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1. Introduction

Timed automata [2] and counter automata [3] are prominent infinite-state formalisms for modeling and
reasoning about quantitative behavior of systems. Timed automata comprise a finite-state controller with
a finite number of clocks that can be compared to constants andreset along a transition between two
control locations. Counter automata on the other hand extend finite-state machines with a finite number
of counters ranging over the natural numbers that can be incremented, decremented or tested for zero
along a transition.Reachability, the problem of deciding whether there is a path connecting two given
configurations in the corresponding induced transition system, is the central decision problem for both
timed and counter automata. In this paper, we establish a natural correspondence between reachability
in timed automata and a restricted class of counter automata, namelyboundedcounter automata. In
the latter class, counters are restricted to take values from an arbitrary but fixed finite interval over
the naturals, and hence bounded counter automata posses ana priori finite state space. However, due
to binary encoding of numbers, bounded counter automata succinctly encode a state space which is
exponential in the size of their description.

The main contribution of this paper is to show how runs in transition systems of timed automata can
naturally be simulated in bounded counter automata, andvice versa. From this we show in Section 3 that
reachability ink-clock timed automata withk ≥ 3 is logarithmic-space inter-reducible with reachability
in bounded two-counter automata. The emphasis and the most interesting part in this section is on
the naturalness of the simulation of timed automata in bounded counter automata. A more elaborate
reduction is required in Section 4, where we show that reachability in two-clock timed automata is
logarithmic-space inter-reducible with reachability in bounded one-counter automata. An interesting
class of bounded one-counter automata for which the precisecomplexity of reachability remains open is
discussed in Section 5.

An extended abstract of this paper [4] appeared in the proceedings of the 6th International Workshop
on Reachability Problems held in September 2012 in Bordeaux, France. Prior to this the precise computa-
tional complexity of reachability in two-clock timed automata and in bounded one-counter automata were
both long-standing open problems. One of the contributionsof [4] was to show that these two problems
are essentially equivalent. At the 40th International Colloquium on Automata, Languages and Program-
ming held in July 2013 in Riga, Latvia, Fearnley and Jurdziński gave a PSPACE-hardness proof, finally
showing that reachability in bounded one-counter automatais PSPACE-complete. By application of our
inter-reducibility result it follows that reachability intwo-clock timed automata is PSPACE-complete as
well [5].

A brief survey of work on reachability problems in timed and counter automata is presented in the
next section. Even though Fearnley and Jurdziński’s result only requires showing that reachability in
bounded one-counter automata can be reduced to reachability in two-clock timed automata, we believe
that the relationships established in [4] are interesting in their own right since they provide insight into the
structure of reachability problems of two prominent classes of automata. Similarly, a related technical
characterisation of timed automata via channel machines has proved useful in the study of robustness
problems for timed automata [6, 7]. It is conceivable that our reductions may in future assist in tackling
problems of a similar nature as well.

The present paper extends [4] by including all proofs omitted from [4] for reasons of space, as well
as additional details at various points. In addition, we show how bounded one-counter automata relate to
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automata with a single integer-valued counter sign tests: amodel considered by Demri and Gascon [8].
We conclude by discussing an open problem concerning one-dimensional vector addition systems.

1.1. A Short Account of the Complexity of Reachability in Timed and Counter Automata

In this section, we give a brief account of the history of the study of the computational complexity of
reachability in timed and counter automata. There is a rich body of literature on this topic; the present
treatment is not meant to be exhaustive.

Reachability in timed automata was shown to be decidable andPSPACE-complete in Alur and Dill’s
seminal paper [2]. Subsequently, a multi-parameter analysis of this problem was conducted by Courcou-
betis and Yannakakis [9], who showed that reachability is PSPACE-hard already in the presence of three
clocks when numbers are encoded in binary, and also PSPACE-hard when the number of clocks is un-
bounded and numbers are encoded in unary. The cases with fewer than three clocks were considered by
Laroussinie, Markey and Schnoebelen [10], who showed that reachability for one-clock timed automata
is NL-complete, and NP-hard in the presence of two clocks. However, no matching upper bound for
the latter problem was given in [10]. Naves showed in his Master’s thesis [11] that reachability becomes
PSPACE-hard when allowing for modulo tests on clocks under the assumption that numbers are encoded
in binary. This result was later refined by Göller and Lohrey[12], who showed that reachability is also
PSPACE-hard when all numbers, in particular those occurring in modulo tests, are encoded in unary.

For counter automata, the earliest result is that reachability is undecidable in the presence of at least
two counters [3]. For that reason, restrictions on counter automata that lead to decidable reachability
problems have been widely studied in the literature. Examples include the restriction to one counter [13,
14], restricting zero-tests [15, 16, 17, 18, 19], reversal-boundedness [20, 21] or flatness [22], all of
which lead to a decidable reachability problem, with complexity dropping to NP in certain cases. The
complexity of reachability in the presence of one unboundedcounter is NL-complete when numbers are
encoded in unary, seee.g.[8], and NP-complete when numbers are encoded in binary [14]. To the best
of our knowledge, the class of bounded counter automata introduced in this paper have nowhere been
studied in full generality. The complexity of reachabilityin bounded counter automata with only one
counter was investigated by Bouyeret al. in [23] in the context of weighted timed automata, where the
problem was shown to be NP-hard and in PSPACE. The reduction we established in [4] trivially entails
that reachability in bounded two-counter automata is PSPACE-complete in the presence of two counters.
Finally, Fearnley and Jurdziński showed in [5] that reachability in bounded one-counter automata is
PSPACE-hard, which established PSPACE-completeness of the whole class of bounded counter automata
and of two-clock timed automata.

2. Preliminaries

In this section, we give some of the definitions that we use in the remainder of this paper. The definitions
of timed automata and bounded counter automata are tailoredto our needs and as simplified as possible
in order to ease the reductions provided in the main text of the paper. In the case of bounded counter
automata, for technical convenience we additionally introduce some syntactic sugar and observe as a
side note the log-space inter-reducibility between reachability in bounded one-counter automata and
one-counter automata with sign tests which have been introduced by Demri and Gascon [8].
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2.1. General Notation

By R we denote the set ofreals, by Q the set ofrationals, by Z the set ofintegers, by N
def
= {n ∈

Z : n ≥ 0} the set ofnaturals, by N>0
def
= {n ∈ N : n > 0} the set ofstrictly positive naturals,

and byR≥0
def
= {r ∈ R : r ≥ 0} the set ofpositive reals. For i, j ∈ Z, [i, j] denotes the interval

{z ∈ Z : i ≤ z ≤ j}, and[i] is an abbreviation for[1, i]. Otherwise, interval definitions are used in the
standard way over subsets ofR, e.g., (i, j) defines the interval{r ∈ R : i < r < j}. The floor function

on the reals is defined in the standard way,i.e., ⌊r⌋
def
= max{z ∈ Z : z ≤ r}. GivenM ⊆ R andr ∈ R,

we denote byrM the set{rm : m ∈ M}, andM + r is the set{m + r : m ∈ M}. Throughout this
paper, we assume integers to be encoded in their natural binary encoding, and for anyz ∈ Z denote by
size(z) the number of symbols required to representz.

2.2. Transition Systems

A transition systemis a tupleT = (S,→), whereS is the set ofstatesand→ ⊆ S × S is thetransition
relation. Givens, t ∈ S, we writes → t whenever(s, t) ∈ → and denote by→∗ the reflexive transitive
closure of→. An s-t pathπ in T is a sequence of statesπ : s1, . . . , sn such thats1 = s, sn = t and
si → si+1 for all i ∈ [n− 1]. Givens, t ∈ S, reachability is to decide the existence of ans-t path inT ,
i.e., whethers →∗ t.

2.3. Timed Automata

Let X be a finite set ofclock variables. A clock valuationis a mappingϑ : X → R≥0; we denote by
CV (X) the set of allclock valuations. Givenr ∈ R≥0, we denote byϑ + r the clock valuation defined
by (ϑ+ r)(x) = ϑ(x) + r for all x ∈ X. An atomic clock constraintis a term of the formx ∼ n, where
x ∈ X, ∼ ∈ {<,≤,=, 6=,≥, >} andn ∈ N. A clock constraintφ is a finite conjunction of atomic clock
constraintsφ = x1 ∼ n1 ∧ . . . ∧ xm ∼ nm. The set of all clock constraints over clocksX is denoted by
CC(X). A clock valuationϑ mapsx ∼ n to a Boolean valueϑ(x) ∼ n and hence a clock constraintφ
to a Boolean value. We writeϑ |= φ wheneverϑ evaluatesφ to true.

In this paper, ak-clock timed automatonis a tupleA = (Q,X,∆, ξ), whereQ is a finite set ofcontrol
locations, X is a set ofk clock variables,∆ ⊆ Q×Q is thetransition relation, andξ : ∆ → CC(X)×2X

is thetransition labeling function. The mapξ assigns to each transition a clock constraint representinga
pre-condition of the transition and a set of clocks to beresetto zero when the transition is taken. Given
x ∈ X, the set ofx-constantsCx comprises0 and thosen ∈ N such that an atomic clock constraint
x ∼ n occurs as a conjunct in a clock constraint of some transitionof A. The setC(A) of configurations
ofA isQ×CV (X). For brevity we writeq(θ) for a configuration(q, ϑ). Thesizeof a timed automaton

is |A|
def
= |Q|+ |∆|max{size(n) + 1 : n ∈ Cx, x ∈ X}.

A timed automaton induces a transition systemT (A) = (SA,→A) whereSA = C(A) andq(ϑ) →A

q′(ϑ′) iff one of the following conditions holds:

(i) q = q′ and there existsd ∈ R≥0 such thatϑ′ = ϑ+ d (subsequently calleddelay transitions);

(ii) (q, q′) ∈ ∆, ξ(q, q′) = (φ, Y ), ϑ |= φ and ϑ′ is such thatϑ′(y) = 0 for every y ∈ Y and
ϑ′(x) = ϑ(x) for everyx ∈ X \ Y (subsequently calleddiscrete transitions).



C. Haase et al. / Relating Reachability Problems in Timed andCounter Automata 321

Reachabilityfor a k-clock timed automatonA is to decideC →∗
A C ′ for given configurationsC,C ′ ∈

C(A) ∩ (Q× Nk) with integer-valued clocks.

2.4. Bounded Counter Automata

Let k ∈ N andOp
def
= {add i(z) : i ∈ [k], z ∈ Z} be a set ofcounter operations. A boundedk-counter

automatonis a tupleA = (Q,∆,b, ξ), whereQ is a finite set ofcontrol locations, ∆ ⊆ Q × Q is the
transition relation, b = (b1, . . . , bk) ∈ (N>0)

k is a vector ofbounds, andξ : ∆ → Op is thetransition
labeling function. The setC(A) of configurationsof A is Q × [0, b1] × · · · × [0, bk]; again we write
q(n1, . . . , nk) or q(n) to denote individual configurations. We callbi theboundof counteri. Thesizeof

a boundedk-counter automaton is|A|
def
= |Q|+ |∆|max{size(bi) : i ∈ [k]}.

A boundedk-counter automatonA induces a transition systemT (A) = (SA,→A), whereSA =
C(A) and there is a transitionq(n1, . . . , nk) →A q′(n′

1, . . . , n
′
k) iff both of the following hold:

(i) (q, q′) ∈ ∆; and

(ii) if ξ(q, q′) = add i(z) thenn′
i = ni + z andn′

j = nj for all j 6= i.

TheReachability Problemfor boundedk-counter automata is to decide whetherC →∗
A C ′ for given

configurationsC,C ′ ∈ C(A).
We conclude this section by noting that bounded counter automata can be viewed as bounded vector

addition systems with states (VASS) [24].

2.4.1. Syntactic Extensions of Bounded Counter Automata

Without loss of generality we may assume that transitions ofk-counter automata are endowed with
guards which compare the counters to natural numbers. Formally, we can extend the set of operations to
additionally contain operationscounter i ∼ n, where∼ ∈ {<,≤,=,≥, >}, with the following se-
mantics: for every transition(q, q′) ∈ ∆ such thatξ(q, q′) = counter i ∼ n, q(n1, . . . , nk) →A

q′(n′
1, . . . , n

′
k) iff ni ∼ n andnj = n′

j for all j ∈ [k]. It is not difficult to see that reachability in
any such boundedk-counter automaton with an extended set of operations can bereduced in logarithmic
space to reachability in a boundedk-counter automaton. For example, a transition(q, q′) ∈ ∆ with label
ξ(q, q′) = counter i < n can be simulated as follows:

• replace(q, q′) with two new transitions(q, q′′) and(q′′, q′), whereq′′ is a fresh control location;
and

• label(q, q′′) with add i(bi − n+ 1) and(q′′, q′) with add i(−bi + n− 1), wherebi is the bound of
counteri.

The construction for the remaining relational symbols follows analogously.
Finally, we define a further generalisation that allows for the counters of a bounded counter automa-

ton to take values from bounded intervals(1/n)Z ⊆ Q, n ∈ N>0. Moreover, this generalisation allows
for adding and subtracting integer multiples of1/n to and from the counters. Formally, forn ∈ N>0,
such a bounded counter automaton is a tupleA = (Q,∆,b, n, ξ) as above withb = (b1, . . . , bk) ∈
((1/n)N>0)

k, and its set of operations consists of operationsadd i(r) such thatr ∈ (1/n)Z. The set of
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configurations ofA is Q × I1 × · · · × Ik, whereIj = {r ∈ (1/n)Z : −bj ≤ r ≤ bj}, andT (A) is
defined in the obvious way. An instance of a reachability problem in such a bounded counter automaton
A can then be reduced in logarithmic space to reachability in abounded counter automatonA′ by the
following procedure:

• replace each boundbi with 2nbi; and

• replace each operationadd i(r) with add i(nr).

It is then easily shown by induction on the length of the path that for allz1, . . . , zk ∈ nI1 × · · · × nIk,

q((1/n)z1, . . . , (1/n)zk) →
∗
A q′((1/n)z′1, . . . , (1/n)z

′
k)

⇐⇒ q(z1 + nb1, . . . , zk + nbk) →
∗
A′ q(z′1 + nb1, . . . , z

′
k + nbk).

2.4.2. Relationship to One-Z-counter Automata with Sign Tests

In [8], Demri and Gascon consider reachability in one-Z-counter automata with sign tests, for which they
show that reachability is NP-hard and in PSPACEprovided numbers are encoded in binary [8, Thm. 6 and
the remarks below]. Formally, a one-Z-counter automaton with sign tests is a tupleA = (Q,∆, ξ, τ),
whereQ and∆ are defined as for bounded counter automata above,ξ : ∆ → {add(z) : z ∈ Z},
andτ : ∆ → {<,≤,=, 6=,≥, >} ∪ {true} is a transition guardwhich allows the counter value to be
compared to zero. The set of configurations ofA isC(A) = Q×Z, andq(z) →A q′(z′) iff (q, q′) ∈ ∆,
ξ(q, q′) = add(y), z′ = z + y, τ(q, q′) = ∼ andz ∼ 0 if ∼ 6= true. In particular note that the state
space of a bounded one-Z-counter automaton is infinite.

Here, we show that reachability in bounded one-counter automata is logarithmic-space reducible to
reachability in one-Z-counter automata with sign tests. This observation together with the PSPACE lower
bound obtained by Fearnley and Jurdziński [5] for reachability in bounded one-counter automata then
allows us to observe the PSPACE-completeness of reachability in one-Z-counter automata.

Lemma 2.1. Reachability in bounded one-counter automata is logarithmic-space reducible to reachabil-
ity in one-Z-counter automata with sign tests.

Proof:
The idea is straightforward: we use transition guards in order to ensure that for a given bounded one-
counter automatonA = (Q,∆, b, ξ), the counter always stays in the interval[0, b]. Formally, a one-
Z-counter automatonA′ = (Q′,∆′, ξ′, τ ′) can be obtained fromA as follows: replace each transition
(q, q′) ∈ ∆ labeled withadd(z) by three consecutive transitions with fresh intermediate control locations
that perform the following sequence of actions:

• addz to the counter and test that resulting value is non-negative;

• subtractb from the counter and test that the resulting value is at most zero;

• addb to the counter.

It is then easily established by induction on the length of a run thatq(n) →∗
A q′(n′) iff q(n) →∗

A′ q′(n′)
for each pair of control locationsq, q′ ∈ Q and counter valuesn, n′ ∈ [0, b]. ⊓⊔
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Corollary 2.2. Reachability in one-Z-counter automata with sign tests is PSPACE-complete.

Remark 2.3. Note that in [8] it is also shown that if there is a run between two configurations of a
one-Z-counter automaton with sign testsA then there is one for which the maximum absolute value
of the counter occurring along the run can be bounded byp(|A|) for some fixed polynomialp that is
independent ofA. Hence, an adaptation of the construction provided in Section 2.4.1 can be used in
order to reduce reachability in one-Z-counter automata with sign tests to reachability in bounded one-
counter automata.

3. The general case

In this section we prove the following theorem.

Theorem 3.1. Reachability ink-clock timed automata withk ≥ 3 is logarithmic-space inter-reducible
with reachability in bounded two-counter automata.

The proof of the theorem comprises three parts. We show that

(i) reachability in boundedk-counter automata withk ≥ 3 can be reduced to reachability in bounded
two-counter automata;

(ii) reachability in bounded two-counter automata can be reduced to reachability in three-clock timed
automata; and

(iii) reachability in k-clock timed automata withk ≥ 3 can be reduced to reachability in bounded
(2k + 2)-counter automata, which by (i) implies that this problem isreducible to reachability in
bounded two-counter automata.

We describe each reduction in a separate section below.

3.1. Reduction (i)

In this section, we how that reachability in boundedk-counter automata withk ≥ 3 can be reduced to
reachability in bounded two-counter automata. LetA = (Q,∆,b, ξ) be a boundedk-counter automaton
with k ≥ 3 andb = (b1, . . . , bk). Our first observation is that we may assume all bounds ofb to be
identical, i.e., for any b̂ ≥ max{bi : i ∈ [k]}, reachability inA can be reduced in logarithmic space
to reachability in a boundedk-counter automatonA′ = (Q′,∆′, b̂, ξ′), whereb̂ = (b̂, . . . , b̂). We can
obtainA′ from A by the following procedure:

• replace each transition(q, q′) labeled withadd i(z) with two consecutive transitions(q, q′′), (q′′, q′),
whereq′′ is a fresh control location; and

• label(q, q′′) with add i(z) and(q′′, q′) with counter i ≤ bi.

We can now establish the main lemma of this section.
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Lemma 3.2. Let A be a boundedk-counter automaton withk ≥ 3. There is a bounded two-counter
automatonA′ and a functionf : C(A) → C(A′) such that for allq(n), q′(n′) ∈ C(A), q(n) →∗

A q′(n′)
iff f(q(n)) →∗

A′ f(q′(n′)). MoreoverA′, f(q(n)) andf(q′(n′)) are computable fromA, q(n) and
q′(n′) in logarithmic space.

Proof:
Without loss of generality, letb = 2r − 1 be the uniform bound ofA, so thatr bits are sufficient to
represent a counter value. The idea behind our reduction is to simulate counters two up tok of A in the
(most significant) bits of the first counter ofA′, and to use the second counter ofA′ as temporary storage.

The control locations ofA′ contain those ofA as a subset, however the transitions ofA will be
replaced with gadgets inA′. We set the bound on the counters ofA′ to be2kr − 1. In order to formalise
our intuition about the relationship between configurations ofA andA′, we define

f : C(A) → C(A′)
def
= q(n1, . . . , nk) 7→ q(

∑

i∈[k]

2(i−1)rni, 0).

Our aim is to constructA′ such thatq(n) →∗
A q′(n′) iff f(q(n)) →∗

A′ f(q′(n′)). To this end, the
transitions ofA are replaced by gadgets inA′ that, informally speaking, ensure that we do not underflow
or overflow. Formally, any transition(q, q′) labeled withadd i(z), z ∈ Z in A gets replaced inA′ with a
gadget that performs the following sequence of actions on the first and second counters ofA′:

(i) move all bits with indexir up tokr − 1 from the first to the second counter1;

(ii) add2(i−1)rz to the first counter;

(iii) test that the value of the second counter is less than2ir;

(iv) move the bits with indexir up tokr − 1 from the second to the first counter; and

(v) switch to control locationq′.

A generic gadgetAmov (i, j) that enables moving bits with indexi up to j is graphically depicted in
Figure 1. The idea is to non-deterministically subtract therelevant bits from the first counter while at the
same time adding them to the second counter, and to finally check that all bits were transferred. Note that
the test in (iii) ensures that the simulation of addingz to thei-th counter does not result in an overflow
which could occur sinceA andA′ do not have the same bound.

It is now not difficult to verify thatq(n) →A q′(n′) iff there is a pathπ : f(q(n)) →∗
A′ f(q′(n′)) in

T (A′), which concludes the proof of the lemma. ⊓⊔

3.2. Reduction (ii)

We now show that reachability in bounded two-counter automata can be reduced to reachability in three-
clock timed automata with clocksx, y, z. By the observation made in Section 3.1, we may assume that
A has a uniform boundb. We encode counter values as follows: for any clock valuation ϑ, whenever

1In this paper we start indexing from zero.
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i)

counter 1 < 2i

Figure 1. Generic gadgetAmov (i, j) used for moving the bits with indexi up to j from the first to the second
counter.
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x := 0
x = b

y := 0
y = b

z := 0
z = b

y := 0
y = n

z := 0
z = b

z := 0
z = b

y := 0
y = n

y := 0
y = b

y := 0
y = n

x = b

Figure 2. Gadget for simulating an increment of the first counter byn ∈ N.

ϑ(x) = b the value of the first counter ofA is encoded inϑ(x) − ϑ(y) andϑ(x) − ϑ(z) encodes the
second counter ofA. A similar encoding has also been used in [25] in order to showundecidability of
reachability in parametric three-clock timed automata.

Lemma 3.3. Let A be a bounded two-counter automaton andq(n), q′(n′) ∈ C(A). Then there is a
three-clock timed automatonA′ and a functionf : C(A) → C(A′) such thatq(n) →∗

A q′(n′) iff
f(q(n)) →∗

A′ f(q′(n′)). MoreoverA′, f(q(n)), andf(q′(n′)) are computable fromA, q(n), andq′(n′)
in logarithmic space.

Proof:
Let b be the uniform bound ofA. The functionf required in the lemma is defined as follows:

f : q(n1, n2) 7→ q({x 7→ b, y 7→ (b− n1), z 7→ (b− n2)}),

which is clearly computable in logarithmic space.
We now sketch howA′ can be obtained fromA. The timed automatonA′ contains all control

locations ofA as a subset. However, the transitions fromA are replaced by gadgets that manipulate the
clocks in a way that simulates the action of the replaced transitions. As an invariant, we ensure that at
any timeA′ reaches a control location that exists inA, the value of the clockx is b. Suppose(q, q′) ∈ ∆
is a transition fromA such thatξ(q, q′) = add1(n) for somen ∈ N. In A′, we replace this transition by
the gadget shown in Figure 2. There, clock constraints are written ase.g.x = b and clock resets ase.g.
x := 0.

Consider a configurationq(n1, n2) of A which corresponds to the configurationq({x 7→ b, y 7→
b − n1, z 7→ b − n2}) of A′. Since we want to simulate that the first counter ofA increases, we need
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to increase the difference between the value of the clockx and the value of the clocky by n. To this
end, the gadget first resets the clockx. It then non-deterministically guesses the order of the simulated
counter values: it branches upwards if the value of the first counter is no greater than that of the second
counter,i.e., n1 ≤ n2, and downwards otherwise. We only discuss the first case here. The gadget waits
until clock y has valueb. Then we aim at waiting forn time units in order to increase the difference of
x andy by n. However, clockz could reach valueb in the meantime, which occurs whenn2 ≤ n1 + n.
Thus, again, a non-deterministic choice is performed to handle the two cases. Ifz reachesb beforey
reachesn, the downward branch can be taken, which first resetsz as it reaches clock valueb and then
y when it reaches clock valuen. The converse case can be shown analogously, see below. Finally, the
gadget waits until clockx reaches clock valueb in order to establish our agreed invariant when it reaches
q′. Note that if the increment would result in a counter value larger thanb, the automatonA′ would
block, as expected. It is easily checked that an analogous gadget can be constructed for the simulation of
incrementing the second counter.

We demonstrate the correctness of our construction by determining the intermediate values of the
clocks along the path labelled by(i)–(v), which, as discussed above, is traversed whenn1 andn2 are
such thatn2 > n1 + n:

(i) ϑ(x) = 0, ϑ(y) = b− n1 andϑ(z) = b− n2 (by the invariant);

(ii) ϑ(x) = n1, ϑ(y) = 0 andϑ(z) = b− (n2 − n1) < b, sincen2 > n1;

(iii) ϑ(x) = n1 + n, ϑ(y) = 0 andϑ(z) = b− (n2 − n1 − n) < b, sincen2 > n1 + n;

(iv) ϑ(x) = n1 + n+ n2 − n1 − n = n2, ϑ(y) = n2 − n1 − n andϑ(z) = 0;

(v) ϑ(x) = b, ϑ(y) = b− (n1 − n) andϑ(z) = b− n2.

Finally, the same approach can be used in order to simulate decrementing a counter. The main
difference is that if we, say, wish to simulate decrementingthe first counter byn, instead of waiting for
the clocky to reachb and thenn, as it is done in Figure 2, we wait instead for the clocky to reach
b− n. ⊓⊔

3.3. Reduction (iii)

It remains to reduce reachability ink-clock timed automata to reachability in bounded(2k + 2)-counter
automata. LetA = (Q,X,∆, ξ) be a timed automaton with clocksX = {x1, . . . , xk}. Recall that a
configuration of a timed automaton is a tuple consisting of a control state and a clock valuation. In order
to abstract away from thea priori infinite state space, we employ the region abstraction as a reachability-
preserving equivalence relation on the set of configurations of a timed automaton. Recall that for a clock
x ∈ X, Cx denotes the maximum value of the constants occurring in the guards ofA involving x. As
defined in [2], the region abstraction relates two configurationsq(ϑ) ∼ q′(ϑ′) whenever

(a) their control locations are the same,i.e., q = q′;

(b) the integral parts of the value of each clock with a value below the maximum constant appearing in
A are the same,i.e., for anyx ∈ X, ⌊ϑ(x)⌋ = ⌊ϑ′(x)⌋, or bothϑ(x) andϑ′(x) are greater thanCx;
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Figure 3. Illustration of the approach to simulating the region abstraction on bounded counters.

(c) the relative order of the fractional parts of the values of all relevant clocks are the same,i.e., for any
two differentx, y ∈ X such thatϑ(x) ≤ Cx andϑ(y) ≤ Cy, ϑ(x) − ⌊ϑ(x)⌋ ≤ ϑ(y) − ⌊ϑ(y)⌋ iff
ϑ′(x)− ⌊ϑ′(x)⌋ ≤ ϑ′(y)− ⌊ϑ′(y)⌋; and

(d) the clocks with fractional part0 are the same,i.e., for all x ∈ X, ϑ(x) − ⌊ϑ(x)⌋ = 0 iff ϑ′(x) −
⌊ϑ′(x)⌋ = 0.

Given ak-clock timed automatonA, we sketch how to construct a bounded(2k + 2)-counter au-
tomatonA′ such that any reachability problem forA translates into an instance of a reachability problem
in A′. The idea is to encode each∼-equivalence class of a configuration of a timed automaton asa single
configuration ofA′. The main difficulty is that conditions (b) – (d) allow for an exponential number of
possibilities in|A|, and in order to achieve a logarithmic-space reduction, theconditions (b) – (d) thus
cannot directly be hard-wired into the control locations ofA′, but will instead be encoded into the2k+2
counters.

Lemma 3.4. Let A be ak-clock timed automaton andq(ϑ), q′(ϑ′) ∈ C(A). Then there is a bounded
(2k + 2)-counter automatonA′ and a functionf : C(A) → C(A′) such thatq(ϑ) →∗

A q′(ϑ′) iff
f(q(ϑ)) →∗

A′ f(q′(ϑ′)). MoreoverA′, f(q(ϑ)), andf(q′(ϑ′)) are computable fromA, q(ϑ), andq′(ϑ′)
in logarithmic space.

Proof:
Letm ∈ N be chosen such thatm bits are sufficient to represent one plus the maximum integerconstant
appearing inA. The bounded counter automatonA′ has bounded countersf1, . . . , fk+1, i1, . . . , ik and
t, where the maximum value for the countersf1, . . . , fk+1 andt is 2k − 1 and2m − 1 for the counters
i1, . . . , ik. The bit representation of the counters is illustrated in Figure 3, where the least significant bit
of each counter is at the bottom and the most significant bit ontop.

The countert serves as temporary storage space. In order to represent a configurationq(ϑ) of A,
f1, . . . , fk+1 are used as slots that encode the relative order of the clockswith respect to their fractional
parts induced byϑ. The counterf1 additionally indicates those clocks that have fractional part 0. Since
there arek clocks,k + 1 different slots are sufficient. The encoding is such that a clock j is in slot l if
thej-th bit of the counterfl is set, and for the encoding to be faithful, consequently thej-th bit must not
be set for any other counterfl′ for l′ 6= l. For l < l′ ∈ [k], whenever clockj is in slot l and clockj′ in
l′, i.e., thej-th bit of the counterfl and thej′-th bit of the counterfl′ are set, this indicates that clock
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j has a value whose fractional part is strictly smaller than the fractional part of the value of clockj′. If
thej-th and thej′-th bit of a counterfl are both set, this indicates that clocksxj andxj′ have the same
fractional part. Finally, the countersi1, . . . , ik are used to store the integral parts of the clocks induced
by ϑ in binary, i.e., the counteri1 encodes the integral part of the first clock, the counteri2 the integral
part of the second clock,etc..

As an example, consider a clock valuationϑ with ϑ(x1) = 4.1, ϑ(x2) = 2.0, ϑ(x3) = 0.8,
ϑ(xk−1) = 0.0 andϑ(xk) = 3.8 whose encoding is illustrated in Figure 3. Both clocksx2 andxk−1

have fractional parts0, hence the second and the(k − 1)-th bit of counterf1 are set. The fractional part
of clockx1 is greater than the fractional parts ofx2 andxk−1, hence clockx1 “resides” in the encoding
in a slot to the right of the slot ofx2 andxk−1, i.e., in this example in counterf2 whose first bit is set.
Finally, the value of counteri2 is 2 which corresponds to the integral part of clockx2, the value ofik is
3 which corresponds to the integral part of clockxk, etc..

Let us now describe how to simulateA and let us first consider delay transitions. The effect of a
delay transition is that as time increases, clocks with the highest fractional part increase their integral
part by one and have their fractional part set to zero. All other clocks do not change their integral parts
and the relative order of their fractional parts, but are nowin the relative order of their fractional parts
to the right of those clocks that changed their integral part. Hence, delay transitions can be simulated
by a gadget as follows: first, the value of the counterfk+1 is moved to the temporary countert and the
value offk+1 is set to zero. Then, we rotate the values of the countersf1 up tofk by one,i.e., move
the value off1 to f2, the value off2 to f3 until eventually we move the value of the counterfk to fk+1.
All clocks xj that previously “resided” infk+1 must now have a fractional part equal to zero and their
integral part needs to be incremented by one. Setting the fractional part equal to zero corresponds to
moving the value that was stored on the temporary countert to f1. Incrementing the integral part ofxj
corresponds to incrementing the value of the counterij by one, provided that it has not yet reached its
maximum value. If the maximum value has already been reached, no action is performed. In order to
simulateA, any control location ofA is present inA′ and has a loop which simulates an elapse of time
as described above.

We now describe how to simulate discrete transitions ofA. To this end, checking the truth value of
a guard of a transition against the currently abstracted clock valuation and resetting of clocks need to be
simulated. We illustrate the reduction with the help of an example. Suppose the guard is(x1 < 6∧x2 =
4, {x1}). The constraintx1 < 6 can be checked inA′ with an edge that is labeled withcounter i1 < 6,
checkingx2 = 4 can also be simulated with an edgecounter i2 = 4, but we additionally need to check
that clockx2 has fractional part zero,i.e., is in the first slot, meaning that the second bit off1 is set.
Simulating a reset ofx1 is also relatively straightforward: we non-deterministically choose the fractional
classj of x1, i.e., the counterfj whose first bit is set. We then set this bit to zero,i.e., remove20 from
fj, add20 to the counterf1 and seti1 to zero. The latter can be implemented with the help of a loop that
subtracts1 from i1 until a zero-test oni1 is successful.

It remains to briefly discuss some further technical detailsleft out so far. The task of moving contents
between counters ofA′ can easily be realised by a slight adaptation of the gadget presented in Figure 1.
Testing whether a particular bit of a counter, say thej-th bit of fl, is set can also be realised in similar
fashion: we first copy the value of counterfl to countert. Next, we run through a gadget which first
subtracts2j from t and then non-deterministically subtracts all other powersof two. If a subsequent zero
test is successful, thej-th bit of fl had been set, otherwise we get stuck at some point.
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In summary, in order to checkq(ϑ) →∗
A q′(ϑ′), we constructA′ in logarithmic space, compute

counter valuesn,n′ ∈ N2k+2 that represent the abstraction of the clock valuationsϑ, ϑ′ and check
q(n) →∗

A′ q′(n′). The converse direction follows straightforwardly by defining a bijection between
configurationsq(n) and the region abstraction ofA; we omit further details. ⊓⊔

4. The case of two clocks and one bounded counter

We now consider the special case of two-clock timed automataand show that reachability for this class of
timed automata is logarithmic-space inter-reducible withreachability in boundedone-counter automata.

Our first observation is that the direction from bounded one-counter automata to two-clock timed
automata can be obtained as a trivial adaptation of the construction given in Lemma 3.3, from which we
obtain the following lemma.

Lemma 4.1. Let A be a bounded one-counter automaton andq(n), q′(n′) ∈ C(A). There exists a two-
clock timed automatonA′ and a functionf : C(A) → C(A′) such thatq(n) →∗

A q′(n′) iff f(q(n)) →∗
A′

f(q′(n′)). MoreoverA′, f(q(n)), andf(q′(n′)) are computable fromA, q(n), andq′(n′) in logarithmic
space.

The remainder of this section is devoted to a reduction in theconverse direction, which is slightly
more involved. We first formally define two gadgets that will be used in this reduction. The first gadget
adds a number to the counter that is non-deterministically selected from an interval whose endpoints are
given in binary. This is formalised in the following lemma.

Lemma 4.2. Let a < b ∈ N. There exists a logarithmic-space computable bounded one-counter au-
tomatonA with control locationsq, q′ such that for alln, n′ ∈ N, q(n) →∗

A q′(n′) iff n′ − n ∈ [a, b].

Proof:
The main idea is that any natural number can be expressed as a sum of powers of two minus one, and
that we can construct a gadget which allows for adding any number between zero and a power of two
minus one.

Let us first show how a natural numberb ∈ N can be written as a sum of powers of two minus one.
For anym ∈ N, define

k(m)
def
= max{i ∈ N : (2i − 1) ≤ m}.

We define a sequencem1 ≥ m2 ≥ . . . of values inN as follows:m1
def
= b andmi+1

def
= mi−(2k(mi)−1)

for i > 0. Let (ki)i>0 be the sequence of thek(mi), we haveb =
∑

i>0(2
ki−1). Sincemi+1 ≤ mi/2 for

all i > 0, we havekj > 0 andkj+1 = 0 for somej ≤ log b and henceb =
∑

i∈[j](2
ki − 1). For example

takingb = 11, we havem1 = 11, m2 = 4, m3 = 1, m4 = 0, and11 = (23 − 1) + (22 − 1) + (21 − 1).
Next, a gadgetAi that allows for adding a value in the interval[0, 2i−1] can be constructed straight-

forwardly:

© qi •

•add1(2
0)

. . . •

•

q′i
⊙

add1(2
i−1)
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Now for the construction ofA from a, b ∈ N required in the lemma, we first consider the casea = 0
and proceed as follows. For the sequence of(ki)i>0 as defined above, we construct the above gadgets
Aki such thatAki connects toAki+1

for i ∈ [j − 1]. Let q be the incoming location© of Ak1 andq′ the
terminal location

⊙
of A′

kj
, it is easily verified thatq(n) →∗

A q′(n′) iff n′ − n ∈ [0, b].
In the general case wherea takes an arbitrary values fromN, we construct a one-counter automaton

A as above that allows for representing any number in the interval [0, b−a] and add a new initial location
that has a transition to the initial control location ofA that addsa to the counter. ⊓⊔

The second gadget allows for checking that the current counter value lies in a certain interval without
destroying it.

Lemma 4.3. Let a < b ∈ N. There exists a logarithmic-space computable bounded one-counter au-
tomatonA with control locationsq, q′ such that for alln ∈ N, q(n) →∗

A q′(n′) iff n ∈ [a, b].

Proof:
The automatonA consists of two consecutive transitions, the first checks that the counter is greater or
equal toa and the second that it is less or equal tob. As defined in Section 2.4.1, those test to not alter
the value of the counter. ⊓⊔

For the remainder of this section, fix a two-clock timed automatonA = (Q,X,∆, ξ) such that
X = {x, y}. In the following, we describe how to construct in logarithmic space a bounded one-counter
automatonA′ = (Q′,∆′, b, ξ′) that simulatesA. For technical convenience we assume that the counter
of A′ takes values from an interval in(1/2)Z, cf. Section 2.4.1. The set of control locationsQ′ of A′

contains as a subset the control locations ofQ paired withabstractions of clock valuations. We first
define these abstractions.

Let Cx = {x1, . . . , xa} be the ordered set ofx-constants inA, i.e., xi < xi+1 for i ∈ [a − 1], and
let Cy = {y1, . . . , yb} the ordered set ofy-constants, wherex1 = y1 = 0. We define the augmented sets

C∞
x andC∞

y asC∞
x

def
= Cx ∪ {∞} respectivelyC∞

y
def
= Cy ∪ {∞}, wherexa+1 andyb+1 identify ∞ in

C∞
x andC∞

y , respectively. The set ofregionsR of A is defined as

R
def
={(xi, yj, xi+bx , yj+by) : xi ∈ Cx, yj ∈ Cy, bx, by ∈ {0, 1}},

which is a subset ofCx × Cy × C∞
x × C∞

y . Note that|R| = O(|A|2) and thatR is computable in
logarithmic space. Subsequently, we will writer to identify a region fromR. With each regionr ∈ R,
we associate a set of clock valuationsϑ(r) in the obvious way,i.e.,

ϑ(xi, yj , xi, yj)
def
= {ϑ : ϑ(x) = xi, ϑ(y) = yj}

ϑ(xi, yj , xi+1, yj)
def
= {ϑ : xi < ϑ(x) < xi+1, ϑ(y) = yj}

ϑ(xi, yj , xi, yj+1)
def
= {ϑ : ϑ(x) = xi, yj < ϑ(y) < yj+1}

ϑ(xi, yj, xi+1, yj+1)
def
= {ϑ : xi < ϑ(x) < xi+1, yj < ϑ(y) < yj+1}.

HenceR partitions the set of all clock valuations. Moreover, any two clock valuations in the same region
r cannot be distinguished by the clock constraints ofA, i.e., for any twoϑ, ϑ′ ∈ ϑ(r) and any clock
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Figure 4. Illustration of the regions (left) and the clock difference zones (right) of a two-clock timed automaton
with Cx = {0, 1, 5} andCy = {0, 1, 3}.

constraintφ occurring as a label of a transition ofA, we haveϑ |= φ iff ϑ′ |= φ. The left-hand side of
Figure 4 depicts the regions of a two-clock timed automatonA with Cx = {0, 1, 5} andCy = {0, 1, 3}.
The stroked lines in the first quadrant indicate the regions of A, e.g., (1, 1, 5, 3) and (5, 3,∞,∞) are
regions ofA.

A further abstraction that we use builds upon the set ofclock differencesD ⊆ Z of A, which is

defined asD
def
= {cx − cy : cx ∈ Cx, cy ∈ Cy}. We writeD as the ordered setD = {d1, . . . , dc}. Our

abstraction is the set ofclock difference zonesZ of A, which is a set ofsymbolic intervalsonZ defined
as

Z
def
={[d, d] : d ∈ D} ∪ {(di, di+1) : di ∈ D, i ∈ [c− 1]} ∪ {(−∞, d1), (dc,∞)}.

Here, we also have|Z| = O(|A|2). We subsequently writez to identify a clock difference zone fromZ.
With eachz ∈ Z, we associate a set of clock valuations

ϑ(z)
def
= {ϑ : ϑ(x)− ϑ(y) ∈ z},

which gives us an abstraction. For instance,[0, 0], (−1, 0) and(2, 4) are clock difference zones in the
example illustrated in the right-hand side of Figure 4, where the dashed lines and the space between
them indicate clock difference zones. Note that the set of clock difference zonesZ partitions the set of
all clock valuations as well. Informally speaking, supposewe know that a clock valuationϑ is in some
regionr, then the clock difference zone adds additional information that allows for determining where
the clock is located with respect to the corner points ofr.

Applying the previous definitions, we now define those control locations ofA′ that we employ for
simulating time delay transitions ofA. To this end, we pair eachq ∈ Q with a region and a clock
difference zone:

Q× {(r, z) ∈ R× Z : ϑ(r) ∩ ϑ(z) 6= ∅} ⊆ Q′.

The whole setQ′ of control locations ofA′ will be defined subsequently and in addition contain control
locations which simulate discrete transitions. Each tuple(q, (r, z)) represents a set{q(ϑ) : ϑ ∈ ϑ(r) ∩
ϑ(z)} of configurations ofA, and we can associate with every configurationq(ϑ) of A a control location
q(ϑ)† of A′ as

q(ϑ)†
def
= (q, (r, z)),
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wherer, z are uniquely chosen such thatϑ ∈ ϑ(r) ∩ ϑ(z). Referring to the example given in Fig-
ure 4, we haveq({x 7→ 3.5, y 7→ 1.5})† = (q, ((1, 1, 5, 3), [2, 2])) andq({x 7→ 3.75, y 7→ 1.5})† =
(q, ((1, 1, 5, 3), (2, 4))).

Givenr ∈ R andz ∈ Z such thatϑ(r) ∩ ϑ(z) 6= ∅, in order to discretely simulate delay transitions
of A, we define thesuccessorsucc(r, z) of r with respect toz. Informally speaking, elapse of time can
be simulated by moving from region to region along the dashedlines in Figure 4. Let us first consider
the casez = [d, d] and suppose in the following thatr ∈ Cx × Cy × Cx × Cy:

• if r = (xi, yj, x
′
i, y

′
j), andx′i = xi or y′j = yj thensucc(r, z)

def
= (xi, yj, xi+1, yj+1);

• if r = (xi, yj, xi+1, yj+1) andxi+1 − yj+1 = d thensucc(r, z)
def
= (xi+1, yj+1, xi+1, yj+1);

• if r = (xi, yj, xi+1, yj+1) andxi+1 − yj+1 < d thensucc(r, z)
def
= (xi+1, yj, xi+1, yj+1);

• if r = (xi, yj, xi+1, yj+1) andxi+1 − yj+1 > d thensucc(r, z)
def
= (xi, yj+1, xi+1, yj+1).

Now if z = (dk, dk+1), we only sketch the definition ofsucc(r, z), it can be extended in the obvious
way. Again, suppose in the following thatxi+1 6= ∞ andyj+1 6= ∞, we define

• if r = (xi, yj, xi+1, yj+1) anddk+1 ≤ xi+1 − yj+1 thensucc(r, z)
def
= (xi, yj+1, xi+1, yj+1);

• if r = (xi, yj, xi+1, yj+1) anddk ≥ xi+1 − yj+1 thensucc(r, z)
def
= (xi+1, yj, xi+1, yj+1).

Regions which involve clocks whose value is∞ can be handled analogously,e.g.as:

• if r = (x, y,∞,∞) thensucc(r, z)
def
= (∞,∞,∞,∞);

• if r = (∞,∞,∞,∞) thensucc(r, z)
def
= (∞,∞,∞,∞).

The definition of the remaining cases follows analogously. It is not difficult to check thatsucc(r, z) can
be computed in logarithmic space. As an example, referring to Figure 4 and lettingr = (1, 1, 5, 3) and
z = [0, 0], we havesucc(r, z) = (1, 3, 5, 3), and if z = [2, 2] then succ(r, z) = (5, 3, 5, 3). When
r = (1, 1, 5, 3) andz = (2, 4), we havesucc(r, z) = (5, 1, 5, 3), and if z = (−1, 0) thensucc(r, z) =
(1, 3, 5, 3). Notice that the successor region in particular depends on the clock difference zone.

In order to simulate time delay steps,A′ contains transitions from each(q, (r, z)) to (q, (succ(r, z), z))
which perform no action on the counter. Note that the clock difference zone remains unaffected by those
transitions and only the region is changed. The following lemma now establishes the faithfulness of the
simulation of delay transitions ofA by A′.

Lemma 4.4. Let q(ϑ) ∈ C(A) andd ∈ R≥0. Then for anyn ∈ N, q(ϑ) →∗
A q(ϑ+ d) iff q(ϑ)†(n) →∗

A′

q(ϑ+ d)†(n).

Proof:
Let q(ϑ)† = (q, (r, z)) and first observe thatϑ(x) − ϑ(y) = (ϑ + d)(x) − (ϑ + d)(y) for all d ∈ R≥0.
This in particular implies that for anyd ∈ R≥0 we haveq(ϑ + d)† = (q, (r′, z)) for some regionr′;
however the clock difference zone is alwaysz.
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Supposeq(ϑ) →∗
A q(ϑ + d) then there is a path inT (A) taking only time delay transitions. From

the definition ofsucc, it is easily verified that there exist intermediate valuesd1, . . . , dk ∈ R≥0 such that
d =

∑

i∈[k] ri andq(ϑ +
∑

i∈[k] di)
† = (q, (ri, z)) for regionsr1, . . . , rk such thatsucc(ri, z) = ri+1.

But then by the construction ofA′, we have:

q(ϑ)†(n) →A′ (q, (r1, z))(n) →A′ · · · →A′ (q, (rk, z))(n) →A′ q(ϑ+ d)†(n).

The converse direction follows analogously. ⊓⊔

Note that, informally speaking, we only simulate delay steps between regions but not inside regions.
However, elapse of time inside regions only needs to be considered when resetting clocks. In order
to handle clock resets, we define a further abstraction that establishes a correspondence between clock
valuations andcounter values ofA′. For our construction, we allow the counter to take values from a

bounded interval in0.5Z and define the set of counter values asV
def
= {d1 − 0.5, d1, d1 + 0.5, . . . , dc −

0.5, dc, dc + 0.5}, whered1
def
= −maxCy anddc

def
= maxCx. We use the counter to partition the set of

clock valuations. Forn ∈ V , we define

ϑ(n)
def
=







{ϑ : ϑ(x)− ϑ(y) = n} if n ∈ V ∩ Z

{ϑ : n− 0.5 < ϑ(x)− ϑ(y) < n+ 0.5 if n ∈ V \ (Z ∪ {d1 − 0.5, dk + 0.5})

{ϑ : ϑ(x)− ϑ(y) < d1} if n = d1 − 0.5

{ϑ : ϑ(x)− ϑ(y) > dc} if n = dc + 0.5.

We use the definition ofϑ(n) to map configurations ofA to configurations ofA′. For any clock valuation
ϑ, letϑ‡ denote the uniquen ∈ V such thatϑ ∈ ϑ(n). We define

q(ϑ)‡
def
= q(ϑ)†(ϑ‡).

Referring to the example in Figure 4, we haveV = {−3.5, 3,−2.5, . . . , 4.5, 5, 5.5}, and, for instance,

q({x 7→ 3.5, y 7→ 1.5})‡ = (q, ((1, 1, 5, 3), [2, 2]))(2)

q(x 7→ 3.75, y 7→ 1, 5})‡ = (q, ((1, 1, 5, 3), (2, 4)))(2.5).

The partitioning of the clock valuations through the counter value is less coarse than through clock
difference zones. It classifies clock valuations accordingto whether the difference between the clocks is
a fixed integer, lies strictly in a unit interval between two consecutive fixed integers, or lies outside the
“relevant” integers. That, however, leads to a number of partitions which is exponential in the size ofA
due to binary encoding of numbers, which is the reason why we store this abstraction of clock valuations
in the counter value and do not encode it into the control states as we did for the other abstractions
discussed above. While simulatingA throughA′, via the gadget defined in Lemma 4.3 we can always
ensure that if we are in a configuration(q, (r, z))(n) of A′ thenn is consistent withz, i.e., n ∈ z and
a fortiori n ∈ r. In particular, this gadget allows for non-deterministically choosing the correct clock
difference zone with respect to the current counter value.

The key point of this additional abstraction of the difference of the two clocks into the counter
together with the abstraction of regions and clock difference zones provides sufficient information in
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order to faithfully simulate clock resets. In the general case, this is most relevant to regions of the form
r = (xi, yi, xi+1, yi+1). Depending on the clock difference zonez, knowing thatϑ ∈ ϑ(r) ∩ ϑ(z) and
the differenceϑ(x) − ϑ(y) allows for deriving bounds onϑ(x) andϑ(y), as shown by the following
lemma.

Lemma 4.5. Let ϑ be such thatϑ(x)− ϑ(y) = d. Then the following hold:

(i) if x1 < ϑ(x) < x2 thend− x2 < −ϑ(y) < d− x1;

(ii) if y1 < ϑ(y) < y2 thend+ y1 < x < d+ y2;

(iii) if ϑ(x) < x2 andy1 < ϑ(y) thend+ y1 < ϑ(x) < x2 andd− x2 < −ϑ(y) < −y1; and

(iv) if x1 < ϑ(x) andϑ(y) < y2 thenx1 < ϑ(x) < d+ y2 and−y2 < −ϑ(y) < d− x1.

Proof:
Immediate. ⊓⊔

Each case in Lemma 4.5 is induced by the boundaries of the intersection ofr with a possible a clock
difference zone. The benefit of the lemma is that in order to, for instance, faithfully simulate a reset of
clock x in Case (i), we only have to subtract some value from the counter (which stores an abstraction
of the difference between the clocks) that lies in the interval [x1, x2], which can be achieved by an
appropriate adaptation of the gadget constructed in Lemma 4.2.

We are now ready to describe the technical particularities of how to simulate discrete transitions
and clock resets. Throughout the remainder of this section,whenever we consider a configuration
(q, (r, z))(n) of A′ that corresponds to some configurationq(ϑ) of A, it is helpful to think ofϑ to lie, if
possible, at or, otherwise, infinitesimally close to the bottom left corner ofϑ(r) ∩ ϑ(n). In addition to
the control locations mentioned above,q′ contains control locations that we use to initiate the simulation
of clock resets:

Q× {(r, z) ∈ R× Z : ϑ(r) ∩ ϑ(z) 6= ∅} × {resetx, resety, resetx,y} ⊆ Q′.

If (q, q′) ∈ ∆, ξ(q, q′) = (φ, Y ) andϑ |= ξ(q, q′) for all ϑ ∈ ϑ(r) ∩ ϑ(z) then, depending on which
clocks are required to be reset byY , ∆′ contains a transition from(q, (r, z)) to (q′, (r, z), resetx ),
(q′, (r, z), resety ) or (q′, (r, z), resetx ,y ), which perform no action on the counter. If no clock is required
to be reset,i.e., Y = ∅, then(q, (r, z)) directly connects to(q′, (r, z)). Note that checking whetherϑ |= φ
for all ϑ ∈ ϑ(r) ∩ ϑ(z) can be performed in logarithmic space, sinceϑ |= φ for all ϑ ∈ ϑ(r) ∩ ϑ(z) iff
ϑ |= φ for anyϑ ∈ ϑ(r) ∩ ϑ(z).

As discussed above, the way we deal with simulating clock resets throughA′ requires a change of
the counter valueA′. The simplest case is the simulation a reset of both clocksx, y. This can easily be
realised by a gadget which sets the counter to 0, changesr to (0, 0, 0, 0) andz to [0, 0]. Thus we are left
with the case of resettingoneclock where things become slightly more complicated, in particular when
we simulate a reset on a clock valuationϑ such thatϑ ∈ ϑ(r) for r = (xi, yj, xi+1, yj+1). As described
above, so far we have only abstracted from delay transitionswhich change regions, but now we are
confronted with also taking delays into account which happen inside regions. Informally speaking, when
resetting a clock, those delays determine where we land on thex- respectivelyy-axis,cf. Figure 4.
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In the following, we consider two representative cases thatshow how to simulate resetting a single
clock ofA in A′, the other cases can be derived analogously.

(i) Case: r = (xi, yj , xi+1, yj+1), z = [d, d], d + yj+1 < xi+1 and we wish to reset clocky of a
clock valuationϑ ∈ ϑ(r) ∩ ϑ(z). Consequently, the value of the counter isd. When region zoner
the value of clocky can take any value in the interval(yi, yj+1), which corresponds to Case (ii) in
Lemma 4.5. Consequently, after resettingy the value of clockx lies in the interval(d+y1, d+y2).
Such a counter value can be achieved as follows:

• connect(q, (r, z), reset y) to a gadget that non-deterministically adds some value fromthe
interval [yj + 0.5, yj+1 − 0.5] to the counter, as defined in Lemma 4.2;

• then non-deterministically guessz′ ∈ Z and verify with the gadget defined in Lemma 4.3
that z′ is consistent with the new counter value before switching tothe control location
(q′, (xi, 0, xi+1, 0), z

′).

Let us illustrate this case with the help of Figure 4, for example with r = (1, 1, 5, 3) andz =
[1, 1]. In this example, if we consider a clock valuationϑ infinitesimally close to(2, 1), if we
let time elapse while staying insider and then reset clocky, we obtain a new clock valuation
ϑ′ such thatϑ′(x) ∈ (2, 4) and henceq(ϑ′)‡ = (q, (r′, z′))(n′), wherer′ = (1, 0, 5, 0), z′ ∈
{(2, 3), [3, 3], (3, 4)} andn′ ∈ {2.5, 3, 3.5} such thatz′ andn′ are consistent. In particular, the new
value of the counter is obtained by non-deterministically adding a value from the interval between
they-boundaries1 and3 of r to the counter.

In order to reset clockx, we observe that for a faithful simulation the new counter value has to
lie in the interval[−yj+1 + 0.5,−yj − 0.5], which can easily be achieved by a gadget that non-
deterministically guesses a counter value in that intervaland then proceeds as in the case of resetting
y.

(ii) Case:r = (xi, yj , xi+1, yj+1), z = (dk, dk+1) and the boundaries of the intersection ofϑ(z) and
ϑ(r) lie at (xi, yj , xi, yj+1) and(xi, yj+1, xi+1, yj+1), and suppose that we wish to reset the clock
y. When entering zoner, in this case when time elapses we always know thatxi < ϑ(x) and
ϑ(y) < y2, which corresponds to Case (iv) in Lemma 4.5. By applicationof the lemma, resetting
clocky formally boils down to the following procedure:

• connect(q, (r, z), reset y) to a gadget that addsyj+1 − 0.5 to the counter;

• then non-deterministically subtract 0.5 from the counter and check that the newly guessed
counter valuen′ is strictly abovexi;

• and finally non-deterministically guessz′ ∈ Z and verify with the gadget defined in Lemma 4.3
thatz′ is consistent with the new configuration(q′, (xi, 0, xi+1, 0), z

′)(n′).

In Figure 4, this case can be illustrated withr = (1, 1, 5, 3) andz = (−1, 0).

In order to simulate resetting clockx, we proceed analogously according to Lemma 4.5 and subtract
xi from the counter, non-deterministically subtract0.5 and verify that the counter is strictly above
−yj+1.
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All remaining cases have a symmetric counterpart that we discussed before, and it is not difficult to
check that all constructions can be performed in logarithmic space. Dealing with resets in regions of the
form (xi, yi, xi, yi), (xi, yi, xi+1, yi) and(xi, yi, xi, yi+1) can be simulated in the obvious way, since no
elapse of time inside those regions can occur.

In order to reduce an arbitrary instanceq(ϑ) →∗
A q′(ϑ′) of a reachability problem in a two-clock

timed automatonA to a reachability problem in a bounded one-counter automaton, we constructA′ as de-
scribed above, but use the setsCx∪{ϑ(x), ϑ

′(x)} andCy∪{ϑ(y), ϑ
′(y)} in order to construct the regions

and clock difference zones ofA′. Summing up, in this section we have demonstrated how to construct
in logarithmic space fromA, q(ϑ) andq′(ϑ′) a bounded one-counter automatonA′ and compute in log-
arithmic space configurationsq(ϑ)‡, q′(ϑ′)‡ ∈ C(A′) such thatq(ϑ) →∗

A q′(ϑ′) iff q(ϑ)‡ →∗
A′ q′(ϑ′)‡.

In summary, we have thus shown the following theorem.

Theorem 4.6. Reachability in two-clock timed automata is logarithmic-space inter-reducible with reach-
ability in bounded one-counter automata.

5. An open problem

Here, we wish to discuss a particular subclass of bounded one-counter automata for which the precise
computational complexity of reachability remains an open problem. This class is calledone-dimensional
bounded vector addition systems (1-dim bounded VAS), which are essentially bounded one-counter au-
tomata consisting of a single state with a finite number of self loops. Formally, a 1-dimensional bounded
VAS is a tupleA = (b,∆) with b ∈ N>0 being a bound and∆ ⊆ {z ∈ Z : |z| ∈ [0, b]} being a finite
set of transitions. As expected, their size is defined as|A| = |∆|size(b), and the induced finite transition
system isT (A) = ([0, b],→A) such thatn →A n′ iff n′ = n + z for somez ∈ ∆ and alln, n′ ∈ [0, b].
Despite their simplicity, the shortest run between two given configurations can have length exponential
in the size ofA. For instance, for evenb ≥ 4 consider the family of 1-dim bounded VASAb with

• boundb; and

• transitions{b/2 + 1,−b/2},

which have the property that any run starting in0 and ending inb/2 visits all counter values from0 up
to b, i.e., has length exponential in|Ab|.

Of course, the PSPACE upper bound for reachability trivially carries over to 1-dim bounded VAS.
Moreover, by a reduction from a variant of the subset sum problem, it is not difficult to show that
reachability is NP-hard despite the lack of a control structure in 1-dim bounded VAS,cf. [1, Prop. 4.1.2].
However, the PSPACE lower bound for reachability in bounded one-counter automata from [5] does
not obviously carry over to the setting of 1-dim bounded VAS.Moreover, when restricting to only two
transitions, it is shown in [1, Lemma 4.3.2] that reachability can be decided in NP via the computation
of the discrete volume of a certain polytope that can be associated with a reachability instance of a 1-dim
bounded VAS. We thus have the following open problem:

Is the reachability problem for 1-dim bounded VASNP-complete?

As a final remark, note that the reachability problem for 4-dim bounded VAS becomes PSPACE-complete,
since the construction of Hopcroft and Pansiot [26, Lemma 2.1] can be applied in order to simulate
control states with three additional bounded counters.
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6. Conclusion

In this paper, we have established relationships between reachability problems in timed automata and
counter automata. For reachability problems in timed automata withk ≥ 3 clocks, we have provided a
logarithmic-space reduction to reachability in bounded(2k + 2)-counter automata (whose reachability
problem can in turn be reduced to reachability in two-counter automata). In the special case of two-
clock timed automata we showed that the reachability problem can, in a more elaborate way, be reduced
to reachability in bounded one-counter automata. We closedthe circle by showing that reachability in
bounded one- and two-counter automata reduces to reachability in two- and three-clock timed automata,
respectively. Finally, we discussed reachability in 1-dimbounded VAS, for which the precise complexity
remains an interesting open problem.
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