
Nordic Journal of Computing 10(2003), 1–35.

TIMED CSP = CLOSED TIMED ε-AUTOMATA

JOËL OUAKNINE
Computer Science Department, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA 15213
U.S.A.

joelo@andrew.cmu.edu

JAMES WORRELL
Department of Mathematics, Tulane University
6823 St. Charles Ave., New Orleans LA 70118

U.S.A.
jbw@math.tulane.edu

Abstract. We propose some mild modifications to the syntax and semantics of Timed CSP
which significantly increase expressiveness. As a result, we are able to capture some of the
most widely used specifications on timed systems as refinements (reverse inclusion of sets
of behaviours) which may then be verified using the model checker FDR. We characterize
the expressive power of the finite-state fragment of this augmented version of Timed CSP
as that of closed timed ε-automata—timed automata with ε-transitions (silent transitions)
and closed invariant and enabling clock constraints.

ACM CCS Categories and Subject Descriptors: F.1.1 [Computation by Abstract De-
vices]: Models of Computation

Key words: Timed CSP, timed automata, denotational and operational semantics, verifica-
tion, digitization

1. Introduction

The formal analysis of real-time systems usually involves both an implementation
formalism and a specification formalism, together with a mechanism for deciding
whether a particular implementation meets a given specification. For example, one
may choose the framework of timed automata [3, 4] as implementation formalism,
and some (quantitative) temporal logic to express specifications [6]. Verification
can then be carried out using model checking [2].

In the case of Reed and Roscoe’s dense-time process algebra Timed CSP [29,
28, 30, 35], specifications usually consist of allowable sets of behaviours. Such
specifications can be represented directly [32, 12], or using a formal specification
language such as Z [33]. Verifying that processes meet their specifications then
usually proceeds through some kind of proof system [32, 13, 12, 33]. Naturally, one
can also use temporal logics, translate processes into timed automata, and revert
to the technique described in the previous paragraph; this has been accomplished
(subject to various restrictions) in [18].

Received October 15, 2002; revised March 15, 2003; accepted March 21, 2003.

2 J. OUAKNINE, J. WORRELL

In the case of dense-time modelling paradigms, there have been very few at-
tempts to express specifications using the implementation framework, and satis-
faction as refinement (reverse inclusion of sets of behaviours).1 The only instance
we are aware of is the use of Alur et al.’s event-clock automata to express speci-
fications of (arbitrary) timed automata [5]. More recently, we have shown in the
context of Timed CSP that discrete refinement techniques could be used to ver-
ify specifications on certain dense-time systems using the model checker FDR2

[23, 24].
There are a number of benefits and drawbacks in expressing specifications as

refinements, but a full discussion of the matter is beyond the scope of this paper.
For our purposes, one of the main advantages of a refinement-based approach for
Timed CSP is that verification can be carried out on the model checker FDR, as dis-
cussed in the references cited above. The main disadvantage of a refinement-based
approach for Timed CSP is that expressiveness for the purposes of specification
was, until now, spectacularly poor.

This problem is not an intrinsic feature of a refinement approach, but is rather
an artefact of Reed and Roscoe’s version of Timed CSP. For instance, to express
the specification ‘the process P cannot perform the event a’, one must show that
P refines RUNΣ−{a}, where RUNΣ−{a} is a process which can communicate any se-
quence of events other than a’s. The semantic assumption of well-timedness made
by Reed and Roscoe (required for processes to be well-defined) however bans such
arbitrarily speedy (or Zeno) processes.

A natural solution is therefore to attempt to ease some of the restrictions imposed
on the language in order to obtain a more expressive version of Timed CSP, one
in which such processes, able to communicate arbitrarily many events at any given
point in time, are allowed. Another desirable feature is the addition of signals to the
language, to be able to express specifications such as ‘the process must perform an
a within two time units’. (‘Soft’ signals were incorporated into Timed CSP in [12];
the ‘hard’ approach we propose, which potentially introduces timestops, differs in
important respects.) Naturally, it is highly desirable that the path we follow retain
sufficiently robust ties to CSP to preserve the use of such techniques as FDR model
checking.

We therefore end up with a model in which processes may exhibit any of the
following properties:

◦ Livelock: the process is stuck in an infinite sequence of τ-transitions. We
treat this situation as catastrophic, and do not attempt to extract any mean-
ingful information from such processes. In practice, we have developed tech-
niques which can guarantee that a process is livelock-free [25].

◦ Timestop: the process cannot communicate any event nor let time pass—this
results from inconsistent timing requirements.

1 Lamport has proposed an interesting dual approach using TLA+, in which implementations are
translated into logical formulas of the same type as those used to express specifications; satisfaction
then reduces to logical implication [36].
2 FDR is a commercial product of Formal Methods (Europe) Ltd.

TIMED CSP = CLOSED TIMED ε-AUTOMATA 3

◦ Strong Zenoness: the process is forced to communicate an infinite number of
visible events (signals) in a finite amount of time (usually a single instant),
and can therefore not let time advance past a certain point.

◦ (Weak) Zenoness: the process is capable of communicating an infinite num-
ber of events in a finite amount of time (but is also capable of letting time
elapse).

◦ Finite variability: the process may only communicate finitely many events
in a finite amount of time; previous treatments of Timed CSP required all
processes to have this property.

This augmented version of Timed CSP turns out to be powerful enough to cap-
ture the most widely used specifications on timed systems as refinements between
Timed CSP processes. Moreover, such refinements can be verified on the model
checker FDR by means of digitization techniques [15]. In fact, we even show that
a number of branching-time liveness properties such as timestop-freedom and con-
stant availability can be verified through digitization (and FDR), in contrast to the
situation with timed automata.

We characterize the expressive power of the finite-state fragment of this new ver-
sion of Timed CSP as that of closed timed ε-automata. Closed timed ε-automata
are the timed safety automata of [16], augmented with ε-transitions (silent transi-
tions) [3, 8], and with exclusively closed invariant and enabling clock constraints
(of the form x 6 3 rather than x < 3, for example). In this way, we relate very pre-
cisely two major paradigms for representing, and reasoning about, timed systems.
One consequence of this correspondence is that most analysis and verification tech-
niques applicable to one model can be carried over to the other model.

Timed CSP appears to be the most general modelling formalism systematically
yielding processes closed under digitization (and thus amenable to digitization
techniques), making it a prime candidate for the practical formal analysis of timed
systems.

1.1 Structure of the paper

The next section introduces Timed CSP syntax. This includes both standard Timed
CSP operators (without unbounded nondeterminism), as well as two new opera-
tors, one introducing urgency for visible events (to model signals), and the other
denoting a process which waits a nondeterministic amount of time, then terminates
(needed to express certain key specifications).

Section 3 then presents a denotational semantics for our chosen Timed CSP syn-
tax. Somewhat surprisingly, it is necessary to depart significantly from the standard
timed failures model in order to obtain a satisfactory compositional semantics. We
motivate our construction in great detail, and record the relevant facts which are
used later on.

Next, Section 4 gives a congruent operational semantics, offering a second way
to reason about processes. Although we have found it convenient to state and
prove many results in terms of the operational semantics, both semantics are used
throughout the paper.

4 J. OUAKNINE, J. WORRELL

A fundamental property enjoyed by Timed CSP processes is that of closure under
digitization. This remarkable fact enables us, in many instances, to invoke powerful
digitization techniques, which reduce dense-time refinement questions to discrete
time. Section 5 reviews the subject of digitization, especially as it applies to Timed
CSP processes.

In Section 6, we tackle the problem of expressing specifications (on Timed CSP
processes) as refinements (between Timed CSP processes). We show that the most
widely used specifications can be expressed as refinements, and moreover (thanks
to digitization) that verification can (under certain conditions) be performed on the
model checker FDR.

Having completed this presentation and study of our augmented version of Timed
CSP, we introduce closed timed ε-automata in Section 7. Mirroring our treatment
of Timed CSP, we give new operational and denotational semantics to these timed
automata, illustrating and justifying our definitions with the help of several ex-
amples. We also recall certain standard constructions and results, such as those
pertaining to the (untimed) region automaton associated with a given timed au-
tomaton.

In Section 8, we describe in considerable detail how a given closed timed ε-
automaton can be represented as a (finite-state) Timed CSP process. We then de-
rive a number of results concerning the relationship between the verification of
specifications on timed automata and Timed CSP processes.

Section 9 studies the flip side of the coin, namely how it is possible to represent
any finite-state Timed CSP process as a closed timed ε-automaton. We also present
some interesting conjectures concerning the expressiveness of certain weakened
variants of Timed CSP and timed automata.

Lastly, Section 10 concludes by summarizing the main results of our work and
presenting some avenues for future research.

2. Timed CSP syntax and conventions

Let Σ be a finite set of events, with X < Σ. We write ΣX to denote Σ ∪ {X}. In
the notation below, we have a ∈ Σ and A ⊆ Σ. The parameter t ranges over the
non-negative reals R+. R denotes a (renaming) relation on Σ. Its lifting to ΣX is
understood to relate X to itself. The variable X is drawn from a fixed infinite set of
process variables VAR.

Timed CSP terms are constructed according to the following grammar:

P ::= STOP | TIMESTOP | a −→ P | a
!
−→ P | SKIP | RANDOM |

P1
t
B P2 | P1

t�
P2 | P1 � P2 | P1 u P2 | P1 ‖

A
P2 | P1 � P2 |

P \ A | P[R] | X | µX � P | DIV .

STOP is the deadlocked process which is only capable of letting time pass.
TIMESTOP is similar to STOP except that time itself is also blocked; it repre-
sents inconsistent timing requirements. The prefixed process a −→ P initially
offers at any time to engage in the event a, and subsequently behaves like P.

TIMED CSP = CLOSED TIMED ε-AUTOMATA 5

The signalling prefixed process a
!
−→ P communicates a immediately and sub-

sequently behaves like P. SKIP represents successful termination, and is willing
to communicate X at any time. RANDOM nondeterministically waits for a real-

valued amount of time, and then becomes SKIP. P1
t
B P2 is the timeout process

that initially offers to become P1 for t time units, after which it silently becomes P2

if P1 has failed to communicate any visible event. P1

t�
P2 is the interrupt process

that behaves like P1 for the first t time units, and then silently starts behaving like
P2 (assuming P1 has not successfully terminated in the meantime). P1 u P2 de-
notes the nondeterministic choice between P1 and P2, whereas P1 � P2 represents
the deterministic alternative. P1 � P2 is willing to behave either like P1 or like P2,
the decision being taken on the first visible event. The parallel composition P1 ‖

A
P2

requires P1 and P2 to synchronize on all events in A, and to behave independently
of each other with respect to all other events. P1 � P2 is the sequential compo-
sition of P1 and P2: it denotes a process which behaves like P1 until P1 chooses
to terminate (silently), at which point the process seamlessly starts to behave like
P2. P \ A is a process which behaves like P but with all communications in the
set A hidden; the assumption of τ-urgency dictates that no time can elapse while
hidden events are on offer—in other words, hidden events happen as soon as they
become available. The renamed process P[R] derives its behaviours from those of
P in that, whenever P can perform an event a, P[R] can engage in any event b such
that a R b. The recursion µ X � P represents the most nondeterministic solution
to the equation X = P (as it turns out, this solution is unique if it is livelock-free).
Lastly, the process DIV represents livelock, i.e., a process caught in an infinite loop
of τ-transitions.

We occasionally use the following derived constructs: We abbreviate a −→

STOP as simply a. The term WAIT t denotes STOP
t
B SKIP. In the case of hiding a

single event a, we write P \ a rather than P \ {a}. If S = {P1, P2, . . . , Pk} is a finite
nonempty set of processes, u S represents P1 u P2 u . . . u Pk, and similarly for
� S . The interleaving operator � denotes parallel composition over an empty in-
terface. Lastly, we usually express recursions by means of the equational notation
X = P, rather than the functional µ X � P.

R 1. The main syntactic changes, with respect to standard presentations of
Timed CSP [29, 28, 30, 35], are the elimination of unbounded nondeterminism (to
allow implementation on model checking tools), and the twin additions of signals

(a
!
−→ P) and the RANDOM process. While the latter incorporates a restricted

form of unbounded nondeterminism, it is harmless insofar as digitization tech-
niques are concerned since its integral-time semantics is finite-state (equivalent to

RANDOM = SKIP
0
B WAIT 1 � RANDOM); moreover, RANDOM provides us with

just enough expressive power to capture certain key specification processes, as we
shall see later on.

We write TCSP to denote the collection of closed terms of the language thus
generated. (A term is closed if every occurrence of a variable X in it is within

6 J. OUAKNINE, J. WORRELL

the scope of a µ X operator). We are mostly interested in the subcollection of

closed terms in which all delays (parameters t in the terms P1
t
B P2, P1

t�
P2) are

integral.3 We refer to such ‘integral’ terms as programs, the collection of which
we write TCSP.

As an example, let us define a process VM intended to model a vending machine
with the following behaviours: Initially, the vending machine is at any time willing
to accept a coin. Once a coin has been inserted in the machine, the customer can
choose between ordering a chocolate or a biscuit; however, if he fails to make his
choice within 60 seconds, his money is returned and the vending machine reverts
to its initial state.

We describe this vending machine below both as a Timed CSP process and as a
timed automaton (cf. Section 7).

�����
���

�coin.in
x := 0

� 	
 biscuit�
choc

���
���
x660

� ��
coin.out
x=60?

VM = coin.in −→


choc −→ VM
�

biscuit −→ VM


60
B (coin.out

!
−→ VM)

3. Denotational semantics

We present a dense-time denotational semantics for this augmented version of
Timed CSP. A congruent operational semantics follows in the next section. Our
denotational semantics is a combination of Reed and Roscoe’s timed failures model
[29, 28, 30, 35] and refusal testing [27, 20].

Designing a denotational semantics can be a subtle and difficult affair. In doing
so, we were guided by the following aims:4

◦ The semantics should extend the timed failures model in a consistent and
natural way.

◦ The semantics should be compositional, in that the value of a process should
be entirely determined by the values of its constituent subprocesses.

◦ The semantics should allow us to express basic safety and liveness specifi-
cations in a natural way.

The simplest semantics to envisage is to map a program to its set of timed traces.
Unfortunately, timed traces do not give rise to a compositional model [28]. They
also do not extend timed failures and cannot, for instance, handle liveness specifi-
cations (as defined in Section 6).

Timed failures are timed traces together with finite unions of left-closed right-
open time intervals during which certain sets of events are refused. Thus timed

3 We could have equally well allowed rational delays, but thanks to the possibility of scaling time
units, the distinction is effectively irrelevant.
4 This ‘motivating’ preamble presupposes some basic knowledge of standard models of CSP and
Timed CSP; the reader may wish to skip it until after having read the technical definitions of both
this section and the next one.

TIMED CSP = CLOSED TIMED ε-AUTOMATA 7

failures only record refusals over strictly positive amounts of time. As a result, a

Zeno process such as P = a
!
−→ P (whose only behaviours are to communicate

unboundedly many a’s at time 0) cannot exhibit any refusals in a timed failures
model. Consequently, P would technically satisfy specifications such as ‘The pro-
cess never refuses the event b’, which is nonsensical since P cannot ever perform
the event b. A satisfactory framework in which processes such as P can be analyzed
therefore must incorporate point (instantaneous) refusals.

Unfortunately, the naive attempt to simply augment timed failures with point

refusals leads to a non-compositional model. Consider the process Q = a
!
−→

b
!
−→ Q. On any trace having at least one event, Q can record refusals of both a

and b at time 0. However, if R is a renaming relation such that a R c and b R c,
then Q[R] can clearly never refuse c, so that the refusals of Q[R] cannot be properly
calculated from those of Q.

While there are various ways to circumvent this problem, we believe the simplest
is to consider a barbed semantics, specifically refusal traces, rather than timed fail-
ures. Refusal traces (defined more formally below) simply alternate refusals with
performed events, in the order in which observations were made; they therefore
constitute a slightly less abstract model than timed failures. Refusal traces also
have very strong links with the modelling of discrete time in (untimed) CSP [23].

Some work is still required, however, in order to build a compositional model.
Consider the process a −→ b, which can clearly refuse b prior to the occurrence
of a. Should a occur at time 0, the refusal of b takes the form of a point refusal,
also at time 0. The question becomes, what to do in case a is hidden, i.e., for the
process (a −→ b) \ a. Timed failures and other standard models of CSP dictate
that (a −→ b) \ a should be equivalent to b. In fact, were we to record any initial
refusal of (a −→ b) \ a prior to the occurrence of τ, we would be compelled to
include not only the whole of ΣX, but also record that time cannot advance (because
of τ-urgency), and thus wrongly conclude that (a −→ b) \ a has a timestop.

Of the two obvious alternatives that now face us, neither leads to a compositional
model, as we briefly demonstrate. The first option is to postulate that no refusals

can be recorded while hidden events are on offer. Let P1 = a
!
−→ b and P2 =

((a
!
−→ b) � c) \ c. Assuming an a occurs (at time 0), P1, unlike P2, would have

been able to record a prior refusal of b. Now consider P = P1 ‖
{a,b}

P2. Because P is

required to synchronize over b’s, P should refuse b whenever either of its parallel
components does. However, P is clearly unable to perform an a from a stable state,
and therefore cannot record a prior refusal of b.

The second alternative is to postulate that a given event can be recorded as re-
fused at time t only if the process was unable to perform it, and either was equally
unable to perform a τ-action, or chose to perform some visible event. This pro-
posal clearly adequately handles the last situation. However, it also (rightly) makes
processes b and (c −→ b) \ c equivalent, but then distinguishes a � b and
a � ((c −→ b) \ c): contrary to the former, the latter could record a refusal of
b prior to an occurrence of a at time 0.

8 J. OUAKNINE, J. WORRELL

The simplest solution to these problems is to label a process offering τ-actions
as ‘unstable’ at that particular time, and not to record any other information in that
case; the only refusals (including the empty refusal!) that we are allowed to record
are stable ones.5 This idea was used in [20] to produce a compositional refusal
trace model for (untimed) CSP, and later a compositional refusal trace model for
discrete-time CSP [23].

It remains to decide how to handle livelock. Once again, we turn to CSP for
inspiration: we treat livelock as catastrophic, and simply record on any given re-
fusal trace the earliest time at which a process may livelock. We then disregard any
subsequent behaviour of the process.

The various versions of the timed failures model are all based on complete ul-
trametric spaces satisfying a sizeable number of axioms, some of which are quite
subtle and intricate. In general, imposing such axioms in devising a denotational
semantics serves one or both of the following purposes: to achieve some form
of full abstraction, in that every element of the denotational model can be rea-
lized through the syntax (cf. the failures model for CSP [31]); and to ensure the
well-definedness of the various constructs, such as the existence of (unique)
fixed points.

In all versions of the timed failures model, the axioms serve the second purpose
only [22]. For example, the assumption of finite variability, to the effect that no
process may communicate unboundedly many events in a bounded amount of time,
ensures that hiding cannot introduce livelock. One finds that selectively relaxing
some of the axioms is fraught with difficulties, and can easily lead to the breakdown
of the semantics. On the other hand, getting rid of most of the axioms leads to a
simpler and consistent model (which however is very far from full abstraction).
Our main reason for choosing the second path is that, unlike the timed failures
model, the model we introduce here is not only a complete ultrametric space, but
also a complete partial order, which allows us to handle divergence. Thus the only
axioms we require are that processes be both downward-closed (if some behaviour
is observed, then any behaviour containing less information could also have been
observed), and divergence-closed (once a process has entered livelock, we consider
that it can exhibit any behaviour whatsoever).

We now present these ideas in more formal fashion. A timed event is a pair (t, a) ∈
R
+ × ΣX. A (timed) refusal is a set of timed events and may also include special

timed events of the form (t, time) and (t, •), where time is a symbol indicating that
time cannot pass, and • is a symbol indicating potential instability. From now on,
we abbreviate ΣX∪ {time} as ΣXtime. We require in addition that refusals be time-
bounded (the set of timestamps associated with a refusal’s timed events must be
bounded).

A (timed) trace is a finite sequence 〈(t1, a1), (t2, a2), . . . , (tk, ak)〉 of timed events,
with the timestamps (denoting global, or absolute, time) non-decreasing.

5 A rather intricate discrete-time model in which unstable refusals are recorded is presented in [23];
while this model is consistent and provides detailed information about processes, it appears to be of
limited practical utility.

TIMED CSP = CLOSED TIMED ε-AUTOMATA 9

A (timed) refusal trace is a finite sequence 〈ℵ0, (t1, a1),ℵ1, (t2, a2), . . . ,
(tk, ak),ℵk〉 (with k > 0), where each ℵi is a refusal and each (ti, ai) is a timed
event, subject to the following conditions:

(1) Time is non-decreasing: the ti’s are non-decreasing, and moreover, for all
1 6 i 6 k, whenever (t, α) ∈ ℵi−1, then t 6 ti, and whenever (t, α) ∈ ℵi, then
ti 6 t.

(2) An event cannot be refused and then observed at the same time: for all 1 6
i 6 k, (ti, ai) < ℵi−1.

(3) If time is refused, then time stops: for all 0 6 i 6 k, if (t, time) ∈ ℵi, then all
timed events in ℵi have timestamps no greater than t, and moreover if i < k
then ti+1 = t.

(4) No refusals are recorded while a process is potentially unstable: for all 0 6
i 6 k, if {(t, •), (t, α)} ⊆ ℵi, then α = •.

(5) Once a process terminates, only time elapses: if i < k, then ai , X, and if
ak = X, then (t, time) < ℵk for any value of t.

A (timed) refusal trace with divergence (rtd for short) is a pair (T, z), where T is
a refusal trace and z ∈ R+ ∪ {∞} is greater than or equal to any of the timestamps
associated with events (observed or refused) in T . The set of all rtd’s is written
RTD.

We interpret an rtd (T, z) as a summary of an experimenter’s interaction with a
process, in which events that were refused were recorded in the various refusals of
T , whereas events that were observed were recorded in between refusals. More-
over, we imagine that processes come equipped with two lights, respectively la-
belled ‘time’ and ‘unstable’. When lit, the ‘time’ light indicates that time cannot
advance; a refusal of time may therefore be recorded. The ‘unstable’ light goes on
whenever the process has one or more τ-actions on offer. When this light is on, the
only refusal we are allowed to record at that time is •, irrespective of any other or
subsequent observations we make.

However, we do not necessarily observe and record all possible refusals. We
may choose to observe the process at any instant in time, or for any continuous
period of time, and record our observations as indicated above. We are nonetheless
required to conservatively record a •-refusal whenever we did not actually observe
the process at a particular time. Note that a process may go through a sequence
of several states at the same instant, any of which could lead to a specific refusal.
For example, if observed at time 0, the process (a −→ b) \ a may have either • or
Σ
X− {b} as (maximal) refusals.
Lastly, if the ‘unstable’ light remains lit for longer than an instant, we record a

livelock by setting z equal to the earliest time at which we began observing diver-
gence. Otherwise we let z = ∞.

As discussed earlier, we treat livelock as catastrophic, and do not attempt to
record anything ‘past’ it. To simplify our modelling task, we consider that a process
which has entered livelock is capable of any behaviour whatsoever. A process is
livelock-free if every one of its rtd’s has a z-value of ∞. In this work, all processes
that we consider are livelock-free; in general, one can invoke certain static analysis
techniques to guarantee that timed processes are livelock-free [25].

10 J. OUAKNINE, J. WORRELL

Let T = 〈ℵ0, (t1, a1), . . . ,ℵk〉 and T ′ = 〈ℵ′0, (t
′
1, a
′
1), . . . ,ℵ′l〉. We define their

‘glueing’ TyT ′ =̂ 〈ℵ0, (t1, a1), . . . , (tk,ℵk),ℵk ∪ ℵ
′
0, (t

′
1, a
′
1), . . . ,ℵ′l〉.

If T is a refusal trace and t ∈ R+, we let T + t be the refusal trace in which all
timed events of T (observed and refused) have had their timestamps increased by
t. We also let T +∞ =̂ 〈∅〉.

Let P ⊆ RTD be a set of rtd’s. We define the divergence-closure of P to be
P =̂ {(Ty(T ′ + z), z′ + z) | (T, z) ∈ P ∧ (T ′, z′) ∈ RTD} ∩ RTD. We then say that a
set of rtd’s P is divergence-closed if P = P.

Let ℵ,ℵ′ be refusals. Define ℵ ≺ ℵ′ if ℵ ∩ (R+ × {•}) ⊇ ℵ′ ∩ (R+ × {•}) and
ℵ ⊆ ℵ′ ∪ (R+ × {•}). Now let (T, z) = (〈ℵ0, (t1, a1), . . . ,ℵk〉, z) and (T ′, z′) =
(〈ℵ′0, (t

′
1, a
′
1), . . . ,ℵ′l〉, z

′) be rtd’s. We write (T, z) ≺ (T ′, z′) (representing the fact
that (T ′, z′) contains at least as much information as (T, z)), when either of the
following two conditions are met:

z = ∞ ∧ k 6 l ∧ ℵ0 ≺ ℵ
′
0 ∧ ∀(1 6 i 6 k) � ai = a′i ∧ ℵi ≺ ℵ

′
i , or

z = z′ ∧ k = l ∧ ℵ0 ≺ ℵ
′
0 ∧ ∀(1 6 i 6 k) � ai = a′i ∧ ℵi ≺ ℵ

′
i .

For P ⊆ RTD, we let ↓P =̂ {(T, z) ∈ RTD | ∃(T ′, z′) ∈ P � (T, z) ≺ (T ′, z′)}. We
then say that a set of rtd’s P is downward-closed if P = ↓P.

D 1. The timed refusal traces with divergence model RTD is the set con-
sisting of all downward-closed and divergence-closed P ⊆ RTD.

T 1. RTD is a complete partial order (in fact a complete lattice) under
reverse set inclusion, denoted v. Its least element is RTD. Moreover, every n-ary
Timed CSP operator other than recursion can be interpreted as a continuous func-
tion RTDn −→ RTD. Recursion is interpreted as the least fixed point operator
on RTD. These interpretations define an algebra homomorphism (i.e., a compo-
sitional map) RR~·� : TCSP −→ RTD. This map can also be defined through the
operational semantics (presented next).

Theorem 1 is similar to corresponding results in the context of timed failures
[28], discrete-time refusal traces [23], and (untimed) CSP [20, 31], and can be
established using the same standard proof techniques.

For P a Timed CSP program, RR~P� represents the set of refusal traces with
divergence that an experimenter can observe while interacting with P. For example,

the program a
2
B b

!
−→ a has, among others, the following refusal trace over

alphabet Σ = {a, b}: 〈ℵ0, (2, b),ℵ1, (2.7, a),ℵ2〉, where ℵ0 = [0, 2) × {b} ∪ {2} ×
{a, time}, ℵ1 = [2, 2.7] × {b}, and ℵ2 = [2.7, 3.4] × {a, b}. Note that the refusal of
(2, time) in ℵ0 arises from the presence of the signal b.

Let us briefly once again contrast our framework with the standard timed failures
model. The refusal components of timed failures are defined to be finite unions of
refusal tokens: refusals of the form [t, t′) × A. As it turns out, for TCSP programs,
our (maximal) refusals also consist of finite unions of refusal tokens, together with
finitely many point refusals—refusals of the form {t} × A. As discussed earlier,

TIMED CSP = CLOSED TIMED ε-AUTOMATA 11

these enable us to appropriately model signals. The divergence component (z) of
rtd’s allows us to model livelock, while the refusal event time is not only useful
for modelling signals, but also for detecting timestops. Finally, the unstable refusal
event • lets us draw the distinction between (potential) instability and stability, and
in doing so allows for compositional modelling.

Timed failures do not form a complete partial order, among other reasons because
the axiom of finite variability precludes the existence of a least element. Conse-
quently, the timed failures semantics cannot model recursion in full generality (i.e.,
in the presence of Zeno or divergent processes).

One can also compositionally define RZ~P�, the set of integral-time rtd’s of a
process P. A refusal trace is integral-time if each of its events has an integral
timestamp, and if each of its refusals can be written as a union of refusal tokens
and point refusals, all with integral endpoints.

Finally, we let TR~P� and TZ~P� respectively stand for the sets of dense-time
and integral-time timed traces of P. (Note that these cannot be defined composi-
tionally; however, they can be extracted straightforwardly from RR~P� or from the
operational semantics.)

4. Operational semantics

The contents and style of this section are similar to [34]. We present a collection
of inference rules which allow us to assign to any closed term in TCSP a set of
dense-time executions.

We list a few notational conventions: a and b stand for visible events, i.e., belong
to ΣX. A ⊆ Σ and AX= A∪{X}. γ can be a visible event or a silent one (γ ∈ ΣX∪{τ}).

P
γ
−→ P′ means that the closed term P can perform an immediate and instantaneous
γ-transition, and subsequently become P′ (communicating γ in the process if γ is

a visible event). P
γ

�−→ means that P cannot possibly do a γ at that particular time.

P
t
 P′ means that P can become P′ simply by virtue of letting t units of time

elapse, where t ∈ R+. P means that P can let some strictly positive amount of
time elapse, whereas P �

 stands for the opposite. In what follows, u ∈ R+. If P is
a term with a single free variable X and Q is a closed term, [Q/X]P represents the
closed term P with Q substituted for every free occurrence of X.

The rules are as follows.

STOP
t
 STOP

(a −→ P)
t
 (a −→ P) (a −→ P)

a
−→ P

(a
!
−→ P)

a
−→ P

SKIP
t
 SKIP SKIP

X
−→ STOP

12 J. OUAKNINE, J. WORRELL

RANDOM
τ
−→ WAIT u

WAIT u
t
 WAIT (u − t)

[t 6 u]
WAIT 0

τ
−→ SKIP

P1
t
 P′1

P1
u
B P2

t
 P′1

u−t
B P2

[t 6 u]

P1
0
B P2

τ
−→ P2

P1
τ
−→ P′1

P1
u
B P2

τ
−→ P′1

u
B P2

P1
a
−→ P′1

P1
u
B P2

a
−→ P′1

P1
t
 P′1

P1

u�
P2

t
 P′1

u−t�
P2

[t 6 u]

P1

0�
P2

τ
−→ P2

P1
X
−→ P′1

P1

u�
P2

X
−→ P′1

P1
γ
−→ P′1

P1

u�
P2

γ
−→ P′1

u�
P2

[γ , X]

P1
t
 P′1 P2

t
 P′2

P1 � P2
t
 P′1 � P′2

P1
τ
−→ P′1

P1 � P2
τ
−→ P′1 � P2

P2
τ
−→ P′2

P1 � P2
τ
−→ P1 � P′2

P1
a
−→ P′1

P1 � P2
a
−→ P′1

P2
a
−→ P′2

P1 � P2
a
−→ P′2

P1 u P2
τ
−→ P1 P1 u P2

τ
−→ P2

P1
t
 P′1 P2

t
 P′2

P1 ‖
A

P2
t
 P′1 ‖

A
P′2

P1
γ
−→ P′1

P1 ‖
A

P2
γ
−→ P′1 ‖

A
P2

[γ < AX]
P2

γ
−→ P′2

P1 ‖
A

P2
γ
−→ P1 ‖

A
P′2

[γ < AX]

P1
a
−→ P′1 P2

a
−→ P′2

P1 ‖
A

P2
a
−→ P′1 ‖

A
P′2

[a ∈ AX]

P1
t
 P′1 P1

X�
−→

P1 � P2
t
 P′1 � P2

P1
X
−→ P′1

P1 � P2
τ
−→ P2

P1
γ
−→ P′1

P1 � P2
γ
−→ P′1 � P2

[γ , X]

TIMED CSP = CLOSED TIMED ε-AUTOMATA 13

P
t
 P′ ∀ a ∈ A � P

a�−→

P \ A
t
 P′ \ A

P
a
−→ P′

P \ A
τ
−→ P′ \ A

[a ∈ A]
P
γ
−→ P′

P \ A
γ
−→ P′ \ A

[γ < A]

P
t
 P′

P[R]
t
 P′[R]

P
τ
−→ P′

P[R]
τ
−→ P′[R]

P
a
−→ P′

P[R]
b
−→ P′[R]

[a R b]

µ X � P
τ
−→ [(µ X � P)/X]P

DIV
τ
−→ DIV .

Note that there are no rules for TIMESTOP.
The reader may have noticed that two of our rules (dealing with termination and

hiding) incorporate negative premisses (P1
X�
−→ and P

a�
−→), which could poten-

tially yield an inconsistent definition. This does not occur, for the following rea-

son: notice that the
γ
−→ relation can be defined, independently of the

t
 relation,

as the smallest relation satisfying the relevant subset of rules, since no negative

premisses are involved in its definition. Once the
γ
−→ relation has been defined, the

t
 relation can then itself be defined. Since the negative premisses are all phrased

in terms of the previously defined (and fixed)
γ
−→ relation, they do not pose any

problem.
We now list a number of definitions and results concerning the operational se-

mantics which we will require later on.

For P ∈ TCSP, we define an execution of P to be a sequence e = P0
z1
7−→ P1

z2
7−→

. . .
zn
7−→ Pn, where P0 = P and each subsequence Pi

zi+1
7−→ Pi+1 of e is either a tran-

sition Pi
γ
−→ Pi+1 (with zi+1 = γ), or an evolution Pi

t
 Pi+1 (with zi+1 = t). In

addition, every such transition or evolution must be validly allowed by the opera-
tional inference rules listed above. The set of executions of P is written exec(P).

Given an execution e as above and a non-negative integer k 6 n, we define the

prefix e(k) of e to be the execution P0
z1
7−→ P1

z2
7−→ . . .

zk
7−→ Pk.

Given two Timed CSP terms P,Q ∈ TCSP, write P ∼ Q if P and Q are syntacti-
cally identical except possibly for the various values of the delays in their respective
subterms. Thus (WAIT 0.5 � STOP) ∼ (WAIT 0 � STOP), but (STOP � STOP) /
STOP and WAIT 0 / SKIP. ∼ is clearly an equivalence relation.

The next two propositions are easily established by structural induction.

P 1. τ-urgency: time cannot evolve while hidden events are on offer—

for any P ∈ TCSP, if P
τ
−→ then P �

 .

14 J. OUAKNINE, J. WORRELL

P 2. Persistency: for any P,Q ∈ TCSP, if P
t
 Q then P ∼ Q. More-

over, whenever P ∼ Q, then for any visible event a ∈ ΣX, P
a
−→ if and only if

Q
a
−→.

Note that we may have P ∼ Q and P
τ
−→ whereas Q

τ�
−→.

For e an execution, define its duration dur(e) to be the sum of the durations of its
evolutions.

For P ∈ TCSP, define the set of events immediately refused by P, ref(P) ⊆

Σ
X
time ∪ {•}, as follows: if P

τ
−→, then ref(P) =̂ {•}. Otherwise, for a ∈ ΣX, a ∈

ref(P)⇔ P
a�
−→, and time ∈ ref(P)⇔ P �

 .
We say that P diverges if P has an infinite evolution-less execution whose transi-

tions are exclusively τ’s.
Given an execution e of some program P, we produce an associated canonical

refusal trace with divergence rtd(e) (the largest possible given the execution e),
defined inductively on e as follows.

rtd(P) =̂

{
(〈∅〉, 0) if P diverges
(〈{0} × ref(P)〉,∞) otherwise

rtd(P
τ
−→^e) =̂ rtd(e)

rtd(P
a
−→^e) =̂ (〈{0} × ref(P), (0, a)〉^T, z) if rtd(e) = (T, z)

rtd(P
t
 ^e) =̂ (〈[0, t) × ref(P)〉y(T + t), z + t) if rtd(e) = (T, z) .

(The operator^ denotes sequence concatenation.)
The congruence theorem reads:

T 2. For any P ∈ TCSP, RR~P� = ↓rtd(exec(P)).

The proof techniques employed in [34, 23] to establish similar congruence results
can also be used to prove Theorem 2.

5. Digitization

Digitization techniques were first introduced in [15], and later extended in the con-
text of Timed CSP from traces to timed failures in [23, 24]. We review the main
points, adapted to the present framework.

Let t ∈ R+, and let 0 6 δ 6 1 be a real number. Decompose t into its integral
and fractional parts, thus: t = btc + fract(t). If fract(t) 6 δ, let [t]δ =̂ btc, otherwise
let [t]δ =̂ dte. The [·]δ operator therefore shifts the value of a real number t to the
preceding or following integer, depending on whether the fractional part of t is less
than or equal to δ or not.

We can extend [·]δ to timed traces by pointwise application to the timestamps of
the trace’s events. We then further extend [·]δ to sets of traces in the usual way.6

6 Digitizing refusals is also possible, but leads to complications due to the presence of point refusals.

TIMED CSP = CLOSED TIMED ε-AUTOMATA 15

D 2. A set P of timed traces is closed under digitization if, for any 0 6 δ 6
1, [P]δ ⊆ P.

A set S of timed traces is closed under inverse digitization if, whenever a trace s
is such that [s]δ ∈ S for all 0 6 δ 6 1, then s ∈ S .

We extend this definition to Timed CSP programs P and S by applying it toTR~P�
and TR~S �.

If P is a set of timed traces, we let Z(P) stand for the subset of integral-time
timed traces of P.

The central verification result is as follows:

T 3. Let P be a set of timed traces closed under digitization, and let S be
a set of timed traces closed under inverse digitization. Then P ⊆ S if and only if
Z(P) ⊆ Z(S).

The proof is straightforward [15].
As regards Timed CSP, we have:

P 3. Any Timed CSP program P ∈ TCSP is closed under digitization.

Proposition 3 follows directly from Lemma 1 (below) and Theorem 2.
The Digitization Lemma reads as follows:

L 1. Let P ∈ TCSP, and let e = P0
z1
7−→ P1

z2
7−→ . . .

zn
7−→ Pn ∈ exec(P). For

any 0 6 δ 6 1, there exists an execution [e]δ = P′0
z′1
7−→ P′1

z′2
7−→ . . .

z′n
7−→ P′n ∈

exec(P) with the following properties:
(1) The transitions and evolutions of e and [e]δ are in natural one-to-one corre-

spondence. More precisely, whenever Pi
zi+1
7−→ Pi+1 in e is a transition, then

so is P′i
z′i+1
7−→ P′i+1 in [e]δ, and moreover z′i+1 = zi+1. On the other hand,

whenever Pi
zi+1
7−→ Pi+1 in e is an evolution, then so is P′i

z′i+1
7−→ P′i+1 in [e]δ, with

|zi+1 − z′i+1| < 1.

(2) All evolutions in [e]δ have integral duration.

(3) P′0 = P0 = P; in addition, for all 0 6 i 6 n, P′i ∈ TCSP and P′i ∼ Pi.

(4) For any prefix e(k) of e, we have dur([e]δ(k)) = [dur(e(k))]δ.

(5) Lastly, for any prefix e(k) of e, the [·]δ operator is a function of the prefix
only: [e(k)]δ = [e]δ(k).

The proof proceeds by structural induction on P. The details are carefully laid
out in [23], in the context of standard Timed CSP. It is straightforward to extend
that proof to handle signals (dealt with the same way as τ-events) as well as the
process RANDOM.

We also record the following result, which will be useful later on:

A detailed exposition of the application of digitization to timed failures can be found in the references
mentioned above. However, since the primary focus of the current paper lies elsewhere, we shall be
content with using somewhat simpler (if slightly more ad-hoc) techniques when it comes to refusals.

16 J. OUAKNINE, J. WORRELL

P 4. Let P ∈ TCSP, and let e = P0
z1
7−→ . . .

zn
7−→ Pn be an execution of

P. Let [e]fract(dur(e)) = P′0
z′1
7−→ . . .

z′n
7−→ P′n be the digitization of e by the fractional

part of its duration. Then ref(Pn) = ref(P′n).

P. Let e be as above, and suppose that ref(Pn) , ref(P′n). Since Pn ∼ P′n, by

Proposition 2, either Pn
τ�
−→ and P′n

τ
−→, or vice-versa.

Note that if Pn
τ
−→ R (for some R ∈ TCSP), then by applying the [·]fract(dur(e)) op-

erator to the extended execution e^(
τ
−→ R), we immediately conclude that P′n

τ
−→

as well.
Thus suppose that Pn

τ�
−→ and P′n

τ
−→. Define a syntactic function !−1 : TCSP−→

TCSP which, given a term Q, returns a term !−1(Q) that is identical to Q except

that all signalling subterms a
!
−→ . . . of Q are simply replaced by a −→ . . . in

!−1(Q). !−1 also replaces subterms TIMESTOP by STOP. This function extends
to executions in the obvious way. One easily shows that !−1(Q) �

 if and only if

!−1(Q)
τ
−→. Observe moreover that, for any visible or hidden event γ ∈ ΣX∪ {τ},

Q
γ
−→ if and only if !−1(Q)

γ
−→.

Consider the execution !−1(e) of !−1(P). Since !−1(Pn)
τ�
−→, there exists t > 0

such that !−1(Pn)
t
 R, for some R ∈ TCSP. Digitizing !−1(e) extended by this

last evolution, we get [!−1(e)^(
t
 R)]fract(dur(e)) = !−1(P′0

z′1
7−→ . . .

z′n
7−→ P′n)

t′
 R′,

for some t′ > 0 and R′ ∈ TCSP. Proposition 1 therefore implies that !−1(P′n)
τ�
−→,

from which we derive the contradiction P′n
τ�−→, as required. �

D 3. Let P ∈ TCSP be a Timed CSP program. We say that P is finite-state
if the collection of ∼-equivalence classes of programs reachable from P is finite.

In other words, P is finite-state if, according to the operational semantics, it can
give rise to only finitely many ∼-distinct other programs.

A very useful property of finite-state programs is that they have finite integral
labelled transition systems, making them amenable to automated analysis through
digitization and model checking.

P 5. Let P ∈ TCSP be a finite-state program. Let P′ be the program
obtained from P by replacing every occurrence of RANDOM in P by the term (µ X �

SKIP
0
B WAIT 1 � X). Then the set of programs reachable from P′ through integral-

time executions (i.e., executions all of whose evolutions have integral durations) is
finite.

(The converse also holds.)

Note that P and P′ have the same integral denotational value: RZ~P� = RZ~P′�,

since RZ~RANDOM� = RZ~µ X � SKIP
0
B WAIT 1 � X�.

P. Follows directly from Lemma 1. �

TIMED CSP = CLOSED TIMED ε-AUTOMATA 17

6. Specifications as refinements, and verification

We consider the questions of expressing specifications on processes as refinements
(reverse inclusion of sets of behaviours), and of verifying such specifications. We
are interested both in trace refinements (capturing safety properties: ‘nothing bad
happens’) and refusal trace refinements (capturing both safety and liveness: ‘good
things are not prevented from happening’).

Note that liveness is for us a branching-time concept, different from Alpern and
Schneider’s related linear-time definition [1]. The latter can be paraphrased as
‘something good must eventually happen’: messages are eventually delivered, the
printer is eventually online, etc. In our case, examples of liveness include ‘the eject
button is always enabled once the aircraft is in the air’, ‘the network is deadlock-
free (or timestop-free)’, ‘the nuclear warheads are permanently launch-ready’, etc.
Observe that there is no requirement that the live behaviour in question actually
ever take place; indeed, the security provided by, say, a nuclear deterrent, lies
precisely in the fact that it need not ever be used.

Real-time specifications are usually expressed in some temporal logic, such as
MTL (linear-time) or TCTL (branching-time) [6]. The question of delineating the
exact expressive power of refinement with respect to such logics is studied in [19]
in the untimed case and shown to be a subtle problem. The addition of time nat-
urally compounds the difficulties. A comprehensive treatment of the question is
therefore a challenging topic for further work; nonetheless, we show here that
many, if not most, interesting real-time properties can indeed be captured as Timed
CSP refinements.

An implementation P ∈ TCSP meets a specification S ∈ TCSP if all the be-
haviours of P are also behaviours of S . This leads to four possible definitions
of satisfaction, according to whether the behaviours considered are timed refusal
traces or timed traces, and according to whether time is dense or discrete (integral):

P �R
R

S ⇔ RR~P� ⊆ RR~S �

P �R
Z

S ⇔ RZ~P� ⊆ RZ~S �

P �T
R

S ⇔ TR~P� ⊆ TR~S �

P �T
Z

S ⇔ TZ~P� ⊆ TZ~S � .

We present below three paradigmatic linear-time safety specifications (safe reach-
ability, bounded invariance, and bounded response), and briefly describe how they
can be expressed as Timed CSP processes. We also present two paradigmatic
branching-time liveness specifications (constant availability and timestop-freedom)
and likewise show how they are captured by Timed CSP processes.

Three of the specifications are given their corresponding MTL formulas as names,
but no knowledge of MTL is required or assumed. For simplicity, we have ignored
the possibility of global successful termination (communication of X’s).
◦ Safe reachability (� ¬a): ‘The event a is never performed.’ According to

[11], this is the most common specification on timed systems, since “most

18 J. OUAKNINE, J. WORRELL

properties [on timed systems] can be encoded as exceptions [the event a in
this case]”. This is a trace specification which is captured by the process
RUNΣ−{a}. Here

RUNB = �{b −→ RUNB | b ∈ B}

can perform any trace containing only events in B.

◦ Constant availability (AVAIL{a}): ‘The event a is never refused.’ The process
AVAIL{a} captures this refusal trace liveness specification. Here

AVAILB =�{b −→ AVAILB | b ∈ B} �

RANDOM � (u{c
!
−→ AVAILB | c ∈ Σ} u TIMESTOP)

is a livelock-free process which can perform any trace and refuse time as
well as any set of events outside of B.

◦ Timestop-freedom (TSF): ‘The process never exhibits timestops.’ In other
words, the process never reaches a point where the whole of ΣXtime is refused.
The process

TSF = RANDOM � u{a
!
−→ TSF | a ∈ Σ}

captures this refusal trace liveness specification. TSF is the most nondeter-
ministic process which has no timestops or livelocks.

◦ Bounded invariance (� (a ⇒ � I¬b)): ‘Whenever the event a occurs, the
event b is prevented from occurring during the time interval I, as measured
from the time of occurrence of a.’ Here I = (k, k′) is an open interval of
length at least two with integral (or infinite) endpoints. Bounded invariance
and bounded response (next) are listed in [15] as the two specifications most
commonly encountered in practice; note that safe reachability is essentially
a special case of bounded invariance.

We capture this trace specification by a process containing 2d k
k′−k e+2 parallel

processes. All but one of these are ‘alarm clocks’: whenever an a occurs, two
alarm clocks are set up, one to ring in k time units, indicating that b’s should
be disabled, the other to ring in k′ time units, to end the prohibition on b’s.
Now should a second a occur within k′ − k time units (a single clock is used
to keep track of this time period), the second of the two alarm clocks just
described is simply reset to ring k′ time units in the future. A single discrete
controller easily manages all these clocks. Note that the ‘alarm rings’ are
internal, i.e., globally hidden.

◦ (Strong) bounded response (� (a⇒ ♦Jb)): ‘Whenever the event a occurs, the
event b must occur during the time interval J, as measured from the time of
occurrence of a.’ Here J = [k, k′] is a closed interval with integral endpoints
and k < k′ or k = k′ = 0.
In general the most nondeterministic process satisfying a bounded response
property will be infinite-state (require infinitely many clocks); however we
can define a finite-state process which captures the integral behaviours of this

TIMED CSP = CLOSED TIMED ε-AUTOMATA 19

trace specification. Such a process consists of a discrete controller along with
k′ + 1 clocks. Again, for a given occurrence of the event a, an alarm clock is
set to ring after k time units have passed. This indicates the beginning of the
period during which the event b must occur. Having rung, the clock is reset
to ring k′ − k time units later, at the very end of the period in question. b’s
are constantly on offer, and as soon as one occurs, the monitoring of b’s is
disengaged. Otherwise, a b is signalled (and thus must happen on the spot)
when the second alarm goes off. The fact that this process only captures
the integral behaviours of the corresponding bounded response property is
sufficient for verification purposes, thanks to digitization:

P 6. The specifications of safe reachability, bounded invariance, and
bounded response are closed under inverse digitization.

We refer the reader to [15] for the proof.

T 4. Let P ∈ TCSP be a Timed CSP process. Then

P �T
R

� ¬a⇔ P �T
Z

� ¬a

P �R
R

AVAIL{a} ⇔ P �R
Z

AVAIL{a}

P �R
R

TSF ⇔ P �R
Z

TSF

P �T
R

� (a⇒ � I¬b)⇔ P �T
Z

� (a⇒ � I¬b)

P �T
R

� (a⇒ ♦Jb)⇔ P �T
Z

� (a⇒ ♦Jb) .

In other words, for each of the specifications S considered, P satisfies S over
dense time if and only if P satisfies S over discrete time.

Note that the assertions on the right-hand side are all discrete and finite-state.
They can be verified (under certain conditions) on the model checker FDR via
encoding into (untimed) CSP; see [23, 24] for details.

P. The cases of safe reachability, bounded invariance, and bounded response
follow directly from Propositions 6 and 3 and Theorem 3. The remaining cases
follow directly from Theorem 2 and Proposition 4. �

7. Closed timed ε-automata

We define the class of closed timed ε-automata. These are essentially the timed
safety automata of [16] with ε-transitions (silent transitions) [3, 8] and exclusively
closed invariant and enabling clock constraints.

An example of a closed constraint is x 6 3, where x is a clock, as opposed to
x < 3. Since any timed automaton can be infinitesimally approximated by one with
closed constraints [26], this restriction appears to be rather benign in practice, an
opinion shared by several researchers (see, e.g., [7]).

20 J. OUAKNINE, J. WORRELL

As we shall see, this class of timed automata corresponds to finite-state Timed
CSP processes. To simplify our exposition, we assume that timed automata cannot
communicate X.

Let C be a finite set of clocks, denoted x, y, x1, x2, etc. The grammar

σ ::= true | x 6 c | x > c | x1 + c1 6 x2 + c2 | σ1 ∧ σ2 | σ1 ∨ σ2

defines the set FC of clock constraints over C. (Here c, c1, c2 are non-negative
integers.) Note that all constraints are closed: interpreted over the non-negative
reals, they always define closed subsets in the usual topology.

D 4. A closed timed ε-automaton is a tuple (Σ, S , S 0,C, E, inv), where

◦ Σ is a finite alphabet with ε < Σ; we let Σε =̂ Σ ∪ {ε},

◦ S is a finite set of locations,

◦ S 0 ⊆ S is a set of start locations,

◦ C is a finite set of clocks,

◦ E ⊆ S ×S ×Σε×P(C)×FC is a finite set of transitions; the components of a
transition are, in order: the source location, the target location, the labelling
event, the set of clocks to reset, and the enabling clock constraint.

◦ inv : S −→ FC specifies location invariant constraints.

ε is a special event, invisible to the outside world, which differs from τ in that
it is not subject to urgency. In other words, the availability of an ε-transition does
not block the passage of time.

The class of closed timed ε-automata is denoted CTA.
We must now define a suitable semantics for timed automata. Although existing

semantics are based on timed traces, we desire a timed refusal trace semantics both
to facilitate comparison with Timed CSP and to be able to express basic safety and
liveness specifications in a natural and consistent way.

Note that since the semantics of Timed CSP is based on finite downward-closed
behaviours, we must give up Alur and Dill’s Büchi acceptance conditions [4], and
instead consider every location to be accepting.

Except where noted otherwise, the remainder of this discussion considers a fixed
closed timed ε-automaton A = (Σ, S , S 0,C, E, inv) ∈ CTA. We re-use and occa-
sionally overload the notation and terminology of Section 4 in a manner which
should not cause any problems.

A clock interpretation is a function ν : C −→ R+. Clock interpretations allow
one to assign truth values to clock constraints in the obvious way; we write ν � σ
to indicate that the clock interpretation ν makes the clock constraint σ true. For ν :
C −→ R+ a clock interpretation and t ∈ R+, we let ν + t be the clock interpretation
such that (ν + t)(x) = ν(x) + t for all x ∈ C. For D ⊆ C a set of clocks to be reset,
we let [D := 0]ν be the clock interpretation which evaluates clocks in D to 0 and
agrees with ν on clocks outside of D.

A state of A is a pair (s, ν), with s ∈ S a location and ν a clock interpretation.

TIMED CSP = CLOSED TIMED ε-AUTOMATA 21

An operational semantics for closed timed ε-automata can be given using the
following two operational rules. Here t ∈ R+ and γ ∈ Σε.

∀(0 6 δ 6 t) � ν + δ � inv(s)

(s, ν)
t
 (s, ν + t)

(s, s′, γ,D, σ) ∈ E ν � σ ∧ inv(s)

(s, ν)
γ
−→ (s′, [D := 0]ν) .

Note that this operational semantics allows transitions into locations where the
invariant does not hold; however, when this occurs, no further progress is allowed
and a timestop immediately ensues.

Since ε-transitions are not urgent, we consider that their mere availability does
not introduce instability, except when the invariant constraint blocks the passage
of time; in that case the enabled ε-transitions de facto become urgent (much like
τ-transitions in Timed CSP processes) and no stable refusal can be recorded.

Whether or not the limit of the invariant constraint was reached, we also consider
a timed automaton to have been unstable at the instant immediately preceding the
actual firing of an ε-transition.

To justify these decisions, consider the timed automaton A1 below.7

A1 : //ONMLHIJKx 6 1
ε //ONMLHIJK a //ONMLHIJK .

Assuming that the ε-transition has not yet been taken when time 1 is reached, the
invariant constraint blocks further progress of time. Thus the automaton reaches
a state from which time cannot pass and no visible transitions can be immediately
taken. However, it would clearly be wrong to record a timestop, since the silent
ε-transition is forced to occur on the spot, transferring control to a timestop-free
location. Note incidentally that recording a timestop at time 1 would also violate
clause (3) of the definition of refusal traces (cf. Section 3), to the effect that when
time is refused, time stops, at least until a visible event occurs. For this reason, we
simply consider that A1 in its start location is unstable at time 1.

Suppose now that the ε-transition is taken at time 0.5, immediately followed
(also at time 0.5) by the a-transition. If we failed to consider that the automaton
was unstable at time 0.5 immediately prior to the firing of the ε-transition, we
would logically have to conclude that a was stably refusable at time 0.5, yet record
its subsequent occurrence immediately afterwards. This would violate clause (2)
of the definition of refusal traces, and accordingly justifies our decision to consider
any timed automaton to have been in an unstable state immediately prior to the
actual firing of an ε-transition.

In line with these modelling assumptions, we postulate that a timed automaton
able to perform an infinite sequence of ε-transitions without letting time elapse is
in a (potentially) divergent state.

7 Throughout this paper, we use the following conventions: Start locations are depicted with an
incoming arrow not originating from any other location. Enabling clock constraints are decorated
with a question mark (?), and invariant constraints are inscribed inside states. The rest of the notation
is self-explanatory.

22 J. OUAKNINE, J. WORRELL

An execution of the automaton A is a finite sequence e = (s0, ν0)
z1
7−→ (s1, ν1)

z2
7−→

. . .
zn
7−→ (sn, νn), where s0 ∈ S 0, ν0 = 0 (the clock interpretation taking each clock to

0), and each subsequence (si, νi)
zi+1
7−→ (si+1, νi+1) of e is either a transition (si, νi)

γ
−→

(si+1, νi+1) (with zi+1 = γ), or an evolution (si, νi)
t
 (si+1, νi+1) (with zi+1 =

t). In addition, every such transition or evolution must be validly allowed by the
two operational inference rules listed above. The set of executions of A is written
exec(A).

Given a state (s, ν), let tref(s, ν) ⊆ R+ × (ΣXtime ∪ {•}) be defined as follows: for

any t > 0, if (s, ν + t) �
 and (s, ν + t)

ε
−→, then (t, •) ∈ tref(s, ν). Otherwise,

(t, a) ∈ tref(s, ν) if (s, ν + t)
a�
−→, and (t, time) ∈ tref(s, ν) if (s, ν + t) �

 . (Here
and below, a ∈ Σ stands for a visible event.) For I ⊆ R+ a time interval, let
tref(s, ν) � I =̂ tref(s, ν) ∩ (I × (ΣXtime ∪ {•})).

We say that (s, ν) diverges if (s, ν) has an infinite evolution-less execution whose
transitions are exclusively ε’s.

Given an execution e of A, we produce an associated canonical refusal trace with
divergence rtd(e) (the largest possible given the execution e), defined inductively
on e as follows.

rtd((s, ν)) =̂

{
(〈∅〉, 0) if P diverges
(〈tref(s, ν) � {0}〉,∞) otherwise

rtd((s, ν)
ε
−→^e) =̂ rtd(e)

rtd((s, ν)
a
−→^e) =̂ (〈tref(s, ν) � {0}, (0, a)〉^T, z) if rtd(e) = (T, z)

rtd((s, ν)
t
 ^e) =̂ (〈tref(s, ν) � [0, t)〉y(T + t), z + t) if rtd(e) = (T, z) .

We can thus derive the set of (dense-time) rtd’s associated with a timed automa-
ton A: RR~A� =̂ ↓rtd(exec(P)).

The sets RZ~A�, TR~A�, and TZ~A�, representing respectively the integral-time
rtd’s of A, the dense-time traces of A, and the integral-time traces of A are all
derived from RR~A� in the same manner as for Timed CSP processes.

Let us now consider some examples. The following two automata enable the
event a only after one time unit has elapsed. We give the maximal refusals for a
over the interval [0, 2], assuming that a never occurs.

A2 : //ONMLHIJK x>1? a
//ONMLHIJK 〈[0, 1) × {a}〉

A3 : //ONMLHIJKx 6 1
x=1? ε //ONMLHIJK a //ONMLHIJK 〈[0, 1) × {a}〉 .

Note that a cannot be refused at time 1. Both A2 and A3 are rtd-equivalent to
WAIT 1 � a.

In the next two examples, a is disabled after one time unit has passed. Again
assuming that no a is communicated, we give the maximal a-refusals of these timed
automata over the interval [0, 2].

TIMED CSP = CLOSED TIMED ε-AUTOMATA 23

A4 : //ONMLHIJK x61? a
//ONMLHIJK 〈(1, 2] × {a}〉

A5 : //ONMLHIJKx 6 1

a
++

x=1? ε
33
ONMLHIJK 〈[1, 2] × {a}〉 .

Note here that, while A5 is clearly rtd-equivalent to a
1
B STOP, no Timed CSP

program can possibly be strictly rtd-equivalent to A4. The reason is that, as dis-
cussed in Section 3, maximal refusals of Timed CSP processes always consist of
finite unions of refusal tokens (left-closed right-open sets) together with finitely
many point refusals. Clearly, no non-trivial left-open set can have this shape. Nev-

ertheless, A4 and a
1
B STOP are rtd-equivalent almost everywhere, as defined be-

low:

D 5. Let A, P ∈ RTD be sets of rtd’s. We say that A and P are rtd-
equivalent almost everywhere if both the following conditions hold:

(1) For every rtd (T, z) ∈ A there exists an rtd (T ′, z) ∈ P with the same diver-
gence value such that T and T ′ have the same underlying timed trace, and
moreover the respective refusals of T and T ′ differ in at most finitely many
points.

(2) Vice-versa.
In the case A and P are timed automata and/or Timed CSP programs, this defini-

tion applies to RR~A� and RR~P�.

Note that rtd-equivalence almost everywhere implies timed trace equivalence.
In the next four examples, we consider rtd’s of timed automata in which the only

observed communication is that of b at time 0. Again, we give maximal refusals
for a over the interval [0, 2].

A6 : //ONMLHIJKx = 0
b

//ONMLHIJK a
//ONMLHIJK 〈{(0, a)}, (0, b), ∅〉

A7 : //ONMLHIJKx = 0

b
++

ε
33
ONMLHIJK a //ONMLHIJK 〈{(0, •)}, (0, b), ∅〉

A8 : //ONMLHIJK x=0? b
//ONMLHIJK a

//ONMLHIJK 〈{(0, a)}, (0, b), ∅〉

A9 : //ONMLHIJK x=0? b
++

ε
33
ONMLHIJK a

//ONMLHIJK 〈{(0, a)}, (0, b), ∅〉 .

Here A6 is rtd-equivalent to the signalling process b
!
−→ a and A7 is rtd-equiva-

lent to ((b −→ a) � (c −→ a)) \ c. In the case of A7, note that b is necessar-
ily communicated from an unstable state because of the invariant constraint and
the availability of an ε-transition. A8 and A9, on the other hand, are not unsta-
ble prior to communicating b; however, since b is only enabled for an instant,
any Timed CSP process mimicking their behaviours will necessarily be unstable.

24 J. OUAKNINE, J. WORRELL

Thus we see that A8 is rtd-equivalent almost everywhere to (b −→ a)
0
B STOP,

whereas A9 is rtd-equivalent almost everywhere to (b −→ a)
0
B (RANDOM � a).

We now give the following standard results and constructions:

P 7. Closed timed ε-automata are closed under digitization. In other
words, for A ∈ CTA and 0 6 δ 6 1, [TR~A�]δ ⊆ TR~A�.

A proof can be extracted from the results presented in [15].
Following [2, 4], we now review the definition of clock regions and the construc-

tion of region automata. Let A = (Σ, S , S 0,C, E, inv) be a timed automaton. Let k
be the largest integer constant appearing in any of the enabling and invariant clock
constraints of A. Define an equivalence relation ≈ on the set of clock interpretations
as follows: ν ≈ ν′ if

(1) For all clocks x ∈ C, either bν(x)c = bν′(x)c, or both ν(x) and ν′(x) are greater
than k.

(2) For all x, y ∈ C with ν(x), ν(y) 6 k, fract(ν(x)) 6 fract(ν(y)) ⇔ fract(ν′(x)) 6
fract(ν′(y)).

(3) For all x ∈ C with ν(x) 6 k, fract(ν(x)) = 0⇔ fract(ν′(x)) = 0.

It is easy to check that ≈ partitions the set of clock interpretations into finitely many
equivalence classes, termed clock regions. Two clock interpretations lie in different
equivalence classes if either they differ in the integral parts of the readings of some
clock (and one of these numbers is at most k), or if they differ in the ordering of
the fractional parts of those clocks having values at most k.

We define a partial order 4 on clock regions as follows: r 4 r′ if, for any ν ∈ r,
there exists t ∈ R+ such that ν + t ∈ r′.

The (untimed) region ε-automaton RA(A) of A is defined as follows. Its alphabet
Σ is the same as that of A; the automaton is also able to perform ε-moves. The
states of RA(A) consist of all pairs (s, r), where s ∈ S is a location of A and r is a
clock region of A. The start states of RA(A) consist of all states of the form (s0, {0}),

with s0 ∈ S 0. RA(A) has a transition (s, r)
γ
−→ (s′, r′) provided that, for every clock

interpretation ν ∈ r there exist t ∈ R+ and some clock interpretation ν′ ∈ r′ such

that (s, ν)
t
 (s, ν + t)

γ
−→ (s′, ν′) is valid for A.

The relationship between A and RA(A) is given by the following:

P 8. Every execution of A gives rise to a corresponding unique path in
RA(A), and for every path in RA(A) one can find an execution of A which corre-
sponds to it.

We refer the reader to [4] for the proof.
For r a region, let r stand for the closure of r in the Euclidean topology. r thus

consists of r together with all the regions of lower dimension bounding r. Because
closed timed ε-automata have exclusively closed invariant and enabling clock con-
straints, we easily establish the following:

TIMED CSP = CLOSED TIMED ε-AUTOMATA 25

P 9. Let e = (s0, ν0)
z1
7−→ . . .

zn
7−→ (sn, νn) ∈ exec(A) be an execution of

a closed timed ε-automaton A. Consider a prospective execution e′ = (s0, ν
′
0)

z′1
7−→

. . .
z′n
7−→ (sn, ν

′
n) which is identical to e except possibly for the durations of the

various evolutions in e. Assume that the clock interpretations of e′ are consistent
with its evolutions, and that, for all 0 6 i 6 n, whenever νi ∈ r then ν′i ∈ r. Then
e′ ∈ exec(A).

Lastly, we record the following observation:

P 10. Let A ∈ CTA. Then for any states (s, ν), (s, ν′) of A with ν ≈ ν′,

(s, ν) if and only if (s, ν′) , and for any γ ∈ Σε, (s, ν)
γ
−→ if and only if

(s, ν′)
γ
−→.

8. Timed automata as Timed CSP processes

Given any closed timed ε-automaton A ∈ CTA, we construct two corresponding
finite-state Timed CSP processes PA

R
and PA

Z
, capturing respectively the dense-time

and integral-time behaviours of A. Our constructions use some ideas introduced in
[10].

We begin by giving the construction of PA
R

. Let A = (Σ, S , S 0,C, E, inv) be an au-
tomaton with m clocks x1, x2, . . . , xm ∈ C. We build PA

R
as the parallel composition

of m+2 processes over alphabet Σ∪{X, ε}: a network CLOCKS of m processes for
the clocks, a process REGIONS to mimic the clock regions graph, and a process
LOCATIONS which switches between discrete states corresponding to locations of
A.

Taken together, LOCATIONS and REGIONS simulate the region automaton
RA(A), whereas the CLOCKS network provides exact timing information, ensuring
that the process remains in each region exactly as long as it is supposed to.

One might think that the REGIONS process is superfluous, given the network
CLOCKS of accurate clocks. Unfortunately, the phenomenon of point nondeter-
minism introduces certain difficulties. Consider, for instance, the timed automaton
A10 equipped with two clocks x and y:

A10 : //ONMLHIJKx 6 1
y61? a

//ONMLHIJK .
A10 cannot exhibit a timestop: if the event a has not occurred within one time unit,
then the invariant constraint forces a to happen at time 1. Since x and y both start
with value 0, they both reach time 1 together, ensuring that the a-transition is never
disabled.

One might attempt to represent the timed automaton A10 with the help of two
clocked processes, one representing the invariant constraint, which does nothing
for one time unit and then blocks the passage of time until a visible action occurs,
and another which offers the event a for one time unit, then withdraws the offer:

P = (STOP
1
B TIMESTOP) � (a

1
B STOP).

26 J. OUAKNINE, J. WORRELL

Unfortunately, P can exhibit behaviours that are impossible for A10: at time 1,
P’s right-hand component may choose to make a τ-transition into STOP, which
then inevitably creates a timestop. Thus even though the left-hand and right-hand
components are essentially deterministic8 processes running at exactly the same
rate, their combination exhibits nondeterminism as a result of the infinitesimal (in
fact, instantaneous) uncertainty of the clocks at time 1. If, however, we use an un-
derlying regions construction which, through hidden synchronizations, effectively
straightjackets both clocks into a single one, then the resulting process (equivalent

to a
1
B a

!
−→ STOP) precisely corresponds to the timed automaton A10.

We model each clock region r as a process REGr. REGr is at any time will-
ing to accept, on some internal (i.e., globally hidden) channel, the event query.r
from LOCATIONS; upon entering a new location, LOCATIONS can thus always
check whether or not the invariant constraint is satisfied. Now suppose that r ′ is
the region immediately following r temporally. The region-process REGr is at any
time willing to accept, again on some internal channel, the command (i.e., event)
switch.r′, which transfers control to the region-process REGr′, as well as the event
preswitch.r′, which announces that such a move is imminent. The events switch.r ′

and preswitch.r′ are initiated by CLOCKS, and also require the synchronized par-
ticipation of LOCATIONS, as a means to enforce the location invariant constraints.
A region-process is also at any time willing to accept any one of the commands
reset.xi, again on some internal channel, and subsequently transfer control to the
process associated with the region reached by resetting xi. Lastly, for any γ ∈ Σε,
the region-process REGr is always willing to accept the ‘r-tagged event’ r.γ. Al-
though this latter communication is external (not hidden) for γ , ε, a subsequent
global renaming operation restores all such communications to their nominal val-
ues (the simple event γ in this case). The composite clock regions process is de-
noted REGIONS.

Recall the constant k, which is the largest integer appearing in any of the en-
abling and invariant clock constraints of A. We model each clock xi as a process
CLxi. This process can be in any of the 2k+2 following discrete states (represented
as disjoint subsets partitioning R+): {0}, (0, 1), {1}, (1, 2), . . . , (k − 1, k), {k}, (k,∞).
CLxi switches from discrete state to discrete state by means of the interrupt opera-
tor; it spends unit-duration periods in bounded ‘interval’ states, and zero-duration
periods in ‘singleton’ states. While in a given discrete state, CLxi is always will-
ing to synchronize on events of the form preswitch.r and switch.r, where r is a
region compatible with the current discrete state of CLxi. Immediately prior to en-
tering a new discrete state, CLxi signals a choice of all events of the form switch.r′,
where r′ is any region compatible with the new discrete state. We stress that one
of these events (or a reset, see below) must eventually be accepted, otherwise a
timestop ensues. (Events of the form switch.r, where r is a region compatible with
the discrete state of CLxi, are still allowed, but do not disable the urgent offering
of the switch.r′ events.) Note that since all clocks, as well as the REGr process,

8 The study of determinism and nondeterminism in Timed CSP can be an intricate and subtle affair,
with the present situation showing only the tip of the iceberg; we refer the reader to [30] for more
details on the matter.

TIMED CSP = CLOSED TIMED ε-AUTOMATA 27

must synchronize on switch events, in particular all the clocks for which entering
region r′ would correspond to a change of discrete state must agree to the move
switch.r′; this is the ‘straightjacket’ mechanism which keeps all the clocks in the
right region at all times. While in this urgent configuration, CLxi is also willing
to communicate matching preswitch.r′ events any number of times. These events
need not occur, but if one does, all the clocks for which entering region r ′ would
correspond to a change of discrete state must again agree to it. Lastly, CLx i is at
any time—even while offering a switch—willing to accept the command reset.x i,
which prompts the jump to state {0}. The parallel composition of all the CLx i’s is
denoted CLOCKS.

Any clock constraint σ ∈ FC can be identified with a subset {r | r � σ} of clock
regions. Whenever the timed automaton A offers a visible event a under a particular
clock interpretation ν, the process PA

R
is meant to offer a corresponding region-

tagged event r.a, where r is the region corresponding to ν. Recall that this transition
is subsequently renamed to a at the outermost level. As we shall see, ε-transitions
are handled slightly differently.

The process LOCATIONS mimics the transfer of control within the various lo-
cations of A. Initially, LOCATIONS nondeterministically begins in one of the start
locations in S 0. Upon entering a new location s ∈ S , the first thing LOCATIONS
does is signal to REGIONS a choice of events of the form query.r, where r ∈ inv(s).
If REGIONS cannot synchronize on any of these events, then a location has been
reached for which the invariant constraint is violated, and a timestop automati-
cally ensues. Otherwise, while in location s, LOCATIONS is always willing to
accept events of the form switch.r, as long as r ∈ inv(s). For every transition
e = (s, s′, a,D, σ) with a ∈ Σ a visible event, LOCATIONS, while in location s,
continuously offers a choice of region-tagged events of the form r.a, where r ∈ σ.
If any of these transitions is accepted, then LOCATIONS immediately proceeds to
signal the events reset.x, for every clock x ∈ D to be reset. Finally, it enters the
new location s′, and the cycle begins anew.

Note that LOCATIONS cannot handle ε-transitions in the same way as visible
events. Indeed, since ε’s are meant to be globally hidden, anytime an ε-transition
is offered it blocks the passage of time. The solution is therefore to delay offers
of ε-transitions by some nondeterministically chosen amount of time, which is
achieved by writing . . . � (RANDOM � r.ε −→ . . .) � . . . in place of . . . �
(r.ε −→ . . .) � However, we still have to ensure the availability of valid
ε-transitions whenever the alternative is a timestop (brought on by the imminent
expiration of the current invariant constraint). To this end, whenever LOCATIONS
reaches the limit of inv(s), we interrupt the RANDOM delaying and offer the ε-
transition immediately. This can be achieved as follows:

. . . �
(
(RANDOM � r.ε −→ . . .) � �{preswitch.r′ −→ r.ε −→ . . . | r′ < inv(s)}

)

�

28 J. OUAKNINE, J. WORRELL

LOCATIONS, REGIONS, and CLOCKS are combined in parallel and required to
synchronize on all appropriate events. Events on internal channels and ε-events are
then hidden. Finally, a global renaming operator converts all communications of
the form r.a back to their nominal Σ-value. The resulting process is denoted PA

R
. It

should be clear from our description that PA
R

is finite-state (Definition 3).
We note that our modelling assumptions for Timed CSP entail an infinitesimal

mismatch between the clock valuations corresponding to the continuous states of
CLOCKS and the clock regions of REGIONS. For example, a given region r may
correspond to clock x being strictly greater than 1, whereas REGIONS will be able
to enter the state-region r when x = 1. (We observed a similar phenomenon when
analyzing the timed automaton A4 in the previous section.) In general, for any
region r, if the REGIONS process is in state-region r, then the actual clock inter-
pretation corresponding to the current continuous state of CLOCKS lies somewhere
in r.

Thanks to Propositions 8 and 9, it follows that the timed automaton A and the
Timed CSP program PA

R
have exactly the same timed traces. Note that this provides

an alternate proof of Proposition 7 (to the effect that closed timed ε-automata are
closed under digitization), in view of Proposition 3.

Since ε-transitions of A become τ-transitions in PA
R

, whenever A potentially di-
verges then so does PA

R
. On the other hand, if A is livelock-free then it is not

difficult to see that all of PA
R

’s internal chatter is of bounded length. Thus A and PA
R

have exactly the same livelock behaviours.
Finally, if A is livelock-free, then our construction together with Propositions 2

and 10 imply that A and PA
R

have exactly the same refusals, except for punctual
instances of: (i) infinitesimal regions mismatch, as described earlier, and (ii) insta-
bility in PA

R
due to the presence of τ-transitions. Since there can only be a finite

number of such occurrences in any bounded non-livelocking computation, we have
the following result:

T 5. Let A ∈ CTA be a closed timed ε-automaton. Then PA
R
∈ TCSP is a

finite-state Timed CSP program which is rtd-equivalent almost everywhere to A.
In particular, PA

R
and A have the same timed traces: TR~PA

R
� = TR~A�.

We immediately deduce the following:

C 1. Let A ∈ CTA, and let S be any safety specification (set of allowable
timed traces). Then A �T

R
S if and only if PA

R
�T
R

S .

The relationship between A and PA
R

is arguably even stronger than Theorem 5
implies, as the following result suggests:

T 6. Let A ∈ CTA, and let S ⊆ RTD be either of the two liveness speci-
fications considered in Section 6: timestop-freedom (TSF) or constant availability
of the event a (AVAIL{a}). Then the following are equivalent:

(1) A satisfies S over dense time: A �R
R

S .

(2) PA
R

satisfies S over dense time: PA
R
�R
R

S .

TIMED CSP = CLOSED TIMED ε-AUTOMATA 29

(3) PA
R

satisfies S over discrete time: PA
R
�R
Z

S .

We recall that the last of these is a discrete check which can be performed (under
certain conditions) on the model checker FDR.

P. The equivalence of (2) and (3) was established in Theorem 4. (1) implies
(2) since the immediate refusals of any stable configuration (s, r, ν) of PA

R
(with s a

location of A, r a clock region, and ν a clock interpretation) are entirely determined
by the pair (s, r) alone. It thus remains to show that (2) implies (1).

We tackle the case S = AVAIL{a}, timestop-freedom being handled in an entirely
similar way. Suppose that PA

R
never records a refusal of a, yet that on some exe-

cution, A reaches a state (s, ν) which immediately and stably refuses a. Stability

implies that either (i) (s, ν)
ε�
−→, or (ii) ν has not yet reached the limit of inv(s).

Let r be the region containing ν. PA
R

can clearly reach the configuration (s, r, ν),
from which a is not possible. Since PA

R
nonetheless fails to record a refusal of

a, PA
R

in configuration (s, r, ν) must always have some τ-transitions pending. We
may assume that none of these τ-transitions originate from an ε-transition: indeed,
either (i) there are none available, or (ii) since ν has not yet reached the limit of
inv(s), we can invoke our nondeterministic delaying construction to conclude that
ε-transitions may not be immediately available. All enabled τ-transitions therefore
correspond to chatter on PA

R
’s internal channels, and must eventually lead to a stable

configuration (s, r′, ν). Note that the location s and clock valuation ν cannot have
changed since no visible or ε-transitions were taken. The stability of configuration
(s, r′, ν) entails that the pair (s, r′) cannot refuse a (otherwise PA

R
could record this

refusal). Since enabling constraints are closed, we deduce that a must be enabled
(in location s) over the whole of r′. On the other hand, we clearly have ν ∈ r′, and
therefore the automaton A cannot refuse a in state (s, ν), contradicting our earlier
assumption. �

It is interesting to note that in the case of closed timed ε-automata, liveness speci-
fications such as the ones considered above cannot be established over dense time
simply by checking whether they hold over discrete time. To see this, consider the
following timed automaton, equipped with two clocks x and y:

A11 : //ONMLHIJK a

x:=0
//ONMLHIJKx = 0

y61∨y>2? a
//ONMLHIJK .

It is plain that A11 will timestop if the first transition is taken at any time strictly
between 1 and 2. Note, however, that the integral rtd’s RZ~A11� of A11 do not
exhibit any timestop.

Having noticed such phenomena, Bošnački comments in [9] that digitization
techniques appear to be inadequate to handle the requirement of timestop-freedom.
Theorem 6 shows that this is not the case; and indeed, RZ~P

A11
R
� contains the re-

fusal trace 〈∅, (1, a), {1} × ΣXtime〉. (Again, the reason we do have this refusal trace is
the instantaneous uncertainty due to point nondeterminism.)

30 J. OUAKNINE, J. WORRELL

Note, however, that when it comes to timed automata, our method is certainly no
more efficient (and undoubtedly less general) than other algorithms directly based
on the region automaton construction (see, e.g., [16]). Rather, the main point we
are making is that directly using Timed CSP to model and verify systems offers
many advantages, not least of which is the applicability of digitization techniques
for both safety and liveness properties, as discussed in Section 6.

Nonetheless, for the purposes of modelling closed timed ε-automata using Timed
CSP, the region automaton-based construction we have given should probably be
optimized. In particular, in most cases (depending on the automaton and the speci-
fication to be verified), many regions can be safely discarded. Since such inves-
tigations have in the past already received a significant amount of attention (see,
e.g., [14]), we focus on the special case of safety properties closed under inverse
digitization.

The construction of PA
Z

, meant to capture integral-time traces of A, is very similar
to that of PA

R
. The essential difference is that the REGIONS process is much coarser

(and correspondingly so are the other two components): the only clock regions
considered are those of the form {(j1, j2, . . . , jm)}, i.e., integral singletons in (R+)m.
This saves us a factor of approximately m! · 4m in the number of regions over our
previous construction. The basic mechanisms to ensure the proper running of the
process and to enforce the satisfaction of the invariant and enabling constraints (on
integral behaviours) are engineered in the obvious way along the lines of those of
PA
R

. The resulting process is denoted PA
Z

.

T 7. For any timed automaton A ∈ CTA, PA
Z

and A have the same integral-
time timed traces: TZ~PA

Z
� = TZ~A�.

The significance of this result comes from the applicability of digitization tech-
niques to the timed trace verification problem, as detailed in Section 6.

9. Timed CSP processes as timed automata

A legitimate question is whether Timed CSP is any more expressive than closed
timed automata. Since Timed CSP is Turing-complete (it can encode infinite coun-
ters), the answer must be affirmative. However, when restricted to finite-state pro-
cesses (as defined in Section 5), we find that Timed CSP is exactly as expressive as
closed timed ε-automata.

T 8. Let P ∈ TCSP be a finite-state program. Then there exists a closed
timed ε-automaton A ∈ CTA which is rtd-equivalent to P and PA

R
: RR~A� =

RR~P� = RR~PA
R
�.

Note that we have total rtd-equivalence here, as opposed to rtd-equivalence al-
most everywhere.

P. Let P be a finite-state program over some alphabet Σ, and substitute every
occurrence of RANDOM in P by the term ε −→ SKIP, where ε < Σ is a newly

TIMED CSP = CLOSED TIMED ε-AUTOMATA 31

introduced event. The resulting program, which we call Pε, is clearly also finite-
state.

Consider the set of terms arising from arbitrary executions of Pε, and let S be the
finite collection of equivalence classes of this set modulo ∼. (Recall that ∼ iden-
tifies Timed CSP terms which may differ in the various values of their respective
delays, but are otherwise syntactically identical.) Let S 0 be the singleton contain-
ing the equivalence class of Pε.

The operational rules for Timed CSP enable us to view S as the set of nodes of

a finite labelled transition system, with a transition
γ
−→ between two equivalence

classes if there exist two representatives from these equivalence classes that have

a
γ
−→ transition between them. We now construct a set of clocks C as follows. To

begin with, we postulate a clock x0 ∈ C. Next, consider the set of timeout (
t
B) and

interrupt (
t�
) operators occurring in Pε (viewed as a representative of its equiva-

lence class), and index these operators with successive positive integers, starting at
1. For each of these operators, add an associated clock xi to C. Continue exploring
the labelled transition system S in breadth-first search fashion. Note that the only
transitions able to introduce new temporal operators are τ-transitions correspon-
ding to recursion unwinding. Associate to every such freshly introduced temporal
operator a fresh index, and add a corresponding clock to C. On the other hand, tem-
poral operators carried over from previous equivalence classes keep their original
indices. (Note that when generating the labelled transition system, the operational
rules allow us to identify unambiguously the origin of every operator.)

For every indexed temporal operator
t
Bi or

t�
i, let ci ∈ N be the highest value

assumed by t.

We say that an indexed temporal operator
t
Bi or

t�
i is active in a given equivalence

class if either its delay argument t assumes more than one value over the terms of
that class, or (in case t = 0) the terms of that class allow the corresponding τ-

transition to fire immediately. For example,
t
Bi is active in (a

t
Bi b) � c but not in

a −→ ((a
t
Bi b) � c). (Activity can also be defined directly by structural induction

on the syntax of terms.)

The required automaton corresponding to P is A = (S , S 0,C, E, inv), where we
now specify the transitions of A together with enabling and invariant constraints.
For every non-τ transition (including ε-transitions) between equivalence classes
in S , add a like-labelled transition in A with the same source and target, and with
enabling constraint true. For every τ-transition created by some i-indexed temporal
operator, add an ε-labelled transition in A with the same source and target, and with
enabling condition xi = ci. For every other τ-transition, add an ε-labelled transition
in A with the same source and target, and with enabling condition x0 = 0.

For every i-indexed active temporal operator in a given equivalence class, conjoin
the constraint xi 6 ci to the invariant of the corresponding location of A. More-
over, if the equivalence class has any τ-transitions which do not originate from a
temporal operator, conjoin also the constraint x0 = 0 to the invariant.

32 J. OUAKNINE, J. WORRELL

Every transition of A resets the clock x0. Moreover, when taking a transition into
an equivalence class in which some i-labelled temporal operator becomes freshly
active, reset clock xi on the corresponding transition of A.

The equivalence RR~A� = RR~P� = RR~PA
R
� now follows by construction. The

reason we have total rtd-equivalence, rather than mere rtd-equivalence almost ev-
erywhere, is that every unstable behaviour of P yields an unstable behaviour of A.
The mismatches highlighted by automata A4, A8, and A9 of Section 7 do not arise
because once enabled, visible events in A can only be disabled by an ε-transition,
creating instability. �

We note that a similar result was proved by Jackson in his doctoral dissertation
[18]. More precisely, Jackson first severely restricted the syntax of Timed CSP
to ensure that all allowable programs were de facto finite-state. He then trans-
lated such programs into action-timed graphs [21], which are essentially timed ε-
automata. Although his very detailed and careful construction differs significantly
from ours, the end result is rather similar. Theorem 8 improves on Jackson’s work
mainly in that we impose semantic, rather than syntactic, restrictions on Timed
CSP: the programs we consider are all required to be finite-state. It is clear that
this restriction is both necessary and sufficient.

It is interesting to ask whether the results presented in this section and the pre-
vious one can be tightened further in any way. We note that since arbitrary timed
automata are in general not closed under digitization, the restriction to closed timed
automata is necessary.9

We have observed a very slight discrepancy (rtd-equivalence almost everywhere)
in general between the rtd’s of a closed timed ε-automaton A and its corresponding
Timed CSP program PA

R
. While Corollary 1 and especially Theorem 6 suggest

that this mismatch is of little consequence, it is worth investigating ways in which
it could be eliminated. In view of Theorem 8, one obvious solution would be to
restrict ourselves to closed timed ε-automata in which enabling constraints for vis-
ible transitions are never bounded above. Another solution would be to artificially
alter the denotational semantics of closed timed ε-automata so as to guarantee con-
formance with Timed CSP, through the introduction of instability in various places.
All things considered, both alternatives seem somewhat contrived, and are less sat-
isfactory than the results of the current paper.

Another question is whether we can dispense with silent transitions. To answer
this, consider the following ε-timed automaton A:

A : //ONMLHIJK 06x61? a
,,ONMLHIJK

x=2? ε, x:=0

ll .

A can perform an arbitrary number of a’s, subject only to the restriction that the
ith a should appear in the time interval [2i − 2, 2i − 1]. Using the results of [17],
it is possible to show that A is not equivalent to any timed automaton deprived

9 In fact, it turns out that it is decidable whether an arbitrary timed automaton is closed under digiti-
zation or not, and when it is, the timed automaton is always equivalent to a closed timed automaton
[26].

TIMED CSP = CLOSED TIMED ε-AUTOMATA 33

of silent transitions. Intuitively, this is because in order to keep track of all time
intervals of the form [2i − 2, 2i − 1], either an infinite number of clocks must be
used, or some clock or clocks must periodically be reset at integral points in time.
Of course, the timed traces of A are easily captured with a Timed CSP program
such as

P =

((
b −→ ((a −→ P)

1
B STOP)

)
‖
{b}

(µ X � b −→ WAIT 2 � X)

)
\ b .

In view of this example, we could weaken our question and ask whether urgent
silent transitions are sufficient for timed automata to achieve the expressive power
of Timed CSP—after all, Timed CSP’s silent τ-transitions are themselves all ur-
gent. However, consider the process RANDOM � a, which has, among others, the
refusal trace 〈[0, 0.5) × {a}, (0.5, a), ∅〉. It is not difficult to see that no τ-automaton
(i.e., timed ε-automaton for which ε-transitions must occur as soon as they are
enabled) can possibly exhibit such a refusal trace. Indeed, since all enabling con-
straints are required to be integral, for the first event communicated to occur at time
0.5 it must have been enabled since time 0, ruling out the initial refusal set.

Interestingly, the constructions given in Theorems 5 and 8 reveal that the re-
spective expressive powers of Timed CSP without RANDOM and closed timed
τ-automata are rtd-equivalent almost everywhere.

We remark that the process RANDOM was added to Timed CSP’s syntax as an
underspecification mechanism; it allowed us, among other things, to capture key
specification processes such as TSF, representing timestop-freedom. However,
much like non-urgent ε-transitions, it is unlikely that RANDOM would figure in
any real implementation.

Although we have shown that both RANDOM and ε-transitions are necessary to
capture certain specific refusal behaviours, it is a very interesting open question
whether they increase timed trace expressiveness at all.

C 1. The timed trace expressiveness of Timed CSP and Timed CSP with-
out RANDOM are identical, and likewise for timed ε-automata and timed τ-auto-
mata:

(1) For any P ∈ TCSP, there exists P′ ∈ TCSP not containing the subterm
RANDOM such that TR~P� = TR~P′�.

(2) For any timed ε-automaton A there exists some timed τ-automaton A′ such
that TR~A� = TR~A′�.

As discussed above, (2) implies (1), but not vice-versa, since we are not restrict-
ing ourselves to closed timed automata in this conjecture.

10. Conclusion and future work

We have characterized the expressive power of finite-state Timed CSP processes
as that of closed timed automata—timed safety ε-automata [3, 16, 8] with closed
invariant and enabling clock constraints.

34 J. OUAKNINE, J. WORRELL

We have also shown that Timed CSP, as augmented in this paper, is expressive
enough to capture some of the most important specifications on timed systems
as refinements. Such specifications include safe reachability, bounded invariance,
and bounded response, as well as the liveness properties of timestop-freedom and
constant availability.

We have also established some important properties enjoyed by Timed CSP,
which have enabled us to show that all the specifications listed above can be veri-
fied through digitization analysis. To this end, it is possible, under certain condi-
tions, to use the model checker FDR, as detailed in [23, 24].

A number of questions remain open. One concerns the expressiveness of Timed
CSP as a specification formalism. Following the lead of [19] in the untimed case, it
would be interesting to determine precisely which fragment of a quantitative linear-
time temporal logic such as MTL can be captured through refinement. It would
also be interesting to systematically identify which liveness properties, such as
timestop-freedom and constant availability, are guaranteed to hold over dense time
whenever they hold over discrete time. Lastly, we would like to settle Conjecture 1,
to the effect that the addition of the RANDOM process, or of non-urgent ε-transition
in the case of timed automata, do not increase timed trace expressiveness.

As well as pursuing the above research topics, we are actively engaged in apply-
ing our results to case studies.

Acknowledgements

The first author was supported by the Defense Advanced Research Project Agency
(DARPA) and the Army Research Office (ARO) under contract no. DAAD19-01-
1-0485, and the Office of Naval Research (ONR) under contract no. N00014-95-
1-0520. The second author was supported by ONR and NSF. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of
DARPA, ARO, ONR, NSF, the U.S. Government or any other entity.

References

[1] A, B.  S, F. B. 1985. Defining Liveness. Information Processing Letters 21,
4, 181–185.

[2] A, R., C, C.,  D, D. 1993. Model-Checking in Dense Real-Time. Infor-
mation and Computation 104, 1, 2–34.

[3] A, R.  D, D. 1990. Automata for Modeling Real-Time Systems. In Proceedings of
ICALP’90, Volume 443 of LNCS. Springer, 322–335.

[4] A, R.  D, D. 1994. A Theory of Timed Automata. Theoretical Computer Science
126, 2, 183–235.

[5] A, R., F, L.,  H, T. A. 1999. Event-Clock Automata: A Determinizable Class
of Timed Automata. Theoretical Computer Science 211, 253–273.

[6] A, R.  H, T. A. 1993 Real-Time Logics: Complexity and Expressiveness.
Information and Computation 104, 1, 35–77.

[7] A, E., M, O.,  P, A. 1998. On Discretization of Delays in Timed Automata
and Digital Circuits. In Proceedings of CONCUR’98, Volume 1466 of LNCS. Springer, 470–
484.

TIMED CSP = CLOSED TIMED ε-AUTOMATA 35

[8] B́, B., D, V., G, P.,  P, A. 1998. Characterization of the Expressive
Power of Silent Transitions in Timed Automata. Fundamenta Informaticae 36, 2-3, 145–182.

[9] B̌̌. D. 1999. Digitization of Timed Automata. In Proceedings of FMICS’99, 283–302.
[10] C, R.  G, M. 1995. Translating Timer Automata to TCSP. Formal Systems

Design and Development, Inc.
[11] C, E. M., G, O.,  P, D. A. 1999. Model Checking. MIT Press, Cam-

bridge, MA.
[12] D, J. 1991. Specification and Proof in Real-Time Systems. PhD thesis, Oxford University.
[13] D, J.  S, S. A. 1990. Factorising Proofs in Timed CSP. In Proceedings of

MFPS’90, Volume 442 of LNCS. Springer, 129–159.
[14] H, T. A., K, O.,  V, M. Y. 1996. A Space-Efficient On-The-Fly

Algorithm for Real-Time Model Checking. In Proceedings of CONCUR’96, Volume 1119 of
LNCS. Springer, 514–529.

[15] H, T. A., M, Z.,  P, A. 1992. What Good Are Digital Clocks? In
Proceedings of ICALP’92, Volume 623 of LNCS. Springer, 545–558.

[16] H, T. A., N, X., S, J.,  Y, S. 1994. Symbolic Model Checking for
Real-Time Systems. Information and Computation 111, 2, 193–244.

[17] H, P. 1998. Timed Automata and Recognizability. Information Processing Letters 65,
6, 313–318.

[18] J, D. M. 1992. Logical Verification of Reactive Software Systems. PhD thesis, Oxford
University.

[19] L, M., M, T.,  C, A. 2001. How to Make FDR Spin: LTL Model Check-
ing Using Refinement. In Proceedings of FME’01, Volume 2021 of LNCS. Springer, 99–118.

[20] M, A. 1992. A Refusal Testing Model for CSP. PhD thesis, Oxford University.
[21] N, X., S J., Y, S. 1991. From ATP to Timed Graphs and Hybrid Systems.

In Proceedings of REX Workshop 91, Volume 600 of LNCS. Springer, 549–572.
[22] O, J. 2001. Axiomatizing Timed CSP. In preparation.
[23] O, J. 2001. Discrete Analysis of Continuous Behaviour in Real-Time Concurrent Sys-

tems. PhD thesis, Oxford University. Technical report PRG-RR-01-06.
[24] O, J. 2002. Digitisation and Full Abstraction for Dense-Time Model Checking. In

Proceedings of TACAS’02, Volume 2280 of LNCS. Springer, 37–51.
[25] O, J. W, J. B. 2002. Towards Specification as Refinement in Timed Systems.

In Proceedings of AVoCS’02. Technical report CSR-02-6, School of Computer Science, the
University of Birmingham.

[26] O, J.  W, J. B. 2003. Revisiting Digitization, Robustness, and Decidability
for Timed Automata. In Proceedings of LICS’03. IEEE Computer Society Press.

[27] P, I. 1987. Refusal Testing. Theoretical Computer Science 50, 3, 241–284.
[28] R, G. M. 1988. A Mathematical Theory for Real-Time Distributed Computing. PhD thesis,

Oxford University.
[29] R, G. M.  R, A. W. 1986. A Timed Model for Communicating Sequential Pro-

cesses. In Proceedings of ICALP’86, Volume 226 of LNCS. Springer, 314–323.
[30] R, G. M.  R, A. W. 1999. The Timed Failures-Stability Model for CSP. Theoreti-

cal Computer Science 211, 85–127.
[31] R, A. W. 1997. The Theory and Practice of Concurrency. Prentice-Hall International,

London.
[32] S, S. A. 1989. Correctness and Communication in Real-Time Systems. PhD thesis,

Oxford University.
[33] S, S. A. 1994. Using CSP with Z in the Mine Pump Case Study. Unpublished.
[34] S, S. A. 1995. An Operational Semantics for Timed CSP. Information and Computa-

tion 116, 2 (Feb.), 193–213.
[35] S, S. A. 2000. Concurrent and Real Time Systems: The CSP Approach. John Wiley.
[36] Y, Y., M, P.,  L, L. 1999. Model Checking TLA+ Specifications. In Pro-

ceedings of CHARME’99, Volume 1703 of LNCS. Springer, 54–66.

