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—— Abstract

The Skolem Problem asks to decide whether a given integer linear recurrence sequence (LRS) has a
zero term. Decidability of this problem has been open for many decades, with little progress since
the 1980s. Recently, a new approach was initiated via the notion of a Skolem set—a set of positive
integers relative to which the Skolem Problem is decidable. More precisely, S is a Skolem set for a
class L of integer LRS if there is an effective procedure that, given an LRS in £, decides whether
the sequence has a zero in S. A recent work exhibited a Skolem set for the class of all LRS that,
while infinite, had density zero. In the present work we construct a Skolem set of positive lower
density for the class of simple LRS.
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1 Introduction

An (integer) linear recurrence sequence (LRS) (u, )52 is a sequence of integers satisfying a
recurrence of the form

Untk = G Untk—1 + - +agu,  (n€N), (1)

where the coefficients aq, ..., a; are integers. The celebrated theorem of Skolem, Mahler,
and Lech [23, 16, 14] describes the set of zero terms of such a recurrence:

» Theorem 1. Given an integer linear recurrence sequence (un)o> o, the set {n € N : u, =0}

is a union of finitely many arithmetic progressions together with a finite set.

The statement of Theorem 1 can be refined by considering the notion of non-degeneracy of
an LRS. An LRS is non-degenerate if in its minimal recurrence the quotient of no two distinct
roots of the characteristic polynomial is a root of unity. A given LRS can be effectively
decomposed as the merge of finitely many non-degenerate sequences, some of which may be
identically zero. The core of the Skolem-Mahler-Lech Theorem is the fact that a non-zero
non-degenerate linear recurrence sequence has finitely many zero terms. Unfortunately, all
known proofs of this last result are ineffective: it is not known how to compute the finite set
© Florian Luca, Joél Ouaknine, and James Worrell;

37 licensed under Creative Commons License CC-BY 4.0
47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 69; pp. 69:1-69:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:Florian.Luca@wits.ac.za 
https://orcid.org/0000-0003-1321-4422
mailto:joel@mpi-sws.org
https://orcid.org/0000-0003-0031-9356
mailto:jbw@cs.ox.ac.uk
https://orcid.org/0000-0001-8151-2443
https://doi.org/10.4230/LIPIcs.MFCS.2022.69
http://emmy.network/
https://perspicuous-computing.science
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2

A Universal Skolem Set of Positive Lower Density

of zeros of a given non-degenerate linear recurrence sequence. It is readily seen that existence
of a procedure to do so is equivalent to the existence of a procedure to decide whether an
arbitrary given LRS has a zero term. The problem of deciding whether an LRS has a zero
term is variously known as Skolem’s Problem or the Skolem-Pisot Problem. We refer to [5,
Chapter 6] and [24, Chapter X] for expository accounts of the Skolem-Mahler-Lech Theorem
and discussion of the ineffectiveness of known proofs.

Decidability of Skolem’s Problem is known only for certain special cases, based on the
relative order of the absolute values of the characteristic roots. Say that a characteristic root
A is dominant if its absolute value is maximal among all the characteristic roots. Decidability
is known in case there are at most 3 dominant characteristic roots, and also for recurrences
of order at most 4 [18, 26]. However for LRS of order 5 it is not currently known how to
decide Skolem’s Problem. For a (highly restricted) subclass of LRS, the paper [1] obtains
nearly matching complexity lower and upper bounds for the problem.

In computer science, Skolem’s Problem lies at the heart of key decision problems in
formal power series [21, 4], stochastic model checking [20], control theory [6, 10], and loop
termination [19]. The problem is also closely related to membership problems on commutative
matrix groups and semigroups, as considered in [7, 13]. We note that in several of the above-
mentioned citations, the Skolem Problem is used as a reference to show hardness of other
open decision problems.

A recent paper [15] initiated a new approach to the decidability of Skolem’s Problem.
Rather than place syntactic restrictions on sequences (e.g., on the order of the recurrence or
dominance pattern of the characteristic roots), the idea is to restrict the domain in which to
search for zeros. To this end, [15] introduced the following definition.

» Definition 2. An infinite set S C N is a Skolem set for a class L of LRS if there is an
effective procedure that, given an LRS (un)5% o in L, determines whether there exists n € S
with u, = 0.

The main technical contribution of [15] was to exhibit a Skolem set for the class of all
LRS. Such sets are called Universal Skolem sets. Specifically, define f : N\ {0} — N by
f(n) = [Vlogn], and inductively define the sequence (s,)n2q by so =1 and s, = n! + s,
for n > 0. Then {s, : n € N} is a Universal Skolem set. This construction yields a very sparse
set, which has density zero. This leads to the question of whether one can construct Skolem
sets of positive lower density. Decidability of the Skolem Problem is, by definition, equivalent
to the assertion that N is a Universal Skolem set (in fact, decidability follows already from
the existence of Universal Skolem set that contains an infinite arithmetic progression). Hence
seeking Skolem sets of increasingly higher density is a natural direction in which to make
progress on the Skolem Problem.

The main result of the present paper exhibits a set S of positive lower density, i.e., having

tim inf SO

n—oo n
such that S is a Skolem set for the class of simple LRS. For short we call S a Simple
Universal Skolem set. Recall that a simple LRS is one for which the characteristic roots of its
minimal-order recurrence are simple. The Skolem Problem for simple LRS is open already
for LRS of order 5.

The construction of S is fundamentally different from the example in [15]. Roughly
speaking, our set consists of positive integers n that admit many representations of the
form n = Pq + a, with P, g prime and ¢, a logarithmic in n. The formal definition of the
set is given in Section 3. In Section 4 we show that one can decide, given a simple LRS



F. Luca, J. Ouaknine, and J. Worrell

(un)S2y, whether there exists n € S with w,, = 0. The crucial ingredients here are results
of Schlickewei and Schmidt [22] that give explicit upper bounds on the number of solutions
of certain exponential Diophantine equations. Such results have previously been used to
give effective upper bounds on the number of zeros of a given non-degenerate LRS (see [8,
Theorem 2.7]), thereby strengthening the statement of the Skolem-Mahler-Lech Theorem
(which, recall, asserts mere finiteness of the number of zeros). However such bounds do not
obviously yield a solution to the Skolem Problem itself, which would instead require effective
bounds on the magnitude of the zeros of an LRS. The essential novelty of our approach is,
via the notion of representation, to leverage bounds on the number of solutions of exponential
Diophantine equations to obtain bounds on the magnitude of the zeros of a simple LRS that
lie in S. In Section 5, we show that the set S has positive lower density. Here, classical
number-theoretic techniques for upper bounding the number of pairs of primes in certain
linear relations (such as twin primes) play the main role.

As discussed in the Conclusion, an extended version of this paper will show that for the
set S introduced in this paper, the Skolem Problem is decidable relative to S for the class of
all LRS, not just the simple ones. In the Conclusion we also briefly discuss the prospects of
refining our analysis of the density of S.

2 Background

In this section we briefly recall some relevant notation and definitions concerning number
fields. We also recall a result from [9, 25] on unit equations that is derived from the Subspace
Theorem and that will play a crucial role in our construction of a Simple Universal Skolem
set.

Throughout we use the Vinogradov notation f < g for f € O(g).

Recall that a number field K is a subfield of C that is finite dimensional as a vector space
over Q. The subring of algebraic integers in K is denoted Ok. For such a field K, we denote
by Gal(K/Q) the group of automorphisms of K. Given a € K, the norm of « is defined by

Negla)= J[  ola).

o€Gal(K/Q)

The norm Ng,g(c) is rational for all a € K; moreover Nk g(c) is an integer if o € Ok.

Clearly we have |N(a)| < M9, where dx is the degree of K and

M= o)

max
oceGal(K/Q)
is the house of a.
We say that o, € K are multiplicatively dependent if there exist integers k, ¢, not
both zero, such that a® = *. Observe that if @ € K is not a root of unity then given
o € Gal(K/Q), every multiplicative relations o* = o(a)’ is such that k = 4. Indeed,
repeatedly applying o to this relation we deduce that - (ad(a))ed foralld > 1. In
particular, choosing d to be the order of o we get that of" = o' and hence k = £/.

We recall that every ideal in Ok can be written uniquely as the product of prime ideals.
Given a rational prime p € Z, we say that a prime ideal p lies above p if p is a factor of pOx.

In this case we have that p | Nk /q(a) for all a € p.

We will need a result of Schlickewei and Schmidt [22] that gives upper bounds on the
number of integer solutions of certain exponential Diophantine equations. The result (which
we have specialised to our setting) is as follows:
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» Theorem 3. [22, Theorem 1] Fori =1,...,¢, let oy, B;,C; be non-zero and lie in a
number field of degree d over Q. Suppose that the system of equations

a'BP = B i je{l,... 0}

has no non-zero solution in integers z1,zo. Then the number of solutions of the equation

4
> Ciaf g =0 (2)
=1

in integers x1,xo for which no proper sub-sum of the left-hand side vanishes is at most
93502 J6¢%

3  The Definition of the Set S

In this section we give the definition of our Simple Universal Skolem set S.

For a positive real number z > 0, denote by logz the natural logarithm of x. For a
positive integer k > 1, we inductively define the iterated logarithm function log,, = as follows:
log, z :=log x, and for k > 2 we set log; « := max{1,log;_,(logx)}. Thus, for = sufficiently
large, log,, « is the k-fold iterate of log applied to . We omit the subscript when k& = 1.

Fix a positive integer parameter X. We define disjoint intervals

AX) = [IngX»\/@} and B(X) ;:l log X 2log X ]

V/logg X’ V/1ogs X

We further define a representation of an integer n € [X,2X] to be a triple (g, P,a) such that
q € A(X), a € B(X), P and g are prime, and n = Pq + a. We say that two representations
(¢, P,a) and (¢’, P’,a’) of the same number overlap if either a +q¢=a'+¢ ora—qg=a" —¢'.
It is clear that two overlapping representations (q, P,a) # (¢’, P’,a’) must have both a # o

and ¢ # ¢'.
We denote by r(n) the number of representations of n. Finally we put

S(X):={ne€[X,2X] : r(n) > log, X and no two representations of n overlap}

and we define

S:=J s(x).

X>1

This completes the definition of the set S. The rest of the paper is devoted to showing
that S is a Simple Universal Skolem set and that it has positive lower density.

4 Solving the Simple Skolem Problem Relative to &

The following result is the first half of the argument that the set S, defined in Section 3, is a
Simple Universal Skolem set. We use the bounds on the solutions of exponential Diophantine
equations stated in Section 2 to show that the Skolem Problem for simple LRS is decidable
relative to S.

» Proposition 4. Given a non-degenerate simple linear recurrence sequence (u,)S<, there
is an effectively computable upper bound on the set {n € S : u(n) = 0}.
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Proof. Fix a non-degenerate simple linear recurrence sequence (u,, )52 , with distinct charac-
teristic roots ayq, ..., ay. Recall that non-degeneracy is the condition that «;/ a; is not a root
of unity for all i # j. It is well-known that w,, admits an exponential-sum representation

14
§ n
Up = Ciai P
=1

where the constants C; lie in the number field K := Q(ay, . .., ay). Multiplying the sequence
(un ) by a suitable integer, we may assume without loss of generality that the C; lie in
the ring of integers Ok.

Suppose that n € S is such that u,, = 0. By the definition of S we have that n € S(X)
for some positive integer X. We show that there is an upper bound on X that is effectively
computable from the description of the sequence (uy,)S2,. Since n < 2X this gives the
desired effective upper bound on n.

Fix n € S(X) such that u, = 0 and consider a representation (¢, P,a) of n. Then
n=qP+a> X, and so

X—a_ X—-logX
P> > >vVvX 3
ey — (3
for X sufficiently large.
Let p be a prime ideal of Ok lying above P and let o € Gal(K/Q) be a Frobenius
automorphism corresponding to p, that is, such that o(a) = o mod p for all a € Ok. From
u, = 0 and n = ¢P + a we have

)4

P
E 01043 ta =0
i=1

P

i

Since o(a;) = «; mod p for all i € {1,...,¢}, we can write

¢
Z Cio(a;)?af =0mod p. (4)

i=1

Taking norms, we see that P divides

£
N := NK/Q (Z CiO'(Oéi)qOé?> .

i=1
Moreover, we have the inequality
IN] < artiaro 9

where M = max {|a;], |Bi],|C;| : 1 <i < £} and dk is the degree of K over Q.

From the fact that ¢ € A(X) and a € B(X), we see that for X sufficiently large we have
a,q < ssdlﬁﬁ' In this case, Equation (5) yields N < X'/%. Hence for X large enough,
using Equation (3), we have N < X'/2 < P. But N is an integer that is divisible by P, so it
must be zero. We conclude that, for sufficiently large X, the left-hand side of (4) is zero;

that is,

J4
ZCm(ai)qa? =0. (6)
i=1
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Carrying over the terminology for representations, let us say that two different solutions
q,a and ¢',a’ of Equation (6) overlap if either a+q =a'4+ ¢ or a—q=a’ —¢'. Our goal is to
give an explicit upper bound on the size of any collection of pairwise non-overlapping solutions
of (6). For this, it is enough to give an upper bound under the additional assumption that
no vanishing proper sub-sum of the left-hand side of (6) vanishes. Multiplying the latter
quantity by the number (at most 2¢) of possible sub-sums gives the desired upper bound on
the total number of non-overlapping solutions.

Consider an instance of Equation (6) for which no proper sub-sum vanishes. Let G be
the additive group of vectors (21, 22) € Z? such that

2 z2

o)™ ai® = a(a;)™ aj

for all 1 <7 < j < /. Note that there exist effective upper bounds on the magnitude of the
entries a basis of G [17].

For (z1,22) € G we have o(a;/a;)** = (a; /)%, As shown in Section 2, since a; /¢ is
not a root of unity we must have either z; = 25 or 21 = —z5. We thus have the following
three possibilities for the form of the group G—either G = {0}, G = {(z,2) : z € mZ}, or
G ={(z,—%) : z € mZ}, where m € Z. We consider three cases according to these three
eventualities.

Case (i): G = {0}. Applying Theorem 3, the total number of solutions (overlapping or
not) of Equation (6) in this case is at most 23507 (dK)Mz.

Case (ii): G = {(#,2) : z € mZ} for some m € Z. In this case we have that o(a;)™al
takes the same value for all i € {1,...,¢}. Dividing Equation (6) by the |g/m]-th power of
this common value we get

14
A~ a—q _
Zciai = 0,
i=1

where each constant C~'i is uniquely determined by C; and the residue of ¢ modulo m.

In other words, for every solution (g, a) of Equation (6), we have that ¢ — a is a zero of
one of a finite number (at most m*) of non-degenerate LRS, each of which takes values in K
and has order at most k. Applying Theorem 3, the number of different values of ¢ — a over
all solutions (g, a) is at most (2k)3%% (di )**m’. But the latter quantity is then a bound on
the cardinality of a set of pairwise non-overlapping solutions of Equation (6).

Case (iii): G = {(z,—2) : z € mZ} for some m € Z. The argumentation is almost exactly
as in Case (ii). We have that o(c;)™a; ™ takes the same value for all ¢ € {1,...,¢}. Dividing
Equation (6) by the |g/m|-th power of this common value we get

¢
E Ci()é,i-lJrq =0
i=1

where each constant a is uniquely determined by C; and the residue of ¢ modulo m. The
argument now follows exactly as in Case (ii). In particular, we get the same upper bound on
the number of solutions under Case (iii) as under Case (ii).

We can now summarise and wrap up. If n € S(X) is a zero of u, then for every
representation n = ¢P + a it holds that (g, a) is a solution of Equation (6). Moreover, since
n € S(X), no two representations of n are overlapping. Since we have an effective upper
bound on the cardinality of a set of pairwise non-overlapping solutions of (6), we get an
effective upper bound (that does not depend on n) for the number of representations of n.
Finally, since by the definition of S(X) the number of representations is at least log, X, we
obtain the desired upper bound on X. <
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5 The Set S has Positive Lower Density

Our goal in this section is to show that the set S has positive lower density. The key tool is the
following result, (see [11, Chapter 2.6, Theorem 2.3]), derived using Selburg’s upper-bound
sieve, that bounds from above the number of times that two linear forms simultaneously take
prime values.

» Theorem 5. Let a1, as,b1,by be integers such that
E = |a1a2(a1bg — agbl)‘

is non-zero. Then

X E

< X: . (log X)2 (E)
{t < art + by, at + by both prime}| < (log X)2 p(E)’

where the implied constant is independent of ay,as,b1,be, and ¢ denotes Euler’s totient
function.

To help illustrate this result, observe that in case a1 = as = 1, by = 0, and b = 2, Theorem 5
gives an upper bound on the number of twin primes less than X.

We will also need the following straightforward proposition. (Note that here and in the
rest of this section, variables p and ¢ always range over prime numbers.)

» Proposition 6. >,y 7 ~ logs X

Proof. We use the fact (see [3, Theorem 13.6]) that there exists an absolute constant ¢ such
that

1 1
Zf =loglogt+c+ O <1t>
<t p 0g
for all ¢ > 2. Using this fact, we have

1
Z = = loglog/log X —logloglog, X + o(1)
q
gEA(X)

= logg X —log, X +0(1)
~ logs X
for large enough X. |

We further note the following useful fact concerning the Euler function (see [3, Exercise
2.10(xii))):

n

Z@fk)«n. (7)

k=1
The rest of this section is devoted to a proof of the following result:
» Theorem 7. The set S, defined in Section 3, has strictly positive lower density.

Recall from Section 3 that S := (Jy5, S(X), where S(X) C [X,2X]. Hence, to prove that S
has positive lower density, it suffices to show that |S(X)| > X for X sufficiently large. We
first argue that for sufficiently large X we have

{n € [X,2X]:r(n) >log, X} > X . (8)

69:7
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After that, we deal with those n that have overlapping representations (cf. the definition of
S(X) in Section 3).
To prove (8) we use the moment method. To set this up, let

S; = Z r(n)"  forie€ {0,1,2}.
ne[X,2X]
r(n)>log, X

The inequality (8) is equivalent to the assertion that Sy > X. Thinking of S; as the inner
product of the vector

(r(n) :n € [X,2X],r(n) > logy X)
and the constant all 1’s vector, applying the Cauchy-Schwartz inequality we get that
SoSy > S3.

To show that Sy > X we will use a lower bound on S; and an upper bound on S5.

5.1 Lower bound on S;.

In this section we show that S; > X /logs X.

Fix ¢ € A(X). Then for P € [%, %} we have that ¢P € [X,1.5X]. Furthermore, if
a € B(X), then for sufficiently large X we have a < log X < 0.5X, so that ¢P +a € [X,2X].

Thus, for large X and each fixed prime ¢ € A(X), the number of representations (g, P, a)

with ¢P +a € [X,2X] is at least the product of the number of primes P € {%, %} and the
X L BX} is

cardinality of the set B(X). But, for large enough X, the number of primes P € [ T e

(1.5)() (X) . 0.3X
T —— — T —_— .
q q qlog X

Thus, for fixed g, the number of representations (q, P,a) with ¢P 4+ a € [X,2X] is at least

03X  log X X
qlog X | /logs X g+/1ogs X

where the implied constant is independent of gq.
Summing the lower bound (9) over ¢ € A(X), we have

(9)

X 1

ne[X,2X] geEA(X)
> X4/logs X (by Proposition 6).

Finally, in order to get a lower bound on S; we must remove from the left-hand side
above, the summands r(n) for which r(n) < log, X. But the contribution of these to the
total sum is O(X log, X) = o(X +/logs X), and so we conclude that S; > X /logs X.

For future reference, we observe that essentially the same argument shows that S; <
X\ /1og3 . Indeed, for each fixed ¢ € A(X), the number of primes P such that ¢P € [X,2X]

. . log X .
is < Since the number of @ € B(X) is at most Jogs X7 the number of representations

qlogX

(g, P,a) such that ¢P + a € [X,2X] is < \/tx Now, summing over ¢ € A(X) and using
083

Proposition 6, we obtain the bound S; < X 4/logs X.
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5.2 Upper bound on S;.

Our goal is to show that S <« X log; X. To this end we consider S as the number of pairs
of representations (¢, P,a), (¢’, P',a’) such that ¢P + a = ¢'P’ + &/, with the common sum
lying in the interval [X,2X]. We break the count down into three cases.

Case (i). Let us first consider the number of such pairs with a = /. In this case we have
qP = ¢'P’. But then, since q and ¢’ are small and P and P’ are large, we get that ¢ = ¢/
and P = P’, and hence (q, P,a) = (¢’, P’,a’). Thus the number of such pairs is equal to Sj.
But, as noted at the conclusion of Section 5.1, we have S; < Xy/log; X.

Case (ii). We next consider the number of pairs of representations with a # a’ and

g = ¢'. In this case we have
a—ad

q

P—P =m, where m =

By Theorem 5, for each fixed m the number of primes P < X/q such that P + m is also
prime is
X m

< Gllog X)Z p(m)

’
4=2 i3 at most

Furthermore, for fixed ¢ and m, the number of choices of a,a’ with m =

the number of choices of a, that is, at most %. Thus, for fixed ¢ and m, the total

083
number of pairs of representations (¢, P, a), (¢', P',d’') with ¢P +a = ¢ P'+d’ € [X,2X] and
m = 2=2 ig
q
X m 2logX
<

q(log X)? o(m) \/logy X
2X m

q(log X)/logg X ¢(m)

From the fact that a,a’ € A(X) we have m < qf}%. Summing up over all values of

m, we get that the total number of solutions for fixed ¢ is

< 2X Z m
Q(IOg X) V logs X < _2log X (p(m)
= ay/logz X
X
< ¢*logg X

In the above, we used the fact (see Equation (7)) that >° . m/p(m) < t.
Now we sum up over g > log, X, getting that the number of such solutions is at most

X 1 X

logg X ? < (logy X)logs X

=o(X).
g>logy, X

Case (iii). Finally, let us count the rest of the solutions; namely the ones for which
a # a' and q # ¢'. Fixing a,d’, q, ¢ we have

gP—q¢P =d —a.

MFCS 2022
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The general solution of the above equation in integers P and P’ can be written in the form
P = po+ ¢'t and P’ = p{, + qt, where ¢ is an integer parameter and pg, p{, is a particular
solution, chosen to be minimal among positive integer solutions (simultaneously, in both
coordinates). The condition that Pg + a < 2X implies that P < 2X/q and hence that
t < 2X.

I}ging the assumption a # a/, we can apply Theorem 5 to deduce that the number of
t < % such that both pg + ¢'t and pj + gt are prime is

< X la — o
qq'(log X)? ¢(la — a’|)

We keep a and ¢ fixed and sum up over ¢’ # ¢q and o’ # a, getting a bound of

X 1 la —a
< q(log X)2 Z o Z

i

_ A
ot ) WS Plla=dD
a#a
X 2log X
< ——=-logs X - ———— (by Proposition 6 and Equation 7
q(log X)? & \/logs X (by Prop d )
 Xy/logg X
qlog X

To conclude the argument, we sum up over all a’s and all ¢’s, getting an upper bound

Xy/logs X 2log X Z 1
log X \/logs X seax) 4

< Xlogs X (by Proposition 6).

Combining the bounds in the above three cases, we conclude that S < X logs X.

5.3 Putting Things Together

From the Cauchy-Schwarz inequality SpS. > S? and the above-established bounds S; >
Xy/logs X and Sy < Xlogs X, we get that Sp > X.

To transform the lower bound on Sy to one on S(X), it remains to estimate the number
of n € [X,2X] that admit two overlapping representations. We claim that the total number
of such n is o(X). From this we conclude that |S(X)| > X, which was our ultimate goal.

We conclude by justifying the preceding claim. For this it suffices to show that the
number of pairs of overlapping representations in the interval [X,2X] is o(X). To this end,
consider two representations (g, P,a) # (¢, P’,a’) of the same number n € [X,2X]. Assume
that ¢ + a = ¢’ + @' (the argument in case ¢ — a = ¢’ — @’ requires only minor changes).

Now n—(¢+a) =q(P—1)=¢(P' —1), and so ¢P — ¢'P' = (¢ — ¢). Furthermore,
as noted in Section 3, for two such overlapping representations, we have q # ¢’. Thus the
general solution of the equation ¢P — ¢'P’ = (¢’ — q) in positive integers P and P’ has the
form P = 1+ tq’ and P’ = 1 + ¢t for a nonnegative integer parameter t < X/qq'. By
Theorem 5, the number of ¢ such that both 1+ tq and 1 + ¢¢’ are prime is

X lg —q'|
qq'(log X)2 ¢(lg — ¢'|)
Xlogs X

qq'(log X)?
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In the above we have used the inequality m/p(m) < logy,m [12, Theorem 328|, with
m=|q—q| <log X for large X.
The argument above shows that for ¢ # ¢’, the number of pairs of primes P, P’ for which

there exist pairs of overlapping representations (g, P, a), (¢, P,a’) of some n € [X,2X] is at
X logg X
qq’(logSX)2 ’ ] ]

that for fixed q # ¢’ the total number of such pairs of overlapping representations is

most Summing up over the at most log X possible values of a € B(X), we see

Xlog; X
qq'log X
Here we used the fact that, thanks to the equation ¢ + a = ¢’ + o/, the choice of ¢,q¢’, a

uniquely determines a’.
Summing up over ¢, ¢’, we get that the number of such possibilities is

2

Xlogs X Z 1

log X ealx) q
X(logs X)3
< (1223)() (by Proposition 6)
= o(X).

This concludes the proof of the claim.

6 Conclusion

We have defined a set S C N of positive lower density relative to which the Skolem Problem
for simple LRS is decidable. In an extended version of this paper we will show that we
can solve the Skolem Problem relative to (a slight variant of) S for all LRS, not just the
simple ones. For this we use methodology of Amoroso and Viada [2] to give effective upper
bounds on the number of solutions of a class of bivariate polynomial-exponential Diophantine
equations, generalising the analysis in Section 4. We are also continuing to study the lower
density of S. In particular, a future work will show that the set has lower density one, under
certain heuristic assumptions on the distributions of primes, similar to the Cramér heuristic
(as used to justify Cramér’s conjecture on prime gaps).
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