )𝑖 of degree at most 3. Then the
theory FO1⟨Z; 0, 1, +,−, <, (≡𝑚)𝑚≥2, (R𝑖 )𝑖 ⟩ is decidable.

Before proceeding with the technical proof, we record a few

simplifying assumptions. These assumptions establish an analogue

of Prop. 3.2 (i.e., the pre-processing step) mutatis mutandis. More-

over, a polynomial 𝑓𝑖 of degree 0 is constant and so R𝑖 (𝑎𝑥 + 𝑏) is
equivalent to 𝑎𝑥 + 𝑏 = 𝑓𝑖 (0), and for a polynomial 𝑓𝑖 (𝑡) = 𝑑𝑡 + 𝑒 of
degree 1, R𝑖 (𝑎𝑥 +𝑏) is equivalent to 𝑎𝑥 +𝑏 ≡ 𝑒 (mod 𝑑). Hence we
can assume that the polynomials 𝑓𝑖 are of degree 2 or 3. In summary,

we obtain the following.

Lemma 4.2. The decision problem in Thm. 4.1 Turing-reduces to
deciding whether there exists 𝑥 > 0 satisfying a conjunction of exactly
one constraint 𝑥 > 𝑐 together with other constraints of the form
R𝑖 (𝑎𝑥 + 𝑏) and ¬R𝑖 (𝑎𝑥 + 𝑏), where R𝑖 = 𝑓𝑖 (Z) for a polynomial 𝑓𝑖
of degree two or three.

Next we want to restrict the kinds of polynomials that can appear.

Recall that a polynomial 𝑓 (𝑡) = 𝑐𝑑𝑡𝑑 +𝑐𝑑−1𝑡𝑑−1+· · ·+𝑐0 is depressed
if its second-highest coefficient, 𝑐𝑑−1, is zero.

Let R(𝑎𝑥 + 𝑏, 𝑞, 𝑟 ) denote the predicate {𝑓 (𝑞𝑢 + 𝑟 ) | 𝑢 ∈ Z}. We

add this ternary predicate in our signature and henceforth always

assume that all our polynomials are depressed and monic.

Lemma 4.3. For any integer-valued polynomial 𝑓 of degree at
most 3 and corresponding predicate R and constants 𝑎, 𝑏 ∈ Z, we can
compute a depressed monic polynomial ˜𝑓 with integer coefficients,
together with constants 𝑎, ˜𝑏, 𝑞, 𝑟 , such that for all 𝑥 , R(𝑎𝑥 + 𝑏) is
equivalent to ˜R(𝑎𝑥 + ˜𝑏, 𝑞, 𝑟 ).

Proof. We tackle the degree-3 case, the degree-2 case being

similar and simpler.

The predicateR(𝑎𝑥+𝑏) is equivalent to∃𝑢 . 𝑐3𝑢3+𝑐2𝑢2+𝑐1𝑢+𝑐0 =
𝑎𝑥 + 𝑏. We can multiply through by an appropriate integer and

assume without loss of generality that 𝑐3, . . . , 𝑐0 are integers, and

𝑐3 is positive. We “complete the cube” by multiplying through by

27𝑐2
3
and write the equivalent statement

∃𝑢 . (3𝑐3𝑢 + 𝑐2)3 + 27𝑐1𝑐
2

3
𝑢 + 27𝑐0𝑐

2

3
− 9𝑐2

2
𝑐3𝑢 − 𝑐3

2
= 27𝑐2

3
(𝑎𝑥 + 𝑏),

which can be further rearranged as

∃𝑢 . (3𝑐3𝑢 + 𝑐2)3 + (9𝑐1𝑐3 − 3𝑐2
2
) (3𝑐3𝑢 + 𝑐2)

= 27𝑎𝑐2
3
𝑥 + (27𝑏𝑐2

3
− 27𝑐0𝑐

2

3
+ 9𝑐1𝑐2𝑐3 − 2𝑐3

2
) ,

or in other words ∃𝑢 . ˜𝑓 (3𝑐3𝑢 + 𝑐2) = 𝑎𝑥 + ˜𝑏. □

We continue following a very similar strategy to find a witness

𝑥 that satisfies all constraints as in Sec. 3. Each predicate R𝑖 can
occur both positively and negatively, and we want to show that we

can enumerate a solution set satisfying positive constraints when
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it is finite; and when it is infinite, adding a further “non-similar”

positive constraint would in all but one case restrict the solution

set to a subset of relative null density. In the exceptional case, the

solutions to the positive constraints are parametrised as an LRS,

and the discarded indices form arithmetic progressions. Thus, in

this case too, we can effectively determine whether there remains

a value of 𝑥 not discarded by the negative constraints.

As we did previously, we need to account for redundant con-

straints, but it is not immediately clear what a meaningful definition

of redundancy is. Recall that a multivariate polynomial is absolutely
irreducible if it is irreducible over the complex numbers.

Definition 4.4. The constraint R1 (𝑎1𝑥 + 𝑏1) is redundant with
respect to R2 (𝑎2𝑥+𝑏2) if deg(𝑓1) | deg(𝑓2) and 𝑎2 𝑓1 (𝑢1)−𝑎1 𝑓2 (𝑢2)−
𝑎2𝑏1 + 𝑎1𝑏2 is not absolutely irreducible.

As the polynomials defining our predicates have degrees 2 or

3, two constraints can only be in a redundancy relationship if the

underlying polynomials have the same degree. We now have:

Proposition 4.5. Let R1 (𝑎1𝑥 + 𝑏1) be redundant with respect to
R2 (𝑎2𝑥 + 𝑏2). Then 𝑎1𝑏2 = 𝑎2𝑏1.

Proof. Recall from Lem. 4.3, we assume that 𝑓1 and 𝑓2 are de-

pressed and satisfy 𝑓𝑖 (0) = 0. Thus, when deg(𝑓1) = deg(𝑓2) = 2,

write 𝑓𝑖 (𝑢𝑖 ) = 𝑐𝑖𝑢2𝑖 for 𝑖 = 1, 2. Then we have, by the definition of

absolutely reducibility:

𝐴1𝑢
2

1
−𝐴2𝑢

2

2
+ 𝑎1𝑏2 − 𝑎2𝑏1 = 𝐴1 (𝑢1 +𝐶2𝑢2 + 𝐷) (𝑢1 +𝐶′

2
𝑢2 + 𝐷′) ,

where𝐴1 = 𝑎2𝑐1 and𝐴2 = 𝑎1𝑐2 are non-zero. Then,𝐴1𝐶2𝐶
′
2
= −𝐴2,

𝐶2 +𝐶′
2
= 0, 𝐷 +𝐷′ = 0, 𝐷𝐶′

2
+𝐷′𝐶2 = 0, and𝐴1𝐷𝐷

′ = 𝑎1𝑏2 −𝑎2𝑏1.
Thus the second and third equations imply that 𝐷 = −𝐷′

and

𝐶2 = −𝐶′
2
, and the first implies that 𝐶2 ≠ 0 as 𝐴2 ≠ 0. Hence the

fourth equation implies that 𝐷 = 0 and so the last equation yields

𝑎1𝑏2 − 𝑎2𝑏1 = 0.

When deg(𝑓1) = deg(𝑓2) = 3, let 𝑓𝑖 (𝑢𝑖 ) = 𝑐𝑖𝑢3𝑖 + 𝑑𝑖𝑢𝑖 for 𝑖 = 1, 2.

Then we have by absolute reducibility:

𝐴1𝑢
3

1
+ 𝐵1𝑢1 −𝐴2𝑢

3

2
− 𝐵2𝑢2 + 𝑎1𝑏2 − 𝑎2𝑏1

= 𝐴1 (𝑢1 +𝐶2𝑢2 + 𝐷) (𝑢21 + 𝐸1𝑢1𝑢2 +𝐶
′
2
𝑢2
2
+ 𝐸2𝑢1 + 𝐸3𝑢2 + 𝐷′) ,

where 𝐴1 = 𝑎2𝑐1 and 𝐴2 = 𝑎1𝑐2 are non-zero, 𝐵1 = 𝑎2𝑑1 and

𝐵2 = 𝑎1𝑑2. Then, 𝐴1𝐶2𝐶
′
2
= −𝐴2 and 𝐴1𝐷𝐷

′ = 𝑎1𝑏2 − 𝑎2𝑏1 and
𝐸1 + 𝐶2, 𝐸2 + 𝐷 , 𝐶′

2
+ 𝐸1𝐶2, 𝐸3 + 𝐶2𝐸2 + 𝐸1𝐷 , 𝐶2𝐸3 + 𝐷𝐶′

2
are all

zero. Substituting 𝐸1 = −𝐶2 and 𝐸2 = −𝐷 gives that 𝐶′
2
− 𝐶2

2
,

𝐸3 − 2𝐶2𝐷 , and𝐶2𝐸3 +𝐷𝐶′
2
are all zero. Hence, as𝐶2 ≠ 0 as𝐴2 ≠ 0,

𝐸3 = 𝐶2𝐷 , which forces that 𝐶2𝐷 = 0 and thus that 𝐷 = 0. Thus

𝑎1𝑏2 − 𝑎2𝑏1 = 0. □

In the case of redundancy with cubic polynomials, we can thus

solve the (Diophantine) equation 𝑎2 𝑓1 (𝑢1) − 𝑎1 𝑓2 (𝑢2) = 0 via the

factorisation𝐴1𝑥
3+𝐵1𝑥 −𝐴2𝑦

3−𝐵2𝑦 = 𝐴1 (𝑢1+𝑚𝑢2) (𝑢2
1
−𝑚𝑢1𝑢2+

𝑚2𝑢2
2
+ 𝐵1/𝐴1), where 𝑚 = −𝐵1/𝐵2 = −(𝐴2/𝐴1)1/3 is non-zero.

This follows using the notation in the proof above. We shall assume

that𝑚 is rational. This is of course the case when 𝐵2 ≠ 0, or when

𝐵1 = 𝐵2 = 0 and𝐴2/𝐴1 is a perfect cube. Otherwise, it is impossible

for 𝐴1𝑥
3 −𝐴2𝑦

3 = 0 to have integer solutions.

Looking at the proof of the lemma above, when two redundant

predicates are both satisfied, a linear relationship between 𝑢1 and

𝑢2 has to hold, or in the cubic case,𝑢1 and𝑢2 have to lie on a certain

conic. This conic is𝑢2
1
−𝑚𝑢1𝑢2+𝑚2𝑢2

2
+𝐵1/𝐴1 = 0, which represents

an ellipse, which thus contains finitely many integer points (𝑢1, 𝑢2)
that we can effectively compute. Hence we conclude the following.

Lemma 4.6. Let 𝜙 (𝑥) be a conjunction of two redundant predicates
R1 (𝑎1𝑥 + 𝑏1, 𝑞1, 𝑟1) and either R2 (𝑎2𝑥 + 𝑏2, 𝑞2, 𝑟2) or ¬R2 (𝑎2𝑥 +
𝑏2, 𝑞2, 𝑟2). Then 𝜙 (𝑥) can be written as the conjunction of one predi-
cate R3 (𝑎3𝑥 + 𝑏3, 𝑞3, 𝑟3) and a finite number of atoms definable in
quantifier-free Presburger arithmetic.

As we can observe from the factorisation, the solution set to

𝑎2 𝑓1 (𝑢1) − 𝑎1 𝑓2 (𝑢2) = 0 is the union of integer points on a line

(passing through the origin and having rational slope𝑚 = −𝑠/𝑡 ),
and finitely many integer points on a bounded conic. In other words,

a solution 𝑢1 corresponds to a solution 𝑢2 if and only if the former

takes one of finitely many values, or satisfies a set of divisibility

constraints. The constraint on 𝑎2𝑥 + 𝑏2 is thus “redundant” in view

of the constraint on 𝑎1𝑥 + 𝑏1 in the sense that it does not add

“algebraic” information beyond modular-arithmetic annotation.

We can henceforth focus on the case where there is no redun-

dancy, and at least one of the predicates corresponds to a cubic

polynomial.

Proposition 4.7. The solution set of all 𝑥 ∈ Z satisfying 𝑙 non-
redundant constraints of the form R𝑖 (𝑎𝑖𝑥 + 𝑏𝑖 , 𝑞𝑖 , 𝑟𝑖 ) with 𝑎𝑖 > 0

and 𝑑𝑖 = deg(𝑓𝑖 ) for 1 ≤ 𝑖 ≤ 𝑙 is effectively computable and has the
following structure.

(1) If 𝑙 = 0 then 𝑆 = Z.
(2) If 𝑙 = 1 then either 𝑆 = ∅ or 𝑆 is a finite union of sets of the

form 𝑓 (Z) where 𝑓 is a polynomial of degree 𝑑1 and with a
positive leading coefficient.

(3) If 𝑙 = 2 then either 𝑆 = ∅ or one of the following holds.
(a) If 𝑑1 = 𝑑2 = 3 then 𝑆 is finite.
(b) If 𝑑1 = 𝑑2 = 2 then 𝑆 is a union of finitely many simple

reversible LRBS.
(c) If 𝑑1 ≠ 𝑑2 then either 𝑆 is finite or 𝑆 is a finite union of sets

of the form 𝑓 (Z) where 𝑓 is a polynomial of degree 6.
(4) If 𝑙 = 3 then either 𝑆 = ∅ or one of the following holds.
(a) If any two 𝑖 ≠ 𝑗 exist such that 𝑑𝑖 = 3 = 𝑑 𝑗 , then 𝑆 is finite.
(b) If 𝑑1 = 𝑑2 = 𝑑3 = 2 then 𝑆 is finite.
(c) Otherwise 𝑆 is a union of finitely many simple reversible

LRBS.
(5) If 𝑙 ≥ 4 then 𝑆 is finite.

Proof. Case (1) is obvious.
Case (2): Write 𝑓 (𝑢) for 𝑓1 (𝑞1𝑢 + 𝑟1). If 𝑙 = 1 then 𝑆 = ∅ if

𝑏1 does not lie in the value set of 𝑓 modulo 𝑎1, and this can be

checked algorithmically by enumerating all values of 𝑓 modulo

𝑎1. Conversely, if 𝑏1 does lie in the value set of 𝑓 modulo 𝑎1 then

there are infinitely many solutions and they can be parametrised

as follows. Pick 𝑢 ∈ N such that 𝑓 (𝑢) ≡ 𝑏1 mod 𝑎1. Then consider

the polynomial 𝑔𝑢,𝑑1,𝑎1 ∈ Z[𝑡] that satisfies

𝑓 (𝑢 + 𝑡𝑎1) = 𝑎1𝑔𝑢,𝑘1,𝑎1 (𝑡) + 𝑏1 .

Then 𝑔𝑢,𝑘1,𝑎1 has degree 𝑘1 and a positive leading coefficient (as

𝑎1, 𝑞1 > 0). Every 𝑡 ∈ Z gives rise to a solution 𝑥 = 𝑔𝑢,𝑘1,𝑎1 (𝑡)
of R1 (𝑎1𝑥 + 𝑏1, 𝑞1, 𝑟1). Conversely, whenever 𝑥 ∈ Z is a solution,

then there must exist some 𝑦 = 𝑢 + 𝑡𝑎1 such that 𝑓 (𝑦) = 𝑎1𝑥 + 𝑏1,
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𝑓 (𝑢) ≡ 𝑏1 mod 𝑎1, and 𝑡 ∈ Z. Therefore the solution set is exactly

𝑆 =
⋃

0≤𝑢<𝑎1
𝑓 (𝑢 )≡𝑏1 mod 𝑎1

𝑔𝑢,𝑘1,𝑎1 (Z) .

Case (3a) We claim that a pair of non-redundant cubic positive

constraintsR1 (𝑎1𝑥+𝑏1, 𝑞1, 𝑟1),R2 (𝑎2𝑥+𝑏2, 𝑞2, 𝑟2) has finitely many

solutions, which can moreover be effectively enumerated. Indeed,

homogenising the cubic curve

𝑎2 𝑓1 (𝑢1) − 𝑎1 𝑓2 (𝑢2) − 𝑎2𝑏1 + 𝑎1𝑏2 = 0

into the projective plane over an appropriate algebraic extension of

the rationals gives an absolutely irreducible curve. This curve has

three places at infinity, ( [𝜌𝑖 : 1 : 0])3𝑖=1 where each 𝜌𝑖 is a complex

cube root of 𝑎2/𝑎1 (because 𝑓1 and 𝑓2 are monic, evaluating this

curve at [𝑢1 : 𝑢2 : 0] gives 𝑎2𝑢3
1
− 𝑎1𝑢3

2
= 0). If this curve has

genus 1, then its finitely many integer points can be enumerated

by [2, Thm. 4.3]. Otherwise, the curve has genus 0, in which case

its finitely many integer points can be enumerated by [18].

Case (3b) Follows from Case 3b) of Prop 3.6 mutatis mutandis.
Case (3c) We now consider the case of two positive constraints,

where the first R1 (𝑎1𝑥 +𝑏1, 𝑞1, 𝑟1) corresponds to a quadratic poly-
nomial. The attendant curve 𝑎1 𝑓2 (𝑢2) −𝑎2 𝑓1 (𝑢1) = 𝑎1𝑏2 −𝑎2𝑏1 can
then be simplified to have the form (𝑎2𝑢1)2 = 𝑎2 (𝑎1 𝑓2 (𝑢2) +𝑎2𝑏1 −
𝑎1𝑏2) = 𝑎1𝑎2𝑔(𝑢2), where 𝑔 ∈ Q[𝑢2] is monic, and 𝑎1𝑔 ∈ Z[𝑢2]. If
𝑔 has three distinct roots (i.e., an elliptic curve has arisen), then the

finitely many integer points on the curve can be enumerated by [1,

Thm. 2].

Otherwise, 𝑔 has a repeated root, which is necessarily rational

because it corresponds to the common factor of 𝑔 and its derivative.

By Gauss’s lemma, 𝑎1𝑔 thus splits over Z as (𝛼𝑢2 + 𝛽)2 (𝛾𝑢2 + 𝛿).
We then make the substitution 𝑣1 =

𝑎2𝑢1
𝛼𝑢2+𝛽 , and observe that 𝑣2

1
=

𝑎2 (𝛾𝑢2+𝛿). In this manner, the values of𝑢1 and𝑢2 are parametrised

by 𝑣1. If we have constraints that 𝑢1 and 𝑢2 are respectively 𝑟1
modulo 𝑞1 and 𝑟2 modulo 𝑞2, we enforce the following modular-

arithmetic constraints on 𝑣1:

𝑣2
1
≡ 𝑎2𝑟2𝛾 + 𝑎2𝛿 mod 𝑎2𝛾𝑞2,

𝛼𝑣3
1
+ (𝑎2𝛽𝛾 − 𝑎2𝛼𝛿)𝑣1 ≡ 𝑎22𝑟1𝛾 mod 𝑎2

2
𝛾𝑞1 .

Inserting 𝑣2
1
= 𝑎2 (𝛾𝑢2 + 𝛿) into (𝛼𝑢2 + 𝛽)2 (𝛾𝑢2 + 𝛿) we obtain that

𝑥 is parametrised as a degree 6 polynomial in 𝑣1.

We thus get solutions to our constraints whenever 𝑣1 satisfies

the above: such values for 𝑣1, if they exist, form a union of finitely

many arithmetic progressions by the Chinese Remainder Theorem.

Case (4a) immediately follows from Case (3a).

Case (4b) follows from Case 4 of Prop 3.6 mutatis mutandis.
Case(4c)We freely borrow notation from case (3c). Assume 𝑓2

has degree 3 and that 𝑓1 and 𝑓3 have degree 2. Then, as in case (3c),

we construct 𝑣1 and 𝑣3 that give the system

𝑣2
1
= 𝑎2 (𝛾1𝑢2 + 𝛿1) ,

𝑣2
3
= 𝑎2 (𝛾3𝑢2 + 𝛿3) ,

where as before, 𝑣𝑖 =
𝑎𝑖𝑢2

𝛼𝑖𝑢2+𝛽𝑖 . Eliminating 𝑢2 yields the equation

𝛾3𝑣
2

1
− 𝛾1𝑣2

3
= 𝑎2 (𝛾3𝛿1 − 𝛾1𝛿3).

We argue that the constant on the right is non-zero. Suppose for

the sake of deriving a contradiction that 𝛾3𝛿1−𝛾1𝛿3 = 0. This would

imply that the polynomials 𝑎1𝑎3𝑔1 = 𝑎3 (𝑎1 𝑓2 + 𝑎2𝑏1 − 𝑎1𝑏2) and
𝑎1𝑎3𝑔3 = 𝑎1 (𝑎3 𝑓2 + 𝑎2𝑏3 − 𝑎3𝑏2) have the root 𝛿1/𝛾1 in common.

This would also have to be a root of their difference 𝑎2 (𝑎3𝑏1−𝑎1𝑏3),
which by our assumption of non-redundancy, is a non-zero constant:

a contradiction, as desired.

The equation 𝛾3𝑣
2

1
− 𝛾1𝑣2

3
= 𝑎2 (𝛾3𝛿1 − 𝛾1𝛿3) thus has infinitely

many solutions only if it is a generalised Pell equation. In this

case, by Cor. 2.3 the values of 𝑣1 for which all three constraints

are satisfied form a union of finitely many exponentially-growing

LRBS.

Case (5): Four non-redundant (positive) constraints will have
finitelymany solutions by virtue of containing two cubic constraints

(Case (3a)) or three quadratic constraints (Case (4b)) and may be

effectively enumerated. □

Proposition 4.8. Let 𝑆 be the set of solutions 𝑥 to a system of
constraints given by 𝑥 > 𝑐 and non-redundant constraints R𝑖 (𝑎𝑖𝑥 +
𝑏𝑖 , 𝑞𝑖 , 𝑟𝑖 ) for 𝑖 = 1, . . . , 𝑙 , 𝑎𝑖 > 0. If 𝑆 is infinite, then the subset
𝑆 ′ ⊆ 𝑆 for which any non-redundant negative constraint ¬R(𝑎𝑥 + 𝑏)
is violated has density 0 relative to 𝑆 , unless 𝑆 is of the form (3𝑏) and
𝑆 is of the form (4𝑐) in Prop. 4.7

Proof. A negative constraint¬R𝑖 (𝑐𝑥+𝑑) being violated is equiv-
alent to the positive constraint R𝑖 (𝑐𝑥 + 𝑑) holding. We go through

the cases given by Prop. 4.7. In each case, we show that a negative

constraint discards either a subset of relative density 0, or that the

set of parameters (of the solutions to the positive constraints) inval-

idated by forming finitely many arithmetic progressions. In either

case, we can effectively determine whether there remain solutions

after accounting for finitely many negative constraints.

Case (1): 𝑙 = 0. Then 𝑆 = [𝑐 +1,∞). The discarded set 𝑆 ′ with the
constraint R𝑖 (𝑎𝑥 + 𝑏) added becomes a finite union of sets of the

form ℎ(Z) ∩ [𝑐 + 1,∞) where ℎ is a polynomial with degℎ = 𝑑 ≥ 2

and positive leading coefficient, by Prop. 4.7. Apply Lem. 3.8 with

𝑔(𝑦) = 𝑦 and each ℎ to conclude 𝑆 ′ has density 0 relative to 𝑆 .

Case (2): 𝑙 = 1. Then the solution set 𝑆 to 𝑥 > 𝑐 and R1 (𝑎1𝑥 +𝑏1)
is a finite union of sets of the form 𝑔(Z)∩ [𝑐+1,∞) for a polynomial

𝑔 with positive leading coefficient and degree 𝑑1. 𝑆
′
will satisfy the

conclusion of either case (3a), (3b), or (3c). In case 𝑆 ′ satisfies (3a) it
is finite and thus has density 0 relative to 𝑆 . The case of 𝑆 ′ satisfying
(3b) has been handled in Prop. 3.9mutatis mutandis and 𝑆 ′ thus has
density 0 relative to 𝑆 . And in case 𝑆 ′ satisfies (3c), the discarded
set 𝑆 ′ is a finite union of sets of the form ℎ(Z) ∩ [𝑐 + 1,∞) for
polynomials ℎ of degree 6, which is greater than 𝑑1. Therefore we

may again apply Lem. 3.8 with 𝑓 , 𝑔 to conclude 𝑆 ′ has density 0

relative to 𝑆 .

Case (3): 𝑙 = 2. 𝑆 is infinite only if 𝑑1 = 2, 𝑑2 = 3, or 𝑑1 = 𝑑2 =

2. In the former case, 𝑆 ′ can be infinite only if 𝑑3 = 2. Then by

Prop. 4.7, if the discarded set 𝑆 ′ is infinite, then 𝑆 ′ is a union of

finitely many simple reversible LRBS restricted to [𝑐 + 1,∞). As
before we conclude by Lem. 3.8 that 𝑆 ′ is a null-density subset of 𝑆 .

The case 𝑑1 = 𝑑2 = 2, 𝑑3 = 3 results in finitely many solutions being

discarded if a pair of constraints gives rise to an elliptic curve (see

the first part of Case (3c) of Prop. 4.7); the case where it does not

result in infinite LRBS of solutions being discarded. This discarded

set can have positive relative density; however we have from Case

(3c) of Prop. 4.7 that the solutions to the positive constraints are
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themselves parametrised as LRBS. Prop. 4.10 shows that the indices

of discarded solutions form arithmetic progressions, and hence

we can effectively determine whether there exists a solution not

discarded by the negative constraints.

Case (4) 𝑆 ′ is finite and hence has density 0 relative to 𝑆 . □

The following is a special case of [20, Prop. 2].

Lemma 4.9 (Parametrisation of 𝑥 values ruled out). Let
𝛼𝑛, 𝛽𝑛 be a sequence of solutions to the generalised Pell equation
𝛼2−𝐷1 ·𝛽2 = 𝑁1, which are Pell multiples of a generating pair (𝛼 ′, 𝛽′).
Assume further that, for a subsequence (𝛼𝑘 , 𝛽𝑘 ) with 𝑘 ∈ K ⊂ N, we
have

(𝛼𝑘 , 𝛽𝑘 ) = (𝜙1 (𝜎𝑚), 𝜙2 (𝜏𝑚)) (14)

for rational polynomials 𝜙𝑖 and a sequence (𝜎𝑚, 𝜏𝑚) of Pell values
satisfying the equation 𝜎2 − 𝐷2𝜏

2 = 𝑁2. Assume K is infinite and
the 𝐷𝑖 are square-free. Then

(i) 𝐷1 = 𝐷2.
(ii) deg𝜙1 = deg𝜙2 =: 𝜒 .
(iii) K is parametrisable, i.e., there exists an integer 𝑐 such that

𝑘 = 𝜒 ·𝑚 + 𝑐 for all 𝑘 ∈ 𝐾 .

Proof. It is clear from the polynomial relations that Q(
√
𝐷1) =

Q(
√
𝐷2), which can happen only if 𝐷1 = 𝐷2.

We have

(𝛼𝑘 , 𝛽𝑘 ) = (𝐴1𝜀
𝑘 + 𝐵1𝜀−𝑘 ,

1

√
𝐷
(𝐴1𝜀

𝑘
1
+ 𝐵1𝜀−𝑘 ))

and

(𝜎𝑚, 𝜏𝑚) = (𝐴2𝜀
𝑚 + 𝐵2𝜀−𝑚,

1

√
𝐷
(𝐴2𝜀

𝑚 + 𝐵2𝜀−𝑚)) ,

where 𝜀 is the fundamental unit associated with the underlying Pell

equation.

Substituting the latter equation into (14) and comparing growth

rates, (i.e., for the polynomial identity to hold for infinitely many

pairs of (𝑘,𝑚)) gives deg𝜙1 = deg𝜙2 (which we call 𝜒). Further, for

every such pair, one has 𝑘 = 𝜒 ·𝑚 + 𝑐 for a constant integer 𝑐 not
depending on 𝑘 or𝑚. This can be seen by dividing out by 𝜀𝜒 ·𝑚 after

making the substitution in (14), and taking the limit as 𝑘,𝑚 → ∞. In

particular, we must have
𝜀𝑘

𝜀𝜒 ·𝑚 converges to a constant as 𝑘,𝑚 → ∞.

As 𝜀 > 1, we have that this sequence becomes eventually constant,

i.e., 𝜀𝑘/𝜀𝜒 ·𝑚 = 𝜀𝑐 for some fixed integer 𝑐 . We moreover claim that

this holds for all 𝑘 , as one can construct the error-term Laurent

polynomial in 𝜀𝑚 , of degree bounded independent of 𝑘 or𝑚, given

by Λ(𝜀𝑚) := 𝜙1 (𝜎𝑚, 𝜏𝑚) −𝛼𝜒 ·𝑚+𝑐 . As this polynomial has infinitely

many roots, it must be identically zero, giving 𝑘 = 𝜒 ·𝑚 + 𝑐 for all 𝑘 .
Further, this constant integer 𝑐 can be effectively determined

from the constants in the equations. This enables us to paramet-

rically rule out Pell-pairs (𝛼𝑘 , 𝛽𝑘 ) contributing to integral values

of 𝑥 . □

Proposition 4.10. Suppose 𝑆 is of the form (3b) and 𝑆 ′ is of the
form (4c) of Prop. 4.7. Then 𝑆 ′ consists of indices of 𝑆 in arithmetic
progressions. These may be computed effectively.

Proof. We borrow notation from the relevant cases. Note that

𝑆 is parametrised by 𝑢1, 𝑢3 satisfying the generalised Pell equation

𝛾3𝑢
2

1
−𝛾1𝑢2

3
= 𝐶 for some𝐶 depending on the data, and that further

𝑢2
1
= (𝛼1𝑢2 + 𝛽1)2 (𝛾1𝑢2 + 𝛿1) and also 𝑢2

3
= (𝛼3𝑢2 + 𝛽3)2 (𝛾3𝑢2 +

𝛿3). Note that 𝑆 ′ is parametrised by 𝑣1, 𝑣3 satisfying 𝛾3𝑣
2

1
− 𝛾1𝑣2

3
=

𝑎2 (𝛾3𝛿1 − 𝛾1𝛿3) with 𝑣2𝑖 = 𝑎2 (𝛾𝑖𝑢2 + 𝛿𝑖 ) for 𝑖 = 1, 3. hence 𝑢2 =

𝑣2𝑖 −𝑎2𝛿𝑖
𝛾𝑖𝑎2

and thus 𝑢2
𝑖
= (𝛼𝑖

𝑣2𝑖 −𝑎2𝛿𝑖
𝛾𝑖𝑎2

+ 𝛽𝑖 )2
𝑣2𝑖
𝑎2

for 𝑖 = 1, 3 so 𝑢𝑖 =

±(𝛼𝑖
𝑣2𝑖 −𝑎2𝛿𝑖
𝛾𝑖𝑎2

+ 𝛽𝑖 )
𝑣2𝑖√
𝑎2

for 𝑖 = 1, 3. If
√
𝑎2 is irrational the claim is

vacuous, otherwise we apply Lem. 4.9 four times for each choice of

sign and get the desired conclusion. □

The above results justify the correctness of the following algo-

rithm: We first compute 𝑆 . Should 𝑆 be of the form (3b) and any

𝑛 ≥ 1 negative constraint gives rise to a discarded set 𝑆 ′ of the
form (4c) we compute the resulting 𝑆 \ ⋃𝑛

𝑖=1 𝑆
′
𝑖
using Prop 4.10.

We set 𝑆 = 𝑆 \ ⋃𝑛
𝑖=1 𝑆

′
𝑖
in this case. Otherwise we set 𝑆 = 𝑆 . If 𝑆 is

finite we enumerate 𝑆 and check all constraints. If 𝑆 is infinite we

simply return true as any negative constraint will remove only a

null-density subset.

5 UNDECIDABILITY
5.1 Büchi’s Problem
Büchi formulated the following problem while studying the existen-

tial fragment of Presburger arithmetic expanded with the perfect-

square predicate Z2
: does there exist an 𝑀 such that any integer

sequence of 𝑀 squares whose second difference is constant and

equal to 2 is necessarily a sequence of consecutive squares? That is, is
there an𝑀 such that for all 𝑥1, . . . , 𝑥𝑀 such that 𝑥2

𝑖+2−2𝑥
2

𝑖+1+𝑥
2

𝑖
= 2

for 𝑖 = 1, . . . , 𝑀−2, we have that 𝑥𝑖 = 𝑥𝑖+1−1 for 𝑖 = 1, . . . , 𝑀−1? A
positive answer to Büchi’s problem enables one to define the squar-

ing function from the perfect-square predicate without the need

for quantifiers. Indeed, the assertion 𝑦 = 𝑥2 would be equivalent

to

∧𝑀−1
𝑖=0 Z2 (𝑦 + 2𝑖𝑥 + 𝑖2). Multiplication would in turn be positive-

existentially defined using the identity 4𝑥𝑦 = (𝑥+𝑦)2−(𝑥−𝑦)2. The
undecidability of the existential fragment of Presburger arithmetic

expanded with the perfect-square predicate Z2 would hence follow.

Büchi himself conjectured that 𝑀 = 5, and a proof has recently

been announced by Xiao [24].

We show that the (negation of the) Büchi conjecture can be en-

coded in SMT2⟨Z;+, 0, 1,Z2⟩. Indeed, any counterexample sequence

must have the form 𝑖2 + 𝑐1𝑖 + 𝑐0 for 𝑖 = 1, . . . , 5, where 𝑐0, 𝑐1 are

integers and the polynomial 𝑔(𝑡) = 𝑡2 + 𝑐1𝑡 + 𝑐0 is not of the form
(𝑥 +𝑏)2. By the contrapositive of [16, Cor. 1.7], there exists𝑀 such

that 𝑔(𝑀) is not a perfect square: by appropriate shifting, we can

assume𝑀 = 6. The negation of the Büchi conjecture is then simply

the formula

∃𝑐0, 𝑐1 .
(

5∧
𝑖=1

Z2 (𝑐0 + 𝑖𝑐1 + 𝑖2)
)
∧ ¬Z2 (𝑐0 + 6𝑐1 + 36) .

The following technical but elementary lemma shows how one

can encode arbitrary Diophantine equations in the signature of

⟨Z; 0, 1, +,−,Z2⟩ with a limited budget of first-order variables.

Lemma 5.1. Let ℎ ∈ Z[𝑥1, . . . , 𝑥𝑛]. The assertion ℎ(𝑥1, . . . , 𝑥𝑛) =
0, where 𝑥1, . . . , 𝑥𝑛 are integer-valued variables, can be encoded in
FO⟨Z; 0, 1, +,−,Z2⟩ via a formula that uses at most 4 bound variables,
all of which are existentially quantified.

Proof. We need existentially quantified variables to implement

multiplication using the identity 4𝑥𝑦 = (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2, e.g.,



Conference’17, July 2017, Washington, DC, USA Trovato et al.

the proposition 𝑡 = 4𝑥𝑦 is equivalent to ∃𝑢∃𝑣 . (𝑡 = 𝑢 − 𝑣) ∧ (𝑢 =

(𝑥 + 𝑦)2) ∧ (𝑣 = (𝑥 − 𝑦)2), where the last conjunct is written

as

∧
4

𝑖=0 Z
2 (𝑣 + 2𝑖 (𝑥 − 𝑦) + 𝑖2), and similarly for the penultimate

conjunct.

We momentarily leave aside the issue of the scarcity of exis-

tentially quantified variables and introduce rewrite rules (that re-

place polynomials with linear combinations of variables and sim-

pler polynomials), with each application introducing fresh quan-

tified variables. For convenience, we refer to the sum of monomi-

als 𝑟 through𝑚 of ℎ(𝑥1, . . . , 𝑥𝑛) as ℎ𝑟 , and the 𝑟 -th monomial 𝑔𝑟1
of degree 𝑑𝑟 is constructed through the intermediate monomials

𝑔𝑟𝑠 =
𝑐𝑟
4
𝑠−1

∏𝑑𝑟
𝑙=𝑠

𝑥 𝑗𝑙 . In the rewrite rules that follow, the subformulas

are assumed to be minimal.

(1) A subformula of the form𝜓 (ℎ𝑟 , . . .) is rewritten as

∃𝑡 .𝜓 [ℎ𝑟 /(𝑡 + 𝑔𝑟1)] ∧ (𝑡 = ℎ𝑟+1) ,

reducing the number of monomials.

(2) A subformula of the form𝜓 (𝑔𝑟𝑠 , . . .) is rewritten as

∃𝑢, 𝑣 .𝜓 [𝑔𝑟𝑠/(𝑢 − 𝑣)] ∧ 𝑢 =
(
𝑥 𝑗𝑠 + 𝑔𝑟,𝑠+1

)
2 ∧ 𝑣 =

(
−𝑥 𝑗𝑠 + 𝑔𝑟,𝑠+1

)
2

,

reducing the degree of the monomial.

(3) A subformula of the form𝑤 = 𝑇 2
is rewritten as

4∧
𝑖=0

Z2
(
𝑤 + 2𝑖𝑇 + 𝑖2

)
,

where 𝑇 is a linear combination of variables.

We observe that we can first repeatedly apply Rule 1 until the

formula involves only monomials, then repeatedly apply Rule 2

until all propositions are either linear equations or assertions of a

square relation, and finally apply Rule 3 to encode the latter in our

signature.

Finally, we show that while applying the rewrite rules to the

formula ℎ(𝑥1, . . . , 𝑥𝑛) = 0 and thus introducing existentially quanti-

fied variables, we can recycle these variables so that we only need 4

of them. The key observation is that if a variable 𝑡 does not occur in

a subformula𝜓 being rewritten, it can be recycled for the purpose.

We claim that we can alternate between introducing 𝑡0 and 𝑡1 as

we repeatedly apply Rule 1. For instance, ℎ = 0 gets rewritten to

∃𝑡0 . 𝑡0+𝑔11 = 0∧𝑡0 = ℎ2, which itself gets rewritten to∃𝑡0 . 𝑡0+𝑔11 =
0 ∧ (∃𝑡1 . 𝑡0 = 𝑡1 + 𝑔21 ∧ 𝑡1 = ℎ3). We use our key observation that

the previously quantified 𝑡0 does not occur in 𝑡1 = ℎ3, and can be

recycled for this purpose of rewriting it. The intermediate formula

after completing the applications of Rule 1 recycles 𝑡0, 𝑡1 in an

alternating manner while introducing quantified variables.

We now have subformulas of the form 𝑡𝑏 = 𝑡
1−𝑏 + 𝑔𝑟1 that we

need to rewrite using Rule 2. We cannot use 𝑡0, 𝑡1, and hence must

use 𝑡2, 𝑡3 to obtain

∃𝑡2, 𝑡3 . 𝑡𝑏 = 𝑡
1−𝑏 + 𝑡2 − 𝑡3 ∧ 𝑡2 = (𝑥 + 𝑔𝑟2)2 ∧ 𝑡3 = (−𝑥 + 𝑔𝑟2)2,

to which Rule 2 may need to be reapplied. This time, however, we

have access to 𝑡0, 𝑡1 while rewriting 𝑡2 = (𝑥 + 𝑔𝑟2)2. In this manner,

we can alternate between introducing 𝑡0, 𝑡1, and 𝑡2, 𝑡3 while applying

Rule 2. This leaves us with subformulas of the form 𝑡𝑎 = (𝑥+𝑡𝑏−𝑡𝑐 )2
to rewrite using Rule 3. This is merely a syntactic rewrite, and we

have indeed proven that we need only 4 existentially quantified

variables. □

5.2 Universal Diophantine Equations and
Undecidability

It is well known that Hilbert’s tenth problem, i.e., deciding whether

a given polynomial equation has integer solutions, is undecidable.

Thanks to Xiao’s proof of Büchi’s conjecture [24], together with

Lem. 5.1 and the bounds on the degree of the polynomial and

number of variables, we now establish undecidability results for

bounded-variable Presburger arithmetic expanded with the perfect-

square predicate. More specifically, Jones [13] constructs universal
Diophantine equations, i.e., polynomials ℎ in several unknowns

𝑥1, . . . , 𝑥𝑛 and parameters 𝑥,𝑦, 𝑧,𝑤 ∈ N such that

∃𝑥1, . . . , 𝑥𝑛 ∈ N . ℎ(𝑥,𝑦, 𝑧,𝑤, 𝑥1, . . . , 𝑥𝑛) = 0

if and only if 𝑥 is contained in the recursively enumerable set

indexed by ⟨𝑦, 𝑧,𝑤⟩.

Theorem 5.2. The following theories are undecidable:

(1) ∃FO13⟨Z; 0, 1, +,−, <,Z2⟩,
(2) ∃FO14⟨Z; 0, 1, +,−,Z2⟩,
(3) SMT600⟨Z; 0, 1, +,−, <,Z2⟩,
(4) SMT2200⟨Z; 0, 1, +,−,Z2⟩.

Proof. Item (1) follows from Matiyasevich’s construction (see

[13, Sec. 3]), which when given 𝑥 ∈ N and a recursively enumerable

set𝑊 , produces a Diophantine equation with 9 positive-integer

unknowns that has a solution if and only if 𝑥 ∈𝑊 . Item (2) follows

from the analogue due to Sun [21, Thm. 1.1(ii)], where the con-

structed equation has 9 integer unknowns and 1 nonzero-integer

unknown.

Item (3) follows from Jones’s concrete example of a universal Dio-

phantine equation of degree 4 with 58 positive-integer unknowns,

which can be implemented with at most 100 arithmetic operations

[13, Thm. 5]. Note that each multiplication would introduce at most

5 fresh variables to be encoded in our SMT instance (as discussed in

the proof of Lem. 5.1). We take 600 = 100 + 100 · 5 as a conservative
estimate for the total number of variables.

Item (4) follows from converting each positive-integer unknown

into a regular integer unknown by introducing fresh variables and

using the Lagrange four-squares theorem, i.e., ∃ 𝑥 > 0 replaced

by ∃𝑦1, . . . , 𝑦4 .
∧

4

𝑖=1 𝑆𝑞(𝑦𝑖 ), and every occurrence of 𝑥 is replaced

by (𝑦1 + · · · + 𝑦4). A conservative upper bound on the number of

variables introduced in this manner is 4 · 4 · 100, and combining

them with the original variables gives a sound estimate of 2200. □
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