
APC 2005

Timed CSP: A Retrospective

Jöel Ouaknine1

Oxford University Computing Laboratory, UK

Steve Schneider2

University of Surrey, UK

Abstract

We review the development of the process algebra Timed CSP, from its inception nearly
twenty years ago to very recent semantical and algorithmic developments.

Key words: Process algebra, Timed CSP.

Timed CSP was first proposed in 1986 by Reed and Roscoe [25] as a real-
time extension of the process algebra CSP. A front-runner amongsttimedprocess
algebras, it was quickly followed by a number of other dense-time and discrete-
time process algebras, such as those appearing in [9,19,17,18,4,32,15,6,20,10], to
name a few. The field continued to develop and expand into new directions (e.g.,
addingprobability to time) and now constitutes a rich body of knowledge.3

Rather than aim at exhaustiveness, this paper retraces some of the milestones in
the development of Timed CSP, and records some of its interesting features.

Reed and Roscoe’s original model [25] was predicated on complete ultramet-
ric spaces, and up to quite recently no significantly different other denotational
semantics was known. Initially Timed CSP added a single primitive to the lan-
guage CSP—WAIT t, for any timet—yet differed substantially at the denotational
level from the cpo-based CSP. The resultingTimed Failuresmodel nevertheless
enjoyed natural projections to (untimed) CSP, later exploited by Schneider, Reed,
and Roscoe in the form oftimewise refinement[28,27,30]. The idea is simple, yet
quite powerful: by syntactically transforming a Timed CSP process into a CSP one
(essentially dropping allWAIT t terms), much information is preserved, and under
appropriate conditions a number of properties can be formally established of the
original Timed CSP process by studying its untimed counterpart.

1 Email: joel@comlab.ox.ac.uk
2 Email: s.schneider@surrey.ac.uk
3 The papers concerned with process algebra and time number in the thousands according to
http://scholar.google.com.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Ouaknine and Schneider

The semantics of Timed CSP is easily understood in relation to that of CSP:
timed failuresconsist in traces and refusals (events that cannot be performed), but
with every event performed or refused accompanied by a real-valued timestamp. In
common with CSP, the refusal element of a timed failure embodies abranching-
timeaspect which is usually absent from other linear-time trace-based frameworks:
the notion oflivenessin Timed CSP, for example, consists in asserting that an event
is never blocked, rather than postulate its eventual occurrence (certainly a reassur-
ance to, say, jet fighter pilots relying on the ‘eject’ button in case of emergency!).

In their respective doctoral theses, Schneider [28] and Davies [11] developed
complete proof systems for Timed CSP. They also introduced a number of ad-
ditional features, such as infinite choice, infinite observations, timeouts and inter-
rupts, signals, and the removal of the requirement that every action and recursive
call be preceded by a strictly positive amount of time—see [7] for a detailed ac-
count of these changes.

Jackson [16] was the first to look into model checking for Timed CSP. To this
end, he defined a “finite-state” version of the language, together with a suitable tem-
poral logic, and applied regions-based algorithms [1] to solve the model checking
problem.

In 2001, Ouaknine [21] undertook a systematic study of the relationship be-
tween (dense-time) Timed CSP and a discrete-time version of it. This led him
to extend Henzinger, Manna, and Pnueli’sdigitization techniques [14] to liveness
properties, which resulted in a model checking algorithm for very a wide class of
specifications that could be verified on the CSP model checker FDR. This work
was later refined and extended in [22,23].

While most of the semantical developments of Timed CSP have tended to focus
on the denotational side, Schneider equipped Timed CSP with a congruent opera-
tional semantics in [29], later slightly extended by Ouaknine in [21]. Full abstrac-
tion results of various kinds (with respect tomay-testing,must-testing, and logical
characterisations) can also be found in [29,22,12].

Perhaps surprising is the lack of work onalgebraicsemantics. This may be
related to the fact that, unlike the case for (untimed) CSP (and indeed most process
algebras), the parallel operators in Timed CSP cannot be reduced to other primi-
tives. This observation was first recorded in [26], although in that instance it arose
out of a rather circumstantial peculiarity of the semantic model. An interesting
example is the following, taken from [21]: the process

(a−→ STOP)9 (WAIT 1 # b−→ STOP)

consisting of two interleaved components, the first of which offers ana imme-
diately, and the second of which waits one time unit then offers ab, cannot be
re-written in standard Timed CSP without some form of parallel composition. In
other words, one cannot in general sequentially simulate the concurrent passage of
time in Timed CSP, even if one includes timeouts.4

4 A nonstandard timeout operator was introduced in [12], which does allow the elimination of

2



Ouaknine and Schneider

Although Timed CSP as described above has proved to be very successful, and
indeed has been used in numerous case studies—see [31] for more details on the
subject—some of its semantic requirements sit uneasily with the traditional style
of “specification-as-refinement” usually advocated in CSP. For example, in un-
timed CSP, one specifies that a given process should not perform the eventerror
by stipulating that it should refine the specification processRUNΣ−{error}, which
itself is capable ofanybehaviour other than performingerror. Unfortunately, the
ultrametric-based semantics for recursion in Timed CSP requires every recursion
to be time-guarded—there should be some positive amount of time between two
consecutive unwindings of a recursion. In [23], a root-and-branch review of the
denotational semantics of Timed CSP was undertaken in order to allow suchZeno
processes, and resulted in a substantially more expressive framework (predicated
on cpo’s rather than ultrametrics), in which processes could exhibit hitherto forbid-
den behaviours. As a result, many common specifications on Timed CSP processes
(liveness, deadlock-freedom, timestop-freedom, . . . ) have natural representations
as refinements in this new model. Moreover, thanks to digitization techniques, the
extra generality comes at no extra cost and Timed CSP processes can in fact be
model-checked using an (untimed) CSP model checker such as FDR. It is perhaps
worth noting that this new framework achieves its heightened expressiveness partly
thanks to a restricted form of unbounded nondeterminism, which nonetheless does
not destroy the formalism’s valuable algorithmic properties.

These recent developments seem to indicate that Timed CSP remains an active
research area, and progress is likely to continue for some time to come.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS 90),
pages 414–425. IEEE Computer Society Press, 1990.

[2] R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science,
126:183–235, 1994.

[3] R. Alur and R. P. Kurshan. Timing analysis in COSPAN. In Proceedings of Hybrid
Systems III, volume 1066, pages 220–231. Springer LNCS, 1996.

[4] J. C. M. Baeten and J. A. Bergstra. Real time process algebra.Formal Aspects of
Computing, 3:142–188, 1991.

[5] J. Bengtsson, K. G. Larsen, F. Larsen, P. Pettersson, and W. Yi. UPPAAL : A tool-suite
for automatic verification of real-time systems. InProceedings of Hybrid Systems III,
volume 1066, pages 232–243. Springer LNCS, 1996.

[6] L. Chen.Timed Processes: Models, Axioms and Decidability. PhD thesis, University
of Edinburgh, 1992.

parallel operators in a discrete-time context, however at the expense of some standard Timed CSP
axioms and laws.

3



Ouaknine and Schneider

[7] J. Davies and S. A. Schneider. A brief history of Timed CSP.Theoretical Computer
Science, 138(2):243–271, 1995.

[8] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Proceedings
of Hybrid Systems III, volume 1066, pages 208–219. Springer LNCS, 1996.

[9] R. Gerth and A. Boucher. A timed failures model for extended communicating
processes. InProceedings of the Fourteenth International Colloquium on Automata,
Languages and Programming (ICALP 87), volume 267, pages 95–114. Springer
LNCS, 1987.

[10] R. Cleaveland, G. L̈uttgen, and M. Mendler. An algebraic theory of multiple
clocks. InProceedings of the Eighth International Conference on Concurrency Theory
(CONCUR 97), volume 1243, pages 166–180. Springer LNCS, 1997.

[11] J. Davies. Specification and Proof in Real-Time Systems. PhD thesis, Oxford
University, 1991.

[12] G. Lowe and J. Ouaknine. On timed models and full abstraction. InProceedings of the
Twenty-first Conference on the Mathematical Foundations of Programming Semantics
(MFPS 05), ENTCS, 2005.

[13] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid
systems. InProceedings of the Ninth International Conference on Computer-Aided
Verification (CAV 97), volume 1254, pages 460–463. Springer LNCS, 1997.

[14] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
Proceedings of the Nineteenth International Colloquium on Automata, Languages,
and Programming (ICALP 92), volume 623, pages 545–558. Springer LNCS, 1992.

[15] M. Hennessy and T. Regan. A temporal process algebra. InProceedings of the Third
International Conference on Formal Description Techniques for Distributed Systems
and Communications Protocols (FORTE 90), pages 33–48. North-Holland, 1991.

[16] D. M. Jackson.Logical Verification of Reactive Software Systems. PhD thesis, Oxford
University, 1992.

[17] A. Jeffrey. Abstract timed observation and process algebra. InProceedings of the
Second International Conference on Concurrency Theory (CONCUR 91), volume 527,
pages 332–345. Springer LNCS, 1991.

[18] A. Jeffrey. Discrete timed CSP. Programming Methodology Group Memo 78,
Department of Computer Sciences, Chalmers University, 1991.

[19] F. Moller and C. Tofts. A temporal calculus of communicating systems. In
Proceedings of the First International Conference on Concurrency Theory (CONCUR
90), volume 458, pages 401–415. Springer LNCS, 1990.

[20] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and
application.Information and Computation, 114:131–178, 1994.

[21] J. Ouaknine. Discrete Analysis of Continuous Behaviour in Real-Time Concurrent
Systems. PhD thesis, Oxford University, 2001. Technical report PRG-RR-01-06.

4



Ouaknine and Schneider

[22] J. Ouaknine. Digitisation and full abstraction for dense-time model checking.
In Proceedings of the 8th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS 02), volume 2280. Springer LNCS,
2002.

[23] J. Ouaknine and J. Worrell. Timed CSP = closed timed epsilon-automata.Nordic
Journal of Computing, 10, 2003.

[24] G. M. Reed. A Mathematical Theory for Real-Time Distributed Computing. PhD
thesis, Oxford University, 1988.

[25] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential
processes. InProceedings of the Thirteenth International Colloquium on Automata,
Languages, and Programming (ICALP 86), pages 314–323. Springer LNCS, 1986.
Theoretical Computer Science, 58:249–261.

[26] G. M. Reed and A. W. Roscoe. The timed failures-stability model for CSP.
Theoretical Computer Science, 211:85–127, 1999.

[27] G. M. Reed, A. W. Roscoe, and S. A. Schneider. CSP and timewise refinement.
In Proceedings of the Fourth BCS-FACS Refinement Workshop, Cambridge, 1991.
Springer WIC.

[28] S. A. Schneider.Correctness and Communication in Real-Time Systems. PhD thesis,
Oxford University, 1989.

[29] S. A. Schneider. An operational semantics for Timed CSP.Information and
Computation, 116:193–213, 1995.

[30] S. A. Schneider. Timewise refinement for communicating processes.Science of
Computer Programming, 28:43–90, 1997.

[31] S. A. Schneider.Concurrent and Real Time Systems: the CSP approach. John Wiley,
2000.

[32] Y. Wang. A Calculus of Real-Time Systems. PhD thesis, Chalmers University of
Technology, 1991.

5


	References

