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Abstract

We introduce the notion of a twisted rational zero of a non-degenerate
linear recurrence sequence (LRS). We show that any non-degenerate LRS
has only finitely many such twisted rational zeros. In the particular case of
the Tribonacci sequence, we show that 1/3 and −5/3 are the only twisted
rational zeros which are not integral zeros.

Contents
1 Introduction 2

1.1 Twisted zeros and p-adic orders . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Finiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6
2.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Linear recurrence sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Twisted rational zeros and the p-adic order 7
3.1 p-adic analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 p-adic analytic interpolation of a linear recurrence sequence . . . . . . . . . . . 10
3.3 Proof of Theorems 1.1, 1.4 and 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



4 Finiteness of twisted rational zeros 12
4.1 Powers in fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Equations in roots of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 A Kummer property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Proof of Theorem 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 An explicit result for Q-valued linear recurrence sequences . . . . . . . . . . . . 17

5 Twisted rational zeros of the Tribonacci sequence 18
5.1 The roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 The denominator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Proof of Theorem 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 On Question 1.7 23
6.1 A density result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1 Introduction

Let K be a field of characteristic 0. We fix an algebraic closure K. By a K-valued
linear recurrence sequence (LRS) of order m we mean a map U : Z → K such
that for every n ∈ Z we have

U(n+m) = am−1U(n+m− 1) + · · ·+ a0U(n), (1.1)

where a0, . . . , am−1 ∈ K, with a0 ̸= 0. Sometimes instead of “K-valued LRS”
we will say “LRS over K”.

1.1 Twisted zeros and p-adic orders

Our initial motivation was the work of Marques and Lengyel [17], who computed
the 2-adic order of the nth Tribonacci number T (n). The Tribonacci numbers
is the Q-valued LRS of order 3, defined by

T (0) = 0, T (1) = T (2) = 1, T (n+ 3) = T (n+ 2) + T (n+ 1) + T (n).

Marques and Lengyel proved that

ν2(T (n)) =



0, if n ≡ 1, 2 (mod 4);

1, if n ≡ 3, 11 (mod 16);

2, if n ≡ 4, 8 (mod 16);

3, if n ≡ 7 (mod 16);

ν2(n)− 1, if n ≡ 0 (mod 16);

ν2(n+ 4)− 1, if n ≡ 12 (mod 16);

ν2(n+ 17) + 1, if n ≡ 15 (mod 32);

ν2(n+ 1) + 1, if n ≡ 31 (mod 32).

(1.2)

They conjectured that similar formulas must hold for other primes, not just for
p = 2. This conjecture was refuted in [5], where it is shown that having formulas
like (1.2) is exceptional rather than typical.
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As one can see in (1.2), on certain residue classes one has formulas like
ν2(T (n)) = ν2(n− a) + const, where a is one of the numbers 0,−1,−4,−17.
This not surprising, because these numbers are exactly the zeros of T : for
n ∈ Z we have

T (n) = 0 if and only if n ∈ {0,−1,−4,−17}.

(For a proof see, for instance, [18], Example 2 on page 360; in that example un

corresponds to our T (−n).)
Let U be a Q-valued LRS; in particular, the coefficients a0, . . . , am−1 of the

recurrence relation (1.1) belong to Q. We call p a regular prime for U if it
does not divide the denominators of the rational numbers a0, . . . , am−1, and the
numerator of a0. In other words, a0, . . . , am−1 are p-adic integers and a0 is a
p-adic unit.

The following theorem can be easily proved, using p-adic analysis, see Sec-
tion 3.

Theorem 1.1. Let a be a zero of a Q-valued LRS U , and p a regular prime
for U . Then there exist a positive integer Q, a positive integer κ and an integer τ
such that

νp(U(n)) = κνp(n− a) + τ when n ≡ a (mod Q) (1.3)

Of course the converse also holds: if for some p there exist Q, κ, τ as above
such that (1.3) holds, then a is a zero of U .

Now let us ask the following slightly more general question: what would
happen if we take n in (1.3) not from the residue class of a modulo Q, but from
a different residue class?

Question 1.2. Let p be a prime number. Assume that there exist

Q ∈ Z>0, a′ ∈ {0, 1, . . . , Q− 1}, κ ∈ Z>0, τ ∈ Z

such that

νp(U(n)) = κνp(n− a) + τ when n ≡ a′ (mod Q).

Assume further that νp(n−a) is not bounded on the residue class of a′ modulo Q.
Does it imply that a′ ≡ a (mod Q) and U(a) = 0?

As the result of Marques and Lengyel implies, it is indeed the case when
U = T and p = 2. But is it true in general?

The answer is “no”, as the following example shows.

Example 1.3. Consider U(n) := 2n + 1 and let p be a prime number satisfying
p ≡ ±3 (mod 8). Then 2(p−1)/2 + 1 ≡ 0 (mod p). Define τ := νp(2

(p−1)/2 + 1).
Then

νp(U(n)) = νp(n) + τ when n ≡ p− 1

2
(mod p− 1).

However, U(0) ̸= 0, and in fact U(n) does not vanish at all.
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The explanation is that 0 is, in fact, a kind of “hidden” zero of the LRS
2n + 1. To give an exact definition, recall that a K-valued LRS U satisfying (1.1)
admits the Binet expansion

U(n) = f1(n)λ
n
1 + · · ·+ fs(n)λ

n
s (n ∈ Z), (1.4)

where λ1, . . . , λs are the distinct roots of the characteristic polynomial

Xm − am−1X
m−1 − · · · − a0,

and f1, . . . , fs are polynomials with coefficients in the field K(λ1, . . . , λs). (Note
that the roots λi are non-zero, because a0 ̸= 0.) We call a ∈ Z a twisted zero of
the K-valued LRS U if there exist roots of unity ξ1, . . . , ξs ∈ K such that

ξ1f1(a)λ
a
1 + · · ·+ ξsfs(a)λ

a
s = 0.

For example, 0 is a twisted zero of the LRS with general term 2n + 1n, because

1 · 20 + (−1) · 10 = 0.

In Section 3 we will prove the following theorem, which gives a partial posi-
tive answer to Question 1.2.

Theorem 1.4. Let U be a Q-valued LRS, a ∈ Z and p a regular prime number
for U . Assume that there exists a sequence of integers (nk) satisfying

νp(U(nk)) → +∞, νp(nk − a) → +∞.

Then a is a twisted zero of U .

There is another phenomenon discovered in [5], again in the context of
Tribonacci numbers. There exist infinitely many prime numbers p such that
νp(T (n)) ≥ νp(n− 1/3) for n ≡ 1/3 (mod p− 1), and the same holds true with
1/3 replaced by −5/3; see [5, Theorem 1.5]. The reason is that 1/3 and −5/3
can be viewed as “rational zeros” of the LRS T , see [5, Section 2].

Let us give the general definition. We call a ∈ Q a rational zero of the K-
valued LRS U with Binet expansion (1.4) if, for some definition of the rational
powers λa

1 , . . . , λ
a
s ∈ K, we have

f1(a)λ
a
1 + · · ·+ fs(a)λ

a
s = 0.

We call a a twisted rational zero (TRZ) of U if, for some definition of λa
1 , . . . , λ

a
s

and some roots of unity ξ1, . . . , ξs, we have

ξ1f1(a)λ
a
1 + · · ·+ ξsfs(a)λ

a
s = 0.

Theorem 1.4 remains true assuming that a ∈ Q.

Theorem 1.5. Let U be a Q-valued LRS, a ∈ Q and p a regular prime number
for U . Assume that there exists a sequence of integers (nk) satisfying

νp(U(nk)) → +∞, νp(nk − a) → +∞. (1.5)

Then a is a TRZ of U .
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This theorem is proved in Section 3 as well.
One may ask whether the converse is true; that is, if a is a TRZ, then there

exists a sequence of integers (nk) satisfying (1.5). Easy examples show that the
answer is “no” in general.

Example 1.6. If p ≡ −1 (mod 8) then νp(2
n + 1) = 0 for all n, though 0 is a

twisted zero of the LRS 2n + 1n.

One may still hope that, when a is a TRZ, this holds for infinitely many
primes.

Question 1.7. Let a be a TRZ of a non-degenerate Q-valued LRS U . Are
there infinitely many prime numbers p with the following property: there exists
a sequence of integers (nk) satisfying (1.5)?

We show that the answer is “yes” for twisted integral zeros of LRS of or-
der 2; in fact, we will show that for them an analogue of Theorem 1.1 holds.
However, we do not know the answer for rational zeros. As for LRS of higher or-
der, the answer is, in general, “no” even for integral twisted zeros. See Section 6
for the details.

1.2 Finiteness

Call a non-zero LRS with roots λ1, . . . , λs non-degenerate if λk/λℓ is not a root
of unity for k ̸= ℓ. The following statement is the classical Skolem-Mahler-Lech
Theorem.

Theorem 1.8 (Skolem-Mahler-Lech). A non-degenerate linear recurrence se-
quence U over a field of characteristic 0 has at most finitely many zeros:

#{n ∈ Z : U(n) = 0} < ∞.

In Section 4 we prove that the same holds true for TRZs.

Theorem 1.9. Let U be a non-degenerate linear recurrence sequence with values
in a field of characteristic zero. Then U admits at most finitely many TRZs.

The proof is a variation of the principal argument of Laurent’s article [14].
The main step is bounding the denominators of the TRZs; moreover, the bound
is effective if K is a number field. After the denominators are bounded, Theo-
rem 1.9 can be reduced to the Skolem-Mahler-Lech theorem using the existing
results about equations in roots of unity [10, 11, 16].

The Skolem-Mahler-Lech Theorem is, in general, non-effective, and so is
our Theorem 1.9: while we bound effectively the denominators of the TRZs,
we cannot do the same for their numerators. However, the Skolem-Mahler-Lech
Theorem can be made effective in many special cases, and so can be Theorem 1.9.
To illustrate this, we prove (see Section 5) the following.

Theorem 1.10. The only TRZs of the Tribonacci sequence T are

0,−1,−4,−17,
1

3
,−5

3
.
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2 Preliminaries

In this section we collect some basic facts and conventions that will be used
throughout the article, usually without special reference.

2.1 Fields

The letter p denotes a prime number, and blackboard boldface letters K,L,M
etc. denote (unless indicated otherwise) fields of characteristic 0. In particular,
they can be number fields or local fields (finite extensions of Qp). If K is a
number field and p is a prime of K then Kp denotes the p-adic completion.

For every positive integer m we fix a primitive root of unity of order m and
denote it ζm. We denote by µm the group of roots of unity of order m. Given
a field K, we denote by µK the group of roots of unity belonging to K.

The following lemma, which is Theorem 9.1 in [13, Chapter VI], will be used
in the article on several occasions.

Lemma 2.1. Let K be a field of characteristic 0 and α ∈ K×. Let m be a
positive integer. Assume that

for all p | m we have α /∈ Kp, (2.1)

when 4 | m we have α /∈ −4K4. (2.2)

Then the polynomial Xm − α is irreducible in K[X].

Remark 2.2. If
√
−1 ∈ K then assumption (2.2) can be omitted, because in

this case −4 ∈ K4 and (2.2) follows from (2.1).

2.2 Linear recurrence sequences

Let U be an LRS with values in a field K. We call m the minimal order of U
if U admits a linear recurrence relation of order m, but not of order strictly
smaller than m. By convention, the minimal order of the identically zero LRS
is set to be 0.

Let m be the minimal order of a (non-zero) LRS U with values in K. Then
the coefficients a0, . . . , am−1 of the recurrence relation

U(n+m) = am−1U(n+m− 1) + · · ·+ a0U(n)

are well-defined and belong to the field K. Fix an algebraic closure K, and let
λ1, . . . , λs ∈ K be the distinct roots of the characteristic polynomial

Xm − am−1X
m−1 − · · · − a0. (2.3)

Then U admits the Binet expansion

U(n) = f1(n)λ
n
1 + · · ·+ fs(n)λ

n
s ,
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where f1, . . . , fs are polynomials with coefficients in the field K(λ1, . . . , λs), such
that the order of λi as a root of the characteristic polynomial (2.3) is equal to
deg fi + 1. In particular, the polynomials fi are all non-zero, and

s∑
i=1

(deg fi + 1) = m.

Unless the contrary is stated explicitly, in this article, when referring to an
LRS of order m, we will assume that m is the minimal order of this LRS.

It is important to note the following: if U is non-degenerate then it does
not vanish identically on any residue class; that is, for any positive integer N
and any ℓ ∈ {0, . . . , N − 1}, the function n 7→ U(ℓ+Nn) is not identically zero.
Indeed, assuming non-degeneracy of U , the numbers λN

1 , . . . , λN
s are all distinct.

Hence

U(ℓ+Nn) =

s∑
i=1

hi(n)θ
n
i , where hi(T ) := λℓ

ifi(ℓ+NT ), θi := λN
i .

This implies that U(ℓ + Nn) is an LRS of the same minimal order as U ; in
particular, it is not identically zero.

3 Twisted rational zeros and the p-adic order

In this section we prove Theorems 1.1, 1.4 and 1.5 from the Introduction. The
proofs rely on Skolem’s p-adic interpolation of LRS, briefly recalled in Subsec-
tions 3.1 and 3.2.

3.1 p-adic analytic functions

In this subsection we recall some very basic facts about p-adic analytic functions.
Most of them are quite standard. All missing proofs, unless indicated otherwise,
can be found in any standard text like [12] or [19].

Let p be a prime number. We fix an algebraic closure Qp, and extend the
standard p-adic absolute value | · |p to Qp, so that |p|p = p−1. We will also use

the additive valuation νp defined by νp(z) = − log |z|p/ log p for z ∈ Qp
×
, with

the convention νp(0) = +∞. All algebraic extensions of Qp occurring below will
be viewed as subfields of this fixed Qp.

Let K be a finite extension of Qp. For a ∈ K and r > 0 we denote D(a, r)
and D(a, r) (or DK(a, r), DK(a, r), if we want to indicate that the disk is in the
field K) the open and the closed disks with center a and radius r:

D(a, r) = {z ∈ K : |z − a|p < r}, D(a, r) = {z ∈ K : |z − a|p ≤ r}.

It might be worth noting that every open disk in K is also closed, and any closed
disk is open. That is, for every r > 0 there exist r′, r′′ > 0 such that

D(a, r) = D(a, r′), D(a, r) = D(a, r′′).
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Another useful observation is that every point of a disk serves as its center: if
b ∈ D(a, r) then D(a, r) = D(b, r), and similarly for the closed disks.

We denote by OK, or simply by O if this does not lead to a confusion, the
ring of integers of K:

O = {z ∈ K : |z|p ≤ 1} = D(0, 1).

Let D be a disk in K (open or closed), and L a finite extension of K. We
call g : D → L an analytic function if for some a ∈ D we have

g(z) =

∞∑
n=0

αn(z − a)n (z ∈ D), (3.1)

where α0, α1, α2, . . . ∈ L. In particular, the infinite sum on the right converges
for all z ∈ D.

Here are some simple properties of analytic functions, to be used below
without special reference.

1. The coefficients α0, α1, α2, . . . are well-defined as soon as g and a are given.
In particular, if the coefficients are not all 0, then g is a non-zero function.

2. The analytic function g admits a power series expansion around any other
b ∈ D. Specifically, for any b ∈ O we have

g(z) =

∞∑
k=0

βk(z − b)k, (3.2)

where

βk =
g(k)(b)

k!
=

∞∑
n=k

(
n

k

)
αn(b− a)n−k.

3. An analytic function on D is bounded. Indeed, set

r := max{|z − w|p : z, w ∈ D}.

Then D = D(a, r), and convergence in (3.1) is equivalent to |αn|prn → 0.
In particular, the sequence |αn|prn is bounded. Hence αn(z − a)n is
bounded uniformly in z ∈ D. It follows that g is bounded.

4. A non-zero analytic function on a disk D may have at most finitely many
zeros in D; this is because D is compact and the zeros are isolated. A
quantitative version is given by the classical Theorem of Strassmann; see,
for instance, [8, Theorem 4.1].

Theorem 3.1. Let K be a finite extension of Qp of ramification index e, and let
g : Zp → K be an analytic function, not identically 0. Denote by A the (finite)
set of zeros of g. Then there exists a positive integer k such that for every
i ∈ {0, 1, . . . , pk − 1} we have one of the following two options.
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(C) There exists τi ∈ Z such that for z ∈ Zp satisfying z ≡ i (mod pk) we have
νp(g(z)) = e−1τi; in other words, νp(g(z)) is constant on the residue class
z ≡ i (mod pk).

(L) There exist
ai ∈ A, τi ∈ Z, κi ∈ Z>0

such that ai ≡ i (mod pk), and for z ∈ Zp satisfying z ≡ i (mod pk) we
have

νp(g(z)) = κiνp(z − ai) + e−1τi.

Proof. This is Theorem 3.2 from [5].

We denote
ρ := p−1/(p−1). (3.3)

Let us recall the definition and the basic properties of the p-adic exponential
and logarithmic function.

1. For z ∈ D(0, ρ) we define

exp(z) =

∞∑
n=0

zn

n!
.

For z, w ∈ D(0, ρ) we have

| exp(z)− 1|p = |z|p, exp(z + w) = exp(z) exp(w), exp′(z) = exp(z).

2. For z ∈ D(1, 1) we define

log(z) =

∞∑
n=1

(−1)n−1(z − 1)n

n
.

For z, w ∈ D(1, 1) we have

log(zw) = log(z) + log(w), log′(z) =
1

z
.

3. For z ∈ D(1, ρ) we have

| log(z)|p = |z − 1|p, exp(log(z)) = z.

4. For z ∈ D(0, ρ) we have log(exp(z)) = z.
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3.2 p-adic analytic interpolation of a linear recurrence se-
quence

The contents of this subsection is very classical and goes back to Skolem. Still,
we prefer to include some proofs for the reader’s convenience.

Let U be a non-zero LRS of (minimal) order m with values in a number
field K. We write its recurrence relation as

U(n+m) = am−1U(n+m− 1) + · · ·+ a0U(n),

where a0, . . . , am−1 ∈ K.
We call a prime p of K regular for U if a1, . . . , am are p-adic integers and a0

is a p-adic unit.
Let p be a regular prime for U , and Kp the p-adic completion of K. It is a

finite extension of Qp, where p is the rational prime number below p.

Proposition 3.2 (Skolem). There exists a positive integer N and analytic func-
tions

g0, . . . , gN−1 : Zp → OKp

such that

u(ℓ+Nn) = gℓ(n) (ℓ ∈ {0, . . . , N − 1}, n ∈ Z). (3.4)

Moreover, if the LRS U is non-degenerate, then none of the functions gℓ vanishes
identically.

Proof. Denote by L the splitting field over Kp of the characteristic polynomial
Xm − am−1X

m−1 − · · · − a0. Then U admits the Binet expansion

U(n) = f1(n)λ
n
1 + · · ·+ fs(n)λ

n
s ,

where λ1, . . . , λs are the distinct roots of the characteristic polynomial, and
f1, . . . , fs are non-zero polynomials with coefficients in L. Since p is a regular
prime, λ1, . . . , λs ∈ O×

L .
Let ρ be defined as in (3.3). Since ρ < 1, the disk DL(1, ρ) is a multiplicative

group. It is a finite index subgroup of O×
L , because O

×
L is compact and DL(1, ρ)

is open. Hence there exists a positive integer N such that xN ∈ DL(1, ρ) for
every x ∈ O×

L . Note that we have

xNn = exp(n log(xN )) (x ∈ O×
L , n ∈ Z). (3.5)

Now define, for ℓ = 0, 1, . . . , N − 1 and z ∈ Zp,

gℓ(z) :=

s∑
i=1

λℓ
ifi(ℓ+Nz) exp(z log(λN

i )).

Note that, a priori, gℓ(z) ∈ L, but we will see that gℓ(z) ∈ Kp in a while.
From (3.5) we deduce that (3.4) holds. In particular, gℓ(z) ∈ K when z ∈ Z.

Since Z is dense in Zp, we have gℓ(z) ∈ Kp for all z ∈ Zp.
When U is non-degenerate, the function gℓ does not vanish identically, be-

cause the function n 7→ U(ℓ+Nn) does not, see Subsection 2.2.
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As a by-product, we prove the Theorem of Skolem-Mahler-Lech (see Theo-
rem 1.8 above) for Q-valued LRS.

Corollary 3.3 (Skolem-Mahler-Lech). Let U be a non-degenerate Q-valued
LRS. Then the equation U(n) = 0 has at most finitely many solutions in n ∈ Z.

Proof. Pick some prime p regular for U . Then each of the analytic functions gℓ
has at most finitely many zeros on Zp, hence on Z.

Actually, the Skolem-Mahler-Lech Theorem, as stated in Theorem 1.8, ap-
plies to LRS over an arbitrary field of characteristic 0. To extend it to this
generality, one more ingredient is needed, the Lech-Cassels Specialization The-
orem, see [7].

3.3 Proof of Theorems 1.1, 1.4 and 1.5

Let U be an LRS taking values in a number field K, and let p be a prime
of K regular for U , see Subsection 3.2. We denote by p the rational prime
below p. In this section we prove the following two theorems, which generalize
Theorems 1.1, 1.4 and 1.5 from the Introduction.

Theorem 3.4. Let a be a zero of U . Then there exist a positive integer Q,
a positive integer κ and an integer τ such that νp(U(n)) = κνp(n− a) + τ for
n ≡ a (mod Q).

Theorem 3.5. Let a ∈ Q be such that there exists a sequence of integers (nk)
satisfying

νp(U(nk)) → +∞, νp(nk − a) → +∞.

Then a is a TRZ of U .

Theorem 3.4 is more general than Theorem 1.1, while Theorem 3.5 is more
general than Theorem 1.5 (and, a fortiori, than Theorem 1.4).

Proof of Theorem 3.4. Let the integer N and the functions g0, . . . , gN−1 be as
in Proposition 3.2. Let ℓ ∈ {0, . . . , N − 1} be such that a ≡ ℓ (mod N). Write
a = ℓ+ bN with b ∈ Z. In the sequel, we denote g := gℓ. We have g(b) = 0.

Theorem 3.1 implies that there exist positive integers k and τ ′, and an
integer κ′ such that for z ≡ b (mod pk) we have

νp(g(z)) = κ′νp(z − b) + e−1τ ′. (3.6)

Now set
Q := Npk, κ := eκ′, τ := τ ′ − κνp(N).

Let n ≡ a (mod Q). Then n ≡ ℓ (mod N), and for m := (n− ℓ)/N we have

m ≡ b (mod pk), νp(m− b) = νp(n− a)− νp(N), g(m) = U(n).

Applying (3.6) with z = m, we obtain

νp(U(n)) = eνp(g(m)) = eκ′νp(m− b) + τ ′ = κνp(n− a) + τ.

The theorem is proved.
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Proof of Theorem 3.5. Once again, let N and g0, . . . , gN−1 be as in Proposi-
tion 3.2. Let ℓ ∈ {0, . . . , N − 1} be such that nk ≡ ℓ (mod N) holds for in-
finitely many k. By taking a subsequence, we may assume that this holds for
all k. We denote g := gℓ.

Set b := (a− ℓ)/N and mk := (nk − ℓ)/N . Then, mk → b and g(mk) → 0 in
the p-adic topology. Hence g(b) = 0.

(Note that, unlike in the proof of Theorem 3.4, we do not, in general, have
g(b) = U(ℓ+Nb) = U(a); this would only be true if b ∈ Z. But this is not true
in general: b is merely a rational number, not necessarily an integer.)

Recall that

g(z) = gℓ(z) =

s∑
i=1

λℓ
ihi(z), where hi(z) := fi(ℓ+Nz) exp(z log(λN

i )).

Let A be the denominator of the rational number a. Then

(hi(b))
AN =

(
λℓ
ifi(a)

)AN
exp(ANb log(λN

i )).

Since ANb ∈ Z, we have exp(ANb log(λN
i )) = λAN2b

i . Hence

(hi(b))
AN = λANℓ+AN2b

i fi(a)
AN =

(
λa
i fi(a)

)AN
,

where we pick some definition for the rational power λa
i . Thus,

hi(b) = ξiλ
a
i f(a),

where ξi is a root of unity.
We have proved that

0 = g(b) =

s∑
i=1

ξiλ
a
i f(a),

which exactly means that a is a TRZ of U . The theorem is proved.

4 Finiteness of twisted rational zeros

In this section we prove Theorem 1.9. Throughout this section, unless the
contrary is stated explicitly, K is a field of characteristic 0. We fix an algebraic
closure K.

For a positive integer n we fix ζn ∈ K, a primitive nth root of unity. Recall
that we denote by µn the group of nth roots of unity, and by µK the group of
roots of unity in K. We denote by Kn the set of nth powers in K:

Kn := {αn : α ∈ K}.

We denote by Kab the maximal abelian subfield of K; that is, the maximal
subfield of K which is an abelian extension of Q.

12



4.1 Powers in fields

The following result is due to Chevalley [9] and Bass [1]. The proofs can be also
found in [20] and [2].

Theorem 4.1. [Chevalley, Bass] Let K be a finitely generated field of char-
acteristic 0 (in particular, Kab is a finite extension of Q). Then there exists
a positive integer Λ, depending only on the degree d := [Kab : Q], such that for
every positive integer n the following holds: if α ∈ K is a Λnth power in K(ζΛn),
then α is an nth power in K. In symbols:

K(ζΛn)
Λn ∩K ⊂ Kn (n = 1, 2, 3, . . .). (4.1)

The smallest positive integer Λ satisfying (4.1) will be called the Chevalley-
Bass number of the field K; see [2, Section 6].

It might not be easy to determine the Chevalley-Bass number of a given
field K, but it is easy to estimate it in terms of d := [Kab : Q]. For instance,
it is shown in [2, Section 6.1] that, when d ≥ 3, the Chevalley-Bass number Λ
satisfies Λ ≤ exp(d2/ log log d).

It will be convenient to introduce the following notion. For α ∈ K× we
define the Kummer exponent of α in K as the biggest positive integer n such
that αξ ∈ Kn for some root of unity ξ ∈ K. In symbols:

ϱK(α) := max{n : α ∈ µKKn}

(recall that µK denotes the group of roots of unity in K). Clearly, ϱK(α) = ∞
if α is a root of unity, and, when K is a finitely generated field, ϱK(α) is finite
if α is not a root of unity.

Proposition 4.2. Let α ∈ K be such that ϱK(α) is finite, and n a positive
integer.

1. We have α ∈ µKKn if and only if n | ϱK(α).

2. Let α1/n ∈ K be some determination of the nth root, and ξ ∈ K a root of
unity. Then the degree [K(α1/nξ) : K] is a multiple of n/ gcd(ϱK(α), n).

Proof. Item 1 follows immediately from the definition. To prove item 2, define

L := K(α1/nξ), m := [L : K], ρ := ϱK(α), d := gcd(m,n).

All conjugates of α1/n over K are equal to α1/n times a root of unity. Hence
β := NL/K(α

1/nξ) is αm/n times a root of unity. Let r, s ∈ Z be such that

mr + ns = d. Then γ := αsβr is αd/n times a root of unity. Since γn/d is α
times a root of unity, we have n/d | ρ. Hence n/d | gcd(ρ, n). It follows that
n/ gcd(ρ, n) divides d. Hence it divides m.

13



4.2 Equations in roots of unity

The following result is due to Dvornicich and Zannier [11, 24], who improved
on the previous work of Mann [16] and of Conway and Jones [10]. In this
subsection K is a finitely generated field of characteristic 0.

Theorem 4.3. [Dvornicich, Zannier] Let α1, . . . , αs be non-zero elements of K,
and ξ1, . . . , ξs ∈ K roots of unity. Assume that

α1ξ1 + · · ·+ αsξs = 1,

and no proper sub-sum of the sum on the left vanishes:
∑

i∈I αiξi ̸= 0 when
∅ ⊊ I ⊊ {1, . . . , s}. Then the order of the multiplicative group generated by
ξ1, . . . , ξs is effectively bounded in terms of d = [Kab : Q] and s.

In fact, Dvornicich and Zannier prove that, denoting by r the order of the
group generated by ξ1, . . . , ξs, we have the following properties:

• if pa+1 | r for some positive integer a then pa | 2d;

• s+ 1 ≥ dimK(K+Kξ1 + · · ·+Kξs) ≥ 1 +
∑
p∥r

(
p− 1

gcd(d, p− 1)
− 1

)
.

Clearly, using these properties, it is easy to bound r explicitly in terms of d
and s.

4.3 A Kummer property

As before, K is a finitely generated field of characteristic 0. Recall that we
denote by Kab the maximal abelian subfield of K. Let Γ be the division group
of the multiplicative group K×:

Γ := {a ∈ K×
: an ∈ K× for some positive integer n}.

The following key proposition is, essentially, due to Laurent [14].

Proposition 4.4. Let α1, . . . , αs ∈ Γ be such that α1 + · · ·+ αs = 1, and no
proper sub-sum of the sum α1 + · · ·+ αs vanishes. Let Λ be the Chevalley-Bass
number of K (see Section 4.1). Then there exist roots of unity ξ1, . . . , ξs ∈ K
such that

αΛ
i ξi ∈ K (i = 1, . . . ,m), (4.2)

Proof. We follow Laurent [14, Section 2.2], but we replace the cohomological
argument by a reference to Theorem 4.1.

Let n be a positive integer such that αn
1 , . . . , α

n
s ∈ K. Denote by G the Galois

group Gal(K/K(ζn)). For i ∈ {1, . . . , s} let χi : G → K(ζn) be the character
of G defined by σ 7→ σ(αi)/αi. Since σ(α1) + · · ·+ σ(αs) = 1 for every σ ∈ G,
we have α1χ1 + · · ·+ αsχs = 1.
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We claim that the characters χ1, . . . , χs are all trivial:

χ1 = · · · = χs = 1. (4.3)

Indeed, defining α0 := −1 and χ0 := 1, we have α0χ0 + · · ·+ αsχs = 0. After
renumbering the characters χ1, . . . , χs, we may assume that for some r ≥ 0 the
characters χ0, . . . , χr are distinct, and each of the remaining χr+1, . . . , χs is
equal to one of χ0, . . . , χr. For k = 0, . . . , r define Ik := {i : χi = χk}. Then

r∑
k=0

χk

∑
i∈Ik

αi = 0.

Artin’s Theorem on Characters (see, for instance, Theorem 4.1 in [13, Chap-
ter VI]) implies that

∑
i∈Ik

αi = 0 for every k. Since no proper sub-sum of
α1 + · · ·+ αs vanishes, this is possible only if r = 0, which proves (4.3).

It follows from (4.3) that α1, . . . , αs ∈ K(ζn). Hence each αΛn
i is an Λnth

power in K(ζn). Theorem 4.1 implies that αΛn
i is an nth power in K. It follows

that αΛ
i ξi ∈ K for some root of unity ξi, as wanted.

4.4 Proof of Theorem 1.9

Let U be a non-degenerate LRS with values in a field of characteristic 0 and
with Binet expansion

U(n) = f1(n)λ
n
1 + · · ·+ fs(n)λ

n
s . (4.4)

Let K be a finitely generated field, containing λ1, . . . , λs and the coefficient of
the polynomials f1, . . . , fs. Recall that we denote by Kab the maximal abelian
subfield of K. Since K is finitely generated, Kab is a finite extension of Q, and
we denote by d its degree over Q.

Recall that we denote by ϱK(α) the Kummer exponent of α ∈ K, see Sub-
section 4.1. Since the U is non-degenerate and the field K is finitely generated,
we have ϱK(λi/λj) < ∞ when i ̸= j. We set

ρ := gcd{ϱK(λi/λj) : 1 ≤ i < j ≤ s}. (4.5)

Let a be a TRZ of U . Recall that this means the following: there exist roots
of unity ξ1, . . . , ξs ∈ K such that for some determinations of λa

1 , . . . , λ
a
s ∈ K we

have
ξ1f1(a)λ

a
1 + · · ·+ ξsfs(a)λ

a
s = 0. (4.6)

We call the TRZ a primitive if no proper sub-sum of the sum in (4.6) vanishes;
that is, if ∅ ⊊ I ⊊ {1, . . . , s} then

∑
i∈I ξifi(a)λ

a
i ̸= 0.

Proposition 4.5. Let K be as above (that is, a finitely generated field, con-
taining λ1, . . . , λs and the coefficient of the polynomials f1, . . . , fs), and Λ the
Chevalley-Bass number of K. Let a be a primitive TRZ of U , and ξ1, . . . , ξs
roots of unity satisfying (4.6). Assume that s ≥ 2. Then the denominator of
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the rational number a divides Λρ, where ρ is defined in (4.5); in particular, the
denominator is bounded effectively in terms of d := [Kab : Q] and ρ. Moreover,
the orders of the roots of unity ξi/ξj are effectively bounded in terms of d, ρ
and s.

Proof. Since s ≥ 2 and no proper sub-sum of the sum in (4.6) vanishes, we have
fi(a) ̸= 0 for i = 1, . . . , s. There will be no loss of generality to assume that
ξs = 1; so, instead of (4.6) we have

ξ1f1(a)λ
a
1 + · · ·+ ξs−1fs−1(a)λ

a
s−1 + fs(a)λ

a
s = 0. (4.7)

Applying Proposition 4.4 to the relation

s−1∑
i=1

−ξi
fi(a)

fs(a)

(
λi

λs

)a

= 1, (4.8)

we obtain the following: there exist roots of unity η1, . . . , ηs−1 such that

(λi/λs)
Λa

ηi ∈ K (i = 1, . . . , s− 1).

Write a = k/ℓ, where k and ℓ are co-prime integers. We want to show that
ℓ | Λρ. We have ϱK

(
(λi/λs)

Λk
)
= ΛkϱK(λi/λs). Proposition 4.2 implies that the

quotient ℓ/ gcd
(
ℓ,ΛkϱK(λi/λs)

)
divides the degree [K((λi/λs)

Λaηi) : K]. But
this degree is 1, which implies that ℓ | ΛkϱK(λi/λs). Since ℓ and k are coprime,
this implies that ℓ | ΛϱK(λi/λs) for i = 1, . . . , s− 1.

We have clearly ρ = gcd{ϱK(λi/λs) : i = 1, . . . , s− 1}. It follows that ℓ | Λρ,
which proves the first statement of the proposition.

Now let us bound the orders of the roots of unity ξi. Let L be the field, gen-
erated over K by (λ1/λs)

a, . . . , (λs−1/λs)
a. Since the denominator of a divides

Λρ, we have
[Lab : Kab] ≤ [L : K] ≤ (Λρ)s−1.

Hence [Lab : Q] ≤ d(Λρ)s−1; in particular, [Lab : Q] is effectively bounded in
terms of d, s and ρ.

Applying Theorem 4.3 to relation (4.8), we bound the orders of the roots of
unity ξi in terms of [Lab : Q] and s. Hence it is bounded in terms of d, s and ρ,
as wanted. The proposition is proved.

Combining this proposition with the Skolem-Mahler-Lech Theorem, we ob-
tain the following consequence.

Corollary 4.6. Let U be a non-degenerate LRS over a field of characteristic 0.
Then U admits at most finitely many primitive TRZs. More precisely, if (4.4)
is the Binet expansion of U , then there exist at most finitely many s-tuples
(a, ξ1, . . . , ξs−1) such that a is a rational number, ξ1, . . . , ξs−1 are roots of unity,
and (4.7) holds.
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Proof. If s = 1 then f1(a) = 0, which is possible only for finitely many a.
From now on we assume that s ≥ 2. Proposition 4.5 implies that a = n/Λρ,

where n ∈ Z, and that there are at most finitely many choices for (ξ1, . . . , ξs−1)

in (4.7). Pick some determinations θi := λ
1/Λρ
i , so that λa

i = θni ηi, where ηi are
Λρth roots of unity. Then

ξ1η1g1(n)θ
n
1 + · · ·+ ξs−1ηs−1gs−1(n)θ

n
s−1 + ηsgs(n)θ

n
s = 0, (4.9)

where gi(t) := fi(t/Λρ).
The left-hand side of (4.9) is a non-degenerate LRS, and the Skolem-Mahler-

Lech Theorem implies that there can be at most finitely many n for every fixed
choice of the roots of unity ξi and ηi. Since there are at most finitely many
choices for (ξ1, . . . , ξs−1) and for (η1, . . . , ηs), the result follows.

Now we are ready to complete the proof of Theorem 1.9. Let a be a TRZ
of U , so that (4.6) holds for some choice of roots of unity ξi. Let I be a
minimal non-empty subset of {1, . . . , s} such that

∑
i∈I ξifi(a)λ

a
i = 0. Then a

is a primitive TRZ of the LRS UI , defined by

UI(n) :=
∑
i∈I

fi(n)λ
n
i . (4.10)

Corollary 4.6 tells us that UI may have at most finitely many primitive TRZs.
Since there are finitely many possible I, Theorem 1.9 is proved.

4.5 An explicit result for Q-valued linear recurrence se-
quences

Let U be an LRS over a field of characteristic 0 with Binet expansion (4.4), and
let a be a rational number. If a is a common root of the polynomials f1, . . . , fs,
then it is, clearly, a rational zero of U . Such rational zeros will be called trivial ;
there are only finitely many of them, and in many interesting cases (for instance,
if at least one of f1, . . . , fs is constant) there are none.

Arguing as at the end of Subsection 4.4, we obtain the following: the denom-
inator of a non-trivial TRZ a of U is bounded in terms of d, ρ and s. Indeed,
if fi(a) ̸= 0 for some i, then there exists a set I ⊂ {1, . . . , s} having at least 2
elements such that the LRS UI , defined in (4.10), has a as a primitive TRZ. Now
Proposition 4.5 implies that the denominator of a is bounded in terms of d, ρ
and s.

Note that s ≤ m, where m denoted the order of the LRS U . Hence the
denominator of a is bounded in terms of d, ρ and m.

In the most interesting special case when U is a Q-valued LRS of order m,
we can take K in Proposition 4.5 as the splitting field of the characteristic
polynomial of U . With this choice of K, the degree d is bounded in terms of m.
Hence the denominator of a is bounded in terms of m and ρ. We are going to
make it totally explicit.
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Proposition 4.7. Let U be a Q-valued LRS of order m with Binet expan-
sion (4.4), K the splitting field of the characteristic polynomial of U , and ρ as
in (4.5). Let a be a non-trivial TRZ of U . Then the denominator of a does not
exceed ρ exp exp(m/ logm).

Proof. As we have just seen, if a is a non-trivial TRZ of U , then there exists
I ⊂ {1, . . . , s} with #I ≥ 2 such that a is a primitive TRZ of UI . Proposi-
tion 4.5 implies that the denominator of a is bounded by ρΛ. And we have
Λ ≤ exp exp(m/ logm), see [2, Proposition 6.5]. This completes the proof.

5 Twisted rational zeros of the Tribonacci se-
quence

In this section we prove Theorem 1.10. As in the proof of Theorem 1.9, the
principal part is bounding the denominators of the TRZ, see Proposition 5.2.
Instead of adapting the general argument of Section 4, using the Theorems of
Chevalley-Bass and of Dvornicich-Zannier, we use an elementary ad hoc argu-
ment.

In this section we denote byQ ⊂ C the field of all complex algebraic numbers,
and by x 7→ x the complex conjugation.

5.1 The roots

Let λ1, λ2, λ3 ∈ Q be the complex roots of the characteristic polynomial

P (X) := X3 −X2 −X − 1.

Then
T (n) = α1λ

n
1 + α2λ

n
2 + α3λ

n
3 , αi := P ′(λi)

−1λi.

One of the roots λ1, λ2, λ3 is real and the other two are complex conjugate. We
will assume that λ1 ∈ R and λ3 = λ2.

We denote Ki := Q(λi) and L := Q(λ1, λ2), the splitting field of P . We have
[Ki : Q] = 3 and [L : Q] = 6. The maximal abelian subfield Lab is Q(

√
−11),

because the discriminant of P is −44. The 6 numbers

λi/λj (1 ≤ i ̸= j ≤ 3) (5.1)

form a full Galois orbit over Q; in particular, for i ̸= j we have L = Q(λi/λj).
In the following proposition we collect some less obvious properties of the

roots λi, to be used later.

Proposition 5.1. 1. For i ̸= j, the quotient P ′(λi)/P
′(λj) is not a Dirichlet

unit.

2. Let λ be one of λ1, λ2, λ3 and K := Q(λ). Then λ is not an mth power
in K for any integer m > 1, and neither is −λ. In terms of the Kummer
exponent, defined in Subsection 4.1, this can be stated as ϱK(λ) = 1.
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3. The quotients λi/λj are cubes in L. More precisely, for 1 ≤ i, j ≤ 3 there
exists a unique θij ∈ L such that λi/λj = θ3ij.

Proof. If, say, P ′(λ1)/P
′(λ2) is a unit, then so is every P ′(λi)/P

′(λj). It follows
that the 3 algebraic integers P ′(λi) generate the same principal ideal inOL. This

ideal must divide the sum
∑3

i=1 P
′(λi) = 4, which implies that the product∏3

i=1 P
′(λi) must be a power of 2. But

3∏
i=1

P ′(λi) = 44, (5.2)

a contradiction. This proves item 1.
In the proof of item 2 we will use the notion of the absolute logarithmic height

h(·) of an algebraic number. The definition can be found in many sources, say, in
[6, Section 1.5.7]. We will need only the following properties: if γ is an algebraic
integer of degree d with conjugates γ1, . . . , γd ∈ C, and m is a positive integer,
then dh(γ) =

∑d
i=1 max{log |γi|, 0}, and h(γm) = m h(γ). In particular,

3 h(λ) = log λ1 < 0.61,

because λ1 > 1 and |λ2| = |λ3| < 1.
Now assume that λ = γm for some γ ∈ K and m > 1. Then h(λ) = m h(γ).

On the other hand, the famous result of Smyth [21] implies that

3 h(γ) ≥ log ϑ > 0.28.

where ϑ is the real root of the polynomial X3 −X − 1. Hence

m ≤ log λ

log ϑ
< 2.2.

It follows that m = 2. Hence γ is a root of the polynomial P (X2). However,
this polynomial is irreducible over Q, which means that γ is of degree 6, a
contradiction. In a similar fashion one shows that −λ is not a proper power
in K. This proves item 2.

In item 3 uniqueness is clear, because ζ3 /∈ L, so we only have to prove
existence. Using PARI [22] (or another similar tool), we calculate theX-resultant
of the polynomials P (X) and P (XY ). It is a polynomial in Y of degree 9, whose
roots are exactly the 9 quotients λi/λj . It has a root 1 of multiplicity 3, which
corresponds to the 3 quotients λi/λi, and it factors as (Y − 1)3R(Y ), where

R(Y ) := Y 6 + 4Y 5 + 11Y 4 + 12Y 3 + 11Y 2 + 4Y + 1

is the irreducible polynomial whose roots are the quotients (5.1).
Polynomial R(Y 3) is reducible over Q: it has an irreducible factor of degree 6

Q(Y ) := Y 6 + Y 5 + 2Y 4 + 3Y 3 + 2Y 2 + Y + 1

and another irreducible factor of degree 12. Let θ be a root of Q. Then the
field Q(θ) is of degree 6, and θ3 is one of the quotients (5.1); in particular, Q(θ)
contains L. By equality of degrees we obtain Q(θ) = L, which completes the
proof of item 3.
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5.2 The denominator

In this subsection we prove that the denominator of a TRZ divides 3.

Proposition 5.2. Let a be a TRZ of the Tribonacci LRS. Then 3a ∈ Z.

We will use the following very simple lemma.

Lemma 5.3. Let γ ∈ C be a complex number such that γ/γ is not a root of
unity, and δ ∈ R a real number. Then the equation γη + γη′ = δ may have at
most one solution in roots of unity (η, η′). This solution satisfies η ∈ Q(γ, γ, δ)
and η′ = η.

Proof. If η, η′ are roots of unity such that γη + γη′ ∈ R, then the complex num-
bers γη′ and γη have the same imaginary part: γη′ − γη′ = γη − γη. If η ̸= ξ
then

γ

γ
=

η′ − η

η′ − η
= −η′

η
,

contradicting the hypothesis that γ/γ is not a root of unity. Hence η′ = η.
Thus, η is a root of the polynomial

F (X) := X2 − (δ/γ)X + γ/γ ∈ Q(γ, γ, δ)[X].

Since the free term γ/γ is not a root of unity, the other root of F cannot be a
root of unity. This proves that there may exist only one possible η for given γ
and δ.

Furthermore, if F is irreducible over Q(γ, γ, δ) then its other root is a root of
unity as well, which is impossible, as we just saw. Hence F is reducible, which
implies that η ∈ Q(γ, γ, δ). The lemma is proved.

Proof of Proposition 5.2. Let m be the denominator of a; that is, a = n/m,

where m,n ∈ Z are coprime and m > 0. Let λ
1/m
1 be the positive real mth root,

λ
1/m
2 some complex mth root, and we define λ

1/m
3 as the complex conjugate of

λ
1/m
2 . With this choice of mth roots we have

λ
1/m
1 λ

1/m
2 λ

1/m
3 = 1. (5.3)

Once the mth roots are defined, the rational powers λa
i are well-defined as

(λ
1/m
i )n. Note that λa

3 = λa
2 .

Since a is a TRZ, we have α1λ
a
1η1 + α2λ

a
2η2 + α2λ

a
3η3 = 0 for some roots of

unity η1, η2, η3. We may clearly assume that η1 = 1, in which case Lemma 5.3
implies that η3 = η2. In the sequel we write η2 as η and η3 as η; that is, we have

α1λ
a
1 + α2λ

a
2η + α3λ

a
3η = 0. (5.4)

Recall that we denote K1 = Q(λ1). Fix an element σ in the absolute Galois

group G1 := Gal(Q/K1). Then (λ
1/m
1 )σ = λ

1/m
1 ξ1 for some ξ1 ∈ µm. The group
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H := Gal(Q/L) is an index 2 subgroup of G1. If σ ∈ H then λσ
2 = λ2 and

λσ
3 = λ3, in which case there exist ξ2, ξ3 ∈ µm such that

(λ
1/m
2 )σ = λ

1/m
2 ξ2, (λ

1/m
3 )σ = λ

1/m
3 ξ3. (5.5)

If σ /∈ H then λσ
2 = λ3 and λσ

3 = λ2; in this case there exist ξ2, ξ3 ∈ µm such
that

(λ
1/m
2 )σ = λ

1/m
3 ξ3, (λ

1/m
3 )σ = λ

1/m
2 ξ2. (5.6)

Let us apply σ to equalities (5.3) and (5.4). We obtain

1 = 1σ = (λ
1/m
1 λ

1/m
2 λ

1/m
3 )σ = λ

1/m
1 λ

1/m
2 λ

1/m
3 ξ1ξ2ξ3 = ξ1ξ2ξ3, (5.7)

ασ
1λ

a
1ξ

n
1 + α2λ

a
2ξ

n
2 η

′ + α3λ
a
3ξ

n
3 η

′′ = 0, (η′, η′′) =

{
(ησ, ησ), σ ∈ H,

(ησ, ησ), σ /∈ H.
(5.8)

Note that ασ
1 = α1 because α1 ∈ K1, and that η′η′′ = (ηη)σ = 1.

Rewrite (5.8) as

α1λ
a
1 + α2λ

a
2

(
ξ2
ξ1

)n

η′ + α3λ
a
3

(
ξ3
ξ1

)n

η′′ = 0.

Comparing this to (5.4), the uniqueness statement in Lemma 5.3 implies that(
ξ2
ξ1

)n

η′ = η,

(
ξ3
ξ1

)n

η′′ = η.

Multiplying these equalities, we obtain (ξ2ξ3/ξ
2
1)

n = 1. Since ξ1, ξ2, ξ3 ∈ µm

and m,n are coprime, this implies that ξ2ξ3/ξ
2
1 = 1, which, together with (5.7),

implies that ξ31 = 1.
We have proved the following: for any σ ∈ G1 there exist ξ1 ∈ µ3 such that

(λ
1/m
1 )σ = λ

1/m
1 ξ1. If ξ1 = 1 for every σ ∈ G1 then λ

1/m
1 ∈ K1. Now assume

that ξ1 = ζ3 for some σ. Since K1 is a real field, any Galois orbit over K1

must be stable under the complex conjugation. Hence the Galois orbit of λ
1/m
1

over K1 is λ
1/m
1 , λ

1/m
1 ζ3, λ

1/m
1 ζ3.

Thus, [K1(λ
1/m
1 ) : K1] ∈ {1, 3}. On the other hand, item 2 of Proposition 5.1

implies that λ1 is not a pth power in K1 for any p, and −λ1 is not a square

in K1. Hence [K1(λ
1/m
1 ) : K1] = m by Lemma 2.1. It follows that m ∈ {1, 3},

as wanted.

We also need to take care of the roots of unity occurring in the definition of
TRZ.

Proposition 5.4. Let a be a TRZ of the Tribonacci LRS. Then, with suitable
definitions of the rational powers λa

i we have

α1λ
a
1 + α2λ

a
2 + α3λ

a
3 = 0, (5.9)

λa
1λ

a
2λ

a
3 = 1 (5.10)
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Proof. We have a = n/3, with n ∈ Z. We define λ
1/3
1 as the real cubic root

of λ1, and for i = 2, 3 we define λ
1/3
i := λ

1/3
1 θi1, where θij ∈ L are defined in

item 3 of Proposition 5.1.

Note that θ31 = θ21. Indeed, θ21
3
= λ2/λ1 = λ3/λ1. Since λ3/λ1 has only

one cubic root in L, we must have θ31 = θ21.
From our definitions it follows that λa

1λ
a
2λ

a
3 is a positive real number. Since

(λa
1λ

a
2λ

a
3)

3 = (λ1λ2λ3)
n = 1, this proves (5.10), so we are only left with (5.9).

As we have seen in the proof of Proposition 5.2, there exists a root of unity η
such that (5.4) holds. This can be rewritten as α1 + α2θ

n
21η + α3θ

n
31η = 0.

Lemma 5.3 implies that η ∈ Q(α1, α2, α3, θ21, θ31) = L. Since L contains no
roots of unity other than ±1, we must have η = 1 or η = −1. In the former case
we are done. Now let us assume that η = −1. In this case

α1 − α2θ
n
21 − α3θ

n
31 = 0. (5.11)

Let σ ∈ Gal(L/Q) be such that

λσ
1 = λ2, λσ

2 = λ1, λσ
3 = λ3.

Then

ασ
1 = α2, ασ

2 = α1, ασ
3 = α3, θσ21 = θ12 = θ−1

21 , θσ31 = θ32 = θ31θ
−1
21 .

Applying σ to (5.11), we obtain α2 − α1θ
−n
21 − α3θ

n
31θ

−n
21 = 0, which can be

rewritten as α1 − α2θ
n
21 + α3θ

n
31 = 0. Comparing this with (5.11), we obtain

α3θ
n
31 = 0, a contradiction. The proposition is proved.

5.3 Proof of Theorem 1.10

Let W be the Q-valued LRS with the general term given by

W (n) = 44α3
1λ

n
1 + 44α3

2λ
n
2 + 44α3

3λ
n
3 − 3.

It is an LRS of order 4, defined by

W (0) = W (1) = 0, W (2) = 2, W (3) = 8, W (n+4) = 2W (n+3)−W (n).

Proposition 5.5. Let a ∈ Q be a TRZ of the Tribonacci LRS. Then 3a is a
zero of W .

Proof. As we have seen in Proposition 5.2, if a is a TRZ of the Tribonacci LRS,
then n := 3a ∈ Z, so we only need to prove that W (n) = 0.

Define the rational powers λa
i as in Proposition 5.4, so that both (5.9)

and (5.10) hold. Using (5.2), we also find

α1α2α3 =
λ1λ2λ3

P ′(λ1)P ′(λ2)P ′(λ3)
=

1

44
. (5.12)
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Consider the polynomial

F (X1, X2, X3) = X3
1 +X3

2 +X3
3 − 3X1X2X3 ∈ Z[X1, X2, X3].

Then 44F (α1λ
a
1 , α2λ

a
2 , α3λ

a
3) = W (n), because α1λ

a
1α2λ

a
2α3λ

a
3 = 1/44, as fol-

lows from (5.10) and (5.12). The polynomial F factors as

F (X1, X2, X3) = (X1 +X2 +X3)(X1 + ζ3X2 + ζ3X3)(X1 + ζ3X2 + ζ3X3),

which implies that F (α1λ
a
1 , α2λ

a
2 , α3λ

a
3) = 0 by (5.9). This completes the proof.

Proposition 5.6. The only zeros of W are −51,−12,−5,−3, 0, 1.

Proof. In [3] an algorithm is suggested which, when terminates, produces the
full set of zeros of a given non-degenerate LRS, together with a mathematically
rigorous proof that no other zeros exist. This algorithm is implemented, for
simple1 non-degenerate Q-valued LRS, in the Skolem Tool [4]. Running the
Skolem Tool for the LRS W , we obtain the result.

We know (see [5, Section 2]) that −17,−4,−5/3,−1, 0, 1/3 are indeed TRZs
of the Tribonacci LRS. Hence Theorem 1.10 is an immediate consequence of
Propositions 5.5 and 5.6.

6 On Question 1.7

In this section we discuss Question 1.7. We will see that the answer is positive
for twisted (integral) zeros of LRS of order 2, but (in general) not for higher
order LRS. Unless the contrary is stated explicitly, the letter p in this section
denotes a prime number.

For twisted (integral) zeros of LRS of order 2 we not only answer Ques-
tion 1.7, but obtain a partial analog of Theorem 3.4.

Theorem 6.1. Let U be a non-degenerate LRS of order 2 with values in a
number field K and a ∈ Z a twisted zero of U . Then for infinitely many primes p
of K the following holds: there exist

Q ∈ Z>0, a′ ∈ {0, 1, . . . , Q− 1}, τ ∈ Z (6.1)

such that for every n ∈ Z satisfying n ≡ a′ (mod Q) we have

νp(U(n)) = νp(n− a) + τ,

where p is the rational prime below p. Moreover, p ∤ Q; in particular, νp(n− a)
is unbounded on the set of n satisfying n ≡ a′ (mod Q).

In fact, we show that this holds true for primes p from a set of positive lower
density. Let us recall the definition of density. Denote by πK(x) the counting
function for primes of K; that is, the number of primes p of K such that Np ≤ x;
here Np denotes the absolute norm. Let P be a set of primes of K. We denote
its lower density as lim infx→+∞ #{p ∈ P : Np ≤ x}/πK(x).

1An LRS is called simple if its characteristic polynomial has only simple roots.
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6.1 A density result

The proof of Theorem 6.1 relies on a certain Chebotaryov2-style density result.
To state it, let us introduce some more notation. In this subsection K is a
number field, unless stated otherwise.

Let α ∈ K× and a prime p ofK be such that νp(α) = 0. We denote by ordp(α)
the multiplicative order of α modulo p. That is, let Op := {x ∈ K : νp(x) ≥ 0}
be the local ring of p, and Op → Op/p : x 7→ x the reduction map3 modulo p.
Then α ∈ (Op/p)

×, and ordp(α) is the order of α in the multiplicative group
(Op/p)×.

For a positive integer r we denote by PK(α, r) the set of K-primes p such
that the multiplicative order ordp(α) is divisible by r. In symbols:

PK(α, r) := {p : r | ordp(α)}.

Proposition 6.2. Let r be a positive integer with the property

ζp ∈ K for every p | r. (6.2)

Let α ∈ K× be not a root of unity. Then the set PK(α, r) is infinite, and, more-
over, it is of positive lower density.

The proof of Proposition 6.2 depends on the following lemma.

Lemma 6.3. Let p be a prime number and K a field of characteristic distinct
from p. Define ℓ as the biggest integer such that ζpℓ ∈ K. Assume that ℓ ≥ 1.

Let α ∈ K be such that α1/p ∈ K(ζpℓ+1). Then α ∈ µpℓKp.

Proof. We may assume that α ̸= 0, since there is nothing to prove otherwise.
We use Kummer’s Theory, as in Theorem 8.1 from [13, Chapter VI]. Let B be
the subgroup of the multiplicative group K× generated by α, µpℓ and (K×)p.

By the hypothesis, K(B1/p) = K(ζpℓ+1). The above-mentioned theorem implies
that

[B : (K×)p] = [K(B1/p) : K] = [K(ζpℓ+1) : K] = p.

Since [µpℓ(K×)p : (K×)p] = p, this proves that B = µpℓ(K×)p, which exactly
means that α ∈ µpℓ(K×)p.

Proof of Proposition 6.2. If the statement holds true with K replaced by a big-
ger field, then it is true for K. Indeed, let K′ be a finite extension of K. If p
is a K-prime, and p′ is a K′-prime above p, then for any α ∈ K× we have
ordp′(α) = ordp(α); so, it suffices to to show that the set PK′(α, r) is of positive
lower density. Thus, we may assume that

√
−1 ∈ K.

Let m be the order of the group of roots of unity µK. Condition (6.2) may
be re-stated as p | r ⇒ p | m.

2We prefer the spelling Chebotaryov, as in [23], because it is more consistent with the
original Russian and Ukrainian pronunciation.

3This is in conflict with the convention of Section 5, where x 7→ x denotes the complex
conjugation. However, in this section we never use complex conjugation, so there is no risk of
confusion.
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If the conclusion of the proposition holds true with r replaced a multiple
of r, then it holds for r. Hence we may replace r by

∏
p|r p

max{νp(r),νp(m)+1}

and assume in the sequel that

νp(r) > νp(m) (p | m); (6.3)

in particular, p | r ⇔ p | m.
Next, we may replace α by αξ, where ξ ∈ K is a root of unity. Indeed,

if r | ordp(α), then νp
(
ordp(ξ)

)
< νp

(
ordp(α)

)
for every p | ordp(ξ), by (6.3).

Hence ordp(αξ) = ordp(α).
Finally, we may assume that

α /∈ µKKp (p | r). (6.4)

Indeed, call α with property (6.4) r-reduced. Since α is not a root of unity, we
have αξ = βN , where β is r-reduced, N is composed of primes dividing r and ξ
is a root of unity. Now, if Nr | ordp(β) then r | ordp(αξ) = ordp(α). Hence we
may assume (6.4), replacing α by β and r by Nr.

Denote L := K(ζr). Properties (6.2) and (6.3) imply that

Gal(L/K) ∼=
∏
p|m

Z/pνp(r/m)Z.

In particular, for every p | r, the extension L has exactly one subfield of degree p
over K; precisely, it is K(ζpℓp+1), where ℓp := νp(m).

Pick some value of the rth root α1/r. This would define the roots α1/p

for every p | r. We claim that α1/p /∈ L for any p | r. Indeed, in the opposite
case, K(α1/p) would be a subfield of L of degree p over K. This would imply
α1/p ∈ K(ζpℓp+1), which, by Lemma 6.3, implies that α ∈ µpℓpKp, contradict-
ing (6.4).

Lemma 2.1, together with Remark 2.2, implies now that M := L(α1/r) is an
extension of L of degree r. Moreover, since ζr ∈ L, extension M/L is cyclic, and
the map

σ 7→ ξσ :
(α1/r)σ

α1/r
(6.5)

defines an isomorphism of the groups H := Gal(M/L) and µr.
Since L = K(ζr), extension M/K is Galois, and we denote G := Gal(M/K).

Then H is the subgroup of G fixing ζr.
Let p be a K-prime not dividing r and satisfying νp(α) = 0. In particular, p

does not ramify in M. For an M-prime P above p, we denote by ϕP ∈ G the
Frobenius of P above K. Recall that ϕP is the element of G with the following
property: let OP := {x ∈ M : νP(x) ≥ 0} be the local ring of P; then for every
x ∈ OP we have xNp ≡ xϕP (mod P) (as before, N (·) denotes the absolute
norm).

Next, let
(
(M/K)

/
p
)
:= {ϕP : P | p} be the Artin symbol of p. Note that it

is a full conjugacy class in G. Denote by Σ the subset of H consisting of the
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elements of exact order r. In symbols: Σ := {σ ∈ H : H = ⟨σ⟩}. Let p be such
that

(
(M/K)

/
p
)
⊂ Σ. By the Theorem of Chebotaryov, the set of such p is of

positive density4, so we only have to prove that r | ordp(α).
We are going to prove that r | Np− 1, but α is not a pth power in (Op/p)

×

for any p | r. Since Np− 1 is the order of the cyclic group (Op/p)
×, the order

of α in this group must be divisible by r, as wanted.
As before, let P be an M-prime above p. Since ϕP ∈ Σ ⊂ H, we have

ϕP(ζr) = ζr, which means that ζNp
r ≡ ζr (mod P). Since P ∤ r, this implies

that ζNp
r = ζr, that is, r | Np− 1.

We are left with proving that α is not a pth power in (Op/p)
× for any prime p

dividing r. Fix such p. Since ϕP ∈ Σ, it is of exact order r in H. Hence ξ := ξϕP

(as defined in (6.5)) is a primitive rth root of unity, and η := ξr/p is a primitive
pth root of unity.

Applying (6.5) with σ = ϕP, we obtain α(Np−1)/r ≡ ξ (mod P). Raising
this congruence to the power r/p, we obtain α(Np−1)/p ≡ η (mod P). Since
both sides of this congruence belong to K, it is actually a congruence mod-
ulo p, and it implies the identity α(Np−1)/p = η in the group (Op/p)

×. If α is
a pth power in (Op/p)

× then α(Np−1)/p = 1, which is impossible because η is a
primitive pth root of unity. This completes the proof of the proposition.

6.2 Proof of Theorem 6.1

Besides Proposition 6.2, the proof of Theorem 6.1 relies on the following lemma.
It is very classical and goes back to the work of Lucas [15] or even earlier. Still,
we give a proof for convenience.

Lemma 6.4. Let K be a number field, p a prime of K with underlying ra-
tional prime p and e := νp(p) the ramification index. Let θ ∈ K be such that
νp(θ − 1) > 0 and n ∈ Z. Then we have the following.

1. If p ∤ n then νp(θ
n − 1) = νp(θ − 1).

2. In general, νp(θ
n − 1) ≥ νp(θ − 1) + νp(n)min{e, (p− 1)νp(θ − 1)}.

3. If νp(θ − 1) > e/(p− 1) then νp(θ
n − 1) = νp(θ − 1) + eνp(n).

Proof. Item 1 must be proved only for n > 0 and n = −1. If n > 0 then

θn − 1 = (θ − 1)(θn−1 + · · ·+ 1).

Since θ ≡ 1 (mod p) in the local ring Op, we have

θn−1 + · · ·+ 1 ≡ n (mod p).

In particular, νp(θ
n−1 + · · ·+ 1) = 0 if p ∤ n. This proves item 1 for n > 0. As

for n = −1, it is obvious that νp(θ
−1 − 1) = νp(θ − 1).

4Actually, it is of density #Σ/#G, but the exact value of the density is not relevant to us.
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Due to item 1, in items 2 and 3 we may assume that n = pk. Moreover,
using induction in k, we may assume that n = p. Write θ = 1 + γ. Then

θp − 1 = pγ +

p−1∑
ℓ=2

(
p

ℓ

)
γℓ + γp.

Each of the terms inside the sum has p-adic valuation strictly bigger than
νp(pγ) = νp(γ) + e. Hence

νp(θ
p − 1) ≥ νp(γ) + min{e, (p− 1)νp(γ)} (6.6)

which proves item 2. Finally, when νp(γ) > e/(p− 1), inequality (6.6) becomes
equality, and the minimum on the right is e, which proves item 3.

Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. By shifting, we may assume that a = 0. Thus, we have to
prove that, for infinitely many K-primes p the following holds: there exist Q, a′

and τ as in the statement of the theorem such that

νp(U(n)) = νp(n) + τ when n ≡ a′ (mod Q). (6.7)

If the statement holds true with K replaced by a bigger number field, then
it holds for K. Hence we may assume that the roots of the characteristic poly-
nomial of U belong to K. Multiplying U(n) by βθn with suitable β, θ ∈ K×,
we may assume that either U(n) = n− β, where β ∈ K, or U(n) = ηλn − 1,
where η, λ ∈ K×. If U(n) = n− β and 0 is a twisted zero of U , then β = 0 and
U(n) = n, so there is nothing to prove.

Now let us assume that U(n) = ηλn − 1. Note that λ is not a root of unity,
because U is non-degenerate. Since 0 is a twisted zero of U , we have ηλ0 − ξ = 0
for some root of unity ξ. Hence η is a root of unity. Denote by r its order.

Let P ′
K(λ, r) be the subset of PK(λ, r), consisting of p ∈ PK(λ, r), unramified

and of degree 1 over Q, and with underlying prime Np > 2. Proposition 6.2
implies that the set PK(λ, r) is of positive lower density. Hence so is P ′

K(λ, r):
this is because the set of unramified primes of degree 1 is of density 1. We claim
that for every p ∈ P ′

K(λ, r), there exist Q, a′ and τ as in (6.1) such that (6.7)
holds, and p ∤ Q.

Thus, fix p ∈ P ′
K(λ, r). Since p is of degree 1, the cyclic group (Op/p)

× is
of order p− 1, where p := Np is an odd prime number. Since r | ordp(λ), the
subgroup ⟨λ⟩ of (Op/p)

× contains η. Hence there exists s ∈ {1, . . . , p− 1} such
that ηλs ≡ 1 (mod p). Lemma 6.4 implies that

νp
(
(ηλs)m − 1

)
= νp(m) + νp(ξλ

s − 1) (m ∈ Z).

Now note that, whenm ≡ 1 (mod r), we have (ξλs)m − 1 = U(sm). Hence (6.7)
holds with

Q := rs, a′ := s, τ := νp(ξλ
s − 1).

Note also that p ∤ Q because r | p− 1 and 1 ≤ s ≤ p− 1. The theorem is proved.
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Remark 6.5. 1. Our argument can be illustrated with the LRS from Exam-
ple 1.3. In that case

K = Q, λ = 2, η = −1, r = 2, s =
p− 1

2
,

and the set P ′
Q(2, 2) contains all the primes satisfying p ≡ ±3 (mod 8)

(and some other primes as well).

2. This argument does not extend to rational a, because we can no longer do
the shifting and assume that a = 0. We do not know whether Theorem 6.1
can be extended to twisted rational zeros.

3. The non-degeneracy hypothesis cannot be dropped. Indeed, consider

U(n) := ζn3 + ζ3
n
=

{
2, if 3 | n,
−1, if 3 ∤ n.

Then 0 is a twisted zero of U , but νp(U(n)) = 0 for all n and all p ̸= 2.

6.3 Concluding remarks

As we already indicated in the introduction, the answer to Question 1.7 is
negative for LRS of order 3 or higher. Here is an example of order 3, but one
can easily construct similar examples of any order.

Example 6.6. Let p be a prime number. The LRS U(n) := 8n + 2n + 1 has
a twisted zero at 0, because 1 + ζ3 + ζ3 = 0. However, there does not exist a
sequence (nk) such that

νp(U(nk)) → +∞, νp(nk) → +∞.

Indeed, let (nk) be such a sequence. Let K be the splitting field of the polynomial
X3 +X + 1 and p a prime of K above p. Then, replacing (nk) by a subsequence,
we have

νp(2
nk − α) → +∞, νp(nk) → +∞

for some root α of this polynomial. Theorem 3.5 implies that 0 is a twisted zero
of the LRS 2n − α, a contradiction, because α is not a root of unity.

To conclude, let us ask one more question. Theorem 1.5 deals with just one
individual prime number. What happens if a sequence (nk) satisfying (1.5) can
be found for all but finitely many primes? One may expect that in this case a
is a genuine zero of U , not merely a TRZ.

Question 6.7. Let U be an LRS with values in a number field K, and a ∈ Q.
Assume that for every K-prime p, with finitely many exceptions, there exist a
sequence of integers (nk) (depending on p) such that

νp(U(nk)) → +∞, νp(nk − a) → +∞.

Does it imply that either a a trivial TRZ (as defined in Subsection 4.5) or a ∈ Z
and U(a) = 0?
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Probably, “all but finitely many primes” can be replaced by “primes from a
set of density 1”. But, as Example 1.3 shows, it is not enough to assume that
this holds for infinitely many primes, or even for primes from a set of positive
lower density.
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