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Abstract

We review the development of the process algebra Timed CSP, from its inception nearly
twenty years ago to very recent semantical and algorithmic developments.
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Timed CSP was first proposed in 1986 by Reed and Roscoe [25] as a real-
time extension of the process algebra CSP. A front-runner amongsttimedprocess
algebras, it was quickly followed by a number of other dense-time and discrete-
time process algebras, such as those appearing in [9,19,17,18,4,32,15,6,20,10], to
name a few. The field continued to develop and expand into new directions (e.g.,
addingprobability to time) and now constitutes a rich body of knowledge.3

Rather than aim at exhaustiveness, this paper retraces some of the milestones in
the development of Timed CSP, and records some of its interesting features.

Reed and Roscoe’s original model [25] was predicated on complete ultramet-
ric spaces, and up to quite recently no significantly different other denotational
semantics was known. Initially Timed CSP added a single primitive to the lan-
guage CSP—WAIT t, for any timet—yet differed substantially at the denotational
level from the cpo-based CSP. The resultingTimed Failuresmodel nevertheless
enjoyed natural projections to (untimed) CSP, later exploited by Schneider, Reed,
and Roscoe in the form oftimewise refinement[28,27,30]. The idea is simple, yet
quite powerful: by syntactically transforming a Timed CSP process into a CSP one
(essentially dropping allWAIT t terms), much information is preserved, and under
appropriate conditions a number of properties can be formally established of the
original Timed CSP process by studying its untimed counterpart.
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The semantics of Timed CSP is easily understood in relation to that of CSP:
timed failuresconsist in traces and refusals (events that cannot be performed), but
with every event performed or refused accompanied by a real-valued timestamp. In
common with CSP, the refusal element of a timed failure embodies abranching-
timeaspect which is usually absent from other linear-time trace-based frameworks:
the notion oflivenessin Timed CSP, for example, consists in asserting that an event
is never blocked, rather than postulate its eventual occurrence (certainly a reassur-
ance to, say, jet fighter pilots relying on the ‘eject’ button in case of emergency!).

In their respective doctoral theses, Schneider [28] and Davies [11] developed
complete proof systems for Timed CSP. They also introduced a number of ad-
ditional features, such as infinite choice, infinite observations, timeouts and inter-
rupts, signals, and the removal of the requirement that every action and recursive
call be preceded by a strictly positive amount of time—see [7] for a detailed ac-
count of these changes.

Jackson [16] was the first to look into model checking for Timed CSP. To this
end, he defined a “finite-state” version of the language, together with a suitable tem-
poral logic, and applied regions-based algorithms [1] to solve the model checking
problem.

In 2001, Ouaknine [21] undertook a systematic study of the relationship be-
tween (dense-time) Timed CSP and a discrete-time version of it. This led him
to extend Henzinger, Manna, and Pnueli’sdigitization techniques [14] to liveness
properties, which resulted in a model checking algorithm for very a wide class of
specifications that could be verified on the CSP model checker FDR. This work
was later refined and extended in [22,23].

While most of the semantical developments of Timed CSP have tended to focus
on the denotational side, Schneider equipped Timed CSP with a congruent opera-
tional semantics in [29], later slightly extended by Ouaknine in [21]. Full abstrac-
tion results of various kinds (with respect tomay-testing,must-testing, and logical
characterisations) can also be found in [29,22,12].

Perhaps surprising is the lack of work onalgebraicsemantics. This may be
related to the fact that, unlike the case for (untimed) CSP (and indeed most process
algebras), the parallel operators in Timed CSP cannot be reduced to other primi-
tives. This observation was first recorded in [26], although in that instance it arose
out of a rather circumstantial peculiarity of the semantic model. An interesting
example is the following, taken from [21]: the process

(a−→ STOP)9 (WAIT 1 # b−→ STOP)

consisting of two interleaved components, the first of which offers ana imme-
diately, and the second of which waits one time unit then offers ab, cannot be
re-written in standard Timed CSP without some form of parallel composition. In
other words, one cannot in general sequentially simulate the concurrent passage of
time in Timed CSP, even if one includes timeouts.4

4 A nonstandard timeout operator was introduced in [12], which does allow the elimination of
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Although Timed CSP as described above has proved to be very successful, and
indeed has been used in numerous case studies—see [31] for more details on the
subject—some of its semantic requirements sit uneasily with the traditional style
of “specification-as-refinement” usually advocated in CSP. For example, in un-
timed CSP, one specifies that a given process should not perform the eventerror
by stipulating that it should refine the specification processRUNΣ−{error}, which
itself is capable ofanybehaviour other than performingerror. Unfortunately, the
ultrametric-based semantics for recursion in Timed CSP requires every recursion
to be time-guarded—there should be some positive amount of time between two
consecutive unwindings of a recursion. In [23], a root-and-branch review of the
denotational semantics of Timed CSP was undertaken in order to allow suchZeno
processes, and resulted in a substantially more expressive framework (predicated
on cpo’s rather than ultrametrics), in which processes could exhibit hitherto forbid-
den behaviours. As a result, many common specifications on Timed CSP processes
(liveness, deadlock-freedom, timestop-freedom, . . . ) have natural representations
as refinements in this new model. Moreover, thanks to digitization techniques, the
extra generality comes at no extra cost and Timed CSP processes can in fact be
model-checked using an (untimed) CSP model checker such as FDR. It is perhaps
worth noting that this new framework achieves its heightened expressiveness partly
thanks to a restricted form of unbounded nondeterminism, which nonetheless does
not destroy the formalism’s valuable algorithmic properties.

These recent developments seem to indicate that Timed CSP remains an active
research area, and progress is likely to continue for some time to come.
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