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Abstract. This paper is concerned with the universality problem for timed automata: given a timed
automaton A, does A accept all timed words? Alur and Dill have shown that the universality problem
is undecidable if A has two clocks, but they left open the status of the problem when A has a
single clock. In this paper we close this gap for timed automata over infinite words by showing
that the one-clock universality problem is undecidable. For timed automata over finite words we
show that the one-clock universality problem is decidable with non-primitive recursive complexity.
This reveals a surprising divergence between the theory of timed automata over finite words and over
infinite words. We also show that if ε-transitions or non-singular postconditions are allowed, then the
one-clock universality problem is undecidable over both finite and infinite words. Furthermore, we
present a zone-based algorithm for solving the universality problem for single-clock timed automata.
We apply the theory of better quasi-orderings, a refinement of the theory of well quasi-orderings, to
prove termination of the algorithm. We have implemented a prototype tool based on our method, and
checked universality for a number of timed automata. Comparisons with a region-based prototype
tool confirm that zones are a more succinct representation, and hence allow a much more efficient
implementation of the universality algorithm.
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1. Introduction

Timed automata have emerged as one of the most popular models for specification and analysis of real-
time systems. An execution of such an automaton can be viewed as a timed word consisting of a sequence
of events and their associated timestamps. Furthermore, different properties of the automaton can be
expressed as languages of timed words. Since their introduction by Alur and Dill [10], timed automata
have been used as the foundation for several verification algorithms and tools (see [14] for a survey). One
of the most fundamental results about timed automata is the undecidability of the universality problem:
Given a timed automaton A, is the language of A universal? (In other words, is every timed word
accepted by A?). This problem is undecidable when the automaton A is allowed to have two or more
clocks. In this context it is natural to seek subclasses of timed automata, with reduced expressive power,
for which universality (or the more general problem of language inclusion) is decidable [12, 15, 14, 11,
23, 33].

A close analysis of the proof of the undecidability of universality (and language inclusion) in [10]
reveals that the tightest possible formulation of their result is that the universality problem is undecidable
when the automaton has two clocks. This leaves an interesting open question about the status of the one-
clock universality problem. In fact, many interesting specifications can be expressed by automata with a
single clock, or parallel combinations thereof. This is particularly so for alternating timed automata [27,
35]. For instance, every formula of Metric Temporal Logic [13, 11] can be translated into an alternating
timed automaton with a single clock [35].

Recently, using techniques from the theory of well-quasi-ordered transition systems [1, 22], we
showed that over finite words the one-clock universality and language inclusion problems are decid-
able [34]. However, while finite words are sufficient to capture safety properties, to capture liveness or
fairness properties it is most natural to consider automata over infinite words. One result of this paper is
that, for timed automata over infinite words (with Büchi acceptance conditions) the one-clock universal-
ity problem is undecidable. This reveals a surprising divergence between the theory of timed automata
over finite words and over infinite words. We also show that over finite words the one-clock universal-
ity problem has non-primitive recursive complexity. The proof here follows the same idea as the proof
in [35] that the satisfiability problem for Metric Temporal Logic is non-primitive recursive. Furthermore
we show that universality becomes undecidable over both finite and infinite words if ε-transitions are
allowed or if clock resets have non-singular postconditions (as in [17, 24]).

We use channel machines [19] as a convenient middleware between Turing machines and timed
automata. This allows us to develop a schematic approach to proving undecidability and complexity
results for various classes of timed automata. In each case we show how to encode a certain class of
channel computations as a timed language, whose complement can be recognized by a timed automaton
of a certain type.

Despite the positive result in [34] regarding decidability of universality for single-clock timed au-
tomata, it is still a difficult task to implement an algorithm for solving the problem. This is illustrated
by the hardness result we show in this paper, namely that the problem has non-primitive recursive com-
plexity. In this paper, we consider therefore the challenge of deriving an algorithm which is reasonably
efficient on practical examples. In fact, the algorithm in [34] uses a variant of regions as a symbolic rep-
resentation for sets of states in the universality algorithm; and uses the theory of well quasi-orderings,
for proving termination of the algorithm. It is well-known that the region representation is in general
very inefficient and tends to explode even on very small examples. We propose therefore a new for-
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malism based on zones as a symbolic representation of sets of states in the universality algorithm. Our
motivation is twofold. On one hand, several existing verification algorithms for classes of systems with
well quasi-ordered state spaces perform well in practice when combined with efficient symbolic repre-
sentations (despite non-primitive recursive complexities). Examples include lossy channel systems [5],
timed Petri nets [8], and parameterized systems [3]. On the other hand, zones often provide a much more
compact representation of states than regions. Therefore, zones are used for instance in the design of
existing tools for verification of real-time systems, such as KRONOS [38] and UPPAAL [26].

We solve the universality problem by adapting the standard subset construction method. In particular
we compute configurations: each configuration is the set of states which the automaton reaches through
the execution of one timed word. We use zones as symbolic representations of (infinite) sets of config-
urations. One important aspect of the universality problem is that there is no bound on the number of
clock variables in the zones which arise in the analysis. This makes the algorithm much more difficult
to design compared to other zone-based algorithms such as the ones used in the above mentioned tools.
A main challenge then is to show that the algorithm is still guaranteed to terminate. To achieve this,
we show that zones are well quasi-ordered. More precisely, we show that, for each infinite sequence of
zones Z0, Z1, Z2, . . ., there are i and j with i<j such that the non-universality of Zj is “entailed” by the
non-universality of Zi. To show the well quasi-ordering of zones, we follow the methodology of [7], and
show that zones in fact satisfy a stronger property than well quasi-ordering, namely that they are better
quasi-ordered.

We have implemented a prototype tool based on our method and have checked a number of timed
automata for universality. Comparisons with a region-based prototype tool confirm that zones are a more
succinct representation, and hence universality analysis is much more efficient when it operates on zones
rather than regions.

We summarize our contributions as follows:

• We show undecidability of the universality problem for one-clock timed automata when the au-
tomaton is allowed to have non-singular postconditions or ε-transitions. In the case where we
forbid non-singular postconditions and ε-transitions, we show undecidability for the case of infi-
nite words, and non-primitive recursive complexity for the case of finite words.

• We present a zone-based algorithm for solving the universality problem for one-clock timed au-
tomata without non-singular postconditions or ε-transitions.

Related Work The non-primitive recursive complexity of language inclusion over finite words and the
undecidability of language inclusion over finite words with ε-transitions have recently and independently
been proved by Lasota and Walukiewicz [27]. They have also concurrently discovered the undecidability
of universality for one-clock Büchi timed automata [28]. Like us, they make use of channel machines in
their work, although via a different encoding of channel histories as timed words. (See Remark 4.1 for
some explanation of the differences between the respective encodings.)

Alur, La Torre and Madhusudan [15] consider automata with perturbed clocks whose rates may vary;
they show that for every automaton with a single perturbed clock there is an equivalent deterministic
timed automaton. It follows that the language inclusion problem is decidable for this class of automata.
Finally, Laroussinie, Markey and Schnoebelen [25] classify the complexity of deciding language empti-
ness for timed automata with one, two and three clocks respectively.

This article builds upon and extends work that originally appeared in [2] and [9].
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Outline In the next section, we give some preliminaries of timed automata. In Section 3, we introduce
different classes of channel machines that we use to prove the hardness results. Section 4 shows unde-
cidability in the case where we allow non-singular postconditions or ε-transitions; and also provides an
alternative proof of the classical result of undecidability for two-clock timed automata. Section 5 and
Section 6 show non-primitive-recursiveness and undecidability in the cases of finite and infinite words
respectively. In Section 7 we consider the universality problem for configurations. In Section 8, we
introduce zones, and in Section 9, we describe the zone-based universality algorithm. In Section 10, we
show that the algorithm is guaranteed to terminate. We devote Section 11 and Section 12 to describe how
to implement the different steps of the algorithm; more precisely, we show how to compute successors of
zones in the algorithm, and how to check the entailment relation on zones. In Section 13, we report some
experimental results. Finally, we give some conclusions and directions for future work in Section 14.

2. Preliminaries

In this section, we recall the basic definitions for timed automata.
We use N, Z, and R+ to denote the sets of natural numbers, integers, and non-negative reals respec-

tively. For δ ∈ R+, let bδc and fract (δ) be the integral resp. fractional part of δ.

Timed Words Let Σ be a finite alphabet and write Σε for Σ ∪ {ε}, where ε 6∈ Σ. A timed event is
a pair (t, a), where t ∈ R+ is called the timestamp of the event a ∈ Σ. A timed word is a finite or
infinite sequence (t0, a0)(t1, a1)(t2, a2) · · · of timed events whose sequence of timestamps t0t1t2 . . . tn
is non-decreasing and is either finite or diverges to infinity. (This last assumption rules out so-called Zeno
words.) We say that a timed word is strictly monotonic if its sequence of timestamps is strictly increasing.
We write TΣ∗ for the set of finite timed words over alphabet Σ and TΣω for the set of infinite timed
words over alphabet Σ.

Timed Automata A timed automaton operates on a finite set C of clocks, denoted c, d, etc. We define
the set Φ of clock constraints to be conjunctions of formulas of the form c ∼ k, where c ∈ C, k ∈ N and
∼ ∈ {<,≤, >,≥}.

A timed automaton is a tuple A = (Σ, S, sinit , F, E), where

• Σ is a finite alphabet of events,

• S is a finite set of control states,

• sinit ∈ S is the initial control state,

• F ⊆ S is a set of accepting control states,

• E ⊆ S×S×Φ×Σε×2C×Φ is a finite set of edges. an a-labelled transition from s to s′, provided
that the precondition φ ∈ Φ on clocks is met. Afterwards, the clocks in R are nondeterministically
reset to values satisfying the postcondition φ′, and all other clocks remain unchanged. Here we
assume that only clocks in R are allowed to appear in φ′.
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We let cmax be the maximum natural number which appears on the edges of the automaton. A clock
valuation of A is a function ν : C → R+. A global state q of A is a pair (s, ν), where s is a control state
and ν is a clock valuation. We use state (q) and val (q) to denote s and ν respectively. We say that q is
accepting if state (q) ∈ F . The initial global state qinit is defined to be (sinit , νinit), where νinit(c) = 0
for each c ∈ C.

Suppose that A = (Σ, S, sinit , F, E) and B = (Σ, S ′, s′
init
, F ′, E′) are timed automata with S and

S′ disjoint sets. The union of A and B is obtained by taking the disjoint union of the two automata and
adding a new initial state t 6∈ S ∪ S ′ combining the transitions of sinit and s′

init
. Formally, define A∪ B

to be the timed automaton (Σ, S ∪ S ′ ∪ {t}, t, F ∪ F ′, E′′), where

E′′ = E ∪ E′ ∪ {(t, s, φ, a,R, φ′) : (sinit , s, φ, a,R, φ
′) ∈ E or (s′init , s, φ, a,R, φ

′) ∈ E′} .

Transition Relation We define a transition relation on global states. For a clock valuation ν and
δ ∈ R+, we let ν + δ be the clock valuation such that (ν + δ)(c) = ν(c) + δ for all c ∈ C. For a global
state q, we let q + δ be the global state q′ such that state (q′) = state (q) and val (q′) = val (q) + δ.

A timed transition is of the form q δ−→T q′, where q′ = q + δ. A discrete transition is of the form
(s, ν) a−→D (s′, ν ′) such that there is an edge (s, s′, φ, a,R, φ′) in E and the following conditions are

met: (i) ν satisfies φ; (ii) ν′ satisfies φ′; and (iii) ν ′(c) = ν(c) for all c ∈ C − R. We write q
δ, a
−→ q′ to

denote that q δ−→T q+δ a−→D q′. For a global state q, a run ρ of A from q is a finite or infinite sequence
of transitions

ρ = q0
δ0, a0
−→ q1

δ1, a1
−→ q2

δ2, a2
−→ · · · (1)

where q0 = q. We require that an infinite run contain infinitely many transitions labelled from Σ and
that

∑∞
i=0 δi be infinite. A finite run is accepting if the last global state in the run is accepting. An

infinite run is accepting if infinitely many global states in the run are accepting. Let ai0ai1ai2 . . . be the
sequence of non-ε-labels occurring in an accepting run ρ and let tj =

∑j
i=0 δi. Then the timed word

(ti0 , ai0)(ti1 , ai1)(ti2 , ai2) · · · is said to be accepted along ρ. Given a global state q we write Lf (q) for
the set of finite timed words accepted along finite runs that start in state q. Similarly we write Lω(q)
for the set of infinite timed words accepted along infinite runs that start in state q. The finite-word timed
language of A, denotedLf (A), is the languageLf (qinit) accepted from the initial state. SimilarlyLω(A)
denotes the infinite-word timed language Lω(qinit).

The Universality Problem Consider a global state q. In the case of finite words, we say that q is
universal if Lf (q) = TΣ∗. Analogously, in the case of infinite words, we say that q is universal if
Lω(q) = TΣω. In the universality problem, we are given an automaton, and are asked whether the initial
global state is universal or not.

Remark 2.1. The above definition represents quite a general model of timed automata. We will adopt
the convention that, unless otherwise specified, a given timed automaton has no ε-transitions, and has
singular postconditions. The last requirement says that clocks that are reset by a transition must be reset
to zero: formally for each edge (s, s′, φ, a,R, φ′), φ′ has the form

∧

c∈R c = 0.
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3. Channel Machines

In this section, we recall the model of a channel machine [4, 19, 36] which consists of a finite-state
automaton acting on an unbounded fifo channel (or buffer). We will introduce four attributes for channel
machines, namely error-free, lossy, with insertion errors, and balanced. We will later use these to prove
hardness results for different classes of timed automata.

Channel Machines A channel machine is a tuple C = (S, sinit ,M,∆), where S is a finite set of
control states, sinit ∈ S is the initial control state, M is a finite set of messages, and ∆ ⊆ S × L × S
is the transition relation over label set L = {m!,m? : m ∈ M}. A global state of C is a pair (s, w),
where s ∈ S is the control state and w ∈ M ∗ is the contents of the channel. The rules in ∆ induce an
L-labelled transition relation on the set of global states as follows: (s,m!, s′) ∈ ∆ yields a transition

(s, w) m!−→ (s′, w·m) that writesm ∈M to the tail of the channel, and (s,m?, s′) ∈ ∆ yields a transition

(s,m·w) m?−→ (s′, w) that reads m ∈ M from the head of the channel. If we only allow the transitions
indicated above, then we call C an error-free channel machine.

We also consider channel machines that operate with insertion errors. Given w, v ∈ M ∗, write
w v v if w can be obtained from v by deleting any number of letters, e.g. sub v stubborn, as indicated
by the underlining. Following [36] we introduce insertion errors by extending the transition relation on
global states with the following clause: if (s, w) a−→ (t, v), w′ v w and v v v′, then (s, w′) a−→ (t, v′).
Dually, we define lossy channel machines by adding a clause: if (s, w) a−→ (t, v), w v w′ and v′ v v,
then (s, w′) a−→ (t, v′).

We say that a channel machine is balanced if we can partition the set of control states into two
classes, called read states and write states respectively, such that each edge is of the form (s,m?, t) with
s a read state and t a write state, or of the form (s,m!, t) with s a write state and t a read state.

A computation of a channel machine C is a finite or infinite sequence of transitions between global
states (s0, w0)

a0−→ (s1, w1)
a1−→ (s2, w2)

a2−→ · · · . Notice that, in particular, if C is balanced, then
any computation consists of an alternating sequence of read transitions and write transitions. An infinite
computation of C is space-bounded if there exists N ∈ N such that the number of messages stored on
the channel during the computation never exceeds N .

(Repeated) Reachability The control-state reachability problem asks, given a channel machine C =
(S, sinit ,M,∆) and a control state t ∈ S, whether there is a computation of C starting in global state
(sinit , ε) and ending in global state (t, ε). It is well-known that the control-state reachability problem
for error-free channel machines is undecidable1. The recurrent-state problem for channel machines is as
follows. Given a channel machine C = (S, sinit ,M,∆), does there exist w ∈ M ∗ such that C has an
infinite computation starting in global state (sinit , w) and visiting sinit infinitely often? (Henceforth we
call such computations recurrent.) The space-bounded recurrent-state problem is defined in a similar
manner, with the difference that we require the infinite computation to be space-bounded.

The following lemma is a relatively straightforward reduction from the halting problem for Turing
machines.

1The usual formulation of the problem asks whether there is a computation from (sinit , ε) to (t, w) for some w ∈ M∗. It is
straightforward to reduce this problem to the formulation above.
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Lemma 3.1. The recurrent-state problem for error-free balanced channel machines is undecidable.

Given a balanced channel machine C, we claim that C has a space-bounded recurrent computation with
insertion errors iff it has an error-free recurrent computation. Since the channel machine is balanced it
is clear that an error-free computation is space-bounded. Conversely an infinite space-bounded compu-
tation is eventually error-free since if there were an infinite sequence of insertion errors the computation
could not be space-bounded—this again because the machine is balanced. Thus any error-free computa-
tion of C is space-bounded, and any space-bounded computation of C with insertion errors is eventually
error-free (the space bound gives an upper bound on the total number of insertion errors). From this and
Lemma 3.1, we get the following lemma, which is reminiscent of a result of Mayr [30] on lossy counter
machines.

Lemma 3.2. The space-bounded recurrent-state problem for balanced channel machines with insertion
errors is undecidable.

4. Undecidability over Finite Words

In this section, we prove undecidability of the universality problems over finite words for three classes of
timed automata, namely those with two clocks, ε-transitions, and non-singular postconditions. The un-
decidability results are shown through reductions from the reachability problem for (error-free) channel
machines. The idea is to first define two timed languages, a language Lcont which describes the control
part of the channel machine, and another language Lchan which captures the channel discipline.

Let C = (S, sinit ,M,∆) and t ∈ S be an instance of the control-state reachability problem for
channel machines. Given this data, let Σ = {m!,m? : m ∈ M} ∪ {X} be a finite alphabet. We now
define a timed automaton Acont that intuitively encodes the finite control of C. As with C, Acont has set
of control states S with initial state sinit ; also Acont has no clocks. For each transition (s,m!, t) of C
we include in Acont an m!-labelled transition from s to t; similarly for each transition (s,m?, t) of C we
include in Acont an m?-labelled transition from s to t. The only other transition of Acont are X-labelled
self-transitions on every control state. Finally, t ∈ S is the only accepting control state of Acont . Let
Lcont denote the timed language Lf (Acont).

Definition 4.1. Let the language Lchan ⊆ TΣ∗ consist of those timed words u such that:

1. u is strictly monotonic.

2. u contains a X-event at time zero, and thereafter consecutive X-events are separated by one time
unit.

3. Every m!-event in u is followed one time unit later by an m?-event.

4. Every m?-event is preceded one time unit earlier by an m!-event.

Clauses 3 and 4 capture the channel discipline: every message written to the channel is read from the
channel one time unit later, and every message that is read from the channel was written to the channel
one time unit earlier. The one-to-one unit-time-delayed correspondence between read and write events
ensures that messages are read from the channel in the order that they were written to the channel. The



8 author / short title

requirement that every message written to the channel is eventually read corresponds to the fact that
we consider computations that end with an empty channel. The X-events in Lchan have no particular
significance other than to facilitate the encoding below.

Remark 4.1. Our representation of computations of a channel machine as a timed language is different
from that adopted by Lasota and Walukiewicz [28]. They encode a configuration of the channel machine
(control state and channel contents) as a sequence of timed events holding in a unit-length interval along
a timed word; successive configurations are encoded in successive unit intervals with control states being
encoded by propositions with integer timestamps. In contrast, we do not explicitly encode configurations,
just sequences of reads and writes. Intuitively in our encoding each unit interval corresponds to a cycle
of the channel, where a cycle is a segment of a computation during which a particular message moves
from the tail to the head of the channel. We refer the reader to [18] for a development of this analogy.

Lemma 4.1. C has an error-free computation from (s0, ε) to (t, ε) iff Lcont ∩ Lchan 6= ∅.

Let Acont denote the complement of Acont as an untimed automaton. It is clear that Acont is also the
complement of Acont with respect to timed languages, i.e., Lf (Acont ) = TΣ∗ − Lcont . Now suppose
that Achan is a timed automaton such that Lf (Achan) = TΣ∗ − Lchan . From Lemma 4.1 it holds that
Acont∪Achan is universal (i.e. accepts every timed word) iff C has no error-free computation from (s0, ε)
to (t, ε). Since the control-state reachability problem is undecidable for error-free channel machines, it
follows that the universality problem is undecidable for any class of timed automata that is closed under
unions and can capture the complement of Lchan . For each of the three classes of timed automata
described below, we show how to define a timed automaton Achan in the class such that Lf (Achan) =
TΣ∗ − Lchan .

4.1. Two clocks

Since Achan accepts the complement of Lchan it is natural to present it as the union of several automata,
each of which accepts the set of words that fail to satisfy a particular clause in the definition of Lchan .
We can do this using automata with at most two clocks; the interesting clauses here are 3 and 4.

Automaton A1, below, accepts those timed words in which some m!-event is not followed one time
unit later by an m?-event, i.e., those words that fail to satisfy Clause 3 in Definition 4.1. Automaton A2

(which is the union of the illustrated left-hand and right-hand components) accepts those timed words
in which some m?-event is not preceded one time unit earlier by any event. Note that a strictly mono-
tonic timed word satisfying Clause 2 in Definition 4.1 fails to satisfy Clause 4 if and only if it is either
accepted by A2 or contains an a-event followed one time unit later by an m?-event, with a 6= m!. It is
straightforward to capture this last condition with a one-clock timed automaton. In fact A2 is the only
component of Achan that uses two clocks.

A1
//ONMLHIJK
@GF ECD

Σ

��
m!

c:=0
//ONMLHIJKGFED@ABC
@GF ECD

m? c6=1

��

BCD@GA
Σ\{m?}

??
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A2
//ONMLHIJK
@GF ECD
Σ c:=0

��
Σ

d:=0
//ONMLHIJK
@GF ECD

Σ

��
m?

c>1∧d<1
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

//ONMLHIJK
@GF ECD

Σ

��
m?

c<1
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

Thus we obtain a new proof of Alur and Dill’s classical result [10].

Theorem 4.1. The universality problem for timed automata with two clocks is undecidable.

4.2. ε-transitions

By allowing ε-transitions, we can replace the left-hand component of automaton A2, above, with the fol-
lowing automaton which uses only one clock. The ε-transition and the m?-transition in A3 are separated
by exactly one time unit. Since no visible event happens at the same time as the ε-transition, no visible
event precedes this occurrence of m? by exactly one time unit. Thus A3 accepts precisely those timed
words in which there is an event m? with timestamp t > 1 such that there is no event with timestamp
t− 1.

A3
//ONMLHIJK
@GF ECD
Σ c:=0

��
ε c>0

c:=0
//ONMLHIJK
@GF ECD
Σ c>0

��
m?

c=1
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

Theorem 4.2. The universality problem for the class of timed automata with one clock and ε-transitions
is undecidable.

4.3. Non-singular postconditions

Instead of ε-transitions we can consider non-singular postconditions for clock resets. In this case we can
replace automaton A3 with the following one-clock timed automaton, where the postcondition c : <1 on
the X-labelled edge means that c is non-deterministically reset to a value strictly less than 1.

A4
//ONMLHIJK
@GF ECD

Σ

��
X

c:<1
//ONMLHIJK
@GF ECD
Σ c6=1

��
m?

c=2
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

Theorem 4.3. The universality problem for the class of timed automata with one clock and with non-
singular postconditions is undecidable.

5. Non-Primitive Recursiveness over Finite Words

In this section, we show that the universality problem for one-clock timed automata has non-primitive
recursive complexity, that is, the problem does not lie in the complexity class TIME(f(n)) for any
primitive recursive function f(n). This shows that the problem is very hard since the class of primitive
recursive functions includes many fast-growing functions, including non-elementary functions. We show
the result through a reduction from the control state reachability problem for lossy channel systems.
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The control-state reachability problem for lossy channel machines was shown to be decidable, in
contrast to the error-free case, by Abdulla and Jonsson [5]. Later Schnoebelen [36] proved that it has non-
primitive recursive complexity. We reduce control-state reachability problem for lossy channel machines
to the control-state reachability problem for channel machines with insertion errors. Given a channel
machine C = (S, sinit ,M,∆), define a new transition relation ∆op ⊆ S × {m!,m? : m ∈ M} × S by
replacing each transition (t,m?, s) in ∆ by a transition (s,m!, t) in ∆op; and replacing each transition
(t,m!, s) in ∆ by a transition (s,m?, t) in ∆op. Notice that there is a transition from global state (s, w)
to global state (t, v) under ∆ iff there is a transition from (t, rev(v)) to (s, rev(w)) under ∆op, where
rev : M∗ → M∗ reverses the order of a finite string. Thus there is a computation with lossiness errors
from (s, ε) to (t, ε) under ∆ iff there is a computation with insertion errors from (t, ε) to (s, ε) under
∆op. This observation allows the desired reduction. From this we get the following.

Lemma 5.1. The control-state reachability problem for channel machines with insertion errors has non-
primitive recursive complexity.

Define the timed language Lins ⊆ TΣ∗ to consist of those timed words satisfying Clauses 1–3 in
Definition 4.1. Thus for a word in Lins , every m!-event is followed one time unit later by an m?-event,
but every m?-event need not be preceded one time unit earlier by an m!-event. This corresponds to a
channel with insertion errors.

Lemma 5.2. C has a computation with insertion errors starting in state (s0, ε) and ending in state (t, ε)
iff Lcont ∩ Lins 6= ∅.

Note that we can express TΣ∗−Lins as the language of a one-clock timed automaton. This automaton
incorporates A1 in Section 4.1, but not A2. Thus we obtain

Theorem 5.1. The universality problem for the class of timed automata with a single clock has non-
primitive recursive complexity.

6. Undecidability for One-Clock Büchi Automata

In this section we prove the undecidability of the following universality problem: ‘Given a one-clock
timed automaton A (without ε-transitions and with singular postconditions) does Lω(A) = TΣω?’.

Given a strictly monotonic timed word u = (t0, a0)(t1, a1) . . ., define density(u) = sup{j − i :
tj − ti 6 1}. The density of a timed word measures the maximum number of events in any time unit
along the word.

As in Sections 4 and 5, the idea behind the proof is to encode the computations of a certain type
of channel machine as a timed language. More precisely, the proof is by reduction from the space-
bounded recurrent-state problem for balanced machines with insertion errors. We define a timed language
Lbound ⊆ TΣω encoding space-bounded computations of a channel with insertion errors. We capture
the space bound by requiring an upper bound on the number of events per time unit for each word
u ∈ Lbound . Given a balanced channel machine C = (S, sinit ,M,∆), we define a one-clock B̈uchi
timed automaton A such that C has a space-bounded recurrent computation with insertion errors iff A is
non-universal. Define the finite alphabet Σ = {m!,m? : m ∈ M} ∪ {X}. We encode the finite control
of C as a Büchi timed automaton Acont with no clocks over alphabet Σ. Acont is just the underlying
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control automaton of C with a X-labelled self-transition added to every control state and with sinit as the
initial control state and only accepting control state. Let Lcont denote the timed language Lω(Acont ).

Next we capture the behaviour of a space-bounded channel with insertion errors using a timed lan-
guage Lbound over alphabet Σ.

Definition 6.1. Lbound consists of those timed words u satisfying:

1. u is strictly monotonic and contains infinitely many non-X-events.

2. There is a X-event at time zero, and thereafter consecutive X-events are separated by one time
unit.

3. For every m!-event in u there is an m?-event one time unit later.

4. For every m?-event in u there is a n!-event one time unit later, for some n ∈M .

5. density(u)<∞.

As with the corresponding clause in Definition 4.1, Clause 3 captures the channel discipline: every
message sent is received. The channel has insertion errors because not every m?-event is necessarily
preceded one time unit earlier by an m!-event. On the other hand, Clause 4 has nothing to do with the
channel discipline. However its presence, together with Clauses 2 and 3, ensures that for every event of
u ∈ Lbound there is an event exactly one time unit later. (This fact will play a significant role later.) Since
we are dealing with balanced channel machines, the imposition of Clause 4 will prove to be no restriction
when we seek to match words in Lbound with channel computations. Finally, Clause 5 corresponds to
the space-boundedness of the channel.

Lemma 6.1. A balanced channel machine C has a space-bounded recurrent computation with insertion
errors iff Lcont ∩ Lbound 6= ∅.

Proof:
(⇐) Let u ∈ Lcont ∩Lbound . We show how to recover a space-bounded recurrent computation of C from
u. Since u ∈ Lcont , the automaton Acont , which represents the finite control of C, has a run

(s0, ν0)
δ0, α0
−→ (s1, ν1)

δ1, α1
−→ (s2, ν2)

δ2, α2
−→ · · · (2)

on u. Let αi0αi1αi2 . . . be the sequence of non-X-events in u. Then we obtain a recurrent computation
of C

(si0 , x0)
αi0−→ (si1 , x1)

αi1−→ (si2 , x2)
αi2−→ · · ·

where xj ∈M∗ is the sequence of messages that occur as read events in the unit time interval
(

tij−1
, tij−1

+ 1
]

,
where, by convention, i−1 = 0. Since u ∈ Lbound , Clause 3 in Definition 6.1 ensures that this is a le-
gitimate computation of C, albeit with insertion errors. Since u has finite density this computation is
space-bounded.

(⇒) We have already observed that if C has a space-bounded recurrent computation with insertion
errors, then it has a space-bounded recurrent error-free computation. The trace of channel events along
such an error-free computation can easily be encoded as a word in Lbound as we now explain. Since C is



12 author / short title

balanced, there is a number N ∈ N such that the size of the channel is either N or N − 1 at any point
in the computation. When any message is written to the channel, the machine performs exactly 2N − 1
(read and write) operations before that message is read off the channel. We transform the sequence of
read and write events along a computation into a timed word u by putting exactly 1/(2N − 1) time
units between consecutive events. This automatically guarantees that Clauses 3–5 in Definition 6.1 hold.
Finally, adding X-events at integer times yields a timed word in Lbound . ut

Similarly to the development in Section 4, the undecidability of the universality problem will follow
from Lemma 6.1 provided that we can define a one-clock timed automaton Abound such thatLω(Abound ) =
TΣω − Lbound . We define Abound to be the union of several automata, corresponding to the different
clauses in the definition of Lbound . It is straightforward, for each clause 1–4, to define an automaton that
accepts precisely the timed words that fail to satisfy that clause. Below we define two automata Ainc and
Adec such that, if a timed word u already satisfies 1–4, then it is accepted by Ainc or Adec precisely if it
fails Clause 5, i.e., it has infinite density.

First we recall from [37] the following simple fact about real numbers.

Lemma 6.2. If x = 〈xn : n ∈ N〉 is a sequence of real numbers such that {xn : n ∈ N} is infinite, then
x has either a strictly increasing subsequence or a strictly decreasing subsequence.

Let u = (t0, a0)(t1, a1)(t2, a2) . . . be a timed word satisfying Clauses 1–4 in Definition 6.1. Then
for every event of u there is an event exactly one time unit later. Thus u has infinite density iff {frac(ti) :
i ∈ N} is infinite. By Lemma 6.2, this holds iff the sequence 〈frac(ti) : i ∈ N 〉 has either a strictly
increasing subsequence or a strictly decreasing subsequence. We define an automaton Ainc that accepts
u iff 〈frac(ti) : i ∈ N〉 has a strictly increasing subsequence, and an automaton Adec that accepts u iff
〈frac(ti) : i ∈ N〉 has a strictly decreasing subsequence.

Consider a run of Ainc (depicted below) on u = (t0, a0)(t1, a1)(t2, a2) . . .. Let tij be the timestamp
of the transition that resets clock x for the j-th time. Notice that either tij+1

= tij + 1 or frac(tij+1
) >

frac(tij ). The Büchi condition ensures that the second eventuality holds infinitely often in the run, and so
the sequence frac(tij ) has a strictly increasing subsequence. Thus, among those timed words u satisfying
Clauses 1–4 in Definition 6.1, Ainc accepts precisely those for which 〈frac(ti) : i ∈ N〉 has a strictly
increasing subsequence. (Notice the importance of the fact that for each event in u there is an event one
time unit later.)

Ainc
//ONMLHIJK
@GF ECD

Σ

�� Σ\{X}

c:=0
//ONMLHIJK
@GF ECD
Σ c<1

��

@GA BCD
Σ c=1 c:=0

__

Σ c=1
,,ONMLHIJKGFED@ABC
@GF ECD
Σ\{X}

��

Σ\{X} c:=0

ll

Adec (depicted below) operates in a similar manner to Ainc except that it accepts those words u =
(t0, a0)(t1, a1)(t2, a2) . . . for which 〈frac(ti) : i ∈ N〉 has a strictly decreasing subsequence.
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Adec
//ONMLHIJK
@GF ECD

Σ

�� Σ\{X}

c:=0
//ONMLHIJK
@GF ECD
Σ c<1

��

@GA BCD
Σ c=1 c:=0

__

X
,,ONMLHIJKGFED@ABC
@GF ECD
Σ c<1

��

Σ c<1 c:=0

ll

We obtain the main result of the section.

Theorem 6.1. The universality problem for one-clock Büchi timed automata is undecidable.

7. Configurations

From this section on, we will concentrate on the universality problem for one-clock timed automata. We
fix a timed automaton (Σ, S, sinit , F, E) that operates on a single clock, henceforth called clock c. For a
global state q, we will (abusing notation) use val (q) instead of val (q) (c). In other words, val (q) gives
the value of (the only) clock c in q.

To solve the universality problem for global states, we study a more general problem, namely the
universality problem for (sets of) configurations. We will adapt the classical region equivalence to con-
figurations, and show how it can be used to define an entailment relation on configurations.

Configurations A configuration γ is a finite set of global states. A configuration γ is said to be ac-
cepting if some q ∈ γ is accepting. We lift the transition relation from global states to configurations.

We use γ δ−→T γ′ to denote that γ′ =
{

q′| ∃q ∈ γ. q δ−→T q′
}

. The definitions of the relations a−→D

and
δ, a
−→ are extended to configurations in a similar manner. For a configuration γ, a run (of A) from γ

is a finite sequence of transitions

γ0
δ0, a0
−→ γ1

δ1, a1
−→ γ2

δ2, a2
−→ · · ·

δn−1, an−1

−→ γn (3)

where γ0 = γ. The run is accepting if γn is accepting. We define Lf (γ) in a similar manner to the case
of global states. Notice that Lf (γ) =

⋃

q∈γ Lf (q). In particular, this means that the universality of a
global state q is equivalent to the universality of the configuration γ = {q}. We say that γ is universal if
Lf (γ) = TΣ∗.

A set Γ of configurations is said to be accepting if all its members are accepting. We use Γ δ−→T Γ′ to

denote that Γ′ =
{

γ′| ∃γ ∈ Γ. γ δ−→T γ′
}

. The definitions of the other transition relations are extended

analogously. Also the notions of a run, an accepting run, Lf (Γ), and universality, are extended in a
similar manner to the case of sets of configurations. Notice that Lf (Γ) =

⋂

γ∈Γ Lf (γ). In particular,
this means that the universality of a configuration γ is equivalent to the universality of the set Γ = {γ}.

We write Γ =⇒ Γ′ to denote that Γ δ−→T Γ′′ a−→D Γ′ for some δ, a, and Γ′′. We define (Γ =⇒) to be
the set {Γ′| Γ =⇒ Γ′}.
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Region Equivalence For configurations γ and γ′, and a bijection h : γ 7→ γ ′, we write γ ≡h γ′ to
denote that the following conditions are satisfied for each q, q1, q2 ∈ γ:

• state (q) = state (h(q)).

• val (q) ≤ cmax iff val (h(q)) ≤ cmax .

• if val (q) ≤ cmax then bval (q)c = bval (h(q))c.

• if val (q) ≤ cmax then it is the case that fract (val (q)) = 0 iff fract (val (h(q))) = 0.

• if val (q1) ≤ cmax and val (q2) ≤ cmax then fract (val (q1)) ≤ fract (val (q2)) iff fract (val (h(q1))) ≤
fract (val (h(q2))).

We write γ ≡ γ′ to denote that γ ≡h γ′ for some h. The relation ≡ is an equivalence, and is a
modification of the standard region equivalence on global states. The latter relates (multi-clock) global
states, while we here relate sets of global states each with a single clock. The following lemma is an
adaptation from the classical theory of timed automata [10].

Lemma 7.1. For configurations γ1, γ2, and γ3, if γ1
δ, a
−→ γ2 and γ1 ≡ γ3, then there is a γ4 such that

γ3
δ, a
−→ γ4 and γ2 ≡ γ4.

Entailment We define an entailment relation v on (sets of) configurations. For configurations γ and
γ′, we write γ v γ′ to denote that there is a γ ′′ ⊆ γ′ such that γ′′ ≡ γ. For sets of configurations Γ and
Γ′, we use Γ v Γ′ to denote that for each γ ′ ∈ Γ′, there is a γ ∈ Γ such that γ v γ ′. We write Γ ≡ Γ′

to denote that the following two conditions are satisfied: (i) for each γ′ ∈ Γ′, there is a γ ∈ Γ such that
γ ≡ γ′; and (ii) for each γ ∈ Γ, there is a γ ′ ∈ Γ′ such that γ′ ≡ γ. Notice that Γ ≡ Γ′ implies that both

Γ v Γ′ and Γ′ v Γ . The following lemma follows from Lemma 7.1 and the monotonicity of
δ, a
=⇒ with

respect to inclusion of configurations

Lemma 7.2. Let Γ1, Γ2, Γ3 be sets of configurations. If Γ1 =⇒ Γ2 and Γ3 v Γ1, then there is a set of
configurations Γ4 such that Γ3 =⇒ Γ4 and Γ4 v Γ2.

For a set Γ of configurations, we define the rank rank(Γ) of Γ to be the smallest n such there is
a sequence Γ0 =⇒ Γ1 =⇒ Γ2 =⇒ · · · =⇒ Γn, where Γ0 = Γ, and Γn is not accepting. In other
words, rank(Γ) gives the smallest distance through =⇒ from Γ to a non-accepting set of configurations.
If Γ is universal then we define rank(Γ) = ∞. Notice that rank(Γ) = 0 iff Γ is not accepting. The
following two lemmas relate (non-)universality of a set Γ of configurations to the (non-)universality of
its successors.

Lemma 7.3. For a set Γ of configurations, if 0 < rank(Γ) <∞ then there is a Γ′ ∈ (Γ =⇒) such that
rank(Γ′)< rank(Γ).

Lemma 7.4. For a set Γ of configurations, Γ is universal iff Γ is accepting and each Γ′ ∈ (Γ =⇒) is
universal.
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Notice that if Γ v Γ′ and Γ′ is not accepting then Γ is not accepting. This, together with Lemma 7.2,
implies the following lemma. The lemma shows the relation between the entailment relation and the
rank function.

Lemma 7.5. For sets Γ and Γ′ of configurations, if Γ v Γ′ then rank(Γ) ≤ rank(Γ′).

8. Zones

We will use zones as a symbolic representation of (infinite) sets of configurations in our universal-
ity algorithm for timed automata with single clocks. We assume a one-clock timed automaton A =
(Σ, S, sinit , F, E). Recall that, although A operates on a single lock, each configuration may contain
several global states. To encode these, we will work with sets of variables which we will use in the
definition of zones. For each s ∈ S, we will use a set Xs of variables ranging over R+. For x ∈ Xs, we
use type (x) to denote the control state s. Intuitively, a variable x ∈ X s is used to model a global state
whose control state is s and whose clock value is equal to the value assigned to x. We use X to denote
the set

⋃

s∈S X
s. We will also assume a special variable x0. We use x0 in our zone definitions to model

a reference clock whose value is equal to zero. The type of x0 is of no relevance.

Zones A zone condition ϕ is of the form y−x ∼ k, where ∼ ∈ {≤, <}, x, y ∈ X ∪
{

x0
}

, and k ∈ Z.
A zone Z is a finite conjunction of zone conditions. We use Var (Z) to denote the set of variables
in X which occur in Z. Furthermore, we require that, for each x ∈ Var (Z), the zone Z contains a
condition of the form x0 − x ≤ k where k ≤ 0. This condition is to prevent negative clock values in
the interpretation of Z. We occasionally consider a zone Z to be a set of zone conditions and write, for
instance, (y − x ∼ k) ∈ Z to indicate that y − x ∼ k is one of the conjuncts in Z.

We define a total ordering / on elements in the set {<,≤}×Z such that (∼1, k1)/ (∼2, k2) iff either

• k1 < k2; or

• k1 = k2 and either ∼1 = < or ∼2 = ≤.

We define (∼1, k1) + (∼2, k2) to be (∼3, k3) where k3 = k1 + k2 and ∼3 = < iff either ∼1 = < or
∼2 = <.

Consider a zone Z, a configuration γ, and a mapping h : Var (Z) 7→ γ such that type (x) =
state (h(x)) for each x ∈ Var (Z). We extend h such that val

(

h(x0)
)

= 0, i.e., the clock value of the
process represented by the special variable x0 is equal to zero. We write γ |=h Z to denote that

• if (y − x ∼ k) ∈ Z then val (h(y)) − val (h(x)) ∼ k.

When there is no risk of confusion, we simplify the notation and write h(x) instead of val (h(x)). For
instance, we write h(y) − h(x) ∼ k instead of val (h(y)) − val (h(x)) ∼ k.

We write γ |= Z to denote that γ |=h Z for some h. We use [[Z]] to denote the set {γ| γ |= Z}.
Intuitively, each variable in Var (Z) represents one global state. The configurations in [[Z]] contain
global states whose control states are defined by the types of the corresponding variables, and whose
clock values are related according to the zone conditions. Since / is total, we can assume without loss
of generality that, for each x and y, there is at most one zone condition of the form y − x ∼ k in Z (if
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(y−x ∼1 k1), (y−x ∼2 k2) ∈ Z and (∼1, k1)/ (∼2, k2), then y−x ∼2 k2 can be safely removed from
Z). In a similar manner to regions (Section 7), our interpretation of zones is different from the standard
one (described e.g. in [16]). In the standard interpretation, zones characterize sets of (multi-clock) global
states, while in our interpretation a zone characterizes sets of global states each with a single clock.

We say thatZ is accepting if [[Z]] is accepting, and say thatZ is universal if [[Z]] is universal. To check
that qinit is universal, we can check the universality of the zone Zinit consisting of the zone conditions
x− x0 ≤ 0 and x0 − x ≤ 0 where x ∈ Xsinit .

Let Y = {x1, . . . , xn} be a set of variables. By ∃Y.Z (or ∃x1, . . . , xn.Z) we mean the zone we get
from Z by removing all conjuncts which contain a variable in Y . For a set Z of zones, we use ∃Y.Z to
denote the set {∃Y.Z| Z ∈ Z}.

For zones Z and Z ′, abusing notation, we use Z ≡ Z ′ resp. Z v Z ′ to denote that [[Z]] ≡ [[Z ′]] resp.
[[Z]] v [[Z ′]], and use rank(Z) to denote rank([[Z]]). We use Post(Z ) to denote a finite set Z of zones
such that

⋃

Z′∈Z [[Z ′]] = ([[Z]] =⇒). In Section 11, we show that such a set exists and is computable.

Stability and Consistency A zone Z is said to be consistent if [[Z]] 6= ∅. Notice that an inconsistent
zone is trivially universal.

A zone Z is said to be stable if it satisfies the following condition:

• If (x2 − x1 ∼1 k1) ∈ Z and (x3 − x2 ∼2 k2) ∈ Z then (x3 − x1 ∼3 k3) ∈ Z for some
(∼3, k3) / (∼1, k1) + (∼2, k2).

We can use Floyd’s algorithm in the same manner as [21] to compute Stabilize(Z), giving the following
lemma.

Lemma 8.1. For each consistent zone Z, we can construct a stable zone, denoted Stabilize(Z), such
that (i) Var (Stabilize(Z)) = Var (Z); and (ii) γ |=h Stabilize(Z) iff γ |=h Z for each γ and h.

Notice that [[Stabilize(Z)]] = [[Z]]. For a set Z of zones, we define Stabilize(Z) = {Stabilize(Z)| Z ∈ Z and Z is consistent}.
For a stable zone Z, we can check whether Z is consistent by checking whether there is a condition of
the form (x− x ∼ k) ∈ Z where (∼, k) / (<, 0).

9. Algorithm

The zone-based universality algorithm is defined as follows:
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Algorithm 1: Zone-Based Universality Checking
Input: A zone Zinit .
Output: Is Zinit universal?

ToExplore := {Zinit}
Explored := ∅
while ToExplore 6= ∅

remove some Z from ToExplore

if Z is not accepting then
return (false)

else if ∃Z ′ ∈ Explored. Z′ v Z then
discard Z

else
ToExplore := ToExplore

⋃

Post(Z )
Explored := {Z}

⋃

{Z′| Z′ ∈ Explored ∧ (Z 6v Z′)}
return (true)
end

The algorithm inputs a zone Zinit , and should check whether Zinit is universal or not. The algorithm
maintains two sets of zones: a set ToExplore, initialized to {Zinit}, of zones that have not yet been
analyzed; and a set Explored, initialized to the empty set, of zones that contains information about the
set of zones that already have been analyzed. The algorithm preserves the following two invariants:

• some zone in (ToExplore
⋃

Explored) is non-universal iff Zinit is non-universal; and

• If Zinit is non-universal, then ∃Z ∈ ToExplore. ∀Z′ ∈ Explored. rank(Z)< rank(Z′).

Due to the invariants, the following two conditions can be checked during each step of the algorithm:

• if ToExplore becomes empty then the algorithm terminates with a positive answer; and

• if a non-accepting zone is detected then the algorithm terminates with a negative answer.

If neither of the two conditions is satisfied, the algorithm proceeds by picking and removing a zone Z
from ToExplore. Two possibilities arise depending on the value of Z:

• If there exists a zone Z ′ ∈ Explored with Z ′ v Z, then we discard Z. The first invariant is
preserved by Lemma 7.5. If Zinit is non-universal, then the second invariant and Lemma 7.5
imply that there is still some Z ′′ ∈ ToExplore such that rank(Z ′′)< rank(Z ′) ≤ rank(Z). This
means that the second invariant will also be preserved by this step.

• Otherwise, we generate the zones in Post(Z ) and put them in ToExplore. The first invariant
will be preserved by Lemma 7.4, while the second invariant will be preserved by Lemma 7.3 and
Lemma 7.5. Furthermore, we remove all zones in Explored which are larger than Z with respect
to v. This operation preserves the second invariant trivially while it preserves the second invariant
by Lemma 7.5.

Partial correctness of the algorithm follows immediately from the invariant. It remains to show that:
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• The algorithm terminates (done in Section 10).

• We can compute Post and can check the entailment relation v on zones (done in Section 11 and
Section 12).

10. Termination

Using the methodology of [1] it can be shown that the universality algorithm of Section 9 is guaranteed
to terminate in case v is a well quasi-ordering (WQO). Following the framework of [7], we show that v
in fact satisfies a stronger property than WQO; namely that it is a better quasi-ordering (BQO).

WQOs A quasi-ordering, or a QO for short, is a pair (A,�) where � is a reflexive and transitive
(binary) relation on a set A. A QO (A,�) is a well quasi-ordering, or a WQO for short, if for each
infinite sequence a1, a2, a3, . . . of elements of A, there are i < j such that ai � aj . For a set B ⊆ A, we
define min(B) to be a subset of B which satisfies the following two properties:

• for each a ∈ B there is a b ∈ min(B) with b � a.

• the elements of min(B) are not related by �, i.e., there are no a, b ∈ min(B) with a � b.

If there are several sets satisfying the above two conditions, then we assume that min(B) gives an
arbitrary (but fixed) such set. Notice that if � is a WQO then min(B) is finite.

BQOs In this paragraph, we introduce the basic definitions of better quasi-orderings (BQOs). The
definition of BQOs is quite technical and is not strictly needed for understanding the rest of the paper.
Nevertheless, we include the definition for the sake of completeness.

We let N<ω (Nω) denote the set of finite (infinite) strictly increasing sequences over the set N of
natural numbers. For s ∈ N<ω, we let λ(s) be the set of natural numbers occurring in s, and if s
is not empty then we let tail(s) be the result of deleting the first element of s. For s1 ∈ N<ω and
s2 ∈ N<ω ∪ Nω, we write s1 � s2 to denote that s1 is a proper prefix of s2. If s1 is not empty then
we write s1 �∗ s2 to denote that tail(s1) � s2. An infinite set β ⊆ N<ω is said to be a barrier if the
following two conditions are satisfied.

• There are no s1, s2 ∈ β such that λ(s1) ( λ(s2).

• For each s2 ∈ Nω there is s1 ∈ β with s1 � s2.

Let (A,�) be a quasi-ordering. An A-pattern is a mapping f : β 7→ A, where β is a barrier. We say
that f is good if there are s1, s2 ∈ β such that s1 �∗ s2 and f(s1) � f(s2). We say that (A,�) is a
better quasi-ordering (bqo) if each A-pattern is good.

Properties We give the properties of WQOs and BQOs that we use in our termination proof. Given a
QO (A,�), we define a QO (A∗,�∗) on the set A∗ such that x1 x2 · · · xm �∗ y1 y2 · · · yn if and only
if there is a strictly monotonic2 injection h from {1, . . . ,m} to {1, . . . , n} such that xi � yh(i) for each

2Strict monotonicity means that i < j implies h(i) < h(j).
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i : 1 ≤ i ≤ m. We define the relation �P on the set P(A) of finite subsets of A, so that A1 �P A2 if
and only if ∀b ∈ A2 : ∃a ∈ A1 : a � b.

Lemma 10.1. For sets A1, A2 ⊆ A, we have A1 �P A2 iff min(A1) �
P min(A2).

In the following lemma we state some properties of WQOs and BQOs [7, 29].

Lemma 10.2.

1. Each BQO is WQO.

2. If A is finite then (A,=) is BQO.

3. If (A,�) is BQO then (A∗,�∗) is BQO.

4. If (A,�) is BQO then
(

P(A),�P
)

is BQO.

5. If (A,�1) is BQO and �1⊆�2 then (A,�2) is BQO.

(Sets of) Configurations are BQO. Fix an automaton A = (Σ, S, sinit , F, E). For a global state
q, we define the signature sign (q) of q to be a pair (s, k) ∈ S × {0, 1, 2, . . . , 2 · cmax + 1}, where
s = state (q) and k is defined as follows:

• k = 2 · bval (q)c if val (q) ≤ cmax and fract (val (q)) = 0.

• k = 2 · bval (q)c + 1 if val (q)< cmax and fract (val (q))> 0.

• k = 2 · cmax + 1 if val (q)> cmax .

For a configuration γ, we define sign (γ) to be the (unique) word over P(S × {0, 1, . . . , 2 · cmax + 1})
of the form r0r1 · · · rn such that the following properties are satisfied:

• {sign (q) | q ∈ γ} = r0 ∪ r1 ∪ · · · ∪ rn.

• If q ∈ ri and q′ ∈ rj then fract (q) ≤ fract (q′) iff i ≤ j.

The signature can be viewed as an encoding of the region to which the configuration belongs. The
ordering among the sets inside the word reflects the relative ordering of the fractional parts. The control
states, the integral parts of the clock values, and whether the fractional part is equal to zero, are all stored
inside the signature of each global state. Observe that a signature is not an exact encoding of region,
as the former keeps track of the fractional parts of clocks greater than cmax , while a region equates all
such clock values. We define an ordering on configurations induced by signatures as follows. Consider
configurations γ and γ′ such that sign (γ) = r0r1 · · · rm and sign (γ′) = r′0r

′
1 · · · r

′
n. We use γ � γ′ to

denote that there is a strictly monotonic injection h : {0, . . . ,m} 7→ {0, . . . , n} such that ri ⊆ r′
h(i) for

each i : 0 ≤ i ≤ m. The above mentioned relation between regions and signatures is captured in the
following lemma (a formal proof can be given in a similar manner to [6] or [34]).

Lemma 10.3. For configurations γ and γ′ if γ � γ′ then γ v γ′.
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We observe that the signature of each configuration is a finite word over finite sets over a finite alphabet
(namely finite sets over S × {0, 1, 2, . . . , 2 · cmax + 1}). Consequently, Lemma 10.2 (Property 2 and
Property 3) gives the following:

Lemma 10.4. � is a BQO on the set of configurations.

From Lemma 10.3, Lemma 10.4, and Lemma 10.2 (Property 5) we get the following:

Corollary 10.1. v is a BQO on the set of configurations.

From the definition of v on zones, Corollary 10.1, Lemma 10.1, and Lemma 10.2 (Property 4) we get
the following

Lemma 10.5. v is a BQO on zones.

Lemma 10.5 and Lemma 10.2 (Property 1) give the following:

Corollary 10.2. v is a WQO on zones.

11. Computing Successors

In this section, we show how to compute Post(Z ) for some zoneZ. We compute Post(Z ) as PostD(PostT (Z )),
where PostT and PostD characterize timed resp. discrete successors of Z.

Timed Successors For a zone Z, we let PostT (Z ) denote the zone Z ′ such that [[Z]] δ−→T [[Z ′]] for
some δ ∈ R+. In other words, Z ′ characterizes the set of configurations which are timed successors
of configurations in [[Z]]. To compute Z′, we first compute the zone Z′′ where Z ′′ is stable and where
[[Z ′′]] = [[Z]] (Lemma 8.1). We can derive PostT (Z ) from Z ′′ by deleting all clock conditions of the
forms x− x0 ∼ k. This gives the following:

Lemma 11.1. For a zone Z, we can compute PostT (Z ).

Discrete Successors Fix a timed automaton A = (Σ, S, sinit , F, E) and a zone Z. Informally, the idea
of computing PostD(Z ) is as follows. We recall that each variable x ∈ Var (Z) represents one global
state q in a configuration γ ∈ [[Z]]. The global state q (represented by x) produces a (possibly empty)
set of successors. More precisely, each edge e = (s, s′, φ, a,R, φ′) which “matches” x may produce
a successor global state q′. Here, x and e are considered to be matching if type (x) is identical to the
source control state s in e. Notice that a successor is generated only if val (q) satisfies φ. In this manner,
a configuration γ produces a set of successors, reflecting the different successors of the individual global
states in γ. We formalize the above reasoning in a number of steps.

First, we define the set of matching variables and edges. For a variable x ∈ Var (Z) and a label
a ∈ Σ, we let E(x, a) be the set of edges whose source control state is type (x) and whose label is
a. For an a ∈ Σ, we define the set Z � a = {(e, x) | x ∈ Var (Z) ∧ e ∈ E(x, a)}. For each pair
(e, x) ∈ (Z � a), we use a fresh variable y(e,x) (i.e., y(e,x) is not a member of Var (Z)). We define
type

(

y(e,x)

)

to be the target control state of e. Intuitively, for e = (s, s′, φ, a,R, φ′), the set Z � a
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contains all pairs (e, x) which are matching, i.e., type (x) = s. Each such pair can potentially generate
a new global state, represented by a new variable y(e,x) in PostD(Z ). Since the control state of the new
global state will be s′, the type of y(e,x) is also defined to be s′.

For (e, x) ∈ Z � a with e = (s, s′, φ, a,R), we define Z ⊗ (e, x) to be one of the following sets:

• if c 6∈ R then Z ⊗ (e, x) =
{

(y(e,x) = x) ∧ φ(x) , ¬φ(x)
}

.

• if c ∈ R then Z ⊗ (e, x) =
{

(y(e,x) = x0) ∧ φ(x) , ¬φ(x)
}

.

Intuitively, for each pair (e, x), there are two possibilities: either (i) the guard φ is satisfied, in which case
we generate a new global state represented by the new variable y(e,x) in Post(Z ); or (ii) φ is not satisfied
in which case no new variable is added to Post(Z ). If a new global state is added then, depending on
whether c ∈ R, there are two possibilities: either (i) if c 6∈ R then its clock value is equal to the clock
value of the original global state; and (ii) if c ∈ R then its clock value is equal to 0. In the first case we
add the condition y(e,x) = x, while in the second case we add the condition y(e,x) = x0.

For a ∈ Σ, we define Z ⊗ a to be the set of zones of the form




∧

(e,x)∈(Z�a)

φ(e,x)



 ∧ Z

where φ(e,x) ∈ (Z ⊗ (e, x)) for each (e, x) ∈ (Z � a). Finally, we define:

Z ⊕ a = ∃Var (Z) .Stabilize (Z ⊗ a)

Each member of Z ⊗ a is a zone which represents the conjunction of the original zone Z with one of
the zones in PostD(Z ). To obtain the new zone, we abstract from the variables of Z. The purpose
of stabilization is to avoid losing information when removing the elements of Var (Z). The following
lemma shows correctness of the above construction.

Lemma 11.2. PostD(Z ) =
⋃

a∈Σ

Z ⊕ a .

12. Checking Entailment

In this section, we describe how to implement the entailment relation v on zones.
To characterize entailment, we use formulas in a decidable logic, called Difference Bound Logic

(DBL). The atomic formulas are of the form y− x ∼ k, where x and y are variables interpreted over R+

and k ∈ N. Furthermore the set of formulas is closed under the propositional connectives. Satisfiability
of DBL-formulas is NP-complete [32]. NP-hardness follows by reducing the satisfiability problem for
Boolean formulas. We represent each atomic proposition p by two variables xp and yp in the DBL
formula. We replace each occurrence of p in the Boolean formula by the atomic formula xp − yp ≤ 0.
For NP-easiness, a non-deterministic algorithm works by guessing which zone conditions are true and
which are false. A linear time test can check that the guess makes the entire formula true. A polynomial
time test can check that the corresponding set of constraints on the reals is in fact satisfiable. The
satisability of a conjunction of atomic formulas (a special case of linear programming) can be solved in
cubic time using the Floyd-Warshall algorithm [20].
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To give the characterization of entailment, we define the notion of areas. An area condition ψ is
either of the form (y−x ∼ k)∨ (x> cmax −k) where k ≥ 0; or of the form (y−x ∼ k)∨ (x> cmax )
where k < 0 Given a zone condition ϕ = (y− x ∼ k), we use ϕ� to denote the area condition (y− x ∼
k) ∨ (x > cmax − k) if k ≥ 0, and the area condition (y − x ∼ k) ∨ (x > cmax ) if k < 0. An area A
is a conjunction of area conditions. For a zone Z, we use Z� to be the area

∧

ϕ∈Z ϕ
�. Given a zone Z

with Var (Z) = {x1, . . . , xm}, it is sometimes convenient to view Z as a predicate Z(x1, . . . , xm) on
the set Nm (replacing any occurrence of x0 by 0). Observe that γ |=h Z iff Z(h(x1), . . . , h(xn)) holds.
This representation can be extended in the obvious manner to areas. Relations such as γ |=h A, γ |= A,
A1 ≡ A2, A1 v A2, etc, are defined for areas in a similar manner to zones.

For zones Z1 and Z2, a renaming from Z1 to Z2 is a mapping R : Var (Z1) 7→ Var (Z2) such that
type (x) = type (R(x)). We use Ren(Z1)(Z2) to denote the set of renamings from Z1 to Z2.

Lemma 12.1. For zones Z1 and Z2 with Var (Z1) = {x1, . . . , xm} and Var (Z2) = {y1, . . . , yn}, it is
the case that Z1 v Z2 iff

∀y1, . . . , yn.











Z2(y1, . . . , yn) =⇒

∨

R∈Ren(Z1)(Z2)

Z�
1 (R(x1), . . . ,R(xm))











Notice that the above is a DBL-formula.

13. Experimentation

We have implemented two prototypes to check universality for single-clock timed automata. One of
the implementations is based on zones, whereas the other one uses a more compact representation of
zones, called Difference Decision Diagrams (DDD), and is based on a package developed at the Tech-
nical University of Denmark [31]. We have used these prototypes to check several timed automata for
universality. As a reference tool, we used the region-based implementation developed at the Oxford
University Computing Laboratory.

In Table 1 we present the results of the tests. For each timed automaton, we give the number of
control states, edges, cmax , whether universality holds or not, and the execution time for each of the
three methods. We use “not term.” to indicate that the program did not terminate after more than 24
hours, or that the program stopped without solving the problem due to an out-of-memory exception.
All tests were conducted on a Sun workstation with 4.0 GB memory and a 1.0 GHz UltraSPARC-IIIi
processor. For both the zone- and region-based implementations we used Java version 1.5.0 05. The
DDD-based implementation is compiled with gcc version 2.7.2.3.

In 16 out of 26 tests the execution time of the DDD-based program is smaller than that of the other
programs. However, the zone-based prototype is almost as efficient as the DDD-based prototype, as
the differences between the execution times are very small, i.e., within a time span of no more than
seconds in most of the cases. This is in contrast to the significant differences between the run times
of region- and zone-based implementations, varying between milliseconds and hours. As expected, the
region-based implementation performs badly for high values of cmax . Notice that the run times of both
the DDD- and the zone-based prototypes remain relatively stable under changes of the value of cmax .
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Table 1. Experimental results

|S| |E| cmax univ? Region Zone DDD

3 4 1 no 21 ms 13 ms 10 ms

3 4 25 no 364 ms 13 ms 0 ms

3 4 50 no 636 ms 14 ms 10 ms

3 4 10000 no 4 hr 49 min 38 sec 601 ms 13 ms 10 ms

10 22 2 yes 639 ms 61 ms 70 ms

10 22 6 yes 550 ms 41 ms 50 ms

10 22 25 yes 1 sec 526 ms 40 ms 70 ms

10 29 135 yes 20 s 981 ms 4 sec 418 ms not term.

10 29 235 yes 1 min 9 sec 20 ms 3 sec 558 ms not term.

10 29 335 yes 2 min 24 sec 21 ms 3 sec 746 ms not term.

10 38 335 yes 1 min 43 sec 175 ms 20 sec 184 ms not term.

10 44 35 no 3 sec 181 ms 4 min 28 sec 762 ms 1 sec 10 ms

10 44 170 no 27 sec 227 ms 2 min 57 sec 715 ms 670 ms

10 44 560 no 1 min 25 sec 289 ms 6 sec 758 ms 870 ms

10 44 1635 no 41 min 20 sec 623 ms 3 sec 523 ms 320 ms

10 44 2635 no 2 hr 44 sec 135 ms 10 sec 300 ms 1 sec 600 ms

10 44 3635 no 2 hr 1 min 26 sec 921 ms 14 sec 174 ms 1 sec 580 ms

10 44 5635 no 5 hr 21 min 9 sec 24 ms 13 sec 457 ms 1 sec 680 ms

10 44 11635 no not term. 15 sec 207 ms 1 sec 540 ms

10 30 9335 yes not term. 3 sec 599 ms not term.

20 53 4335 yes not term. 7 sec 061 ms not term.

25 63 3000 yes not term. 40 sec 324 ms not term.

20 53 4335 no not term. 13 sec 132 ms 12 sec 410 ms

10 30 9880 no not term. 11 sec 52 ms 300 ms

25 65 10000 no not term. 1 sec 225 ms 480 ms

25 65 10000 no not term. 10 min 27 sec 614 ms 2 sec 670 ms
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The DDD package does not support any maximum-constant abstraction which causes non-termination
in some cases.

14. Conclusions

This paper has investigated both the theoretical and practical complexity of the universality problem for
timed automata. It has been known for quite some time that this problem is undecidable in general [10].
The starting point of the current paper was the more recent result of [34] that the universality problem
(in fact even the language inclusion problem) over finite timed words is decidable for automata with a
single clock.

Our first results concern the theoretical complexity of the one-clock universality problem. Over finite
words we showed that the problem was non-primitive recursive, and over infinite words we showed that
the problem was undecidable.

Of course, good theoretical complexity is not necessary for a verification technique to be applicable
to non-trivial examples (witness the success of software model checking). However, being based on the
clock regions construction, the algorithm presented in [34] was impractical for all but the smallest ex-
amples. Here we have presented a more practical algorithm for deciding universality of one-clock timed
automata, based on zones and Difference Decision Diagrams rather than clock regions. Our results show
that this new algorithm outperforms the regions-based implementation by several orders of magnitude.

In future we plan to extend the universality algorithm presented herein to handle language inclusion
and to model-check safety properties in Metric Temporal Logic [35]. We would also like to investigate
its use as a semi-algorithm for checking language inclusion between arbitrary timed automata.
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A. Appendix - Proofs of Lemmas

To show Lemma 7.2, we first prove the following lemma.

Lemma A.1. For configurations γ1, γ2, and γ3, if γ1
δ, a
−→ γ2 and γ3 v γ1, then there is a γ4 such that

γ3
δ, a
−→ γ4 and γ4 v γ2.

Proof:
Since γ3 v γ1 it follows by definition that there is a γ′1 ⊆ γ1 such that γ′1 ≡ γ3. Let γ′2 be the (unique)

configuration such that γ′1
δ, a
−→ γ′2. Obviously γ′2 ⊆ γ2. Since γ′1 ≡ γ3, it follows from Lemma 7.1 that

there is a γ4 such that γ3
δ, a
−→ γ4 and γ′2 ≡ γ4. By definition it follows that γ4 v γ2. ut

Lemma 7.2

Proof:
Since Γ1 =⇒ Γ2, we know by definition that Γ1

δ, a
−→ Γ2 for some δ and a. Let Γ4 be the (unique) set of

configurations such that Γ3
δ, a
−→ Γ4. We show that Γ4 v Γ2. Take any γ2 ∈ Γ2. Since Γ1

δ, a
−→ Γ2, there

is a γ1 ∈ Γ1 such that γ1
δ, a
−→ γ2. Since Γ3 v Γ1 it follows by definition that there is a γ3 ∈ Γ3 such that

γ3 v γ1. By Lemma A.1 it follows that there is a γ4 such that γ3
δ, a
−→ γ4 and γ4 v γ2. Since Γ3

δ, a
−→ Γ4,

γ3 ∈ Γ3, and γ3
δ, a
−→ γ4, it follows by definition that γ4 ∈ Γ4. Thus, for an arbitrary γ2 ∈ Γ2, we have

found a γ4 ∈ Γ4 with γ4 v γ2. It follows that Γ4 v Γ2. Also, Γ3
δ, a
−→ Γ4, means that Γ3 =⇒ Γ4, and

hence the result. ut

Lemma 7.3

Proof:
Let Γ be a set of configurations and rank(Γ) = n for some n : 0< n <∞. Then there is a sequence
Γ0 =⇒ Γ1 =⇒ · · · =⇒ Γn, where Γ0 = Γ and Γn is not accepting. One can easily see that rank(Γ1) ≤
n− 1. The result follows immediately since Γ1 ∈ (Γ =⇒). ut

Lemma 7.4

Proof:
(if) Assume that Γ is not universal. Then there is a sequence Γ0 =⇒ Γ1 =⇒ · · · =⇒ Γn, where Γ0 = Γ
and Γn is not accepting. If n = 0 then Γ is not accepting. Otherwise, we know that rank(Γ1) ≤ n − 1
and hence Γ1 is not universal. The result follows since Γ1 ∈ (Γ =⇒).
(only if) If Γ is not accepting then Γ is trivially non-universal (rank(Γ) = 0). Suppose that there is a
Γ′ ∈ Post(Γ ) which is not universal. Then, there is a sequence Γ0 =⇒ Γ1 =⇒ Γ2 =⇒ · · · −→ Γn,
where Γ0 = Γ′ and Γn is not accepting. It follows that rank(Γ) ≤ n+ 1, and hence, Γ is not universal.

ut

To prove Lemma 11.2 we need first to prove Lemma A.2, Lemma A.3, Lemma A.4, and Lemma A.5.
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Lemma A.2. Consider a stable and consistent zone Z and a configuration γ. Let X,Y be a partitioning
of Var (Z), and let h : X 7→ γ be a mapping such that γ |=h ∃Y.Z. Then there is a configuration γ′ and
a mapping h′ : Y 7→ γ′ such that γ ∪ γ′ |=h∪h′ Z.

Proof:
We show the case when Y = {y} is a singleton. The claim then follows by induction on the size of Y .
We define ρ to be any number in R+ satisfying the following properties:

• If (y − x ∼ k) ∈ Z then ρ ∼ h(x) + k.

• If (x− y ∼ k) ∈ Z then h(x) − k ∼ ρ.

We show that such a ρ exists. Suppose that ρ does not exist. There are two possible cases each leading
to a contradiction as follows.

• There is a (y − x ∼ k) ∈ Z such that 0 6∼ h(x) + k. Since Z is stable, we know that (x0 − y ≤
0) ∈ Z and hence (x0 − x ∼ k) ∈ Z. Since γ |=h ∃Y.Z it follows that h(x0) − h(x) ∼ k. From
h(x0) = 0 we get 0 ∼ h(x) + k which is a contradiction.

• There are (y − x1 ∼1 k1) ∈ Z and (x2 − y ∼2 k2) ∈ Z such that h(x2) − h(x1) 6∼ k where
(∼, k) = (∼1, k1) + (∼2, k2). Since Z is stable, we know that (y − x3 ∼3 k3) ∈ Z for some
(∼3, k3) / (∼, k). Since γ |=h ∃Y.Z it follows that h(y)− h(x3) ∼3 k3, which is a contradiction.

Now, we define γ′ = {q} where state (q) = type (y) and val (q) = ρ. Furthermore, we define h′(y) = q.
From the definitions it follows that γ ∪ γ′ |=h∪h′ Z. ut

Lemma A.3. Consider a consistent zone Z, a configuration γ, a set X ⊆ Var (Z), and be a mapping
h : X 7→ γ such that γ |=h Z. Let Z ′ = (∃Var (Z) \X) .Z, γ ′ = {s| ∃x ∈ X. h(x) = s}. Let h′ be
the restriction of h to X . Then γ ′ |=h′ Z ′.

Proof:
Follows immediately from the definitions. ut

Lemma A.4.
⋃

Z′∈(Z⊕a)

[[Z ′]] ⊆
{

γ′| ∃γ ∈ [[Z]]. γ a−→D γ′
}

Proof:
Suppose that γ′ |= Z ′ for some Z ′ ∈ (Z ⊕ a). We show that there is γ such that γ |= Z and γ a−→D

γ′. Since Z ′ ∈ (Z ⊕ a), we know that Z ′ = ∃Var (Z) .Stabilize(Z1) for some Z1 ∈ (Z ⊗ a). By
definition, there is a mapping h′ : Var (Z ′) 7→ γ′ such that γ′ |=h′ Z ′. By Lemma A.2 it follows that
there is a γ and a mapping h : Var (Z) 7→ γ such that γ ∪ γ ′ |=h∪h′ Stabilize(Z1). By Lemma 8.1 we
know that γ ∪ γ′ |=h∪h′ Z1. By Lemma A.3 it follows that γ |=h Z, and hence γ |= Z. Now, we show
that γ a−→D γ′.

We do that in two steps:
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1. Suppose that q′ ∈ γ′. We show that there is a q ∈ γ such that q a−→D q′. We know that q′ =
h′(y(e,x)) for some (e, x) ∈ (Z � a). Let e be of the form (s, s′, φ, a,R, φ′). Since state (q′) =
type

(

y(e,x)

)

it follows that state (q′) = s′. Define q = h(x). It follows that state (q) = s. There
are two cases to consider:

• If c 6∈ R then by the definition of Z ⊗ a, we know that
(

y(e,x) = x
)

∈ Z1. Since γ ∪
γ′ |=h∪h′ Z1 it follows that val (h(x)) = val

(

h′(y(e,x))
)

, i.e., val (q) = val (q′). Also, by
the definition of Z ⊗ a, we know that φ(x) ∈ Z1, and hence, by Lemma 8.1, val (q) satisfies
φ. In summary, we have shown above that state (q) = s, state (q ′) = s′, val (q) satisfies φ,
and val (q) = val (q′). It follows that q a−→D q′.

• If c ∈ R then by definition ofZ⊗a, we know that
(

y(e,x) = x0
)

∈ Z1. Since γ∪γ′ |=h∪h′ Z1

it follows that val (q′) = 0. Also, by the definition of Z ⊗ a, we know that φ(x) ∈ Z1.
By Lemma 8.1 It follows that val (q) satisfies φ. In summary, we have shown above that
state (q) = s, state (q′) = s′, val (q) satisfies φ, and val (q′) = 0. It follows that γ a−→D γ′.

2. Suppose that there is a q ∈ γ such that q a−→D q′. We show that q′ ∈ γ′. Since γ |=h Z, we know
that q = h(x) for some x ∈ Var (Z). Since q a−→D q′, we know that there is an edge e be of the
form (s, s′, φ, a,R, φ′), such that state (q) = s, state (q′) = s′, and val (q) satisfies φ. There are
two cases:

• If c 6∈ R then we know that val (q′) = val (q). Since val (q) satisfies φ, it follows by the
definition of Z ⊗ a, that

(

y(e,x) = x
)

∈ Z1. Lemma 8.1 implies that val
(

h′
(

y(e,x)

))

=
val (h(x)), and hence val

(

h′
(

y(e,x)

))

= val (q) = val (q′). Furthermore, we know that
type

(

y(e,x)

)

= s′ = state (q′). The fact that val
(

h′
(

y(e,x)

))

= val (q′) and type
(

y(e,x)

)

=
state (q′) implies q′ ∈ γ′.

• If c ∈ R then we know that val (q′) = 0. Since val (q) satisfies φ, it follows by the definition
of Z ⊗ a, that

(

y(e,x) = x0
)

∈ Z1. Lemma 8.1 implies that val
(

h′
(

y(e,x)

))

= 0 = val (q′).
Furthermore, we know that type

(

y(e,x)

)

= s′ = state (q′). The fact that val
(

h′
(

y(e,x)

))

=
val (s′) and type

(

y(e,x)

)

= state (q′) implies q′ ∈ γ′.
ut

Lemma A.5.
{

γ′| ∃γ ∈ [[Z]]. γ a−→D γ′
}

⊆
⋃

Z′∈(Z⊕a)

[[Z ′]]

Proof:
Suppose that γ |= Z and γ a−→D γ′. We show that γ ′ |= Z ′ for some Z ′ ∈ Z ⊕ a. Since γ |= Z, we
know that γ |=h Z for some mapping h : Var (Z) 7→ γ. For a global state q = (s, ν) ∈ γ, and an edge
e = (s, s′, φ, a,R, φ′), we define qe as follows:

• If ν satisfies φ and c 6∈ R then qe = (s′, ν).

• If ν satisfies φ and c ∈ R then qe = (s′, 0).

• If ν does not satisfy φ then qe is undefined.
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By definition, γ′ consists of all qe which are defined. Consider the zone

Z1 =





∧

(e,x)∈(Z�a)

φ(e,x)



 ∧ Z

in Z ⊗ a, where φ(e,x), with e = (s, s′, φ, a,R, φ′), is defined as follows

• If ν satisfies φ and c 6∈ R then φ(e,x) = (y(e,x) = x) ∧ φ(x).

• If ν satisfies φ and c ∈ R then φ(e,x) = (y(e,x) = 0) ∧ φ(x).

• If ν does not satisfy φ then the corresponding formula φ(e,x) is missing.

Define the mapping h′ : Var (Z ′) 7→ γ′ such that h′(y(e,x)) = qe if qe is defined (or equivalently if φ(e,x)

is not missing in Z ′), and if h(x) = q. By definition it follows that γ ∪ γ′ |=h∪h′ Z1. By Lemma 8.1 it
follows that γ ∪ γ′ |=h∪h′ Stabilize(Z1). Lemma A.3 implies that γ ′ |= ∃Var (Z) .Stabilize(Z1). By
definition (∃Var (Z) .Stabilize(Z1)) ∈ Z ⊕ a. ut

Lemma 11.2

Proof:
Follows directly from Lemma A.4 and Lemma A.5. ut

To show Lemma 12.1, we show Lemma A.6, Lemma A.7, Lemma A.8, and Lemma A.9.

Lemma A.6. For a consistent and stable zone Z, it is the case that Z� ≡ Z.

Proof:
Let Z = ϕ1 ∧ · · · ∧ ϕn, i.e., Z� = ϕ1

� ∧ · · · ∧ ϕn
�. Suppose that γ |=h Z

�. We show that γ ′ |= Z for
some γ′ ≡ γ. Without loss of generality, we assume that Var (Z) is of the form {x1, . . . , x`, x`+1, . . . , xm},
where the following two conditions are satisfied:

1. h(xi) ≤ cmax for each i : 1 ≤ i ≤ `; and

2. If (xj − xi ∼ k) ∈ Z for some ` < i, j ≤ m, and (∼, k) / (≤,−1), then j < i.

The second condition can be satisfied since Z is consistent.
We derive a sequence γ`, γ`+1, . . . , γm of configurations and a corresponding sequence h̀ , h`+1, . . . , hm

such that γi |=hi
∃xi+1, . . . , xm.Z for all i : ` ≤ i ≤ m.

We define h̀ (xi) = h(xi) for each i : 1 ≤ i ≤ `; and define γi = {h(xi)| 1 ≤ i ≤ `}. Suppose
that γ` 6|=h`

∃x`+1, . . . , xm.Z. It follows that h`(xj) − h`(xi) 6∼ k for some (xj − xi ∼ k) ∈ Z where
1 ≤ i, j ≤ `. There are two possible cases depending on whether k is negative. We show that we get a
contradiction in each case:

• k ≥ 0 and (xj − xi ∼ k) ∨ (xi > cmax − k) ∈ Z�. Since γ |=h Z�, we have that (h(xj) −
h(xi) ∼ k) ∨ (h(xi) > cmax − k). Since h`(xj) = h(xj) and h`(xi) = h(xi) it follows that
h(xj) − h(xi) 6∼ k. This means that h(xi) + k ∼ h(xj) and h(xi) > cmax − k, and hence
h(xj)> cmax which contradicts condition 1 above.
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• k < 0 and (xj − xi ∼ k) ∨ (xi > cmax ) ∈ Z�. Since γ |=h Z
�, we have that (h(xj) − h(xi) ∼

k)∨(h(xi)>cmax ). Since h`(xj) = h(xj) and h`(xi) = h(xi) it follows that h(xj)−h(xi) 6∼ k.
This means that h(xi)> cmax which contradicts condition 1 above.

Now, we consider i : `< i ≤ m. We define hi(xj) = hi−1(xj) if j < i, and define hi(xi) = ρ, where
ρ is any number in R+ satisfying the following properties:

(a) cmax < ρ.

(b) If (xj − xi ∼ k) ∈ Z for some j < i then hi(xj) − k ∼ ρ.

(c) If (xi − xj ∼ k) ∈ Z for some j < i then ρ ∼ hi(xj) + k.

We show that such a ρ exists. Suppose that ρ does not exist. There are two possible cases each leading
to a contradiction as follows.

• Conditions (b) and (c) cannot be satisfied. This means that there are j1, j2 : 1 ≤ j1, j2 < i such
that (xj1 −xi ∼1 k1) ∈ Z, (xi −xj2 ∼2 k2) ∈ Z, and hi(xj1)−hi(xj2) 6∼3 k3 where (∼3, k3) =
(∼1, k1) + (∼2, k2). Since Z is consistent, we know that (xj1 − xj2 ∼4 k4) ∈ Z for some (∼4

, k4)/(∼3, k3). Notice that (xj1−xj2 ∼4 k4) ∈ (∃xi, . . . , xm.Z). Since γi−1 |=hi
∃xi, . . . , xm.Z

it follows that hi−1(xj1) − hi−1(xj2) ∼4 k4. From hi(xj1) = hi−1(xj1), hi(xj2) = hi−1(xj2), it
follows that hi(xj1) − hi(xj2) ∼4 k4 which is a contradiction.

• Conditions (a) and (c) cannot be satisfied. This means that (xi −xj ∼ k) ∈ Z, for some 1 ≤ j < i
and hi(xj) ≤ cmax − k. We distinguish two subcases

– If 1 ≤ j ≤ `. Again, we distinguish two subcases:

∗ If k < 0 then ((xi − xj ∼ k) ∨ (xj > cmax )) ∈ Z�. Since γ |=h Z
� it follows that

(h(xi)− h(xj) ∼ k) ∨ (h(xj)> cmax ). By condition 1, we know that h(xj) ≤ cmax .
This means that h(xi) − h(xj) ∼ k. By condition 1, we know that h(xi) > cmax and
hence cmax < h(xj) + k. Since hi(xj) = h(xj) it follows that cmax < hi(xj) + k
which contradicts hi(xj) ≤ cmax − k.

∗ If k ≥ 0 then ((xi − xj ∼ k) ∨ (xj > cmax ) − k) ∈ Z�. Since γ |=h Z
� it follows

that (h(xi) − h(xj) ∼ k) ∨ (h(xj) > cmax ) − k. If h(xi) − h(xj) ∼ k then we get
a contradiction in the same manner as above. Otherwise, h(xj) > cmax − k which
contradicts hi(xj) ≤ cmax − k.

– If ` < j ≤ i − 1. If k < 0, then condition 2 implies that i < j which contradicts i < j. This
means that 0 ≤ k. Since hi(xj)> cmax it follows that hi(xj)+k> cmax which contradicts
hi(xj) ≤ cmax − k.

It remains to show that γm ≡ γ. This follows from the fact that hm(xi) = h(xi) for all i : 1 ≤ i ≤ ` and
both hm(xi)> cmax and h(xi)> cmax for all i : ` < i ≤ m. ut

Lemma A.7. Consider an area A and configurations γ1 and γ2. If γ1 |= A and γ1 ≡ γ2 then γ2 |= A.

Proof:
The proof follows from the definitions. ut
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Lemma A.8. For zones Z1 and Z2 with Var (Z1) = {x1, . . . , xm} and Var (Z2) = {y1, . . . , yn}, if

∀y1, . . . , yn.











Z2(y1, . . . , yn) =⇒

∨

R∈Ren(Z1)(Z2)

Z1
�(R(x1), . . . ,R(xm))











then Z1 v Z2.

Proof:
Suppose that γ2 |= Z2. We show that there is a γ3 such that γ3 |= Z1 and γ3 v γ2. Since γ2 |= Z2,
we know that there is a mapping h2 : Var (Z2) 7→ γ2 such that γ2 |=h2

Z2. This means that
Z2(val (h2(y1)) , . . . , val (h2(yn))) holds. By the premise of the lemma it follows that there is a re-
naming R ∈ Ren(Z1)(Z2) such that Z1

�(val (h2(R(x1))) , . . . , val (h2(R(xm)))) holds. Define γ1 =
{

q| ∃x ∈ Var
(

Z1
�
)

. h2(R(x)) = q
}

. Clearly γ1 ⊆ γ2. Define the mapping h1 : Var
(

Z1
�
)

7→ γ1

such that h1(x) = h2(R(x)). We show that γ1 |=h1
Z1

�:

• For each x ∈ Var
(

Z1
�
)

, we have type (x) = type (R(x)) = state (h2(R(x))) = state (h1(x)).

• Suppose that (y − x ∼ k) ∨ (x > cmax − k) ∈ Z1
�. We show that (val (h1(y))− val (h1(x)) ∼

k)∨ (val (h1(x))> cmax − k) holds. Since Z1
�(val (h2(R(x1))) , . . . , val (h2(R(xm)))) holds

we know that (val (h2(R(y)))−val (h2(R(x))) ∼ k)∨(val (h2(R(x)))>cmax−k) holds. Since
h1(x) = h2(R(x)), it follows that (val (h1(y)) − val (h1(x)) ∼ k) ∨ (val (h1(x))> cmax − k)
holds.

By Lemma A.6, there is a γ3 such that γ3 ≡ γ1 and γ3 |= Z1. Since γ1 ⊆ γ2, we have γ3 v γ2. ut

Lemma A.9. For zones Z1 and Z2 with Var (Z1) = {x1, . . . , xm} and Var (Z2) = {y1, . . . , yn}, if
Z1 v Z2 then

∀y1, . . . , yn.











Z2(y1, . . . , yn) =⇒

∨

R∈Ren(Z1)(Z2)

Z1
�(R(x1), . . . ,R(xm))











Proof:
Suppose that there is a mapping g : {y1, . . . , yn} 7→ R+ such that Z2(g(y1), . . . , g(yn)) holds. We show
that there is a renaming R from Z1 to Z2 such that Z1

�(g(R(x1)), . . . , g(R(xm))) holds. Define γ2 =
{q1, . . . , qn} where state (qi) = type (yi) and val (qi) = g(yi). Obviously, γ2 |=h2

Z2, where h2(yi) =
qi for each i : 1 ≤ i ≤ n. Since Z1 v Z2, there is a γ1 such that γ1 v γ2 and γ1 |= Z1. It follows by
definition that there is a γ3 such that γ3 ⊆ γ2 and γ1 ≡ γ3. Since γ1 |= Z1 it follows by Lemma A.6
that there is a γ4 such that γ4 ≡ γ1 and γ4 |= Z1

�. From γ1 ≡ γ3, it follows that γ4 ≡ γ3 and hence by
Lemma A.7 we get γ3 |= Z1

�, i.e., there is a mapping h1 : Var (Z1) 7→ γ3 such that γ3 |=h1
Z1

�. This
means that Z1

�(val (h1(x1)) , . . . , val (h1(xm))) holds. Define the renaming R ∈ Ren(Z1)(Z2) such
that R(x) = y if g(y) = val (h1(x)). This implies that Z1

�(g(R(x1)), . . . , g(R(xm))) holds. ut
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Lemma 12.1

Proof:
Follows directly from Lemma A.8 and Lemma A.9. ut


