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1. Introduction

Timed automata [2] and counter automata [3] are promindintite-state formalisms for modeling and
reasoning about quantitative behavior of systems. Timézhaata comprise a finite-state controller with
a finite number of clocks that can be compared to constantsessd along a transition between two
control locations. Counter automata on the other hand dXiaite-state machines with a finite number
of counters ranging over the natural numbers that can bermented, decremented or tested for zero
along a transitionReachability the problem of deciding whether there is a path connectirmggiven
configurations in the corresponding induced transitioriesys is the central decision problem for both
timed and counter automata. In this paper, we establishuaalatorrespondence between reachability
in timed automata and a restricted class of counter automataelyboundedcounter automata. In
the latter class, counters are restricted to take valuam fin arbitrary but fixed finite interval over
the naturals, and hence bounded counter automata posseprami finite state space. However, due
to binary encoding of humbers, bounded counter automateirsily encode a state space which is
exponential in the size of their description.

The main contribution of this paper is to show how runs ingiion systems of timed automata can
naturally be simulated in bounded counter automataya®versa From this we show in Section 3 that
reachability ink-clock timed automata witk > 3 is logarithmic-space inter-reducible with reachability
in bounded two-counter automata. The emphasis and the mtesesting part in this section is on
the naturalness of the simulation of timed automata in bedrzbunter automata. A more elaborate
reduction is required in Section 4, where we show that rdalityain two-clock timed automata is
logarithmic-space inter-reducible with reachability inumded one-counter automata. An interesting
class of bounded one-counter automata for which the preoisglexity of reachability remains open is
discussed in Section 5.

An extended abstract of this paper [4] appeared in the pdinge of the 6th International Workshop
on Reachability Problems held in September 2012 in Borddaaxce. Prior to this the precise computa-
tional complexity of reachability in two-clock timed autata and in bounded one-counter automata were
both long-standing open problems. One of the contributadrig] was to show that these two problems
are essentially equivalent. At the 40th International @plium on Automata, Languages and Program-
ming held in July 2013 in Riga, Latvia, Fearnley and Jurdkifgave a P8acEehardness proof, finally
showing that reachability in bounded one-counter autonsa®S>ACcE-complete. By application of our
inter-reducibility result it follows that reachability ifwo-clock timed automata is P&CE-complete as
well [5].

A brief survey of work on reachability problems in timed aralinter automata is presented in the
next section. Even though Fearnley and Jurdzihski’'s tesuy requires showing that reachability in
bounded one-counter automata can be reduced to reachabiito-clock timed automata, we believe
that the relationships established in [4] are interestintféir own right since they provide insight into the
structure of reachability problems of two prominent classkautomata. Similarly, a related technical
characterisation of timed automata via channel machinegphaved useful in the study of robustness
problems for timed automata [6, 7]. It is conceivable thatreductions may in future assist in tackling
problems of a similar nature as well.

The present paper extends [4] by including all proofs omiftem [4] for reasons of space, as well
as additional details at various points. In addition, weashow bounded one-counter automata relate to
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automata with a single integer-valued counter sign testso@el considered by Demri and Gascon [8].
We conclude by discussing an open problem concerning anesrgiional vector addition systems.

1.1. A Short Account of the Complexity of Reachability in Timed and Counter Automata

In this section, we give a brief account of the history of thedg of the computational complexity of
reachability in timed and counter automata. There is a radiylof literature on this topic; the present
treatment is not meant to be exhaustive.

Reachability in timed automata was shown to be decidableP&rdce-complete in Alur and Dill’s
seminal paper [2]. Subsequently, a multi-parameter aisabfshis problem was conducted by Courcou-
betis and Yannakakis [9], who showed that reachability isAZ%hard already in the presence of three
clocks when numbers are encoded in binary, and alseaShard when the number of clocks is un-
bounded and numbers are encoded in unary. The cases withtfeamethree clocks were considered by
Laroussinie, Markey and Schnoebelen [10], who showed #aatirability for one-clock timed automata
is NL-complete, and NP-hard in the presence of two clockswéder, no matching upper bound for
the latter problem was given in [10]. Naves showed in his Eig&sthesis [11] that reachability becomes
P Sracke-hard when allowing for modulo tests on clocks under theragsion that numbers are encoded
in binary. This result was later refined by Goller and Lohi®3], who showed that reachability is also
PSrace-hard when all numbers, in particular those occurring in ntodests, are encoded in unary.

For counter automata, the earliest result is that readhatsilundecidable in the presence of at least
two counters [3]. For that reason, restrictions on counttoraata that lead to decidable reachability
problems have been widely studied in the literature. Exampiclude the restriction to one counter [13,
14], restricting zero-tests [15, 16, 17, 18, 19], revelsalndedness [20, 21] or flatness [22], all of
which lead to a decidable reachability problem, with comipyedropping to NP in certain cases. The
complexity of reachability in the presence of one unbounztmehter is NL-complete when numbers are
encoded in unary, seeg.[8], and NP-complete when numbers are encoded in binary [l@lthe best
of our knowledge, the class of bounded counter automatadated in this paper have nowhere been
studied in full generality. The complexity of reachability bounded counter automata with only one
counter was investigated by Bouygtral. in [23] in the context of weighted timed automata, where the
problem was shown to be NP-hard and inFRSE. The reduction we established in [4] trivially entails
that reachability in bounded two-counter automata ieACEcomplete in the presence of two counters.
Finally, Fearnley and Jurdzihski showed in [5] that reddlitsg in bounded one-counter automata is
P S,acehard, which established PScecompleteness of the whole class of bounded counter automat
and of two-clock timed automata.

2. Preliminaries

In this section, we give some of the definitions that we ushérrémainder of this paper. The definitions
of timed automata and bounded counter automata are tatlorear needs and as simplified as possible
in order to ease the reductions provided in the main text efpper. In the case of bounded counter
automata, for technical convenience we additionally ihtike some syntactic sugar and observe as a
side note the log-space inter-reducibility between rebitihain bounded one-counter automata and
one-counter automata with sign tests which have been itextiby Demri and Gascon [8].
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2.1. General Notation

By R we denote the set akals by Q the set ofrationals by Z the set ofintegers by N def {n €
Z : n > 0} the set ofnaturals by N+ ol {n € N : n > 0} the set ofstrictly positive naturals

and byR>g def {r € R : r > 0} the set ofpositive reals Fori,j € Z, [i,j] denotes the interval
{z € Z :i < z < j}, and[i] is an abbreviation fofl, i|. Otherwise, interval definitions are used in the
standard way over subsetsl®fe.g, (i, j) defines the interva{r € R : i < r < j}. The floor function

on the reals is defined in the standard wagy, || oef max{z € Z: z <r}. GivenM C R andr € R,
we denote by-M the set{rm : m € M}, andM + r is the sef{m + r : m € M}. Throughout this
paper, we assume integers to be encoded in their naturaténaoding, and for any € Z denote by
size(z) the number of symbols required to represent

2.2. Transition Systems

A transition systenis a tupleT” = (S, —), whereS is the set oktatesand— C S x S is thetransition
relation. Givens,t € S, we writes — ¢t whenever(s,t) € — and denote by=* the reflexive transitive
closure of—. An s-t pathx in T is a sequence of states: sq,...,s, such thats; = s, s,, = t and
s;i — si+1 forall i € [n — 1]. Givens,t € S, reachabilityis to decide the existence of art path inT,
i.e., whethers —* t.

2.3. Timed Automata

Let X be a finite set otlock variables A clock valuationis a mapping : X — R>(; we denote by
CV (X) the set of allclock valuations Givenr € Rx(, we denote by + r the clock valuation defined
by (9 +r)(z) = J(z) + r for all z € X. An atomic clock constrainis a term of the formx ~ n, where
xe X,~e{<,<,=#,>,>}andn € N. A clock constraint is a finite conjunction of atomic clock
constraintsp = 21 ~ ny A ... Az, ~ n,,. The set of all clock constraints over clocksis denoted by
CC(X). A clock valuationy mapsz ~ n to a Boolean valu&(x) ~ n and hence a clock constraigt
to a Boolean value. We writé = ¢ wheneven) evaluates to true.

In this paper, &-clock timed automatois a tupled = (Q, X, A, £), whereQ is a finite set otontrol
locations X is a set ofc clock variablesA C @ x Q is thetransition relation and¢ : A — CC(X) x 2%
is thetransition labeling functionThe mapt assigns to each transition a clock constraint represeating
pre-condition of the transition and a set of clocks tadmetto zero when the transition is taken. Given
x € X, the set ofz-constantsC,, comprises) and thosen € N such that an atomic clock constraint
x ~ m occurs as a conjunct in a clock constraint of some transifos. The setC'(A) of configurations
of Ais @ x CV(X). For brevity we writeg() for a configuration(q, ©). Thesizeof a timed automaton
is |A] £'1Q| + |A|max{size(n) + 1 :n € Cy,z € X}

Atimed automaton induces a transition systB(m) = (5S4, —.4) WhereS4 = C(A) andq(¥) — 4
¢’ (9") iff one of the following conditions holds:

(i) ¢ = ¢ and there existd € R>( such thaty = ¥ + d (subsequently calledelay transitionk

(i) (¢,4) € A, &(q,¢) = (¢,Y),9 = ¢ and? is such thaty'(y) = 0 for everyy € Y and
¥ (x) = 9¥(z) for everyxz € X \ Y (subsequently callediscrete transitions
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Reachabilityfor a k-clock timed automatond is to decideC' —* C’ for given configurations”, C’ €
C(A) N (Q x N¥) with integer-valued clocks.

2.4. Bounded Counter Automata

Letk € NandOp et {add;(z) : i € [k],z € Z} be a set otounter operationsA boundedk-counter

automatonis a tupleA = (Q, A, b, &), whereQ is a finite set ofcontrol locations A C @ x @ is the
transition relation b = (by,...,b;) € (Nso)" is a vector obounds and¢ : A — Op is thetransition
labeling function The setC(.A) of configurationsof A is @ x [0,b1] x --- x [0, bx]; again we write
q(ni,...,nk) org(n) to denote individual configurations. We céajlthe boundof counteri. Thesizeof
a bounded:-counter automaton is4| def |Q| + |A| max{size(b;) : i € [k]}.

A boundedk-counter automatotd induces a transition systeffi(A) = (Sa, —.4), whereS, =
C(A) and there is a transitiop(n, . .. ,n;) =4 ¢'(n}, ..., n}) iff both of the following hold:

() (¢.4') € Ajand
(i) if &(q,q') = add;(z) thenn; = n; + z andn’; = n; for all j # 4.

TheReachability Problenfor boundedk-counter automata is to decide whetlier—* C’ for given
configurationsC, C’ € C'(A).

We conclude this section by noting that bounded countemaait® can be viewed as bounded vector
addition systems with states (VASS) [24].

2.4.1. Syntactic Extensions of Bounded Counter Automata

Without loss of generality we may assume that transitiong-obunter automata are endowed with
guards which compare the counters to natural numbers. Hgrmva can extend the set of operations to
additionally contain operationgounter; ~ n, where~ € {<,<,=,>, >}, with the following se-
mantics: for every transitiorig,¢’) € A such thaté(q,q’) = counter; ~ n, q(ni,...,ng) —a4
q'(ny,...,ny) iff n; ~ nandn; = nj forall j € [k]. Itis not difficult to see that reachability in
any such bounded-counter automaton with an extended set of operations ceedoeed in logarithmic
space to reachability in a boundéetounter automaton. For example, a transitign;’) € A with label
&(q,q') = counter; < n can be simulated as follows:

e replace(q, ¢') with two new transitiongq, ¢”) and(¢”, ¢'), whereq” is a fresh control location;
and

e label(q,q") with add;(b; — n + 1) and(q”, ¢’) with add;(—b; + n — 1), whereb; is the bound of
counteri.

The construction for the remaining relational symbolsdat analogously.

Finally, we define a further generalisation that allows fe tounters of a bounded counter automa-
ton to take values from bounded intervélgn)Z C Q, n € N-,. Moreover, this generalisation allows
for adding and subtracting integer multiplesigf: to and from the counters. Formally, fore N+,
such a bounded counter automaton is a tuple= (Q, A,b,n, ) as above wittb = (by,...,b;) €
((1/n)Nso)*, and its set of operations consists of operatiodg; (1) such that- € (1/n)Z. The set of
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configurations ofd is Q x I; x --- x Iy, wherel; = {r € (1/n)Z : —=b; < r < b;}, andT'(A) is
defined in the obvious way. An instance of a reachability [@wohbin such a bounded counter automaton
A can then be reduced in logarithmic space to reachabilitybownded counter automatol by the
following procedure:

¢ replace each bounig with 2nb;; and

e replace each operatianid;(r) with add;(nr).

It is then easily shown by induction on the length of the phti for allzq, ..., 2z, € nly X -+ - X nly,
a((1/n)z1, ..., (1/n)ze) =4 ¢ ((1/n)z1,. .. (1/n)z,)
< q(z1 +nby, ..., 2 +nby) =% q(2) +nby, ...,z + nby).

2.4.2. Relationship to OneZ-counter Automata with Sign Tests

In [8], Demri and Gascon consider reachability in dhe&ounter automata with sign tests, for which they
show that reachability is NP-hard and in 8 E provided numbers are encoded in binary [8, Thm. 6 and
the remarks below]. Formally, a of#€ounter automaton with sign tests is a tuple= (Q, A, &, 7),
where@ and A are defined as for bounded counter automata abpveA — {add(z) : z € Z},
andt : A — {<,<,=,#,>,>} U {true} is atransition guardwhich allows the counter value to be
compared to zero. The set of configurationsdos C'(A) = Q x Z, andq(z) —4 ¢'(2') iff (¢,¢) € A,
&(q,q) = add(y), 2 = 2+ vy, 7(q,q') = ~andz ~ 0 if ~ # true. In particular note that the state
space of a bounded or#&€ounter automaton is infinite.

Here, we show that reachability in bounded one-countemaaita is logarithmic-space reducible to
reachability in oneéZ-counter automata with sign tests. This observation tagetfith the P $ACE lower
bound obtained by Fearnley and Jurdzifski [5] for readlgbin bounded one-counter automata then
allows us to observe the P&CeEcompleteness of reachability in ofeeounter automata.

Lemma 2.1. Reachability in bounded one-counter automata is logarittspace reducible to reachabil-
ity in one-Z-counter automata with sign tests.

Proof:

The idea is straightforward: we use transition guards ireotd ensure that for a given bounded one-
counter automatotd = (@, A, b, &), the counter always stays in the intery@lb]. Formally, a one-
Z-counter automaton!’ = (Q’, A’,¢’, ') can be obtained fromd as follows: replace each transition
(q,q") € Alabeled withadd (=) by three consecutive transitions with fresh intermediaterol locations
that perform the following sequence of actions:

e addz to the counter and test that resulting value is non-negative
e subtracth from the counter and test that the resulting value is at marst; z

e addb to the counter.

—=* ¢ (') iff g(n) =% ¢(n)

It is then easily established by induction on the length afrathatq(n)
[0,b]. 0

for each pair of control locationg ¢’ € @ and counter values, n’ €
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Corollary 2.2. Reachability in onéz-counter automata with sign tests isfR2R8E-complete.

Remark 2.3. Note that in [8] it is also shown that if there is a run betweawn tonfigurations of a
oneZ-counter automaton with sign tests then there is one for which the maximum absolute value
of the counter occurring along the run can be boundeg(|) for some fixed polynomiap that is
independent ofA. Hence, an adaptation of the construction provided in 8e@i4.1 can be used in
order to reduce reachability in or#&counter automata with sign tests to reachability in bodnolee-
counter automata.

3. The general case

In this section we prove the following theorem.

Theorem 3.1. Reachability ink-clock timed automata witk > 3 is logarithmic-space inter-reducible
with reachability in bounded two-counter automata.

The proof of the theorem comprises three parts. We show that

(i) reachability in bounded-counter automata with > 3 can be reduced to reachability in bounded
two-counter automata,;

(ii) reachability in bounded two-counter automata can laeiced to reachability in three-clock timed
automata; and

(iii) reachability in k-clock timed automata witlk > 3 can be reduced to reachability in bounded
(2k + 2)-counter automata, which by (i) implies that this problemmeiducible to reachability in
bounded two-counter automata.

We describe each reduction in a separate section below.

3.1. Reduction (i)

In this section, we how that reachability in boundedounter automata with > 3 can be reduced to
reachability in bounded two-counter automata. Met (Q, A, b, ¢) be a bounded-counter automaton
with & > 3 andb = (by,...,b). Our first observation is that we may assume all bounds taf be
identical, i.e. for anyB > max{b; : i € [k]}, reachability inA can be reduced in logarithmic space
to reachability in a bounde#-counter automaton!’ = (Q’, A’,b,¢’), whereb = (b, ...,b). We can

obtain.A’ from A by the following procedure:

e replace each transitid, ¢’) labeled withadd ; () with two consecutive transitiong, ¢”), (¢”, ¢'),
whereq” is a fresh control location; and

e label(q, ¢") with add;(z) and(q”, ¢') with counter; < b;.

We can now establish the main lemma of this section.
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Lemma 3.2. Let A be a bounded:-counter automaton witk > 3. There is a bounded two-counter
automatond’ and a functionf : C(A) — C(A’) such that for aly(n), ¢'(n’) € C(A), ¢(n) =% ¢'(n)

iff f(g(n)) =% f(¢'(n")). MoreoverA’, f(q(n)) and f(q'(n")) are computable fror, ¢(n) and
¢’ (n’) in logarithmic space.

Proof:

Without loss of generality, leh = 2" — 1 be the uniform bound ofd, so thatr bits are sufficient to

represent a counter value. The idea behind our reductiansisrtulate counters two up foof A in the

(most significant) bits of the first counter @f, and to use the second countet4ifas temporary storage.
The control locations ofA’ contain those of4 as a subset, however the transitionsbfill be

replaced with gadgets id’. We set the bound on the counters4ffto be2*” — 1. In order to formalise

our intuition about the relationship between configuratioh A and.A’, we define

[ C(A) = CA) Eg(ny,...,ni) = q(Y 267D, 0).
1€[k]

Our aim is to constructd’ such thatg(n) —% ¢'(n’) iff f(g(n)) =% f(¢'(n’)). To this end, the
transitions of4 are replaced by gadgets.f that, informally speaking, ensure that we do not underflow
or overflow. Formally, any transitiofy, ¢’) labeled withadd;(z), z € Z in A gets replaced i’ with a
gadget that performs the following sequence of actions eriitst and second counters 4f:

() move all bits with indexir up tokr — 1 from the first to the second counter
(i) add20—17 to the first counter;
(iii) test that the value of the second counter is less @an
(iv) move the bits with indexr up tokr — 1 from the second to the first counter; and
(v) switch to control locationy’.

A generic gadgetd, . (i, 7) that enables moving bits with indexup to j is graphically depicted in
Figure 1. The idea is to non-deterministically subtractrflevant bits from the first counter while at the
same time adding them to the second counter, and to finaltykahat all bits were transferred. Note that
the test in (iii) ensures that the simulation of addintp thei-th counter does not result in an overflow
which could occur sincel and.A’ do not have the same bound.

It is now not difficult to verify thaty(n) — 4 ¢'(n’) iff there is a pathr : f(¢(n)) =%, f(¢'(n’)) in
T(A’), which concludes the proof of the lemma. O

3.2. Reduction (ii)

We now show that reachability in bounded two-counter autaroan be reduced to reachability in three-
clock timed automata with clocks, y, z. By the observation made in Section 3.1, we may assume that
A has a uniform bound. We encode counter values as follows: for any clock valmaipwhenever

LIn this paper we start indexing from zero.
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add2(2j) add2(2j*1) addg(QZ)
add, (—27) addy (—2771) S faddy(=2)
O - @ . —:o > @

Figure 1. Generic gadget,..., (4, ) used for moving the bits with indexup to j from the first to the second
counter.

-O

counter; < 2

L y= (Z.Z),. y=n (Z.w)z: " (Z.v)
. y:=0 y:=0 z:=0
L0/ N, am @
g—x*=0 4 o~ = ° o T = q
z:=0 \ z:=0 y:()/4
[ ] z:b—. y_br. y_nr.
z:=0 y:=0 y:=0

Figure 2. Gadget for simulating an increment of the first ¢eubyn € N.

J(x) = b the value of the first counter od is encoded inj(z) — ¥(y) andd(z) — ¥(z) encodes the
second counter afl. A similar encoding has also been used in [25] in order to shodecidability of
reachability in parametric three-clock timed automata.

Lemma 3.3. Let A be a bounded two-counter automaton aiid), ¢'(n’) € C(A). Then there is a
three-clock timed automatod’ and a functionf : C(A) — C(A’) such thatg(n) —% ¢'(n’) iff

flg(n)) =%, f(¢'(n’)). MoreoverA’, f(q(n)), andf(q'(n")) are computable from, ¢(n), andg’'(n’)
in logarithmic space.

Proof:
Let b be the uniform bound ofl. The functionf required in the lemma is defined as follows:

frq(ni,ng) = q({z = by = (b—n1),2 = (b—n2)}),

which is clearly computable in logarithmic space.

We now sketch howd’ can be obtained fromd. The timed automatord’ contains all control
locations ofA as a subset. However, the transitions frdnare replaced by gadgets that manipulate the
clocks in a way that simulates the action of the replacedsitians. As an invariant, we ensure that at
any time A’ reaches a control location that existsAnthe value of the clock is b. Supposéq, ¢’) € A
is a transition fromA4 such that(q, ¢') = add;(n) for somen € N. In A’, we replace this transition by
the gadget shown in Figure 2. There, clock constraints aittewrase.g.« = b and clock resets asg.
z:=0.

Consider a configuration(n,ny) of A which corresponds to the configuratigt{z — b,y —
b—ni1,z — b—ns})of A'. Since we want to simulate that the first countetloincreases, we need
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to increase the difference between the value of the cloekd the value of the clocl by n. To this
end, the gadget first resets the clacklt then non-deterministically guesses the order of theukited
counter values: it branches upwards if the value of the foghter is no greater than that of the second
counter,i.e, n1 < no, and downwards otherwise. We only discuss the first case hbegadget waits
until clock y has valueb. Then we aim at waiting fon time units in order to increase the difference of
x andy by n. However, clockz could reach valué in the meantime, which occurs when < ny + n.
Thus, again, a non-deterministic choice is performed talleathe two cases. U reaches beforey
reachesu, the downward branch can be taken, which first reseds it reaches clock valueand then
y when it reaches clock value. The converse case can be shown analogously, see belovly,Rima
gadget waits until clock reaches clock valukin order to establish our agreed invariant when it reaches
¢'. Note that if the increment would result in a counter valugéa thanb, the automatond’ would
block, as expected. Itis easily checked that an analogadpegigan be constructed for the simulation of
incrementing the second counter.

We demonstrate the correctness of our construction byrdeterg the intermediate values of the
clocks along the path labelled K§y)—(v), which, as discussed above, is traversed wheandn, are
such thaty > ny + n:

(i) I(x) = (y) =b—ny andd(z) = b — ny (by the invariant);
(i) I(z) = (y) =0andd¥(z) = b — (n2 — n1) < b, sinceny > n;
(i) Y(z) =n1+n,d(y) =0andd(z) =b— (ny —n1 —n) < b, sincena > n; +n;
(V) 9(z) =n1 +n+ng —ni —n=mny, y) =ns —ny —nandd(z) = 0;
(V) ¥(z) =b,9(y) =b— (n1 —n)andd(z) = b — no.

Finally, the same approach can be used in order to simulatementing a counter. The main
difference is that if we, say, wish to simulate decrementimgfirst counter by, instead of waiting for
the clocky to reachb and thenn, as it is done in Figure 2, we wait instead for the clacko reach
b—n. O

3.3. Reduction (iii)

It remains to reduce reachability iaclock timed automata to reachability in bound@é + 2)-counter
automata. Letd = (Q, X, A,¢) be a timed automaton with clocks = {x1,...,z;}. Recall that a
configuration of a timed automaton is a tuple consisting afratrol state and a clock valuation. In order
to abstract away from the priori infinite state space, we employ the region abstraction aschadility-
preserving equivalence relation on the set of configuratafra timed automaton. Recall that for a clock
x € X, C, denotes the maximum value of the constants occurring in tlaedg ofA involving z. As
defined in [2], the region abstraction relates two configonatg(¢) ~ ¢'(¢') whenever

(a) their control locations are the same,, ¢ = ¢/;

(b) the integral parts of the value of each clock with a valal the maximum constant appearing in
A are the sama.e,, foranyz € X, |¢(z)] = |[¢¥/(x)], or bothd(z) and¥’' (z) are greater thad,;
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relative order of fractional part of clocks

integral part of clocks
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Figure 3. lllustration of the approach to simulating theioagbstraction on bounded counters.

(c) the relative order of the fractional parts of the valukalbrelevant clocks are the sanie., for any
two differentz, y € X such that)(z) < C, andd(y) < Cy, ¥(x) — [I(z)] < I(y) — [I(y)] iff
V(x) = [9'(z)] <¥'(y) — [¥'(y)]; and

(d) the clocks with fractional pafi are the same,e,, for all z € X, ¥(z) — [¢(x)] = 0iff ¥ (x) —
[9'(x)] = 0.

Given ak-clock timed automatord, we sketch how to construct a bound@k + 2)-counter au-
tomatonA’ such that any reachability problem fdrtranslates into an instance of a reachability problem
in A’. The idea is to encode eashequivalence class of a configuration of a timed automat@nsasgle
configuration ofA’. The main difficulty is that conditions (b) — (d) allow for arpnential number of
possibilities in|.A|, and in order to achieve a logarithmic-space reductionctmelitions (b) — (d) thus
cannot directly be hard-wired into the control locations4bf but will instead be encoded into tBé + 2
counters.

Lemma 3.4. Let A be ak-clock timed automaton ang(), ¢'(¢') € C(A). Then there is a bounded
(2k + 2)-counter automatord’ and a functionf : C(A) — C(A’) such thatg(¥) —% ¢ (') iff
f(q(®)) =% f(d'(¥)). MoreoverA’, f(q(¥)), andf(q'(¢')) are computable fromd, ¢(v9), andq’ (')
in logarithmic space.

Proof:
Letm € N be chosen such that bits are sufficient to represent one plus the maximum integestant
appearing ind. The bounded counter automatgh has bounded counters, . .., fii1, i1, - -, i, and
t, where the maximum value for the countéfs. . ., ;1 andt is 2 — 1 and2™ — 1 for the counters
i1,...,1g. The bit representation of the counters is illustrated guFe 3, where the least significant bit
of each counter is at the bottom and the most significant bibpn

The countert serves as temporary storage space. In order to represenfigucationq(v}) of A,
fi,---, fre1 are used as slots that encode the relative order of the chithsespect to their fractional
parts induced byl. The counterf; additionally indicates those clocks that have fractioraat . Since
there arek clocks, k + 1 different slots are sufficient. The encoding is such thabalc) is in slot? if
the j-th bit of the counterf; is set, and for the encoding to be faithful, consequentlyjtttebit must not
be set for any other countgy, for I’ # [. Forl < I’ € [k], whenever clockj is in slot/ and clockj’ in
', i.e, the j-th bit of the counterf; and thej’-th bit of the counterf;, are set, this indicates that clock
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j has a value whose fractional part is strictly smaller thanfthctional part of the value of clock. If

the j-th and thej’-th bit of a counterf; are both set, this indicates that clocksandz; have the same
fractional part. Finally, the counteis, . .., i, are used to store the integral parts of the clocks induced
by ¥ in binary,i.e., the counter; encodes the integral part of the first clock, the couitehe integral
part of the second clocletc.

As an example, consider a clock valuationwith ¥(x1) = 4.1, ¥(x2) = 2.0, ¥(x3) = 0.8,
Y(xr—1) = 0.0 andd(x) = 3.8 whose encoding is illustrated in Figure 3. Both cloaksandz_;
have fractional parts, hence the second and ttie— 1)-th bit of counterf; are set. The fractional part
of clock z; is greater than the fractional parts:ef andx,_,, hence clock:; “resides” in the encoding
in a slot to the right of the slot af,; andx_4, i.e., in this example in countef, whose first bit is set.
Finally, the value of countei, is 2 which corresponds to the integral part of clogk the value ofiy, is
3 which corresponds to the integral part of clagk etc.

Let us now describe how to simulaté and let us first consider delay transitions. The effect of a
delay transition is that as time increases, clocks with filgbédst fractional part increase their integral
part by one and have their fractional part set to zero. Aleottiocks do not change their integral parts
and the relative order of their fractional parts, but are mowhe relative order of their fractional parts
to the right of those clocks that changed their integral.pElignce, delay transitions can be simulated
by a gadget as follows: first, the value of the counfter; is moved to the temporary counteand the
value of f; 1 is set to zero. Then, we rotate the values of the counfersp to f; by one,i.e,, move
the value off; to fs, the value off; to f3 until eventually we move the value of the counferto fi 1.

All clocks x; that previously “resided” irf;,;; must now have a fractional part equal to zero and their
integral part needs to be incremented by one. Setting tlitidreal part equal to zero corresponds to
moving the value that was stored on the temporary courtteif;. Incrementing the integral part of;
corresponds to incrementing the value of the couiitdry one, provided that it has not yet reached its
maximum value. If the maximum value has already been reaaiedction is performed. In order to
simulate.A, any control location of4 is present ind’ and has a loop which simulates an elapse of time
as described above.

We now describe how to simulate discrete transitionslofTo this end, checking the truth value of
a guard of a transition against the currently abstracteckolaluation and resetting of clocks need to be
simulated. We illustrate the reduction with the help of aaraple. Suppose the guard(is, < 6 A zy =
4,{x1}). The constraint:; < 6 can be checked inl’ with an edge that is labeled wittvunter;, < 6,
checkingze = 4 can also be simulated with an edgeunter;, = 4, but we additionally need to check
that clockzo has fractional part zera,e,, is in the first slot, meaning that the second bitfgfis set.
Simulating a reset af; is also relatively straightforward: we non-determinialig choose the fractional
class; of z1, i.e, the counterf; whose first bit is set. We then set this bit to zere, remove2° from
fis add2’ to the counterf; and set; to zero. The latter can be implemented with the help of a lbap t
subtractsl from ¢; until a zero-test or; is successful.

It remains to briefly discuss some further technical deteftout so far. The task of moving contents
between counters od’ can easily be realised by a slight adaptation of the gadgsepted in Figure 1.
Testing whether a particular bit of a counter, say tka bit of f;, is set can also be realised in similar
fashion: we first copy the value of countérto countert. Next, we run through a gadget which first
subtract®’ from ¢ and then non-deterministically subtracts all other powséts/o. If a subsequent zero
test is successful, thieth bit of f; had been set, otherwise we get stuck at some point.
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In summary, in order to check(d) —% ¢'(¢'), we constructd’ in logarithmic space, compute
counter valuem,n’ € N2¢*2 that represent the abstraction of the clock valuatiéng’ and check
q(n) =%, ¢'(n’). The converse direction follows straightforwardly by defina bijection between
configurations;(n) and the region abstraction gf, we omit further details. O

4. The case of two clocks and one bounded counter

We now consider the special case of two-clock timed autoradsshow that reachability for this class of
timed automata is logarithmic-space inter-reducible wétiichability in boundednecounter automata.

Our first observation is that the direction from bounded coenter automata to two-clock timed
automata can be obtained as a trivial adaptation of the mtisin given in Lemma 3.3, from which we
obtain the following lemma.

Lemma 4.1. Let A be a bounded one-counter automaton @nd, ¢'(n’) € C(.A). There exists a two-
clock timed automatom’ and a functionf : C(A) — C(A’) such thaty(n) —% ¢'(n) iff f(q(n)) =%
f(d'(n")). MoreoverA’, f(q(n)), andf(¢'(n’)) are computable fromt, ¢(n), and¢’(n’) in logarithmic
space.

The remainder of this section is devoted to a reduction incthreverse direction, which is slightly
more involved. We first formally define two gadgets that wélised in this reduction. The first gadget
adds a number to the counter that is non-deterministicallycsed from an interval whose endpoints are
given in binary. This is formalised in the following lemma.

Lemma4.2. Leta < b € N. There exists a logarithmic-space computable boundedcoueter au-
tomaton.A with control locationsy, ¢’ such that for alh, n' € N, g(n) =% ¢'(n') iff n’ —n € [a,b].

Proof:
The main idea is that any natural number can be expressedusms afgpowers of two minus one, and
that we can construct a gadget which allows for adding anybeurbetween zero and a power of two
minus one.

Let us first show how a natural numbee N can be written as a sum of powers of two minus one.
For anym € N, define

k(m) © max{i € N: (2" — 1) < m)}.

We define a sequenee; > ms > ... of values inN as follows:m, def bandm;q def m; — (2’“(7”2') -1)
fori > 0. Let(k;),., be the sequence of titgm;), we haveb = 3", (2 —1). Sincem; ;1 < m;/2 for
all i > 0, we havek; > 0 andk;,; = 0 for somej < log b and henceé = Zie[j](Qki —1). For example
takingb = 11, we havem; = 11, mg =4, m3 = 1, my = 0, and11 = (23 — 1) + (22 — 1) + (2! - 1).

Next, a gadget; that allows for adding a value in the interJal 2¢ — 1] can be constructed straight-
forwardly:

Jadd (20)  Jaddi(277)

N N
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Now for the construction afd from a, b € N required in the lemma, we first consider the case 0
and proceed as follows. For the sequencéipf,. , as defined above, we construct the above gadgets
Ay, such thatd,,, connects to4y,, fori € [j — 1]. Letq be the incoming locatiot) of A, andq’ the
terminal location() of A; , itis easily verified thay(n) —7 ¢'(n') iff n' —n € [0,b].

In the general case whengakes an arbitrary values frol, we construct a one-counter automaton
A as above that allows for representing any number in theviailtér, b — a] and add a new initial location
that has a transition to the initial control location.4fthat adds: to the counter. O

The second gadget allows for checking that the current eowatue lies in a certain interval without
destroying it.

Lemma4.3. Leta < b € N. There exists a logarithmic-space computable boundedcoueter au-
tomaton.A with control locations, ¢’ such that for alh € N, g(n) =% ¢/ (') iff n € [a,b].

Proof:

The automaton4 consists of two consecutive transitions, the first chechks tiiie counter is greater or
equal toa and the second that it is less or equabtdAs defined in Section 2.4.1, those test to not alter
the value of the counter. O

For the remainder of this section, fix a two-clock timed autton A = (Q, X, A, &) such that
X = {z,y}. In the following, we describe how to construct in logarithrapace a bounded one-counter
automatond’ = (@', A’,b,¢’) that simulatesA. For technical convenience we assume that the counter
of A’ takes values from an interval ifi/2)Z, cf. Section 2.4.1. The set of control locatio@s of A’
contains as a subset the control locationg)opaired withabstractions of clock valuationsWe first
define these abstractions.

LetC, = {z1,...,z,} be the ordered set of-constants in4, i.e,, z; < x;41 fori € [a — 1], and
let Cy = {v1,...,ys} the ordered set gj-constants, wherg; = y; = 0. We define the augmented sets
CandCp° asCye Lo, u {oo} respectivelyCy© et Cy U {oo}, wherez, 1 andy,; identify oo in
Cz° andCye, respectively. The set oégionsR of A is defined as

def
R :e{(xivyj7xi+bz7yj+by) 1 € Ca?’yj € Cyvbﬂhby € {07 1}}7

which is a subset of, x C, x C3° x Cg°. Note that|R| = O(|.A]?) and thatR is computable in
logarithmic space. Subsequently, we will writéo identify a region fromR. With each region € R,
we associate a set of clock valuatiaf@') in the obvious wayi.e.,

0 d(x) = 24, 9(y) = y;}

Uiz <O(x) < xip1,9(y) =y}

0 9(x) = z,y; < Iy) <yja}

V:x; <I(x) < zig1,y; < I(Y) < yje1)-

19(561" Yy Liy Yj
79(1'1‘, Yjs Ti+1,Y5

19(561" Yjys Liy Yj+1

—_— ~— ~— ~—
o
@
=

(e N ate N ate N et

79(1'1‘, Yjs Ti+1,Yj+1

HenceR partitions the set of all clock valuations. Moreover, ang tlock valuations in the same region
r cannot be distinguished by the clock constraintsdofi.e., for any two#,9’ € J(r) and any clock
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Yy

Figure 4. lllustration of the regions (left) and the clocKelience zones (right) of a two-clock timed automaton
with C; = {0,1,5} andC, = {0, 1, 3}.

constrainty occurring as a label of a transition gf, we havey = ¢ iff ¥ = ¢. The left-hand side of
Figure 4 depicts the regions of a two-clock timed automadonith C,, = {0,1,5} andCy, = {0, 1, 3}.
The stroked lines in the first quadrant indicate the regidnglce.g, (1,1,5,3) and (5,3, 00, 00) are
regions ofA.

A further abstraction that we use builds upon the setlo€k differencesD C Z of A, which is

defined ash &' {cz — ¢y i ¢z € Cp,cy € Cy}. We write D as the ordered séd = {d;,...,d.}. Our

abstraction is the set alock difference zones of A, which is a set oBymbolic intervalon Z defined
as

Z %4, d] - d € DYU{(di,dis1) : d; € D,i € [ — 1]} U {(=00,d1), (de, 00)}.
Here, we also havigZ| = O(|.A|?). We subsequently write to identify a clock difference zone froda.
With eachz € Z, we associate a set of clock valuations

9(z) E{W : 9(x) —0(y) € 2},

which gives us an abstraction. For instanfef], (—1,0) and(2,4) are clock difference zones in the
example illustrated in the right-hand side of Figure 4, vehiére dashed lines and the space between
them indicate clock difference zones. Note that the setasfkctifference zoneg partitions the set of
all clock valuations as well. Informally speaking, suppeseknow that a clock valuatioti is in some
regionr, then the clock difference zone adds additional informmattwat allows for determining where
the clock is located with respect to the corner points.of

Applying the previous definitions, we now define those cdrtreations of A’ that we employ for
simulating time delay transitions of. To this end, we pair eacl € @ with a region and a clock
difference zone:

Qx{(r,2) eRx Z:9(r)Nd(z)#0} CQ".

The whole set)’ of control locations ofAd’ will be defined subsequently and in addition contain control
locations which simulate discrete transitions. Each tuplér, z)) represents a sé(J) : 9 € 9(r) N
9¥(z)} of configurations of4, and we can associate with every configuratjof) of .4 a control location
q(0)T of A’ as

g(0)" € (g, (r, 2)),
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wherer, z are uniquely chosen such thate ¥(r) N ¥(z). Referring to the example given in Fig-
ure 4, we have;({z — 3.5,y — 15N = (¢,((1,1,5,3),[2,2])) andq({z — 3.75,y — 1.5})T =
(qv ((17 17 57 3)7 (27 4)))

Givenr € R andz € Z such that)(r) N 9(z) # 0, in order to discretely simulate delay transitions
of A, we define thesuccessosucc(r, z) of r with respect to:. Informally speaking, elapse of time can
be simulated by moving from region to region along the dadimes in Figure 4. Let us first consider
the case: = [d, d] and suppose in the following thate C, x C, x Cy x Cy:

. def .
o if r = (zi,y;,2},v}), andx; = z; ory; = y; thensucc(r, z) = (4, Y5, Tit1, Yjt+1);
. def .
o if = (2,y;, Tit1,Yj+1) andzip1 — yj41 = d thensuce(r, 2) = (Tit1, Yj+1, Tit1, Yj+1);
. def .
o if r = (24, y), it1,Yj+1) andxip1 — yj41 < dthensuce(r, z) = (Tir1, Y5, Tit1, Yj+1);

. def
o if r = (24, y;,Tit1,yj41) andwz; gy — yj41 > dthensuce(r, z) = (24, Y41, Tigy1, Yj+1)-

Now if z = (dg,dk+1), we only sketch the definition ofucc(r, z), it can be extended in the obvious
way. Again, suppose in the following that,; # oo andy;; # oo, we define

. def .

o if r = (z4,y;,Tit1,yj+1) anddy 1 < 2441 — yj41 thensuce(r, 2) = (T4, Y1, Tiy1, Yj+1)s
. def

o if r = (z4,y;,%it1,yj41) anddy, > xi1 — y;q1 thensuce(r, z) = (Tig1, Y5, Tig1, Yjr1)-

Regions which involve clocks whose valuesiscan be handled analogoustyg.as:
o if r = (z,y,00,00) thensuce(r, z) def (00, 00, 00, 00);
e if r = (00, 00,00,00) thensuce(r, z) def (00, 00, 00, 00).

The definition of the remaining cases follows analogouslis hot difficult to check thatuce(r, z) can
be computed in logarithmic space. As an example, referorigidure 4 and letting = (1,1, 5, 3) and
z = [0,0], we havesucc(r,z) = (1,3,5,3), and if z = [2,2] then succ(r,z) = (5,3,5,3). When
r=(1,1,5,3) andz = (2,4), we havesucc(r, z) = (5,1,5,3), and ifz = (—1,0) thensucc(r,z) =
(1,3,5 3) Notice that the successor region in particular dependb@ulock difference zone.

In order to simulate time delay step$, contains transitions from ea¢h, (r, z)) to (¢, (succ(r, 2), 2))
which perform no action on the counter. Note that the cloffledince zone remains unaffected by those
transitions and only the region is changed. The followingrga now establishes the faithfulness of the
simulation of delay transitions od by A’.

Lemma 4.4. Letg(9) € C(A) andd € Rxo. Then for anyn € N, q(d) =% q(9+d) iff ¢(9)T(n) =%,
(9 + d)f(n).

Proof:

Letq(9)" = (g, (r, z)) and first observe that(z) — 9(y) = (9 + d)(z) — (¥ + d)(y) for all d € Rxy.
This in particular implies that for any € R we haveq(d + d)' = (g, (+', 2)) for some region”';
however the clock difference zone is always
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Supposey(¥) —% q(¥ + d) then there is a path ifi’(A) taking only time delay transitions. From
the definition ofsucc, it is easily verified that there exist intermediate valdes . . , di, € R> such that
d =3 icp i andg(d + > ;e d;)" = (q, (14, 2)) for regionsry, ...,y such thatsucc(r;, 2) = 74 1.
But then by the construction of’, we have:

q(0)'(n) = (q,(r1,2)(n) wu - = (¢, (rk, 2))(n) = q(@ + )T (n).
The converse direction follows analogously. O

Note that, informally speaking, we only simulate delay steptween regions but not inside regions.
However, elapse of time inside regions only needs to be dereil when resetting clocks. In order
to handle clock resets, we define a further abstraction #tablishes a correspondence between clock

valuations andatounter values ofd’. For our construction, we allow the counter to take valuemfa

bounded interval i.5Z and define the set of counter valuesias®' {d1 = 0.5,dy,d, +0.5,...,d. —

0.5,d.,d. + 0.5}, whered; %l _ max Cy andd, et max C,. We use the counter to partition the set of
clock valuations. Fon € V, we define

{¥:9(x) —¥(y) =n} fneVNZ

I(n) def {0:n—05<d(z)—9Y(y) <n+05 ifneV\(ZU{d —0.5,d; +0.5})
{0 :9(x) —9(y) < di} if n=d; —0.5
{0 :9(x) —9(y) > d.} if n =d.+ 0.5.

We use the definition af(n) to map configurations ofl to configurations of4’. For any clock valuation
¥, letv* denote the unique € V such that) € 9J(n). We define

Referring to the example in Figure 4, we hdve= {—3.5,3,—2.5,...,4.5,5,5.5}, and, for instance,

q({z — 3.5,y — L5} = (¢,((1,1,5,3),[2,2]))(2)
q(z — 3.75,y — 1,51 = (¢,((1,1,5,3),(2,4)))(2.5).

The partitioning of the clock valuations through the coumiaue is less coarse than through clock
difference zones. It classifies clock valuations accordinghether the difference between the clocks is
a fixed integer, lies strictly in a unit interval between twansecutive fixed integers, or lies outside the
“relevant” integers. That, however, leads to a number dfitiars which is exponential in the size of
due to binary encoding of numbers, which is the reason whytare ¢his abstraction of clock valuations
in the counter value and do not encode it into the controkestas we did for the other abstractions
discussed above. While simulatiogthrough.4’, via the gadget defined in Lemma 4.3 we can always
ensure that if we are in a configurati¢q, (r, z))(n) of A’ thenn is consistent witte, i.e, n € z and
a fortiori n € r. In particular, this gadget allows for non-determinigticahoosing the correct clock
difference zone with respect to the current counter value.

The key point of this additional abstraction of the differenof the two clocks into the counter
together with the abstraction of regions and clock diffeeemones provides sufficient information in
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order to faithfully simulate clock resets. In the generae;ahis is most relevant to regions of the form
r = (x;,9i, Ti+1, Yi+1). Depending on the clock difference zoneknowing thatd € 9¥(r) N Y¥(z) and
the differenced(x) — ¥(y) allows for deriving bounds ot (z) andd(y), as shown by the following
lemma.

Lemma 4.5. Let ¥ be such that/(z) — J(y) = d. Then the following hold:
(i) if z1 <V(z) <z2thend —zo < —9(y) < d — z1;
(i) if y1 < 9(y) < yathend +y; < z < d + yo;
(i) if ¥(z) < z9 andy; < I(y) thend + y1 < I(x) < z9 andd — zo < —I(y) < —y1; and

(iv) if 21 < J(x)andd(y) < ya thenz; < I(z) < d+y2 and—ys < —9(y) < d — ;.

Proof:
Immediate. U

Each case in Lemma 4.5 is induced by the boundaries of theséutiion ofr with a possible a clock
difference zone. The benefit of the lemma is that in orderdoirfstance, faithfully simulate a reset of
clock z in Case (i), we only have to subtract some value from the avumthich stores an abstraction
of the difference between the clocks) that lies in the irdkf¥, z2], which can be achieved by an
appropriate adaptation of the gadget constructed in Lemtha 4

We are now ready to describe the technical particularitfeBow to simulate discrete transitions
and clock resets. Throughout the remainder of this sectidrenever we consider a configuration
(q,(r,2))(n) of A’ that corresponds to some configuratigi#) of A, it is helpful to think ofi to lie, if
possible, at or, otherwise, infinitesimally close to thetdoot left corner ofd(r) N J(n). In addition to
the control locations mentioned aboyécontains control locations that we use to initiate the satiah
of clock resets:

Q x{(r,z) e Rx Z:9(r)NI(z) # 0} x {resety, resety, resety ,} C Q.

If (¢,4") € A, &(q,¢") = (¢,Y) and¥ = &(q,q') for all 9 € d(r) N ¥(z) then, depending on which
clocks are required to be reset Bj A’ contains a transition fronfq, (r, 2)) to (¢, (r, z), resety ),
(¢, (r,z), resety) or (¢, (r, z), reset, ), which perform no action on the counter. If no clock is regdir
to be reseti.e, Y = (), then(q, (r, z)) directly connects tdq’, (r, z)). Note that checking whethér|= ¢
for all ¥ € 9(r) N J(z) can be performed in logarithmic space, sitce= ¢ for all ¥ € J¥(r) NI (z) iff

¥ = ¢ foranyd € ¥(r) NJ(z).

As discussed above, the way we deal with simulating cloc&tsethroughA’ requires a change of
the counter valued’. The simplest case is the simulation a reset of both clacks This can easily be
realised by a gadget which sets the counter to 0, changeg), 0,0,0) andz to [0, 0]. Thus we are left
with the case of resettingneclock where things become slightly more complicated, iipalar when
we simulate a reset on a clock valuati@such that) € 9(r) for r = (x;, y;, zi+1,y;+1). As described
above, so far we have only abstracted from delay transitigimsh change regions, but now we are
confronted with also taking delays into account which hagpside regions. Informally speaking, when
resetting a clock, those delays determine where we landean-ttespectivelyy-axis, cf. Figure 4.
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In the following, we consider two representative casesshatv how to simulate resetting a single
clock of A in A’, the other cases can be derived analogously.

(i) Case:r = (z4,y;,Tit1,Yj+1), 2 = [d,d], d + yj41 < ;11 and we wish to reset clock of a
clock valuationy € ¥(r) N Y(z). Consequently, the value of the countedisNhen region zone
the value of clocky can take any value in the intervg;, y;+1), which corresponds to Case (ii) in
Lemma 4.5. Consequently, after resettinthe value of clock: lies in the intervald + y1, d + y2).
Such a counter value can be achieved as follows:

e connect(q, (r, 2), reset,) to a gadget that non-deterministically adds some value fien
interval [y; + 0.5, y;4+1 — 0.5] to the counter, as defined in Lemma 4.2;

e then non-deterministically gues$ € Z and verify with the gadget defined in Lemma 4.3
that 2’ is consistent with the new counter value before switchingh® control location

(q,’ (‘Tia 0) Li+1, 0), Z,).

Let us illustrate this case with the help of Figure 4, for epdrwith » = (1,1,5,3) andz =
[1,1]. In this example, if we consider a clock valuationinfinitesimally close to(2,1), if we
let time elapse while staying insideand then reset clocl, we obtain a new clock valuation
¥ such thaty'(z) € (2,4) and hencey(¥')t = (¢, (', 2"))(n’), wherer’ = (1,0,5,0), 2’ €
{(2,3),13,3],(3,4)} andn’ € {2.5,3,3.5} such that’ andn’ are consistent. In particular, the new
value of the counter is obtained by non-deterministicatiding a value from the interval between
they-boundaried and3 of r to the counter.

In order to reset clock:, we observe that for a faithful simulation the new countduedas to
lie in the interval[—y;;1 + 0.5, —y; — 0.5], which can easily be achieved by a gadget that non-
deterministically guesses a counter value in that intexmelthen proceeds as in the case of resetting

Y.

(i) Case:r = (x4, ¥, Tit1,Yj+1), 2 = (dk, dr+1) and the boundaries of the intersectiondgt) and
9(r) lie at (z;,y;, x5, yj+1) and(z;, Y11, Ti+1,Yj+1), and suppose that we wish to reset the clock
y. When entering zone, in this case when time elapses we always know that ¢(z) and
Y(y) < ye2, which corresponds to Case (iv) in Lemma 4.5. By applicatibthe lemma, resetting
clock i formally boils down to the following procedure:

e connect(q, (r, z), reset, ) to a gadget that adds_; — 0.5 to the counter;

¢ then non-deterministically subtract 0.5 from the countad aheck that the newly guessed
counter value?' is strictly abover;;

¢ and finally non-deterministically guesse Z and verify with the gadget defined in Lemma 4.3
thatz’ is consistent with the new configurati¢q, (z;,0, z;41,0), 2")(n).
In Figure 4, this case can be illustrated witk= (1,1,5,3) andz = (—1,0).

In order to simulate resetting cloak we proceed analogously according to Lemma 4.5 and subtract
x; from the counter, non-deterministically subtrici and verify that the counter is strictly above

—Yj+1-
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All remaining cases have a symmetric counterpart that weudged before, and it is not difficult to
check that all constructions can be performed in logarithspiace. Dealing with resets in regions of the
form (x;, i, xi, yi), (Tiy vi, Tit1,v:) @and(z;, vi, 24, yit+1) €an be simulated in the obvious way, since no
elapse of time inside those regions can occur.

In order to reduce an arbitrary instang@)) —* ¢'(¥') of a reachability problem in a two-clock
timed automatom to a reachability problem in a bounded one-counter automate constructd’ as de-
scribed above, but use the sétsu{¥(x), ¥’ (z)} andC, U{d(y), ¥’ (y)} in order to construct the regions
and clock difference zones of’. Summing up, in this section we have demonstrated how totieamns
in logarithmic space fromH, ¢(¢) andq’(¢') a bounded one-counter automatdhand compute in log-
arithmic space configurationgv)*, ¢/ (¢') € C(A’) such thag(9) —% ¢ (¢') iff ¢(9)F =%, ¢ (9")*.

In summary, we have thus shown the following theorem.

Theorem 4.6. Reachability in two-clock timed automata is logarithmpase inter-reducible with reach-
ability in bounded one-counter automata.

5. An open problem

Here, we wish to discuss a particular subclass of boundedcometer automata for which the precise
computational complexity of reachability remains an opebfem. This class is calleshe-dimensional
bounded vector addition systems (1-dim bounded MAlSiXh are essentially bounded one-counter au-
tomata consisting of a single state with a finite number dfleeps. Formally, a 1-dimensional bounded
VAS is a tupleA = (b, A) with b € N+ being a bound anch C {z € Z : |z| € [0, 0]} being a finite
set of transitions. As expected, their size is defineds= |A|size(b), and the induced finite transition
system isT’'(A) = ([0, ], —.4) such that, — 4 n’ iff n” = n + 2 for somez € A and alln,n’ € [0, b].
Despite their simplicity, the shortest run between two gigenfigurations can have length exponential
in the size ofA. For instance, for evelh> 4 consider the family of 1-dim bounded VA&, with

e boundb; and
e transitions{b/2 + 1, —b/2},

which have the property that any run starting)iand ending irb/2 visits all counter values frorfi up
to b, i.e., has length exponential jod,|.

Of course, the PSACE upper bound for reachability trivially carries over to Irdbounded VAS.
Moreover, by a reduction from a variant of the subset sumIpmbit is not difficult to show that
reachability is NP-hard despite the lack of a control stieein 1-dim bounded VASS. [1, Prop. 4.1.2].
However, the P8ack lower bound for reachability in bounded one-counter autanfiom [5] does
not obviously carry over to the setting of 1-dim bounded VA®reover, when restricting to only two
transitions, it is shown in [1, Lemma 4.3.2] that reachabitian be decided in NP via the computation
of the discrete volume of a certain polytope that can be #soktwith a reachability instance of a 1-dim
bounded VAS. We thus have the following open problem:

Is the reachability problem for 1-dim bounded VA8-complete?

As afinal remark, note that the reachability problem fordtounded VAS becomes P&CE-complete,
since the construction of Hopcroft and Pansiot [26, Lemnmid @an be applied in order to simulate
control states with three additional bounded counters.
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6. Conclusion

In this paper, we have established relationships betweshability problems in timed automata and
counter automata. For reachability problems in timed aatarnwithk > 3 clocks, we have provided a
logarithmic-space reduction to reachability in bound2t + 2)-counter automata (whose reachability
problem can in turn be reduced to reachability in two-couat#omata). In the special case of two-
clock timed automata we showed that the reachability proldan, in a more elaborate way, be reduced
to reachability in bounded one-counter automata. We cléisedircle by showing that reachability in
bounded one- and two-counter automata reduces to reathabtivo- and three-clock timed automata,
respectively. Finally, we discussed reachability in 1-@hounded VAS, for which the precise complexity
remains an interesting open problem.
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