We consider the decidability and complexity of the Ultimate Positivity Problem, which asks whether all but finitely many terms of a given rational linear recurrence sequence (LRS) are positive. Using lower bounds in Diophantine approximation concerning sums of S-units, we show that for simple LRS (those whose characteristic polynomial has no repeated roots) the Ultimate Positivity Problem is decidable in polynomial space. If we restrict to simple LRS of a fixed order then we obtain a polynomial-time decision procedure. As a complexity lower bound we show that Ultimate Positivity for simple LRS is at least as hard as the decision problem for the universal theory of the reals: a problem that is known to lie between coNP and PSPACE.
Proceedings of ICALP 14, LNCS 8573, 2014. 12 pages.
Best Paper Award.
PDF
© 2014
Springer-Verlag.