
MFPS XX1 Preliminary Version

On timed models and full abstraction

Gavin Lowe and Joël Ouaknine 1

Oxford University Computing Laboratory

Wolfson Building, Parks Road

Oxford, OX1 3QD, UK.

Abstract

In this paper we study a denotational model for a discrete-time version of CSP.
We give a compositional semantics for the language. The model records refusal
information at the end of each time unit; we believe this model to be simpler than
existing models. We also show that the model is fully abstract: equivalence in the
model corresponds to the natural equivalence of may testing; and all members of the
denotational model are syntactically expressible. We also consider a slightly weaker
model, containing no refusal information; we show that this model corresponds to an
alternative form of may testing. We briefly discuss the application of these models
to the study of information flow in multi-level secure systems.

Key words: Process algebra, timed models, full abstraction, CSP.

1 Introduction

In this paper, we consider denotational semantic models for a discrete-time
version of CSP [2,10]. In particular, we present a compositional model, the
timed testing model, for the language, which is fully abstract with respect to
may testing, and hence is the coarsest reasonable model of the language. The
original model for the language, the refusal traces model 2 from [6], represented
a process by the set of its refusal traces, where a refusal trace is an alternating
sequence of sets of events that are refused, and events that are performed by
the process. The model of this paper records fewer refusal sets: it records
refusals only before the special event tock that represents the passage of one
time unit.

Our interest in this model arises from our work on information flow in
multi-level secure systems. In a multi-level secure system, users are given se-

1 Email: gavin.lowe@comlab.ox.ac.uk, joel.ouaknine@comlab.ox.ac.uk
2 The model was originally called the refusal testing model ; we use the name refusal traces,
because we will be using the word “testing” in a different sense.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Lowe and Ouaknine

curity clearances (for example, “Top Secret”, “Secret”, “Confidential”, “Un-
classified”). The question, then, is whether a user with a high classification
level can pass information to a user with a lower classification level, and if so
how much. In [4], we introduced a definition for the quantity of information
that can be passed in such a system modelled in CSP. It turned out that
the appropriate semantic model for this analysis was the timed testing model
we consider in this paper. In that earlier paper, we defined that model as
a projection of the refusal traces model from [6]. The current paper consid-
ers the timed testing model in more detail, and can be seen as building the
foundations for the earlier paper.

Let’s look at an example. Suppose the system is willing to perform an
event h from a high level user High, after which it will perform an event l of
a low level user Low, and then return to its initial state after one time unit:

System = h → l → Wait 1 ; System.

How can High exploit this to pass information to Low? One tactic would be
to perform h whenever he wants to pass a 1 bit, and to do nothing when he
wants to pass a 0 bit; if we model the choice of bit by an input on channel in,
this tactic is captured by the following process:

High = in?x → if x = 1 then h → Wait 1 ; High else Wait 1 ; High.

Low can then try to perform l; if this succeeds, then he knows High was
trying to pass 1; if this fails, he can timeout after one time unit and deduce
that High was trying to pass 0:

Low = (l → Wait 1 ; out!1 → Low)
1
� (out!0 → Low).

When we combine these processes in parallel, hiding the internal communica-
tions:

((High ‖
{h}

System) ‖
{l}

Low) \ {h, l}

the resulting system acts as a reliable buffer from in to out (albeit with a
small delay). Hence this system can be used to pass one bit per time unit.

One can think of Low as a testing process, testing High ‖
{h}

System in order

to ascertain its behaviour. What is the appropriate model in which to reason
about such systems? Clearly, we need some kind of refusal testing model [8,5]
(i.e. where refusal information is recorded throughout a trace, rather than
just at the end), for Low needs to be able to detect refusals of the system
—corresponding to 0 bits in the example— and then continue testing. The
inclusion of time in the model is necessary if we are to talk about flows of
information caused by timing, or about the rate of information flow; it has
the fortunate consequence of allowing observation of refusals to correspond to
testing (as shown in Section 6). However, it turns out that the only refusals
Low can detect —and that should be included in the model— are those just
before a tock event: such refusals can be detected by employing a timeout, as
in the above example.

2

Lowe and Ouaknine

In [4] we defined such a model as a projection of the timed refusal traces
model (the model in this paper is isomorphic to, but slightly simpler than,
the model in that paper), but did not study its properties. In this paper, we
give a compositional semantics to discrete time CSP within this model. We
then show that the model is fully abstract: two processes are distinguished in
the model if and only if they are distinguished by may testing; and the model
contains no junk, i.e. every element of the semantic domain corresponds to a
syntactically-definable process.

In Section 2 we review the syntax of discrete-time CSP, and in Section 3
we describe the refusal traces model from [6]. In Section 4 we define the
timed testing model, giving it a compositional semantics, and in Section 5
we consider the relationship between the two models, presenting a projection
from the former to the latter. In Section 6 we prove the full abstraction result.
Finally, in Section 7, we consider a model that records no refusal information:
this model is not compositional, but can be defined as a projection of the
timed testing model; we show that equivalence in this model corresponds to
an alternative form of may testing. Some proofs are omitted because of lack
of space; they can be found in the full version of the paper.

2 Timed CSP syntax

Let Σ be a finite set of events. We assume a special event tock (not in Σ) that
represents the passage of one time unit. We define Σtock = Σ ∪ {tock}.

In the notation below, we have a ∈ Σ and A ⊆ Σ. The parameter n ranges
over the non-negative integers N. R represents a renaming relation R : Σ ↔ Σ.
The variable X is drawn from a fixed infinite set of process variables V AR.

Timed CSP terms are constructed according to the following grammar:

P := STOP | a → P | Wait n ; P | P1

n
� P2 | P1 2 P2 | P1 u P2 |

P1 ‖
A

P2 | P \ A | P [R] | X | µX r P .

These terms have the following intuitive interpretations:

• STOP is the deadlocked, stable process that is only capable of letting time
pass.

• a → P initially offers to engage in the event a at any time, and subsequently
behaves like P .

• Wait n ; P is the process that idles for n time units, and then becomes P .

• P
n
�Q is a timeout process that initially offers to act like P for n time units,

after which it silently becomes Q if P has failed to communicate any visible
event.

• P u Q represents the nondeterministic (or internal) choice between P
and Q; which of these two processes P u Q becomes is independent of
the environment: how the choice is resolved is considered to be outside the

3

Lowe and Ouaknine

domain of discourse.

• P 2 Q, on the other hand, denotes a process which is willing to behave
either like P or Q, at the choice of the environment; this decision is taken
on the first visible event that is communicated.

• P1 ‖
A

P2 is a parallel composition of P1 and P2, synchronising on all events

in A.

• P \A is a process that behaves like P but with all communications in the set
A hidden (made invisible to the environment); the assumption of maximal

progress, or τ -urgency, dictates that no time can elapse while hidden events
are on offer—in other words, hidden events happen as soon as they become
available.

• P [R] is a process that behaves like P except all the (non-tock) events are
renamed according to the relation R; so if P can perform a, then P [R]
can perform any b such that aRb; note that the renaming leaves tocks un-
changed 3 .

• The process variable X has no intrinsic behaviour of its own, but can imitate
any process P as part of a recursion—see below.

• The recursion µX r P represents a process which behaves like P but with
every free occurrence of X in P (recursively) replaced by µX r P ; semanti-
cally, this corresponds to the unique solution to the equation X = P ; note
that the variable X here usually appears freely within P ’s body.

Note our requirement that all delays (parameters n in the terms Wait n

and P1

n
� P2) be integral. This restriction is essentially harmless, because of

the freedom to scale time units. We could equivalently have required rational

delays, as many authors do.

Within the recursive process µX r P , we specify that X should be time-

guarded in P , i.e. the process cannot recurse without any time passing. This
condition prevents Zeno processes that do not allow time to progress. Suffi-
cient syntactical conditions for time-guardedness are given in [6].

We introduce some derived constructs. We write u
i:I

Pi and 2
i:I

Pi for
indexed internal and external choices, respectively, indexed by the finite set I.
We write ?a : A → P (a) for 2

a:A
a → P (a), i.e. a process that initially offers

the events of A, and when one of them is performed acts like the correspond-
ing P (a). We write P ||| Q for an interleaving of P and Q, i.e. P ‖

{}

Q. We

also tend to express recursions by means of the equational notation X = P ,
rather than the functional µX r P prescribed by the definition.

We use the conventions that prefixing (→) and sequential composition (;)
bind tighter than the binary choice operators (u, 2, �).

3 This construct generalises the functional renaming (f(P)) and inverse renaming (f−1(P))
constructs found in early versions of CSP.

4

Lowe and Ouaknine

Note that we change the semantics of the timeout operator slightly from
that of [6,7]: our timeouts are strict, in the sense that events of P cannot

be performed by P
n
� Q after the nth tock; by contrast, in [6,7], events of P

are still available (unstably) after the nth, but before the n + 1th, tock. This

non-strict timeout, written as “
n
�”, can be defined as a derived operator, as

follows:

P
n
� Q = (P 2 Wait n ; trig → Q) \ {trig},

where trig is a fresh event. (By contrast, the strict timeout cannot be defined
as a derived operator.) We originally introduced the strict timeout because it
seems more appropriate for modelling purposes: for example, it is necessary in
the information flow example from the introduction. Moreover, it also seems
to be necessary for the “no junk” result in Section 6.

3 The timed refusal traces model

The timed refusal traces model, in common with most semantic models of
CSP, contains information about both which events are performed, and which
events are refused by the process. Recall that a set of events X is said to be
refused by a process P if P is stable, i.e. is unable to perform any internal
events, and is unable to perform any of the events from X. The timed refusal
trace model for CSP records refusal information about a process throughout
a trace (by contrast, the untimed stable failures model [10] records refusal
information only at the end of the trace).

However, it might be the case that no refusal information can be recorded
at a particular point in a trace, because the process does not enter a stable
state. For example, consider the process (a → STOP 2 b → STOP) \ {a}.
If this process performs a b, then it does so from an unstable state, where the
internal event a is available; hence no refusal can be observed before the b.
The model deals with this situation by using a null refusal, written as •,
to indicate that no refusal information was recorded, possibly because the
process did not enter a stable state; for example, the above process has the
trace 〈•, b, {a, b, c}〉.

Formally, we define the set REF of refusal information by

REF =̂ P Σ ∪ {•}.

We lift the normal set operators to REF in the obvious way (decorating the
lifted versions with “∗”), treating • as being below the empty set; for example,
for x ∈ Σ, X ∈ P Σ, we have • ⊆∗ X; • ∪∗ X = • ∩∗ X = •; ¬(x ∈∗ •).

The timed refusal trace model for CSP represents a process by its refusal
traces, i.e. alternating sequences of the form 〈X0, a1, X1, a2, . . . , an, Xn〉, where
each ai ∈ Σtock represents the performance of the event ai, and each Xi ∈ REF
represents refusal information. Formally, we define refusal traces using the
regular expression

5

Lowe and Ouaknine

RefusalTrace =̂ REF.(Σtock.REF)∗.

We define some operations over refusal traces. trace(tr) removes all refusal
information from tr:

trace(〈〉) =̂ 〈〉,

trace(〈a〉_tr) =̂ 〈a〉_trace(tr), if a ∈ Σtock,

trace(〈X〉_tr) =̂ trace(tr), if X ∈ REF.

refusals(tr) returns the set of events that are refused during tr 4 :

refusals(tr) =̂
⋃

{X ∈ P Σ | X in tr}.

tr � tr′ indicates that tr contains less information than tr′ in the sense that
tr is a prefix of tr′, or it contains smaller refusal sets, or a combination of the
two. Formally, � is the smallest relation satisfying

〈X〉 � 〈Y 〉_tr⇐X ⊆∗ Y,

〈X, a〉_tr � 〈Y, a〉_tr′ ⇐X ⊆∗ Y ∧ tr � tr′.

The refusal traces model MR contains those S ⊆ RefusalTrace such that
the following conditions hold, where a ranges over Σ and A over REF 5 .

R1. 〈•〉 ∈ S;

R2. tr ∈ S ∧ tr′ � tr ⇒ tr′ ∈ S;

R3. tr_〈•, tock〉_tr′ ∈ S ⇒ tr_〈{}, tock〉_tr′ ∈ S;

R4. A 6= • ∧ tr_〈A〉_tr′ ∈ S ∧ tr_〈A, a, •〉 /∈ S ⇒ tr_〈A ∪ {a}〉_tr′ ∈ S;

R5. tr ∈ S ⇒ tr_〈tock, •〉 ∈ S;

R6. tr_〈A, a〉_tr′ ∈ S ⇒ a /∈∗ A;

R7. ∀ k ∈ N r ∃n ∈ N r ∀ tr ∈ S r #(tr |̀ tock) ≤ k ⇒ #(trace(tr)) ≤ n.

The first condition says that the minimal behaviour 〈•〉 can always be ob-
served. The second condition says that the observations of S are downwards-
closed. Condition R3 says that a process will stabilise before a tock, so at
least the empty set can be refused. Condition R4 says that if a process can
stably refuse A, and cannot perform a, then a can be added to the refusal set.
Condition R5 says that time cannot be stopped. Condition R6 says that an
event a cannot be refused and then performed. Condition R7 is a bounded-
speed condition: there is a bound n on the number of events that can be
performed in the first k time units. 6

4 The notation x in tr indicates that x is an element of the sequence, or trace, tr.
5 The operator |̀ restricts a trace to a particular event or set of events.
6 In [6], there was an extra condition: A 6= • ∧ tr_〈A, a, •〉 ∈ S ⇒ tr_〈A, tock, •, a, •〉 ∈ S,
which says that if an event is stably available, then it will still be available after a tock.
This condition is not satisfied by our strict timeout operator. Further, it seems less natural
to us than the other conditions.

6

Lowe and Ouaknine

3.1 Semantic definitions

We can define a semantic function

R : CSP → (V AR → MR) → MR,

such that R[[P]]ρ gives the refusal traces of P , assuming environment ρ gives
the semantics for free variables of P . Throughout the following definitions,
tr ranges over RefusalTrace, and t̂r over prefixes of elements of RefusalTrace

ending in an event.

R[[STOP]]ρ =̂ {tr | trace(tr) ∈ tock∗},

R[[a → P]]ρ =̂

{tr | trace(tr) ∈ tock∗ ∧ a /∈ refusals(tr)} ∪

{tr_〈a〉_tr′ | trace(tr) ∈ tock∗ ∧ a /∈ refusals(tr) ∧ tr′ ∈ R[[P]]ρ},

R[[Wait n ; P]]ρ =̂

{tr | trace(tr) < tockn} ∪

{t̂r_tr′ | trace(t̂r) = tockn ∧ tr′ ∈ R[[P]]ρ},

R[[P 2 Q]]ρ =̂

{tr | trace(tr) ∈ tock∗ ∧ tr ∈ R[[P]]ρ ∩R[[Q]]ρ} ∪

{tr_〈a〉_tr′ | trace(tr) ∈ tock∗ ∧ tr ∈ R[[P]]ρ ∩R[[Q]]ρ ∧

a ∈ Σ ∧ tr_〈a〉_tr′ ∈ R[[P]]ρ ∪R[[Q]]ρ},

R[[P u Q]]ρ =̂ R[[P]]ρ ∪R[[Q]]ρ,

R[[P
n
� Q]]ρ =̂

{tr | tr ∈ R[[P]]ρ ∧ tockn 6≤ trace(tr)} ∪

{t̂r_tr′ | t̂r_〈•〉 ∈ R[[P]]ρ ∧ trace(t̂r) = tockn ∧ tr′ ∈ R[[Q]]ρ},

R[[P ‖
A

Q]]ρ =̂ {tr | ∃ trP ∈ R[[P]]ρ, trQ ∈ R[[Q]]ρ r tr ∈ trP ‖
A

trQ},

R[[P \ A]]ρ =̂ RefCl{tr \ A | tr ∈ R[[P]]ρ ∧ tr is A-urgent},

R[[P [R]]]ρ =̂ {tr′ | ∃ tr ∈ R[[P]]ρ r tr R∗ tr′},

R[[X]]ρ =̂ ρ(X),

R[[µX r P]]ρ =̂ the unique fixed point of the mapping C : MR → MR

given by C(S) =̂ R[[P]]ρ[S/X].

The semantics of parallel composition, hiding and renaming use some aux-
iliary functions. trP ‖

A

trQ represents the set of traces that can be formed

from the parallel composition of traces trP and trQ, synchronising on events
from Atock =̂ A∪ {tock}; this operator is defined by the equations in Figure 1
and the obvious symmetric equations. Within that definition, if the two pro-
cesses refuse X and Y respectively, then the composition can refuse any set
from

X ∩
A

Y =̂ {C | C ⊆∗ (X ∩∗ A) ∪∗ (Y ∩∗ A) ∪∗ (X ∩∗ Y)}.

7

Lowe and Ouaknine

〈X〉 ‖
A

〈Y 〉 =̂ {〈C〉 | C ∈ X ∩
A

Y },

〈X, x〉_tr ‖
A

〈Y 〉 =̂

if x ∈ Atock then {} else {〈C, x〉_tr′ | C ∈ X ∩
A

Y ∧ tr′ ∈ tr ‖
A

〈Y 〉},

〈X, x〉_tr ‖
A

〈Y, y〉_tr′ =̂

if x /∈ Atock ∧ y ∈ Atock

then {〈C, x〉_tr′′ | C ∈ X ∩
A

Y ∧ tr′′ ∈ tr ‖
A

〈Y, y〉_tr′}

else if x ∈ Atock ∧ y /∈ Atock

then {〈C, y〉_tr′′ | C ∈ X ∩
A

Y ∧ tr′′ ∈ 〈X, x〉_tr ‖
A

tr′}

else if x /∈ Atock ∧ y /∈ Atock

then {〈C, x〉_tr′′ | C ∈ X ∩
A

Y ∧ tr′′ ∈ tr ‖
A

〈Y, y〉_tr′} ∪

{〈C, y〉_tr′′ | C ∈ X ∩
A

Y ∧ tr′′ ∈ 〈X, x〉_tr ‖
A

tr′}

else if x = y ∈ Atock

then {〈C, x〉_tr′′ | C ∈ X ∩
A

Y ∧ tr′′ ∈ tr ‖
A

tr′} else {}.

Fig. 1. Parallel composition of traces in the refusal traces model

tr is A-urgent ⇔

∀X ∈ REF ; tr′, tr′′ | tr = tr′_〈X, tock〉_tr′′ r A ⊆∗ X.

〈X〉 \ A =̂ if A ⊆∗ X then 〈X〉 else 〈•〉,

(〈X, x〉_tr) \ A =̂ if x ∈ A then tr \ A else (〈X〉 \ A)_〈x〉_(tr \ A).

RefCl S =̂ {tr | ∃ tr′ ∈ S r tr � tr′}.

X R̂ Y ⇔ X = Y = • ∨ X = {x | ∃ y ∈ Y r xRy}.

〈X〉R∗ 〈Y 〉 ⇔ X R̂ Y,

(〈X, tock〉_tr) R∗ (〈Y, tock〉_tr′) ⇔ X R̂ Y ∧ tr R∗ tr′,

(〈X, x〉_tr) R∗ (〈Y, y〉_tr′) ⇔ X R̂ Y ∧ xRy ∧ tr R∗ tr′, for x, y ∈ Σ.

Fig. 2. Auxiliary semantic definitions for hiding and renaming

Auxiliary semantic definitions relating to the definitions for P \ A and
P [R] are in Figure 2. The assumption about the urgency of hidden events is
captured by the fact that we consider only A-urgent traces of P : traces where
all of A can be refused before a tock. tr \ A represents the effect of hiding A
in tr. RefCl S forms the downwards closure of S. For example, if

P = a → (b → STOP 2 a → STOP),

then P \ {a} has the refusal trace 〈•, b, {b}, tock, •〉, corresponding to the
refusal trace 〈{b}, a, {c}, b, {a, b}, tock, •〉 (among others) of P ; note that {a}-
urgency is necessary to ensure that a tock cannot happen before the first a or

8

Lowe and Ouaknine

the b. R̂ represents the lifting of the renaming relation R to REF , and R∗

represents the lifting to refusal traces.

In [6] it is shown that this denotational semantics is congruent to the
operational semantics. The following theorem is adapted from [6].

Theorem 3.1 The mapping R is well defined.

4 The timed testing model

In this section we present the timed testing model for discrete-time CSP.
The model records refusal information only before tocks. Further, we can do
away with the null refusals • (essentially because of condition R3) and only
record actual refusals from P Σ. Timed tests can be defined using the following
regular expression.

TimedTest =̂ (Σ + P Σ.tock)∗.

Note that refusals are recorded before, and only before, tocks; for example
〈a, b, {b, c}, tock, {}, tock, c〉.

Note that this model fails to distinguish processes that are distinguished
in the refusal traces model. For example, consider:

P =̂ ((a → STOP
1
� STOP) u STOP),

Q =̂ (a → STOP 2 b → STOP) \ {b}.

These are distinguished in the refusal traces model, for P has the refusal
trace 〈{}, a, •〉, which Q does not, for Q performs a from an unstable state.
However, P and Q are equivalent in this model, for they can both perform
an a only before the first tock, and can refuse anything before a tock. In
Section 5 we show that the refusal traces model distinguishes all processes
that are distinguished by this model, so this model is strictly more abstract.

We adapt some operations from refusal traces to timed tests. trace(tr)
removes all refusal information from tr. refusals(tr) gives the set of all events
that are refused anywhere in tr. These two operations are defined analogously
to as in the refusal trace model. tr � tr′ indicates that tr contains less
information than tr′:

〈〉 � tr,

〈a〉_tr � 〈a〉_tr′ ⇐ tr � tr′,

〈X, tock〉_tr � 〈Y, tock〉_tr′ ⇐X ⊆ Y ∧ tr � tr′.

The timed testing model MT contains those S ⊆ T imedTest such that
the following conditions hold:

T1. 〈〉 ∈ S;

T2. tr ∈ S ∧ tr′ � tr ⇒ tr′ ∈ S;

T3. tr_〈A, tock〉_tr′ ∈ S ∧ tr_〈a〉 /∈ S ⇒ tr_〈A ∪ {a}, tock〉_tr′ ∈ S;

T4. tr ∈ S ⇒ tr_〈{}, tock〉 ∈ S;

9

Lowe and Ouaknine

T5. ∀ k ∈ N r ∃n ∈ N r ∀ tr ∈ S r #(tr |̀ tock) ≤ k ⇒ #(trace(tr)) ≤ n.

These conditions correspond closely to conditions R1, R2, R4, R5 and R7,
respectively.

4.1 Semantic definitions

We can define a semantic function

T : CSP → (V AR → MT) → MT ,

such that T [[P]]ρ gives the timed tests of P , assuming environment ρ gives the
semantics for free variables of P . Throughout these equations, tr ranges over
TimedTest.

T [[STOP]]ρ =̂ {tr | trace(tr) ∈ tock∗},

T [[a → P]]ρ =̂

{tr | trace(tr) ∈ tock∗ ∧ a /∈ refusals(tr)} ∪

{tr_〈a〉_tr′ | trace(tr) ∈ tock∗ ∧ a /∈ refusals(tr) ∧ tr′ ∈ T [[P]]ρ},

T [[Wait n ; P]]ρ =̂

{tr | trace(tr) < tockn} ∪

{tr_tr′ | trace(tr) = tockn ∧ tr′ ∈ T [[P]]ρ},

T [[P 2 Q]]ρ =̂

{tr | trace(tr) ∈ tock∗ ∧ tr ∈ T [[P]]ρ ∩ T [[Q]]ρ} ∪

{tr_〈a〉_tr′ | trace(tr) ∈ tock∗ ∧ tr ∈ T [[P]]ρ ∩ T [[Q]]ρ ∧

a ∈ Σ ∧ tr_〈a〉_tr′ ∈ T [[P]]ρ ∪ T [[Q]]ρ},

T [[P u Q]]ρ =̂ T [[P]]ρ ∪ T [[Q]]ρ,

T [[P
n
� Q]]ρ =̂

{tr | tr ∈ T [[P]]ρ ∧ tockn 6≤ trace(tr)} ∪

{tr_tr′ | tr ∈ T [[P]]ρ ∧ trace(tr) = tockn ∧ tr′ ∈ T [[Q]]ρ},

T [[P ‖
A

Q]]ρ =̂ {tr | ∃ trP ∈ T [[P]]ρ, trQ ∈ T [[Q]]ρ r tr ∈ trP ‖
A

trQ},

T [[P \ A]]ρ =̂ RefCl{tr \ A | tr ∈ T [[P]]ρ ∧ tr is A-urgent},

T [[P [R]]]ρ =̂ {tr′ | ∃ tr ∈ T [[P]]ρ r tr R∗ tr′},

T [[X]]ρ =̂ ρ(X),

T [[µX r P]]ρ =̂ the unique fixed point of the mapping C : MT → MT

given by C(S) =̂ T [[P]]ρ[S/X].

The auxilliary operators relating to parallel composition, hiding and re-
naming are similar to as in Figures 1 and 2.

Theorem 4.1 The mapping T is well defined.

Proof. We need to show that if ρ ∈ V AR → MT then T [[P]]ρ ∈ MT , i.e. that
T [[P]]ρ satisfies the healthiness conditions of the semantic model. This is a

10

Lowe and Ouaknine

large structural induction; most cases are straightforward. As an illustrative
example, we include the proof of T4 for hiding.

Suppose tr ∈ T [[P \ A]]ρ. Then there is some tr′ ∈ T [[P]]ρ such that tr′ is
A-urgent, and tr ∈ RefCl{tr′ \A}. We show that, after tr′, for every n, either
n events from A can be performed, or all of A can be refused after k < n
events:

∀n ∈ N r ∃ a1, . . . , an ∈ A r tr′_〈a1, . . . , an〉 ∈ T [[P]]ρ ∨

∃ k < n r tr′_〈a1, . . . , ak, A, tock〉 ∈ T [[P]]ρ.

The proof is by induction on n. The base case is immediate. For the inductive
case, suppose tr′_〈a1, . . . , an〉 ∈ T [[P]]ρ. If there is some an+1 ∈ A such that
tr′_〈a1, . . . , an+1〉 ∈ T [[P]]ρ then we are done. Otherwise, by T4 we have that
tr′_〈a1, . . . , an, {}, tock〉 ∈ T [[P]]ρ. Then by repeated use of T3 we have that
tr′_〈a1, . . . , an, A, tock〉 ∈ T [[P]]ρ, as required.

Because of condition T5, there is a bound on the number of events that
can be added to the trace using the process in the previous paragraph. Hence
we have that tr′′ =̂ tr′_〈a1, . . . , ak, A, tock〉 ∈ T [[P]]ρ for some a1, . . . , ak ∈ A.
Now, tr′′ is A-urgent, and tr_〈{}, tock〉 ∈ RefCl{tr′′ \ A} so tr_〈{}, tock〉 ∈
T [[P \ A]]ρ, as required.

The case of recursion is almost identical to as in [6] for the refusal testing
model. An ultra metric is defined over MT as follows. Given S ∈ MT , write
S(t) for those refusal traces in S containing fewer than t tocks:

S(t) =̂ {tr ∈ S | #(trace(tr) |̀ tock) < t}.

(In particular, S(0) = {}.) Informally, if two processes behave the same
before time t, but then behave differently, then they are at distance 2−t; more
precisely:

d(S, S ′) =̂ inf{2−t | S(t) = S ′(t)}.

One can then show that MT is a complete metric space with respect to
this metric. If P is time-guarded in X, then the corresponding mapping
C(S) =̂ T [[P]]ρ[S/X] is a contraction mapping, i.e.:

d(C(S), C(S ′))≤
1

2
d(S, S ′).

One can then use Banach’s fixed point theorem (see e.g. [13]) to show that C
has a unique fixed point, and further that fixed point equals limn→∞ Cn(Q)
for an arbitrary process Q. 2

Note that the existence of a compositional semantic function implies that
equivalence in this model is a congruence with respect to the CSP operators.

5 Relating the two models

In this section we consider the relationship between the refusal trace and timed
testing models. Recall that there are two differences between the two models:

11

Lowe and Ouaknine

(1) the timed testing model contains refusal information only before tocks;
and (2) the timed testing model does not use the null refusal •. We therefore
define a function

f : RefusalTrace → TimedTest

that maps a refusal trace by the corresponding timed test by (1) removing
all refusal information except that preceding tocks; and (2) replacing any
occurrence of • before tock by {}:

f(〈A〉) =̂ 〈〉,

f(〈A, a〉_tr) =̂ 〈a〉_f(tr), for a ∈ Σ,

f(〈•, tock〉_tr) =̂ 〈{}, tock〉_f(tr),

f(〈A, tock〉_tr) =̂ 〈A, tock〉_f(tr), for A ∈ P Σ.

We then lift f to sets of refusal traces by pointwise application:

f(S) =̂ {f(tr) | tr ∈ S}.

We begin by showing that f maps elements of MR into MT :

Theorem 5.1 If S ∈ MR then f(S) ∈ MT .

Proof. (sketch) That f(S) satisfies the axioms of MT can be easily shown
from the fact that S satisfies the corresponding axioms of MR. 2

We now show that f maps any syntactic process in MR to the corre-
sponding process in MT , i.e. f forms a homomorphism with respect to the
CSP operators.

Theorem 5.2 If ∀X r ρT (X) = f(ρR(X)) then T [[P]]ρT = f(R[[P]]ρR).

Proof. (sketch). This is a large structural induction over the syntax of the
language. Some cases can be simplified as follows. Define the function

g : TimedTest → RefusalTrace

to insert • before every element of Σ and at the end of the trace:

g(〈〉) =̂ 〈•〉,

g(〈a〉_tr) =̂ 〈•, a〉_g(tr), for a ∈ Σ,

g(〈A, tock〉_tr) =̂ 〈A, tock〉_g(tr).

Note that f(g(tr)) = tr. Then the result of the theorem is equivalent to the
following two statements:

∀ tr ∈ RefusalTrace r tr ∈ R[[P]]ρR ⇒ f(tr) ∈ T [[P]]ρT ,

∀ tr ∈ TimedTest r tr ∈ T [[P]]ρT ⇒ g(tr) ∈ R[[P]]ρR.

Proving these two statements, inductively, is straightforward in most cases.

For recursion, consider the recursive process µX r P . Let CT : MT →
MT and CR : MR → MR be the corresponding mappings on the seman-
tic models, i.e. CT (S) =̂ T [[P]]ρT [S/X], and CR(S) =̂ R[[P]]ρR[S/X]. Our
structural induction hypothesis shows that

CT (f(S)) = T [[P]]ρT [f(S)/X] = f(R[[P]]ρR[S/X]) = f(CR(S)).

12

Lowe and Ouaknine

As shown in the fixed point theorems, the fixed points are the limits of the
sequences (Rn)n∈N and (Tn)n∈N, where

T0 =̂ T [[STOP]]ρT , Tn+1 =̂ CT (Tn),

R0 =̂ R[[STOP]]ρR, Rn+1 =̂ CR(Rn).

We show that Tn = f(Rn) by induction on n. The base case is trivial. For
the inductive case:

Tn+1 = CT (Tn) = CT (f(Rn)) = f(CR(Rn)) = f(Rn+1),

using the inductive hypothesis and the above result. Hence

T [[µX r P]]ρT = limn→∞ Tn = limn→∞ f(Rn)

= f(limn→∞ Rn) = f(R[[µX r P]]ρR),

using the continuity of f . 2

6 Full abstraction

A semantic model is said to be fully abstract if the following two conditions
hold [10]:

• Whenever two processes P and Q are distinguished by the semantics, then
they are distinguished by some natural criterion: typically this criterion is
the existence of a context C[] such that one of C[P] and C[Q] passes, and
the other fails, some simple test.

• Every element of the semantic model corresponds to a syntactically ex-
pressible process (taking a liberal view of expressibility, for example allowing
mutual recursions to be indexed by non-constructive mathematical objects);
this condition is sometimes referred to as “no junk”.

(The no junk condition is not always considered to be part of full abstraction.)
In the next subsection we prove that the timed testing model satisfies the
former condition by showing that equivalence in the model corresponds to
may testing equivalence [1]. In the following subsection we show that the
model satisfies the no junk condition.

6.1 Timed may testing

A timed test process is simply a timed CSP process that can perform a spe-
cial event ω /∈ Σ representing success. When defining test processes, it is
convenient to use the following definitions:

SUCCEED =̂ ω → STOP, FAIL =̂ STOP.

We say that P may pass the test T , written P may T , if the parallel
composition of P and T , hiding all events from Σ, can perform ω:

P may T =̂∃ tr ∈ T [[(P ‖
Σ

T) \ Σ]] r ω in tr.

13

Lowe and Ouaknine

Note that the effect of hiding Σ is to make all these events urgent, correspond-
ing to the intuition that if both P and T can do an event, then it happens
immediately. Note also that the above definition could have used the semantic
function R instead of T : both models agree on the performance of events.

We say that two processes P and Q are timed testing equivalent if they
pass precisely the same tests:

P ≡may Q =̂ (∀T ∈ Test r P may T ⇔ Q may T).

We now prove that timed testing equivalence indeed corresponds to equiva-
lence in the timed testing model.

Theorem 6.1 P ≡may Q ⇔ T [[P]] = T [[Q]].

Proof. For the right-to-left direction note that if T [[P]] = T [[Q]] then for all
tests T , T [[(P ‖

Σ

T) \ Σ]] = T [[(Q ‖
Σ

T) \ Σ]], using the compositional semantics

we gave earlier; hence P may T ⇔ Q may T .

For the left to right direction, we prove the contrapositive. Suppose
T [[P]] 6= T [[Q]]. Then without loss of generality, there is some tr ∈ T [[P]]
such that tr /∈ T [[Q]]. Let

tr = 〈a11, a12, . . . , a1m1
, A1, tock,

a21, a22, . . . , a2m2
, A2, tock,

. . .

an1, an2, . . . , anmn
〉.

For convenience, we define a syntactic operator that attempts an event for one
time unit, failing if it is not accepted:

a
∗
→ T =̂ (a → T)

1
� FAIL.

We construct a test that succeeds when the process it is testing performs the
trace tr, but fails, otherwise:

T =̂ a11
∗
→ a12

∗
→ . . .

∗
→ a1m1

∗
→ (?x : A1 → FAIL

1
� a21

∗
→ a22

∗
→ . . .

∗
→ a2m2

∗
→ (?x : A2 → FAIL

1
� . . .
1
� an1

∗
→ an2

∗
→ . . .

∗
→ anmn

∗
→ SUCCEED) . . .).

Note that the only way that T can reach the SUCCEED state is if the process
it is testing can perform the trace tr: clearly the processes need to perform
the aij and tock events in the appropriate order; and if the tested process
can perform some x from Ai at the appropriate point, then that event will be
performed (because it is hidden in the testing system), and so T will enter a
FAIL state; the only way the tested process can prevent this from happening
is by refusing all of Ai. Hence P may T but not Q may T . 2

In untimed models, may-equivalence is the same as traces equivalence [1],
i.e. with no refusal information; in continuous-time models, may-equivalence

14

Lowe and Ouaknine

is the same as finite failures equivalence [11], i.e. with full refusal information;
an interesting consequence of the above theorem is that may-equivalence in
the discrete-time model lies between the may-equivalences in these other two
scenarios.

6.2 No junk

In this section we show that every element of the semantic model MT is
definable using the CSP syntax; i.e. the model contains no junk.

For S ∈ MT , define the initial events, the initial maximum refusals of S,
and the behaviours of S after event a and after 〈A, tock〉 as follows:

inits(S) =̂ {a | 〈a〉 ∈ S},

initMaxRefs(S) =̂ {A | 〈A, tock〉 ∈ S ∧ A ⊇ Σ − inits(S)},

S after a =̂ {tr | 〈a〉_tr ∈ S},

S after 〈A, tock〉 =̂ {tr | 〈A, tock〉_tr ∈ S}.

Note that for S ∈ MT :

• if a ∈ inits(S) then S after a ∈ MT ;

• if A ∈ initMaxRefs(S) then S after 〈A, tock〉 ∈ MT ;

• if 〈B, tock〉 ∈ S then 〈B ∪ (Σ − inits(S)), tock〉 ∈ S by repeated use of T3,
and so B ∪ (Σ − inits(S)) ∈ initMaxRefs(S);

• initMaxRefs(S) contains Σ − inits(S): this follows from the previous item
because 〈{}, tock〉 ∈ S by T1 and T4.

Given S ∈ MT , we now define a process P (S) that has precisely the
behaviours in S:

P (S) =̂ u
A:initMaxRefs(S)

(
?x : Σ − A → P (S after x)

1
� P (S after 〈A, tock〉).

)

(We note that P (S) may not be finitely expressible, because of the indexing by
potentially non-constructive sets; we are not considering effective computabil-
ity here.)

Lemma 6.2 ∀S ∈ MT
r T [[P (S)]] = S.

Proof. We begin by showing that for every timed test tr, for every S ∈ MT ,
if tr ∈ S then tr ∈ T [[P (S)]]. The proof is by induction on the length of tr.
The base case is trivial. So suppose tr ∈ S is non-empty, and perform a case
analysis as follows:

• Case tr = 〈a〉_tr′. Then a ∈ inits(S) and tr′ ∈ S after a; so by the
inductive hypothesis, tr′ ∈ T [[P (S after a)]]. Hence, letting A =̂ Σ −
inits(S), we have a ∈ Σ − A and so tr ∈ T [[?x : Σ − A → P (S after x)]],
and so tr ∈ T [[P (S)]] because A ∈ initMaxRefs(S).

• Case tr = 〈B, tock〉_tr′. Let A =̂ B ∪ (Σ − inits(S)). Now, by repeated
use of T3, 〈A, tock〉_tr′ ∈ S, so A ∈ initMaxRefs(S). Hence tr′ ∈ S after

15

Lowe and Ouaknine

〈A, tock〉, and so by the inductive hypothesis tr′ ∈ T [[P (S after 〈A, tock〉)]].

Hence tr ∈ T [[?x : Σ − A → P (S after x)
1
� P (S after 〈A, tock〉)]] and so

tr ∈ T [[P (S)]].

We now show the converse: that if tr ∈ T [[P (S)]] then tr ∈ S, for every
S ∈ MT . The proof is by induction on the length of tr. The base case is again
trivial. So suppose tr ∈ T [[P (S)]] is non-empty, and perform a case analysis
over the form of tr:

• Case tr = 〈a〉_tr′. Then for some A ∈ initMaxRefs(S), a ∈ Σ − A (so
a ∈ inits(S)), and tr′ ∈ T [[P (S after a)]]. So by the inductive hypothesis,
tr′ ∈ S after a so tr ∈ S.

• Case tr = 〈B, tock〉_tr′. Then for some A ∈ initMaxRefs(S), we have
B ⊆ A and tr′ ∈ T [[P (S after 〈A, tock〉)]]. Hence by the inductive hy-
pothesis, tr′ ∈ S after 〈A, tock〉, and so 〈A, tock〉_tr′ ∈ S. But then
tr = 〈B, tock〉_tr′ ∈ S, because S satisfies T2.

Finally, we consider the time-guardedness of the P (S) recursions. The
definition as it is written is not obviously time-guarded: however, we can
transform it into a form where it is. Replace each recursive call of the form
P (S after x) by the right-hand-side of the corresponding process definition;
keep repeating this replacement. Now, S satisfies T5, so there is some up-
per bound n on the number of events that can be performed before the first
tock; hence the above replacement can be repeated at most n times before
all branches meet processes P (S ′) with inits(S ′) = {}. Then all recursive
calls are on the right-hand-side of a timeout, so the definition of P (S) is time
guarded in all variables. 2

Hence the semantic model MT satisfies the no junk condition:

Theorem 6.3 For every S ∈ MT , there is a process P such that T [[P]] = S.

6.3 Full abstraction

The results of this section may be summarised in the following result.

Corollary 6.4 The timed testing model is fully abstract with respect to the

test “can perform ω”.

7 Traces

In this section, we consider a yet more abstract model for discrete-time CSP,
namely a pure traces model, containing no refusal information. The semantics
of a process can be defined by projecting from the timed tests:

Tr [[P]] = {trace(tr) | tr ∈ T [[P]]}.

(Of course, the traces could also have been obtained by projecting from the
refusal traces.) We will say that two processes are trace equivalent if they have

16

Lowe and Ouaknine

the same traces.

Our main reason for considering this model is that we want to make a
connection between our definition of the quantity of information flow from [4],
and Shannon information flow theory [12]. In the latter, one considers a prob-
abilistically unreliable channel, say between A and B. Further, the channel
is generative [14]: it is always willing to output a single value to B (that
value depending probabilistically on what was input by A). This means that
B receives no extra information by seeing refusals: if the channel is willing
to output y, then he gains the same information by seeing the rest of his al-
phabet refused as by performing y itself. For this reason, it seems that B’s
observational power in this setting corresponds to the traces model.

It is well known that this model is not a congruence. For example, let

P = a → (b → STOP
1
� STOP), P ′ = P u Wait 2 ; P.

Then Tr [[P]] = Tr [[P ′]]: both are given by the regular expression tock∗ +
tock∗.a.tock∗ + tock∗.a.b.tock∗. But Tr [[P \ {a}]] 6= Tr [[P ′ \ {a}]]: the latter
includes 〈tock, tock, b〉, whereas in the former process the a will be performed
(silently) before the first tock, and so the b can only be performed before the
first tock. However, this model is a congruence with respect to all operators
other than hiding.

7.1 Testing

We now define an alternative notion of timed may testing. Note that in the
untimed setting, the standard definition of P may T :

〈ω〉 ∈ traces((P ‖
Σ

T) \ Σ)

is equivalent to

∃ tr ∈ traces(P ‖
Σ

T) r ω in tr.

When one lifts these two definitions to a timed setting, they turn out to be
different: the former corresponds to the definition from Section 6; the latter
corresponds to the definition below.

We write P may′ T if test T , in parallel with P —without hiding— can
perform the event ω:

P may′ T ⇔∃ tr ∈ T [[P ‖
Σ

T]] r ω in tr.

We then say that P and Q are may′ equivalent if they pass the same tests:

P ≡may′ Q ⇔ ∀T ∈ Test r P may′ T ⇔ Q may′ T.

Note this is different from the definition of may. Consider

P = a → STOP, T = (a → FAIL)
1
� SUCCEED.

Then P may′ T (on trace 〈{}, tock, ω〉), but not P may T (since the hiding
ensures that the a happens before time 1). By contrast, define

17

Lowe and Ouaknine

Q = a → STOP u STOP.

Then Q may T and Q may′ T . So may testing distinguishes P and Q; however,
the above test does not distinguish P and Q under may′ testing, and, in fact,
no other does, as confirmed by the following theorem.

Theorem 7.1 P ≡may′ Q ⇔ Tr [[P]] = Tr [[Q]].

Proof. For the left to right implication, we prove the contrapositive. Suppose
P and Q do not have the same traces. Then without loss of generality, suppose

tr = 〈a11, a12, . . . , a1m1
, tock,

a21, a22, . . . , a2m2
, tock,

. . .

an1, an2, . . . , anmn
〉

is a trace of P but not of Q. We construct a test that succeeds when the
process it is testing performs the trace tr, but fails, otherwise:

T =̂ a11
∗
→ a12

∗
→ . . .

∗
→ a1m1

∗
→ Wait 1;

a21
∗
→ a22

∗
→ . . .

∗
→ a2m2

∗
→ Wait 1;

. . .

an1
∗
→ an2

∗
→ . . .

∗
→ anmn

∗
→ SUCCEED.

For the reverse direction, it is easy to show that

Tr [[P ‖
A

T]] = {tr | ∃ trP ∈ Tr [[P]], trT ∈ Tr [[T]] r tr ∈ trP ‖
A

trT},

where the parallel composition of traces is similar to as defined in Figure 1.
Hence if Tr [[P]] = Tr [[Q]], then Tr [[P ‖

Σ

T]] = Tr [[Q ‖
A

T]], so P may′ T ⇔

Q may′ T . 2

8 Conclusions

In this paper we have studied a compositional denotational model for Timed
CSP, which we consider to be simpler than existing models. Further, we
have shown that equivalence in the model corresponds to timed may testing,
and hence this is the coarsest reasonable model of the language. Further,
we have shown that the model contains no junk, and so precisely captures
the properties of expressible processes. Finally, we have considered a weaker
model based on traces.

In this section, we briefly discuss some consequences of our decision to
introduce a strict timeout operator to the language; we then discuss some
related and future work.

8.1 On strict timeouts

As noted earlier, the strict timeout operator seems to have a far more natural
semantics than the weak timeout; in particular, is seems necessary to model

18

Lowe and Ouaknine

some natural examples, such as the example from Section 1.

The correspondence with timed may testing does not depend on the strict
timeout. The construction in Section 6.1 can be adapted to work with a weak
timeout, by replacing the definition of a

∗
→ T by

a
∗
→ T =̂ (a → T)

0
� FAIL,

i.e. the a is available initially, but will be withdrawn sometime before the first
tock. The reader may check that the rest of the proof goes through as before.

However, without the strict timeout, the model of this paper does not
satisfy the no junk condition. It can be shown that, without this strict timeout,
all processes satisfy the condition

tr_〈A, tock〉 ∈ S ∧ tr_〈A ∪ {a}, tock〉 /∈ S ⇒ tr_〈A, tock, a〉 ∈ S,(1)

which says that if an event is not refused before a tock (so must be available),
then it will still be available after a tock. Therefore, any semantic object that
does not satisfy the above condition cannot be expressed syntactically without
the strict timeout.

It is interesting to ask whether adding the above condition (1) as an ax-
iom 7 , and still omitting the strict timeout, gives us no junk. We believe not.
Consider the process that initially offers an a, and if that a is performed after
n tocks then offers a b after a further n tocks. This can be modelled using the
strict timeout by

P (0), where P (n) = (a → Wait n ; b → STOP)
1
� P (n + 1).

This process satisfies the extra axiom. However, we believe that it is not
expressible without the strict timeout, for one cannot detect the precise time
at which the a occurs.

In [6,7], it is shown that the discrete-time models satisfy a very close rela-
tionship with the continuous-time models of Timed CSP from [9]. It would be
interesting to consider whether the continuous-time models can be extended
with a strict timeout, and whether the same relationship would then hold with
the model of this paper.

8.2 Related work

In [3], a fully abstract denotational semantics is presented for an OCCAM-like
language. The authors prove that processes distinguished by the denotational
model are also distinguished by a criterion extracted from the operational
semantics; we consider this a less natural criterion than may testing. (They
do not consider the absence of junk.) Like us, they consider failures (actually
convex closure of ready sets, which is equivalent). They consider a language
with synchronous computation, and thus do not consider the relative order
of events within the same time unit: hence the question of refusals between

7 This condition is similar to the axiom from [6] discussed in footnote 6.

19

Lowe and Ouaknine

non-tock events —the difference between the refusal traces and timed testing
models— does not arise.

In [7], a different kind of full abstraction result is proven. It is shown
that if two processes are distinguished by the model, then there is a natural
(i.e., closed under inverse digitisation) specification φ, such that one process
satisfies φ and the other doesn’t.

8.3 Future work

As noted above, our main reason for considering the model of this paper was
our interest in quantifying information flow in multi-level secure systems. We
want to continue this work. In particular, as noted in Section 7, we want
to relate our definition to Shannon information flow, either using the timed
testing model or the traces model. Further, we want to consider algorithms for
calculating the quantity of information flow of a given process, and, indeed,
whether the problem is decidable in general.

Acknowledgements

We would like to thank Irek Ulidowski and the anonymous referees for useful
comments about this work.

References

[1] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984.

[2] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[3] C. Huizing, R. Gerth, and W. P. de Roever. Full abstraction of a real-time

denotational semantics for an occam-like language. In Proceedings of the 14th

ACM Symposium on Principles of Programming Languages, pages 223–236,
1987.

[4] G. Lowe. Defining information flow quantity. Journal of Computer Security,
12(3, 4):619–653, 2004.

[5] A. Mukarram. A Refusal Testing Model for CSP. D. Phil thesis, Oxford, 1993.
[6] J. Ouaknine. Discrete Analysis of Continuous Behaviour in Real-Time

Concurrent Systems. D.Phil thesis, Oxford University, 2000.
[7] J. Ouaknine. Digitisation and full abstraction for dense-time model checking.

In Proceedings of TACAS, 2002.
[8] I. Phillips. Refusal testing. Theoretical Computer Science, 1987.
[9] G. M. Reed and A. W. Roscoe. The timed failures-stability model for CSP.

Theoretical Computer Science, 211:85–127, 1999.
[10] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
[11] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. Wiley,

1999.
[12] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication.

University of Illinois Press, 1963.

20

Lowe and Ouaknine

[13] W. A. Sutherland. Introduction to Metric and Topological Spaces. Oxford
University Press, 1983.

[14] R. J. van Glabbeek, S. A. Smolka, B. Steffen, and C. Tofts. Reactive, generative
and stratified models of probabilistic processes. In IEEE Symposium on Logic

in Computer Science, 1990.

21

	Introduction
	Timed CSP syntax
	The timed refusal traces model
	Semantic definitions

	The timed testing model
	Semantic definitions

	Relating the two models
	Full abstraction
	Timed may testing
	No junk
	Full abstraction

	Traces
	Testing

	Conclusions
	On strict timeouts
	Related work
	Future work

	References

