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Abstract

The state space explosion problem in model checking remains the chief obstacle to
the practical verification of real-world distributed systems. We attempt to address
this problem in the context of verifying concurrent (message-passing) C programs
against safety specifications. More specifically, we present a fully automated com-
positional framework which combines two orthogonal abstraction techniques (oper-
ating respectively on data and events) within a counterexample-guided abstraction
refinement (CEGAR) scheme. In this way, our algorithm incrementally increases
the granularity of the abstractions until the specification is either established or
refuted. Our explicit use of compositionality delays the onset of state space explo-
sion for as long as possible. To our knowledge, this is the first compositional use of
CEGAR in the context of model checking concurrent C programs. We describe our
approach in detail, and report on some very encouraging preliminary experimental
results obtained with our tool MAGIC.

1 Introduction

Formal verification of distributed software has long been acknowledged to be
a difficult yet important task. For this reason, there has been a tremendous
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amount of research over the years devoted to the abstract modelling and val-
idation of concurrent systems and their specifications. Many paradigms and
techniques, ranging from process algebra and model checking to predicate ab-
straction and counterexample-guided abstraction refinement (CEGAR), have
been proposed towards the ultimate goal of automatically verifying large dis-
tributed applications written in industry-level programming languages.

The majority of these advances target specific—and often orthogonal—
aspects of the problem, but fail to solve it as a whole. The work we present here
combines several of these techniques to efficiently verify global specifications
on concurrent C programs in a fully automated way. More specifically, we fo-
cus on reactive systems, implemented using concurrent C programs that com-
municate with each other through synchronous (blocking) message-passing.
Examples of such systems include client-server protocols, schedulers, telecom-
munication applications, etc. We consider safety specifications, in other words
requirements describing the sequences of messages (or events) that the system
is allowed to produce, or equivalently the ‘bad’ states that the system is meant
to avoid.

We propose a fully automated compositional two-level counterexample-
guided abstraction refinement scheme to verify that a parallel composition
C1|| . . . ||Cn of n sequential C programs satisfies a specification Spec. We first
use predicate abstraction to transform conservatively (insofar as safety prop-
erties are concerned) each (infinite-state) C program Ci into a finite-state
process Pi. Since the parallel composition of these Pi’s may well still have an
unmanageably large state space, we further reduce each Pi by conservatively
aggregating states together, based on the events they can perform, yielding
a smaller process Ai; only then do we explicitly build the global state space
of the much coarser parallel composition A = A1|| . . . ||An. By construction,
A exhibits all of the original system’s behaviours, and usually many more.
We then check A against the specification Spec. If successful, we conclude
that our original system C1|| . . . ||Cn is safe. Otherwise, we must examine the
counterexample obtained to determine whether it is valid (at the lower levels)
or not. It is important to note that this validation can be carried out level-
and component-wise, without it ever being necessary to construct in full the
large state space of the whole system. A valid counterexample at the lowest
level shows Spec to be violated and thus terminates the procedure. Other-
wise, a (component-specific) refinement of the appropriate abstracted system
is carried out, eliminating the spurious counterexample, and the algorithm
proceeds with a new iteration of the verification cycle.

The crucial features of our approach therefore consist of the following:

• We leverage two very different kinds of abstraction to reduce a parallel com-
position of sequential C programs to a very coarse parallel composition of
finite-state processes. The first (predicate) abstraction partitions the (po-
tentially infinite) state space according to the possible values of variables,
whereas the second abstraction lumps these resulting states together ac-
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cording to the events that they can communicate.

• A counterexample-guided abstraction refinement scheme incrementally re-
fines these abstractions until the right granularity is achieved to decide
whether the specification holds or not. We note that while termination of
the entire algorithm obviously cannot be guaranteed 2 , all of our experi-
mental examples could be handled without requiring human input.

• Our use of compositional reasoning, grounded in standard process algebraic
techniques, enables us to perform most of our analysis component by com-
ponent, without ever having to construct global state spaces except at the
highest (most abstract) level.

The verification procedure is fully automated, and requires no user input be-
yond supplying the C programs and the specification to be verified. We have
implemented the algorithm within our tool MAGIC (Modular Analysis of
proGrams In C) [2,9] and have carried out a number of case studies, which
we report here. To our knowledge, our algorithm is the first to invoke CEGAR
over more than a single abstraction refinement scheme (and in particular over
action-based abstractions), and also the first to combine CEGAR with fully
automatic compositional reasoning for concurrent systems.

The experiments we have carried out range over a variety of sequential and
concurrent examples, and yield promising results. With the smaller examples
we find that our two-level approach constructs models that are 2 to 11 times
smaller than those generated by predicate abstraction alone. These ratios
increase dramatically as we consider larger and larger examples. In some of
our instances MAGIC constructs models that are more than two orders of
magnitude smaller than those created by mere predicate abstraction. Full
details are presented in Section 5.

Foundations and Related Work

Predicate abstraction was introduced in [37] as a means to transform conser-
vatively infinite-state systems into finite-state ones, so as to enable the use of
finitary techniques such as model checking [12,11]. It has since been widely
used—see, for instance [17,21,18,32,5,20]. The technique we employ to gener-
ate automatically suitable predicates is described in [9].

The formalization of the more general notion of abstraction first appeared
in [19]. We distinguish between exact abstractions, which preserve all prop-
erties of interest of the system, and conservative abstractions—used in this
paper—which are only guaranteed to preserve ‘undesirable’ properties of the
system (e.g., [27,14]). The advantage of the latter is that they usually lead
to much greater reductions in the state space than their exact counterparts.
However, conservative abstractions in general require an iterated abstraction
refinement mechanism (such as CEGAR [13]) in order to establish specification

2 This of course follows from the fact that the halting problem is undecidable.
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satisfaction.

The abstractions we use on finite-state processes essentially lump together
states that can perform the same set of actions, and gradually refine these
partitions according to reachable successor states. Our refinement procedure
can be seen as an atomic step of the Paige-Tarjan algorithm [34], and therefore
yields successive abstractions which converge in a finite number of steps to the
bisimulation quotient of the original process.

Counterexample-guided abstraction refinement [13,28], or CEGAR, is an
iterative procedure whereby spurious counterexamples to a specification are
repeatedly eliminated through incremental refinements of a conservative ab-
straction of the system. CEGAR has been used, among others, in [33] (in
non-automated form), and [6,35,29,24,10,15].

Compositionality, which features crucially in our work, is broadly con-
cerned with the preservation of properties under substitution of components
in concurrent systems. It has been most extensively studied in process alge-
bra (e.g., [26,31,36]), particularly in conjunction with abstraction. In [7], a
compositional framework for (non-automated) CEGAR over data-based ab-
stractions is presented. This approach differs from ours in that communication
takes place through shared variables (rather than blocking message-passing),
and abstractions are refined by eliminating spurious transitions, rather than
by splitting abstract states.

A technique closely related to compositionality is that of assume-guarantee
reasoning [22,30,25]. It was originally developed to circumvent the difficulties
associated with generating exact abstractions, and has recently been imple-
mented as part of a fully automated and incremental verification framework
[16].

Among the works most closely resembling ours we note the following. The
Bandera project [18] offers tool support for the automated verification of Java
programs based on abstract interpretation; there is no automated CEGAR
and no explicit compositional support for concurrency. [35] imports Bandera-
derived abstractions into an extension of Java PathFinder which incorporates
CEGAR. However, once again no use is made of compositionality, and only
a single level of abstraction is considered. [38] describes another tool im-
plemented in Java PathFinder which explicitly supports concurrency; it uses
datatype abstraction on the first level, and partial order reduction with aggre-
gation of invisible transitions on the second level. Since all abstractions are ex-
act it does not require the use of CEGAR. The SLAM project [3,6,5] has been
very successful in analyzing interfaces written in C. It is built around a single-
level predicate abstraction and automated CEGAR treatment, and offers no
explicit compositional support for concurrency. Lastly, the BLAST project
[1,24,23] proposes a single-level lazy (on-the-fly) predicate abstraction scheme
together with CEGAR and thread-modular assume-guarantee reasoning. The
BLAST framework is based on shared variables rather than message-passing
as the communication mechanism.
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The next section presents a series of standard definitions that are used
throughout the paper. Section 3 then describes the two-level CEGAR algo-
rithm, while Section 4 presents our action-guided CEGAR procedure. Sec-
tion 5 summarizes the results of our experiments. Finally, Section 6 offers
conclusions and avenues for future work.

2 Preliminaries

A labelled transition system (LTS for short) is a quadruple 〈S, init ,Act , T 〉
with S a finite set of states, init ∈ S an initial state, Act a finite set (alphabet)
of actions (or events), and T ⊆ S × A × S a transition relation. We often
write s

a−→ t to mean (s, a, t) ∈ T . In this section, unless noted otherwise, we
assume a fixed LTS M = 〈S, init ,Act , T 〉.

A trace π is a finite (possibly empty) sequence of actions. We define the
language L(M) of the LTS M to be the set of all traces a1 . . . an ∈ Act∗

such that, for some sequence s0 . . . sn of states of M (with s0 = init) we have
s0

a1−→ s1
a2−→ . . .

an−→ sn. We refer to the underlying sequence of states
s0 . . . sn as the path in M corresponding to the trace a1 . . . an.

For s ∈ S we write enabled(s) = {a ∈ Act | ∃t ∈ S � s a−→ t} to denote the
set of actions enabled in state s.

For a trace π = a1 . . . an ∈ Act∗ and s, t ∈ S two states of M , we write
s

π
=⇒ t to indicate that t is reachable from s through π, i.e., that there exist

states s0 . . . sn with s = s0 and t = sn, such that s0
a1−→ s1

a2−→ . . .
an−→ sn.

Given a state s ∈ S and a trace π ∈ Act ∗, let Reach(M, s, π) = {t ∈ S |s π
=⇒ t}

stand for the set of states reachable from s through π. We overload this
notation by setting, for a set of states Q ⊆ S, Reach(M,Q, π) = {t ∈ S | ∃q ∈
Q � q π

=⇒ t}; this represents the set of states reachable through π from some
state in Q.

Let π ∈ Act∗ be a trace over Act , and let Act ′ be another (not necessarily
disjoint) set of actions. The projection π�Act ′ of π on Act ′ is the subtrace of
π obtained by simply removing all actions in π that are not in Act ′.

Let M1 = 〈S1, init1,Act1, T1〉 and M2 = 〈S2, init2,Act2, T2〉 be two LTSs.
Their parallel compositionM1||M2 = 〈S1×S2, (init1, init2),Act1∪Act2, T1||T2〉
is defined so that ((s1, s2), a, (t1, t2)) ∈ T1||T2 iff one of the following holds:

(i) a ∈ Act1 \ Act2 and s1
a−→ t1 and s2 = t2.

(ii) a ∈ Act2 \ Act1 and s2
a−→ t2 and s1 = t1.

(iii) a ∈ Act1 ∩ Act2 and s1
a−→ t1 and s2

a−→ t2.

In other words, components must synchronize on shared actions and proceed
independently on local actions. This notion of parallel composition has been
used in, e.g., CSP [26], and in the work of Anantharaman et al. [4]. We refer
the reader to [36] for proofs of the following standard results:
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Theorem 2.1

(i) Parallel composition is associative and commutative as far as the accepted
language is concerned. Thus, in particular, no bracketing is required when
combining more than two LTSs.

(ii) Let M1, . . . ,Mn and M ′
1, . . . ,M

′
n be LTSs with every pair of LTSs Mi,

M ′
i sharing the same alphabet Act i = Act ′i . If, for each 1 6 i 6 n, we

have L(Mi) ⊆ L(M ′
i), then L(M1|| . . . ||Mn) ⊆ L(M ′

1|| . . . ||M ′
n). In other

words, parallel composition preserves language containment.

(iii) Let M1, . . . ,Mn be LTSs with respective alphabets Act 1, . . . ,Actn, and let
π be any trace. Then π ∈ L(M1|| . . . ||Mn) iff, for each 1 6 i 6 n, we
have π�Acti

∈ L(Mi). In other words, whether a trace belongs to a parallel
composition of LTSs can be checked by projecting and examining the trace
on each individual component separately.

Theorem 2.1 forms the basis of our compositional approach to verification.

We consider a concurrent version of the C programming language in which
a fixed number of sequential programs C1, . . . , Cn are run concurrently on
independent platforms. Each program Ci has an associated alphabet of actions
Act i, and can communicate a particular event a in its alphabet only if all other
programs having a in their alphabets are willing to synchronize on this event.
An action is realized in C using a call to a library routine. Programs have
local variables but no shared variables. In other words, we are assuming
blocking message-passing (i.e., ‘send’ and ‘receive’ statements) as the sole
communication mechanism. Given such a parallel composition C1|| . . . ||Cn of
C programs, we write L(C1|| . . . ||Cn) to denote the set of all possible traces
of events which C1|| . . . ||Cn can communicate. At present, the full syntax of
ANSI C is supported, with the exception of pointers, recursion, and floating-
point arithmetic. We refer the reader to [9] for more details.

Our goal is to verify that the concurrent C program C1|| . . . ||Cn satisfies
a specification Spec, where the latter is expressed as an LTS. We use trace
containment as our notion of conformance: the concurrent program meets its
specification iff L(C1|| . . . ||Cn) ⊆ L(Spec).

3 Two-Level Counterexample-Guided Abstraction Re-
finement

Consider a concurrent C program C1|| . . . ||Cn and a specification Spec. We
first invoke predicate abstraction to reduce each (infinite-state) program Ci
into a finite LTS (or process) Pi having the same alphabet as Ci. The initial
abstraction is created with a relatively small set of predicates, and further
predicates are then added as required to refine the Pi’s and eliminate spuri-
ous counterexamples. This procedure may add a large number of predicates,
yielding an abstract model with a potentially huge state space. We therefore
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Input: C programs C1, . . . , Cn and specification Spec
Output: ‘C1|| . . . ||Cn satisfies Spec’ or

counterexample π ∈ L(C1|| . . . ||Cn) \ L(Spec)

predicate abst.: create LTSs P1, . . . , Pn with L(Ci) ⊆ L(Pi)
† action-guided abst.: create LTSs A1, . . . , An with L(Pi) ⊆ L(Ai)

repeat
if L(A1|| . . . ||An) ⊆ L(Spec) return ‘C1|| . . . ||Cn satisfies Spec’
else

extract counterexample π ∈ L(A1|| . . . ||An) \ L(Spec)
if π ∈ L(P1|| . . . ||Pn)

if π ∈ L(C1|| . . . ||Cn) return π
else

do predicate abstraction refinement of P1, . . . , Pn
† adjust or create new abstractions A1, . . . , An

else
‡ do action-guided refinement of A1, . . . , An to eliminate π

endrepeat.

Fig. 1. Two-level CEGAR algorithm.

seek to further reduce each Pi into an LTS Ai with fewer states, again having
the same alphabet as Ci. Both abstractions are such that they maintain the
language containment L(Ci) ⊆ L(Pi) ⊆ L(Ai). Theorem 2.1 then immediately
yields the rule:

L(A1|| . . . ||An) ⊆ L(Spec)⇒ L(C1|| . . . ||Cn) ⊆ L(Spec)

The converse need not hold: it is possible for a trace π /∈ Spec to belong to
L(A1|| . . . ||An) but not to L(C1|| . . . ||Cn). Such a spurious counterexample is
then eliminated, either by suitably refining the Ai’s (if π /∈ L(P1|| . . . ||Pn)), or
by refining the Pi’s (and subsequently adjusting the Ai’s to reflect this change).
The chief property of our refinement procedure (whether at the Ai or the Pi
level) is that it purges the spurious counterexample by restricting the accepted
language yet maintains the invariant L(Ci) ⊆ L(P ′i ) ⊂ L(Pi) ⊆ L(A′i) ⊂
L(Ai), where primed terms denote refined processes. Note that, according
to Theorem 2.1, we can check whether π ∈ L(P1|| . . . ||Pn) and whether π ∈
L(C1|| . . . ||Cn) one sequential component at a time, without it ever being
necessary to construct the full state spaces of the parallel compositions. This
iterated process forms the basis of our two-level CEGAR algorithm.

We describe this algorithm in Figure 1. The predicate abstraction and re-
finement procedure is detailed in [9]. We present our action-guided abstraction
and refinement steps (marked † and ‡ respectively) in Section 4.
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4 Action-Guided Abstraction

We present a CEGAR scheme that operates on LTSs. Given an LTS P =
〈S, init ,Act , T 〉, we first create an LTS A0 = 〈S0

A, init0
A,Act , T 0

A〉 such that
(i) L(P ) ⊆ L(A0) and (ii) A0 contains at most as many states as P (and
typically many fewer). Given an abstraction A = 〈SA, initA,Act , TA〉 of P
and a trace π ∈ L(A) \ L(P ), our refinement procedure produces a refined
abstraction A′ = 〈S ′A, init ′A,Act , T ′A〉 such that (i) L(P ) ⊆ L(A′) ⊂ L(A),
(ii) π /∈ L(A′), and (iii) A′ contains at most as many states as P . It is
important to note that we require throughout that P , A0, A, and A′ all share
the same alphabet. We also remark that iterating this refinement procedure
must converge in a finite number of steps to an LTS that accepts the same
language as P .

Let us write B = 〈SB, initB, Act, TB〉 to denote a generic abstraction of P .
States of B are called abstract states, whereas states of P are called concrete
states. In our framework, abstract states are always disjoint sets of concrete
states that partition S, and our abstraction refinement step corresponds pre-
cisely to a refinement of the partition. For s ∈ S a concrete state, the unique
abstract state of B to which s belongs is written [s]B.

In any abstraction B that we generate, a partition SB of the concrete states
of P uniquely determines the abstract model B: the initial state initB of B
is simply [init ]B, and for any pair of abstract states u, v ∈ SB and any action
a ∈ Act , we postulate a transition u

a−→ v ∈ TB iff there exist concrete states
s ∈ u and t ∈ v such that s

a−→ t. This construction is an instance of an
existential abstraction [14]. It is straightforward to show that it is sound, i.e.,
that L(P ) ⊆ L(B) always holds.

The initial partition S0
A of concrete states identifies two states s, t ∈

S if they share the same set of immediately enabled actions: t ∈ [s]0A iff
enabled(t) = enabled(s). We then let S0

A = {[s]0A |s ∈ S}. Again, this uniquely
defines our initial abstraction A0, the construction marked † on Figure 1.

In order to describe the refinement step, we need an auxiliary definition.
Given an abstract state u ∈ SB and an action a ∈ Act , we construct a refined
partition S ′B = Split(SB, u, a) of S which agrees with SB outside of u, but
distinguishes concrete states in u if they have different abstract a-successors
in SB. More precisely, for any s ∈ S, if s /∈ u, we let [s]B′ = [s]B. Otherwise,
for s, t ∈ u, we let [s]B′ = [t]B′ iff

⋃{[s′]B | s′ ∈ Reach(P, s, a)} =
⋃{[t′]B | t′ ∈

Reach(P, t, a)}. We then let Split(SB, u, a) = {[s]B′ | s ∈ S}. This refined par-
tition uniquely defines a new abstraction, which we write Abs(Split(SB, u, a)).
Note that in order to compute the transition relation of Abs(Split(SB, u, a))
it suffices to adjust only those transitions in TB that have u either as source
or target.

The refinement step takes as input a ‘spurious’ trace π ∈ L(A) \L(P ) and
returns a refined abstraction A′ which does not accept π. This is achieved
by repeatedly splitting states of A along abstract paths which accept π. The
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Input: abstraction A of P (with L(P ) ⊆ L(A)) and

trace π = a1 . . . am ∈ L(A) \ L(P )
Output: refined abstraction A′ (with L(P ) ⊆ L(A′) ⊂ L(A)) and

π /∈ L(A′)

while there exists some abstract path u0
a1−→ . . .

am−→ um in A do

let reachable states = {init} /* init = initial state of P */

let j = 1
while reachable states 6= ∅ do

let reachable states = Reach(P, reachable states , aj) ∩ uj
let j = j + 1

endwhile
let A = Abs(Split(SA, uj−2, aj−1)) /* SA = set of states of A */

endwhile
let A′ = A
return A′.

Fig. 2. Action-guided CEGAR algorithm on LTS.

algorithm in Figure 2 (marked ‡ in Figure 1) describes this procedure in detail.

Theorem 4.1 The algorithm described in Figure 2 is correct and always ter-
minates.

Proof. We first note that it is immediate that whenever the algorithm termi-
nates it does return an abstraction A′ with π /∈ L(A′). It is equally clear, since
A′ is obtained via successive refinements of A, that L(P ) ⊆ L(A′) ⊂ L(A).
It remains to show that every splitting operation performed by the algorithm
results in a proper partition refinement; termination then follows from the fact
that the set of states of P is finite.

Observe that, since π /∈ L(P ), Reach(P, init , π) = ∅, and therefore the
inner while loop always terminates. At that point, we claim that (i) there is

an abstract transition uj−2
aj−1−→ uj−1; (ii) there are some concrete states in uj−2

reachable (in P ) from init ; and (iii) none of these reachable concrete states
have concrete aj−1-successors in uj−1. Note that (ii) follows from the fact that
the inner loop is entered with reachable states = {init}, whereas (i) and (iii)
are immediate. Because of the existential definition of the abstract transition
relation, we conclude that uj−2 contains two kinds of concrete states: some
having concrete aj−1-successors in uj−1, and some not. Splitting state uj−2

according to action aj−1 therefore produces a proper refinement. 2

We remark again that each splitting operation is similar to a unit step of
the Paige-Tarjan algorithm [34]. Iterating our refinement procedure therefore
converges to the bisimulation quotient of P .

We stress that the CEGAR algorithm described in Figure 1 never invokes
the above abstraction refinement routine with the full parallel composition
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A = A1|| . . . ||An as input. Indeed, this would be very expensive, since the
size of the global state space grows exponentially with the number of con-
current processes. It is much cheaper to take advantage of composition-
ality: by Theorem 2.1, π ∈ L(A1|| . . . ||An) \ L(P1|| . . . ||Pn) iff, for some i,
π�Acti

∈ L(Ai) \L(Pi). It then suffices to apply abstraction refinement to this
particular Ai, since π�Acti

/∈ L(A′i) implies that π /∈ L(A1|| . . . ||A′i|| . . . ||An).
The advantage of this approach follows from the fact that the computational
effort required to identify Ai grows only linearly with the number of concurrent
components.

5 Experimental Results

Our experiments were carried out with two broad goals in mind. The first goal
was to compare the overall effectiveness of the proposed two-level CEGAR
approach, particularly insofar as memory usage is concerned. The second
goal was to verify the effectiveness of our LTS abstraction scheme by itself.
We carried out experiments over 36 examples, of which 26 were sequential
programs and 10 were concurrent programs. Each example consisted of an
implementation (a C program) and a specification (provided separately as an
LTS). All of the experiments were carried out on an AMD Athlon 1800 XP
machine with 3 GB RAM running RedHat 7.1.

Example LOC Description PredOnly BothAbst

State Iter Time State Iter Time

lock-y 27 pthread mutex lock (pthread) 26 1 52 16 3 54

unlock-y 24 pthread mutex unlock (pthread) 27 1 51 13 2 56

socket-y 60 socket (socket) 187 3 1752 44 25 2009

sock alloc-y 24 sock alloc (socket) 50 2 141 14 4 154

sys send-y 4 sys send (socket) 7 1 92 6 1 93

sock sendmsg-y 11 sock sendmsg (socket) 23 1 108 14 3 113

lock-n 27 modified pthread mutex lock 23 1 59 14 2 61

unlock-n 24 modified pthread mutex unlock 27 1 61 12 2 66

sock alloc-n 24 modified sock alloc 47 1 103 9 1 106

sock sendmsg-n 11 modified sock sendmsg 21 1 96 10 1 97

All times are in milliseconds

Fig. 3. Summary of results for Linux Kernel code. LOC and Description de-
note the number of lines of code and a brief description of the benchmark source
code. The measurements for PIter and LIter have been omitted because they are
insignificant.

Each example was verified twice, once with only the low-level abstraction,
and once with the full two-level algorithm. Tests that used only the low-level
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predicate abstraction refinement scheme are marked by PredOnly in our results
tables, whereas tests that also incorporated our LTS action-guided abstraction
refinement procedure are marked by BothAbst. Both schemes started out
with the same initial sets of predicates. For each experiment we measured
several quantities: (i) the size of the final state space on which the property
was proved/disproved, 3 (ii) the number of predicate refinement iterations
required, (iii) the number of LTS refinement iterations required, (iv) the total
number of refinement iterations required, and (v) the total time required.
In the tables summarizing our results, these measurements are reported in
columns named respectively State, PIter, LIter, Iter and Time.

Unix Kernel examples

The first set of examples were meant to examine how our approach works
on a wide spectrum of implementations. We chose ten code fragments from
the Linux Kernel 2.4.0. Corresponding to each code fragment we constructed
a specification from the Linux man pages. For example, the specification in
‘socket-y’ states that the socket system call either properly allocates internal
data structures for a new socket and returns 1, or fails to do so and returns
an appropriate negative error value. The summary of our results on these
examples is presented in Figure 3.

OpenSSL Examples

The next set of examples was aimed at verifying larger pieces of code. We
designed a set of 26 benchmarks to check various properties of the OpenSSL
version 0.9.6c source code, which is a popular open source implementation of
the SSL protocol used for secure data transfer over the internet. In particular
we used the source code implementing the handshake that occurs when an
SSL client and server attempt to establish a connection. The source code is
accordingly divided into two parts, SrvrCode and ClntCode, that implement
the server and client components respectively. The specifications were derived
from the official SSL design documents. For example, the specification for
‘ssl-1’ states that the handshake is always initiated by the client.

The first 16 examples are sequential implementations, examining different
properties of SrvrCode and ClntCode separately. Each of these examples
contains about 350 comment-free LOC. The results for these are summarized
in Figure 4. The remaining 10 examples test various properties of SrvrCode
and ClntCode when executed together. These examples are concurrent and
consist of about 700 LOC. All OpenSSL benchmarks other than srvr-7 passed
the property. The results are summarized in Figure 5. In terms of state space
size, the two-level refinement scheme outperforms the one-level scheme by

3 Note that, since our abstraction-refinement scheme produces increasingly refined models,
and since we reuse memory from one iteration to the next, the size of the final state space
represents the total memory used.
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Example PredOnly BothAbst Gain

State(S1) PIter LIter Iter Time State(S2) PIter LIter Iter Time S1/S2

srvr-1 563 7 0 7 127 151 7 191 198 142 3.73

srvr-2 323 9 0 9 134 172 9 307 316 156 1.89

srvr-3 362 21 0 21 212 214 20 850 870 263 1.69

srvr-4 227 1 0 1 25 19 1 0 1 23 11.94

srvr-5 3204 98 0 98 1284 878 53 6014 6067 6292 3.65

srvr-6 2614 121 0 121 1418 559 113 9443 9556 6144 4.68

srvr-7 2471 40 0 40 517 662 34 3281 3315 2713 3.73

srvr-8 2614 60 0 60 750 455 37 3158 3195 1992 5.75

clnt-1 402 18 0 18 174 176 19 506 525 209 2.28

clnt-2 408 18 0 18 194 185 16 651 667 217 2.21

clnt-3 633 51 0 51 405 263 58 3078 3136 688 2.41

clnt-4 369 28 0 28 232 193 33 987 1020 306 1.91

clnt-5 318 15 0 15 166 172 13 398 411 182 1.85

clnt-6 323 20 0 20 190 236 21 644 665 242 1.37

clnt-7 323 20 0 20 188 160 20 556 576 221 2.02

clnt-8 314 16 0 16 168 264 16 570 586 215 1.19

All times are in seconds

Fig. 4. Summary of results for sequential OpenSSL examples.

factors ranging from 2 to 136. The savings for the concurrent examples are
significantly higher than for the sequential ones. We expect these savings to
increase with the number of concurrent components in the implementation.

Although our aim to reduce the size of the state space was achieved, our
implementation of the two-level algorithm shows an increase in time over that
of the one-level scheme. However, we believe that this situation can be re-
dressed through engineering optimizations of MAGIC. For instance, not only
is MAGIC currently based on explicit state enumeration, but also in each it-
eration it performs the entire verification from scratch. As is evident from
our results, the majority of iterations involve LTS refinement. Since the lat-
ter only induces a local change in the transition system, the refined model is
likely to differ marginally from the previous one. Therefore much of the work
done during verification in the previous iteration could be reused. We plan to
investigate the possibility of doing incremental verification and will report on
our findings in the final version of this article.
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Example PredOnly BothAbst Gain

State(S1) PIter LIter Iter Time State(S2) PIter LIter Iter Time S1/S2

ssl-1 108659 8 0 8 243 16960 8 268 276 529 6.41

ssl-2 95535 9 0 9 226 15698 9 331 340 608 6.09

ssl-3 69866 24 0 24 449 23865 19 828 847 1831 2.93

ssl-4 43811 1 0 1 51 323 1 0 1 55 135.64

ssl-5 108659 7 0 7 217 16006 6 186 192 384 6.79

ssl-6 162699 12 0 12 366 18297 9 375 384 792 8.89

ssl-7 167524 23 0 23 599 31250 24 1441 1465 4492 5.36

ssl-8 60602 9 0 9 227 17922 10 434 444 852 3.38

ssl-9 313432 115 0 115 3431 50274 63 3660 3723 15860 6.23

ssl-10 123520 23 0 23 430 23460 21 926 947 2139 5.27

All times are in seconds

Fig. 5. Summary of results for concurrent OpenSSL examples.

6 Conclusions and Future Work

Despite significant research and advancement, automated verification of con-
current programs remains an important, yet elusive, goal. In this paper we
presented an approach to automatically and compositionally verify concur-
rent C programs against safety properties. These concurrent implementa-
tions consist of several sequential C programs which communicate via blocking
message-passing. Our approach is an instantiation of the CEGAR paradigm,
and incorporates two levels of abstraction, which respectively aggregate states
according to the values of local variables, and observable events. Experimental
results with our tool MAGIC suggest that this scheme effectively combats the
state space explosion problem. In all our benchmarks, the two-level algorithm
achieved significant reductions in state space (in one case by over two orders
of magnitude) compared to the single-level predicate abstraction scheme.

We are currently engaged in extending MAGIC to handle the proprietary
implementation of a large industrial controller for a metal casting plant. This
code consists of over 30,000 lines of C and incorporates up to 25 concurrent
threads which communicate through shared variables. Adapting MAGIC to
handle shared memory is therefore one of our priorities. Not only will this
enable us to test our tool on the many available shared-memory-based bench-
marks, but it will also allow us to compare MAGIC with other similar tools
(such as BLAST) which already use shared memory for communication.

Finally, we intend to explore the possibility of adapting our two-level
CEGAR scheme to different types of conformance relations such as simulation
and bisimulation, so as to handle a wider range of specifications.
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